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Abstract

Reduced order models of nonlinear conservation laws in fluid dynamics do not typically inherit stability
properties of the full order model. We introduce projection-based hyper-reduced models of nonlinear con-
servation laws which are globally conservative and inherit a semi-discrete entropy inequality independently
of the choice of basis and choice of parameters.

1. Introduction

Projection-based model reduction constructs low-dimensional surrogate models for many-query scenarios
(e.g., simulations over multiple parameter values) that can be evaluated over a range of parameters at a
low online cost in exchange for a more expensive offline pre-computation step [1]. The development of
reduced order models (ROMs) is relatively mature for several classes of problems (e.g., linear time-invariant
systems, coercive elliptic PDEs). However, the construction of robust and stable ROMs for transient and
convection-dominated problems remains an active area of research [2].

For certain PDEs, “structure-preserving” ROMs provide robustness and stability by reproducing energetic
properties of the full system at the discrete level. ROMs which retain either Lagrangian [3, 4] or Hamiltonian
structure [5, 6, 7, 8, 9, 10, 11] have been constructed by combining Galerkin projection with an appropriate
formulation of the full order model, and similar energy-conserving ROMs have been constructed for the
incompressible Navier-Stokes equations [12, 13]. The construction of structure-preserving ROMs for nonlinear
conservation laws in fluid flow, however, remains an open problem. For example, Galerkin projection yields
ROMs which become unstable as the number of reduced basis functions (modes) is increased [14, 15]. As a
result, stabilized discretizations are often employed. Petrov-Galerkin ROMs, which use an alternative test
basis [16, 17, 14, 18, 19, 20, 21, 22], are a popular alternative, as are additional residual-based stabilization
or dissipation terms [23, 24, 25, 26]. Such models improve robustness in practice, though they do not provide
a theoretical foundation for stability.

The construction of stable ROMs for the compressible Navier-Stokes equations is further complicated
by the non-trivial structure of the equations. In response, practitioners have developed structure-preserving
entropy stable ROMs for simplifications of the underlying PDE (such as the time-dependent linearized com-
pressible Navier-Stokes equations [27, 28, 19, 29]) and extrapolate such models to the full nonlinear equations.
A promising alternative is to enforce physical conditions such as such as kinetic energy preservation, which
are empirically related to stability [30]. These methods significantly improve the robustness of numerical
methods in practice, and guarantee a discrete entropy inequality for systems of nonlinear conservation laws
which yield stable split formulations [31].

The approach taken in this work differs from the existing literature in the treatment of nonlinear terms.
In [30], equations are rewritten such that the nonlinear terms involve only polynomial (quadratic and cubic)
nonlinearities, which can be evaluated exactly using precomputed matrices. In this work, we approximate
nonlinear terms using hyper-reduction techniques based on empirically computed quadrature rules [32, 33].
The hyper-reduction approach incurs approximation error and additional computational cost; however, it
is allows for the generalization of the split forms in [30] to nonlinearly entropy stable formulations. We
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directly construct entropy stable ROMs for nonlinear conservation laws by combining hyper-reduction with
a modified Galerkin projection of an appropriate full order model. The approach taken in this paper combines
techniques from entropy stable finite volume schemes [34, 35] and entropy stable summation-by-parts (SBP)
discretizations [36, 37, 38, 39, 40, 41] to produce entropy stable reduced order models.

We note that this work focuses on classical model reduction techniques, which lose effectiveness for general
transport-type phenomena [42, 43, 44, 2]. This is tied to difficulties in approximating convected solutions
using a fixed reduced basis. Despite these challenges, classical approaches are still in model reduction of
transport-type equations for specific problem setups [15]. In this work, we restrict ourselves to classical
model reduction techniques. Challenges associated with the low-dimensional approximation of transport-
type solutions will be addressed in future work.

The paper is organized as follows. Section 2 introduces a full order model on 1D periodic domains based
on entropy stable finite volume schemes. Section 3 describes how to construct an entropy stable reduced
basis approximation, while Section 4 discusses entropy stable hyper-reduction techniques to reduce costs
associated with the evaluation of nonlinear terms. Section 5 describes how to extend the aforementioned
approaches to non-periodic boundary conditions, and Section 6 describes the extension to higher dimensions.
We conclude in Section 7 with numerical experiments which verifying the presented theoretical results.

2. The full order model: entropy stable finite volume schemes

We briefly summarize entropy inequalities associated with systems of nonlinear conservation laws. Let
Ω denote some domain with boundary ∂Ω. Nonlinear conservation laws are expressed as a system of partial
differential equations (PDEs)

∂u

∂t
+

d∑

i=1

∂fi(u)

∂xi
= 0, S(u) is a convex function, v(u) =

∂S

∂u
, (1)

where u ∈ R
n are the conservative variables, fi are nonlinear fluxes, and v(u) are the entropy variables. By

multiplying (1) by the entropy variables, viscosity solutions [45, 46] of popular fluid systems (e.g., shallow
water, compressible Euler and Navier-Stokes [47, 38]) can be shown to satisfy

∫

Ω

∂S(u)

∂t
dx+

d∑

i=1

∫

∂Ω

(
vTfi(u)− ψi(u)

)
ni ≤ 0, (2)

where ni denotes the ith component of the outward normal vector, and ψi(u) denotes the entropy potential for
the ith coordinate. The entropy inequality (2) is the analogue of energy stability for nonlinear conservation
laws [48, 49]. However, due to the use of inexact treatment of nonlinear terms (e.g., from collocation
approximations or inexact quadrature), most numerical methods for nonlinear conservation laws do not
satisfy a discrete analogue of this stability condition.

The reduced order models in this work are constructed using full order models based on entropy stable
finite volume methods [34], which reproduce a discrete version of the continuous entropy inequality (2). For
simplicity, we illustrate the construction of full and reduced order models on a periodic 1D domain. We
note that, while the reduced order model will be constructed from an entropy stable scheme, the solution
snapshots do not need to be generated by anentropy stable full order model. Throughout this work, we will
assume that the both full and reduced models yield “physically relevant” solutions, such that the entropy
is a convex function. For example, for the compressible Euler and Navier-Stokes equations, we will assume
that the thermodynamic variables (density and energy/temperature/pressure) are positive. Guaranteeing
both positivity and accuracy of numerical solutions for general discretizations remains challenging [50, 51],
and will be explored in future work.

A key ingredient of the full and reduced order models considered in this work are entropy conservative
finite volume numerical fluxes. Let uL,uR denote left and right states. Then, a two-point numerical flux
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fS(uL,uR) is entropy conservative if it satisfies the following three conditions

fS(u,u) = f(u), (consistency) (3)

fS(uL,uR) = fS(uR,uR), (symmetry)

(vL − vR)
T
fS(uL,uR) = ψ(uL)− ψ(uR), (entropy conservation),

These fluxes are used to construct entropy conservative and entropy stable finite volume schemes [34, 52, 53].
Let the domain be decomposed into K cells of size ∆x, and let (uh)i denote the vector containing mean
values of the vector of conservation variables over the ith cell. An entropy conservative finite volume method
results from discretizing the integral form of the conservation law as follows

d(uh)1
dt

+
fS((uh)2, (uh)1)− fS((uh)1, (uh)K)

∆x
= 0, (4)

d(uh)i
dt

+
fS((uh)i+1, (uh)i)− fS((uh)i, (uh)i − 1)

∆x
= 0, 1 < i < K

d(uh)K
dt

+
fS((uh)1, (uh)K)− fS((uh)K , (uh)K − 1)

∆x
= 0,

where periodicity is imposed through the equations for (uh)1, (uh)K .
We first rewrite the system (4) in a matrix form which is more amenable to model reduction. We define

the skew-symmetric differentiation matrix Q and flux matrix F such that

Q =
1

2




0 1 . . . −1
−1 0 1

−1 0 1
. . .

1 . . . −1 0



, Fij = fS

(
(uh)i , (uh)j

)
. (5)

Let 1 denote the vector of all ones. Note that Q1 = 0, that the matrix F is symmetric (due to symmetry of
fS), and that the diagonal of F is equal to f(u) due to flux consistency. For a scalar nonlinear conservation
law, the matrix-based formulation of (4) is then equivalent to

∆x
duh

dt
+ 2 (Q ◦ F )1 = 0. (6)

where ◦ denotes the Hadamard product, and each entry of uh corresponds to a point xi in the domain. In
this setting, Q ◦ F extracts and takes linear combinations of nonlinear flux interactions between different
nodal values of (uh)i and (uh)j . We note that this reformulation using the Hadamard product is non-
standard within the finite volume literature, but is more common in the SBP finite difference literature.
The discretization of the nonlinear flux term using (Q ◦ F )1 is commonly referred to as flux differencing
[37, 54, 38, 39, 40].1

For a system of n nonlinear conservation laws, all matrices are treated in a Kronecker product fashion. Let
the vector uh now correspond to the concatenated vector of components of the solution uh = [u1

h, . . . ,u
n
h]

T .
Then, the matrix formulation of (4) is given by

∆x
duh

dt
+ ((In×n ⊗Q) ◦ F )1 = 0,

F =



F1

. . .

Fn


 , (Fi)jk = fi,S

(
(uh)j , (uh)k

)
, (uh)j =

[(
u1
h

)
j

(
u2
h

)
j

. . . (un
h)j

]T
.

1The factor of 1/2 present in the definition of Q is to make (6) consistent with the entropy stable SBP literature. The factor
of 2 in (6) can also be derived from the chain rule [38, 39].
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Here, F is a block diagonal matrix where the ith block corresponds to the evaluation of the ith component
of the numerical flux fi,S(uL,uR). From this point on, we drop explicit references to components and the
Kronecker product to simplify notation, so that (6) applies to both scalar equations and systems.

We next show that the full order model satisfies a discrete conservation of entropy.

Theorem 1. Let uh(t) be a solution of (2) for which the entropy S(uh) is convex at each time t, and let the
flux fS(uL,uR) be entropy conservative as defined by (3). Then, uh satisfies the semi-discrete conservation
of entropy

∆x1T dS(uh)

dt
= 0.

Proof. The proof can be found in the literature [34, 35, 55]. Inspired by entropy stable summation by parts
(SBP) schemes [37, 54, 38, 39, 40], we present an alternative proof which relies only on matrix properties of
Q. We test (6) with the vector of entropy variables vh = v(uh)

∆xvTh
duh

dt
+ vTh 2 (Q ◦ F )1 = 0.

Assuming continuity in time and using the definition of the entropy variables in (1), vTh
duh

dt simplifies to

dS(uh)

du

T
duh

dt
=
∑

j

(
dS(uh)

du

)T

j

d (uh)j
dt

=
∑

j

dS((uh)j)

dt
= 1T dS(uh)

dt
.

Using skew-symmetry of Q, the flux term vTh 2 (Q ◦ F )1 yields

∑

ij

(vh)
T
i 2QijfS

(
(uh)i , (uh)j

)
=
∑

ij

(Qij −Qji) (vh)
T
i fS

(
(uh)i , (uh)j

)
.

Rearranging indices and using the symmetry of fS(uL,uR) = fS(uR,uL) exposes the entropy conservation
condition in the sum

∑

ij

(Qij −Qji) (vh)
T
i fS

(
(uh)i , (uh)j

)

=
∑

ij

Qij

(
(vh)i − (vh)j

)T
fS

(
(uh)i , (uh)j

)

=
∑

ij

Qij

(
ψ ((uh)i)− ψ((uh)j)

)
= ψTQ1− 1TQψ = 0,

where we have used that Q = −QT and Q1 = 0 in the final step.

2.1. Viscosity and entropy dissipation

Theorem 1 shows that the formulation (2) preserves a semi-discrete conservation of entropy. However, in
the presence of shock discontinuities, entropy should be dissipated instead of conserved. To mimic this at
the semi-discrete level, we add entropy dissipation to (6) through appropriate viscosity terms. For example,
it was shown in [56] that a centered approximation of the Navier-Stokes viscosity is entropy dissipative. In
this work, we apply a simple Laplacian artificial viscosity to each component of the solution [57]

∆x
duh

dt
+ 2 (Q ◦ F )1+ εKuh = 0, K =

1

∆x




1 −1

−1 2
. . .

. . .
. . . −1
−1 1




(7)
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where ε is the visosity coefficient. This choice is intended to simplify the presentation of entropy stable
treatments of diffusion terms. Future work will analyze both physically relevant viscosities and more nuanced
artificial dissipation mechanisms.

Remark. The choice of Neumann boundary conditions for the Laplacian matrix K is arbitrary, and K can
be replaced with the periodic Laplacian. Future works will investigate different viscous boundary conditions
(such as solid wall conditions) and their impacts on reduced order models.

If vThKuh ≥ 0, then the solution satisfies a discrete dissipation of entropy

∆x1T dS(uh)

dt
= −εvThKuh ≤ 0. (8)

The proof is similar to the one given in [56]. We rewrite the viscous term as

vThKuh = vTh
1

∆x2




(uh)1 − (uh)2
...(

(uh)i − (uh)i−1

)
−
(
(uh)i+1 − (uh)i

)

...
(uh)K − (uh)K−1



.

Since vh and uh are related through a differentiable invertible mapping, the mean value theorem implies
that

(uh)i − (uh)i−1 =

(
∂u

∂v

)

i,i−1

(
(vh)i − (vh)i−1

)

where
(
∂u
∂v

)
i,i−1

is the Jacobian matrix evaluated at some state between (uh)i and (uh)i−1.
2 Since the

Jacobian is related to the Hessian of the entropy through ∂2S(u)
∂u2 = ∂v

∂u =
(
∂u
∂v

)−1
, it is positive definite so

long as S(u) is convex. Substituting these expressions into the viscous terms and using positive definiteness
of ∂u

∂v yields

vThKuh =
1

∆x2

K−1∑

i=1

(
∂u

∂v

)

i+1,i

∣∣(vh)i − (vh)i+1

∣∣2 ≥ 0. (9)

3. An entropy conservative reduced order model

We can now formulate a reduced basis approximation on periodic domains using the entropy stable full
order models described in the previous section. Boundary conditions will be addressed later in Section 5.
We also note that this reduced order model is not practical, since the cost of evaluating nonlinear terms
scales with the size of the full order model. Later sections will discuss how to reduce the cost of nonlinear
evaluations using appropriate hyper-reduction techniques.

Let {φj(x)}
N
j=1 denote a reduced basis for each component of the solution, which may be generated using

(for example) principal orthogonal decomposition (POD) or the reduced basis procedure. Let V denote the
generalized Vandermonde matrix whose columns contain evaluations of φj at grid points xi

Vij = φj(xi).

We assume that the solution is well-approximated in the reduced basis over the entire time-window of
the simulation, and approximate grid values of the solution by uh = V uN . Here, uN denote “modal”

2We note that this “average” Jacobian is evaluated componentwise via a path integral [35].

5



coefficients of the solution in the reduced basis. Again, we emphasize that solution snapshots for transport-
type equations may not be well-approximated by a low-dimensional reduced basis. Future work will attempt
to combine techniques introduced in this work with methods to address this approximation issue [42, 44, 2].

Ignoring viscosity terms for now, plugging this expression into (6) and enforcing that the residual is
orthogonal to all columns of V (Galerkin projection) yields a reduced system

∆xV TV
duN

dt
+ 2V T (Q ◦ F )1 = 0.

We will show that, while this formulation is not entropy conservative, a slight modification recovers semi-
discrete entropy conservation. We motivate this modification by first considering the time derivative term.
Because of the Galerkin projection, we can no longer directly test with the vector of entropy variables, which
may not lie in the span of the reduced basis functions. However, we can test with an appropriate projection
of the entropy variables. Let vN denote coefficients of the projection of the entropy variables

vN =
(
V TV

)−1
V Tv (V uN ) = V †v (V uN ) ,

where V † is the pseudoinverse of V . Then, we can recover the time derivative of the discrete entropy by
testing with the coefficients vN

vTNV
TV

duN

dt
= v (V uN )

T
V
(
V TV

)−1
V TV

duN

dt
(10)

= v (V uN )
T d (V uN )

dt
= 1T dS(V uN )

dt
.

The remainder of the proof requires showing that

vTNV
T (Q ◦ F )1 = ṽT (Q ◦ F )1 = 0, ṽ = V vN = V V †v (V uN ) ,

where we have introduced the grid values of the projected entropy variables as ṽ. We can repeat the steps
of the proof of Theorem 1 up to the point when we invoke the entropy conservation condition of (3)

ṽT (Q ◦ F )1 =
1

2

∑

ij

Qij (ṽi − ṽj)
T
fS

(
(uh)i , (uh)j

)

6=
1

2

∑

ij

Qij (ψ((uh)i)− ψ((uh)j)) .

This is not possible due to the fact that the projected entropy variables ṽ are no longer mappings of the
grid values of the conservative variables uh = V uN . To remedy this, we follow approaches taken in [58, 40]
and replace the grid values of uh used to evaluate the flux matrix F with values of the entropy-projected
conservative variables ũ

ũ = u
(
V V †v (V uN )

)
= u (ṽ) .

The entropy projected conservative variables ũ are thus mappings of the projected entropy variables. We
note that V V † can also be interpreted as a discrete approximation of the L2 projection operator onto the
span of the reduced basis φj . One can then construct a semi-discretely entropy conservative reduced model.

Theorem 2. Let the coefficients uN solve

∆xV TV
duN

dt
+ 2V T (Q ◦ F )1 = 0, (11)

(F )ij = fS (ũi, ũj) , ũ = u
(
V V †v (V uN )

)
.

Then, the solution satisfies the following semi-discrete conservation of entropy

∆x1T dS(V uN )

dt
= 0.

Additionally, if 1 lies within the range of the reduced basis matrix V (e.g., 1 is in the span of the reduced
basis functions φ1, . . . , φN ), solutions of (11) conserve global averages of the conservative variables.
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Proof. The conservation of entropy follows from testing with vN and applying (10). The remaining steps
are identical to those of Theorem 1. The global conservation results from testing with 1. If 1 is in the range
of V , then the exist coefficients in the reduced basis matrix e such that V e = 1. Then,

∆xeTV TV
duN

dt
+ 2eTV T (Q ◦ F )1 = ∆x1T d (V uN )

dt
+ 21T (Q ◦ F )1 = 0.

Since Q is skew-symmetric and F is symmetric, Q ◦ F is skew-symmetric and 1T (Q ◦ F )1 = 0,

∆x1T d (V uN )

dt
= 0,

which is a discrete statement of conservation.

Remark. In order for the formulation (11) to remain accurate, the entropy projected conservative variables
must accurately approximate the conservative variables. This requires that the reduced basis accurately ap-
proximates the entropy variables. This can be taken into account, for example, by computing the POD basis
vectors from snapshots of both the conservative and entropy variables.

4. Entropy conservative hyper-reduction

While the Galerkin projected formulation (11) is entropy stable, the computational cost involved in
solving the semi-discrete system scales with the size of the full order model rather than the dimension of
the reduced basis. For example, explicit time-stepping methods require the evaluation of the nonlinear term
V T (Q ◦ F )1. Since the matrices Q and F are the original full order model matrices, the cost of the reduced
system is not lower than the cost of the full order model.

To reduce the cost of evaluating nonlinear terms, we introduce a second hyper-reduction step [59]. Here,
terms involving vectors of nonlinear function evaluations are approximated by terms involving nonlinear
function evaluations at a subset of points [60, 61, 62, 13, 63, 33, 64]. In this work, we utilize a sampling
and weighting strategy [13, 33, 64] which enables proofs of discrete entropy stability. These hyper-reduction
techniques can be interpreted as reduced quadratures, and produce approximations of the form

V T g(V uN ) ≈ V (I, :)T W g (V (I, :)uN ) .

Here, g(u) denotes a nonlinear function, I denotes a subset of Ns row indices corresponding to sampled
points, V (I, :) denotes the sub-matrix consisting of the Ns sampled rows of V , and W = diag(w) is a
Ns × Ns diagonal matrix of positive weights. We will describe algorithms for computing hyper-reduced
points and weights in Section 4.2.

We briefly outline our approach to hyper-reduction. Rather than directly apply hyper-reduction on the
nonlinear vector, we perform a matrix-based hyper-reduction which respects the matrix structure of the
nonlinear term V T (Q ◦ F ). Specifically, we construct a smaller hyper-reduced matrix Qs and approximate

the term V T (Q ◦ F ) with V (I, :)T W (Qs ◦ Fs), where Fs is a smaller hyper-reduced matrix containing
flux evaluations between solution states at different hyper-reduced points. Recall that the proof of entropy
conservation for the full order model in Theorem 1 required only that the matrix Q be skew symmetric and
have zero row sum. If the hyper-reduced matrix Qs also satisfies those properties

Qs = −QT
s , Qs1 = 0

then we will be able to extend the proof of entropy conservation in Theorem 2 to the hyper-reduced model.
Unfortunately, common hyper-reduction techniques applied naively to the matrix Q preserve either skew-

symmetry or zero row sums, but not both. For example, Q can be decomposed into the sum of local skew-
symmetric matrices, and the hyper-reduction techniques of [13, 65] approximate Q using a sparse linear
combination of those local matrices. This hyper-reduction technique preserves skew-symmetry, but does
not necessarily preserve the zero row sum property. Similarly, techniques such as gappy POD or empirical
interpolation [66, 60, 62] may preserve the zero row sum property but not skew-symmetry. The next section
describes a two-step hyper-reduction which retains both skew-symmetry and zero row sums of Qs (though
at the cost of sparsity).
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4.1. Two-step hyper-reduction: compress and project

We apply a two-step hyper-reduction procedure which preserves both the zero row sums and skew-
symmetry of the hyper-reduced matrix Qs. Rather than directly hyper-reducing the full order matrix Q,
we first construct a compressed “modal” matrix, then combine this with a projection operator based on
the hyper-reduced points. In the first step, we construct a compressed intermediate operator by combining
Galerkin projection with the “expanded basis” approach of [33]. Let Vt denote a test basis through which to
extract the action of Q. In this work, we assume that the span of the test basis includes the reduced basis,
e.g., R(V ) ⊂ R(Vt). We define the intermediate reduced operator

Q̂t = V
T
t QVt. (12)

Let c be some vector in the span of the test basis such that c = Vtĉ. Solving the system V T
t Vtd̂ = Q̂tĉ

yields that

V T
t Vtd̂ = V T

t QVtĉ = V
T
t Qc =⇒ V T

t

(
Vtd̂−Qc

)
= 0.

Here, d̂ are the coefficients of the orthogonal projection of Qc onto the test basis. Note that Q̂t is skew-
symmetric by construction. Moreover, if the vector of all ones lies in the span of the test basis (e.g., 1 = Vte

for some coefficient vector e), then

Q̂te = 0,

since Q̂t exactly recovers the action of Q1 = 0 and 0 lies within the span of any basis.
Since Q̂t acts on coefficients of the test basis (a “modal” operator), it cannot be directly applied to

evaluate nonlinear functions of the solution. However, we can construct “nodal” operator by combining Q̂t

with appropriate mappings from hyper-reduced points to coefficients of the test basis. We make the following
assumptions on the hyper-reduced points to enable the construction of such mappings:

Assumption 1. Let I denote the index set of hyper-reduced points. We assume that the hyper-reduced test
mass matrix Vt (I, :)

T
WVt (I, :) is non-singular.

Note that if Assumption 1 holds, then the test mass matrix V (I, :)T WV (I, :) is also non-singular, since
the column space of V is contained in the column space of Vt. We will provide a heuristic algorithm for
ensuring that the hyper-reduced test mass matrix is non-singular in Section 4.3.

If Assumption 1 holds, we can define the projection matrix Pt onto the test basis as follows:

Pt =
(
Vt (I, :)

T
WVt (I, :)

)−1

Vt (I, :)
T
W . (13)

The projection matrix Pt maps values at hyper-reduced points to coefficients in the test basis, and is well-
defined under Assumption 1. The key property of Pt which we will utilize is as follows: suppose that
f = Vt (I, :) c for some coefficients c. Then,

Ptf =
(
Vt (I, :)

T
WVt (I, :)

)−1

Vt (I, :)
T
WVt (I, :) c = c. (14)

In other words, if a vector lies in the range of Vt (I, :), the projection matrix Pt recovers the coefficients
exactly. We also note that if the hyper-reduced set I is taken to include all the points and W is a multiple

of the identity (for example, W = ∆xI), then Pt reduces to the pseudo-inverse V †
t =

(
V T
t Vt

)−1
V T
t .

We can now construct a “nodal” differentiation operator which satisfies both skew-symmetry and zero
row sum properties:

Lemma 1. Suppose that 1 is exactly representable in the test basis Vt and that Assumption 1 holds. Define
the matrix Qt

Qt = P
T
t Q̂tPt = P

T
t

(
V T
t QVt

)
Pt. (15)

Then, Qt is skew-symmetric and satisfies Qt1 = 0.

8



Proof. Since Q is skew-symmetric, the matrix Qt is skew-symmetric by construction as well. By (14), if 1 is
exactly representable in the test basis (such that 1 = Vt (I, :) e for some coefficient vector e ), then Pt1 = e.

Then, Qt1 = P T
t Q̂te = 0, since Q̂t exactly differentiates elements of the test basis.

Remark. The projection matrix Pt can also be replaced, for example, by the gappy POD projection (Vt (I, :))
†

[67, 68]. We do not observe significant differences in numerical results when doing so. In principle, any
matrix operator which maps from nodal values to modal coefficients and reproduces the test basis exactly
can be used for Pt. In this work, we restrict ourselves to the projection matrix defined by (13), and will
investigate other definitions of Pt in future work.

4.1.1. Choice of test basis

We have not yet specified the choice of test basis Vt. The span of the test basis should include the
reduced basis V , and Lemma 1 assumes that the span of the test basis should also contain 1. However, these
two conditions are insufficient to ensure accuracy for solutions of nonlinear conservation laws. Consider, for
example, the 1D periodic Burgers’ equation with initial condition

u(x, 0) = − sin(πx).

The solution u(x, t) is a decaying stationary shock which is anti-symmetric across the origin at all times t.
The POD modes are thus also anti-symmetric across the origin; however, their derivatives QV are nearly
symmetric across the origin, as shown in Figure 1. Since the entries of V TQV are inner products of nearly
symmetric and anti-symmetric functions, V TQV ≈ 0, and the resulting hyper-reduced model is highly
inaccurate.

(a) Solution snapshots (b) Modes (columns of V ) (c) Mode derivatives QV

Figure 1: Solution snapshots, three POD modes, and mode derivatives for a shock solution of the periodic Burgers’ equation.

This example implies that the reduced basis matrix V can do a poor job of sampling the range of QV ,
and that the test basis should contain additional vectors. To remedy this issue, we borrow techniques from
least squares Petrov-Galerkin ROMs [69, 22] and enrich the test basis Vt with vectors spanning the range of
QV . The test basisnow spans a space which contains 1,V , and QV , and thus has a dimension of at most
2N +1. The dimension of Vt may also be smaller if the intersection of the range of the reduced basis matrix
V and the range of QV and 1 is non-empty.

We briefly comment on why this choice of test basis restores accuracy. The matrix Qt should at minimum
reproduce the action of Q on the reduced basis V . In the absence of hyper-reduction (where Pt = V

†
t ), we

have that

QtV =
(
VtV

†
t

)T
QVtV

†
t V = QV ,

where we have used that VtV
†
t is a symmetric projector onto R(Vt) ⊃ R(V ) ∪R(QV ).
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4.2. Hyper-reduction algorithm and target space

In this work, we utilize the greedy algorithm for computing empirical cubature points and weights from
[32, 33], which is described in Algorithm 1. Because we assume a fixed reduced basis in time, we compute
a single set of empirical cubature points prior to the simulation and use those same points over the entire
duration of the simulation. Let Vtarget be some matrix whose columns span some target space of func-
tions to be integrated, and let wtarget denote some reference target weights. The algorithm approximates

V T
targetwtarget by Vtarget (I, :)

T
w. The index set is constructed in a greedy fashion by selecting the row index

of Vtarget which is most positively parallel to the residual, then computing the weight vector which minimizes
the residual through a (non-negative) least squares solve. The iteration terminates when the norm of the
residual is smaller than some user-defined tolerance tol. In this work, we utilize an N -mode POD basis,
and tol is determined by the singular values of the associated snapshot matrix. Suppose there are M total
singular values of the snapshot matrix; then, we define tol as

tol =

√√√√
∑M

j=N+1 σ
2
j∑M

j=1 σ
2
j

.

Algorithm 1 Compute hyper-reduction s.t. V T
targetwtarget ≈ Vtarget (I, :)

T
w (from [33]).

1: Input: Vtarget,wtarget, tol.
2: Output: I, w.
3: Set b = V T

targetwtarget, initialize residual r = b, I = ∅.
4: while ‖r‖ / ‖b‖ > tol do
5: Select new index i such that

i = arg min
i

Ṽir/ ‖r‖ , Ṽi = Vtarget(i, :)/ ‖Vtarget(i, :)‖ , i 6∈ I.

6: Add the new index to the set of hyper-reduced points I = I ∪ {i}.
7: Compute w using linear least squares

w = arg min
c

1

2

∥∥∥Vtarget (I, :)
T
c− b

∥∥∥
2

.

8: if minw ≤ 0 then

9: Recompute w using non-negative least squares

arg min
c≥0

1

2

∥∥∥Vtarget (I, :)
T
c− b

∥∥∥
2

.

10: end if

11: Recompute r = b− Vtarget (I, :)
T
w.

12: end while

Algorithm 1 requires both Vtarget and wtarget as inputs. For all numerical experiments, we set wtarget =
∆x1 and set Vtarget to be the span of products of POD functions V , such that

R (Vtarget) = span {V (:, i) ◦ V (:, j), i, j = 1, . . . , N} . (16)

This choice of target space ensures that the mass matrix ∆xV TV is accurately approximated. In practice,
since many of the pointwise vector products V (:, i) ◦ V (:, j) are linearly dependent, we replace Vtarget by a
dimensionally reduced matrix [33]. In this work, we compute this second reduction using another application

10



of the SVD. Let µ1, . . . , µNt
denote the singular values of Vtarget, and define the energy residual of the first

i modes

Ei =

√√√√
∑Nt

j=i+1 µ
2
j∑Nt

j=1 µ
2
j

. (17)

Note that E1 ≥ E2 ≥ . . . ≥ ENt
. We replace the matrix Vtarget with its k leading left singular vectors, where

k is the smallest index such that Ek ≤ tol.

4.3. Conditioning of the test mass matrix

We note that the choice of target space is designed to accurately approximate the mass matrix ∆xV TV ,
and does not take the test basis matrix Vt into account. This choice is motivated by the empirical observation
that incorporating the test basis by approximating either ∆xV TVt or ∆xV T

t Vt produces a significantly
larger number of hyper-reduced points without any significant improvement in accuracy. However, because
the hyper-reduction strategy does not account for Vt, it is possible to construct a hyper-reduced quadrature
which accurately integrates the mass matrix but violates Assumption 1 by producing a singular test mass
matrix Vt (I, :)

T
WVt (I, :). The challenge is then to construct a hyper-reduced volume quadrature which

accurately approximates the reduced basis mass matrix ∆xV TV while ensuring that the hyper-reduced test
mass matrix is non-singular. We address this challenge by computing the spectra of the test mass matrix
and adding additional “stabilizing” points if the condition number is larger than a specified tolerance.

Let zj denote the Nz eigenvectors corresponding to small eigenvalues of the hyper-reduced test mass
matrix. The entries of zj correspond to vectors of coefficients in the test basis Vt. Let Z denote the matrix
whose columns are point values of each eigenvector

Z =
[
Vtz1 . . . VtzNz

]
.

To ensure that the hyper-reduced test mass matrix is non-singular, we will employ a greedy heuristic based on
adding additional points to approximate ∆xZTZ. Suppose that we have already computed hyper-reduced
points and weights to approximate the reduced mass matrix ∆xV TV . Let IV denote the index set of these
stabilizing points. We compute a second group of hyper-reduced points with index set IZ using the greedy
hyper-reduction algorithm applied to the target space Ztarget, which we define analogously to Vtarget in (16).
We note that, unlike the hyper-reduced points computed previously, we do not perform a dimensionality
reduction on Ztarget when computing this set of stabilizing points.

Given IZ , we update the hyper-reduced index set as the union I = IV ∪ IZ , and compute a new set of
hyper-reduced weights through the non-negative least squares solve

w = arg min
c≥0

1

2

(∥∥∥Vtarget (I, :)
T
c− b

∥∥∥
2

+ αZ

∥∥∥Ztarget (I, :)
T
c− d

∥∥∥
2
)
, d = ZT

targetwtarget,

where αZ > 0 is some scaling parameter which controls whether the weights w more accurately approximate
the integration of the target space Vtarget for the mass matrix, or Ztarget for the null space of the test mass
matrix. We set αZ = 10−2 in all experiments, which is empirically observed to control the condition number
of the test mass matrix without significantly impacting the accuracy to which the reduced mass matrix
∆xV TV is approximated.

For the numerical experiments in this paper, it was sufficient to add one single set of stabilizing hyper-
reduced points. However, this procedure can be repeated multiple times to further improve the condition
number of the hyper-reduced test mass matrix.

4.4. An entropy conservative hyper-reduced model on periodic domains

To summarize, an entropy conservative reduced order model on periodic domainsrequires the following
offline steps:

1. Compute a reduced basis matrix V from snapshots of both conservative variables and entropy variables.
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2. Compute a “test” basis matrix Vt such that R (Vt) = R ([1,V ,QV ]), and use Vt to construct a

“modal” differentiation matrix Q̂t = V
T
t QVt.

3. Compute a hyper-reduced quadrature using Algorithm 1, adding stabilizing points as necessary to
ensure that the test mass matrix Vt (I, :)

T
WVt (I, :) is non-singular.

4. Construct the hyper-reduced nodal differentiation matrix Qt = P T
t Q̂tPt using the projection matrix

Pt =
(
Vt (I, :)

T
WVt (I, :)

)−1

Vt (I, :)
T
W onto the test basis.

Then, we have the following theorem:

Theorem 3. Suppose that the hyper-reduced quadrature satisfies Assumption 1. Then, the semi-discrete
formulation

MN
duN

dt
+ 2V (I, :)T (Qt ◦ F )1 = 0 (18)

MN = V (I, :)T WV (I, :) , P =M−1
N V (I, :)T W ,

vN = Pv (V (I, :)uN ) , ṽ = V (I, :)vN ,

ũ = u (ṽ) , Fij = fS (ũi, ũj) ,

semi-discretely conserves the sampled and weighted average entropy

1TW
dS (V (I, :)uN )

dt
= 0.

Additionally, if the reduced basis V exactly represents 1, solutions of (18) conserve global averages of the
conservative variables.

Proof. Testing the time derivative with vN yields

vTNMN
duN

dt
= v (V (I, :)uh)

T
P TMN

duN

dt
= v (V (I, :)uh)

T
WV (I, :)M−1

N MN
duN

dt

= v (V (I, :)uh)
T
WV (I, :)

duN

dt
= v (V (I, :)uh)

T
W

d (V (I, :)uN )

dt
= 1TW

dS (V (I, :)uN )

dt
,

where we have used that W is diagonal and the temporal chain rule in the final step. Since the hyper-
reduction preserves the skew-symmetry and zero row sums of Qt, the remainder of the proof consists of
showing that vTNV (I, :)T (Qt ◦ F )1 = 0, and is identical in structure to the proof of Theorem 2.

Remark. It is not strictly necessary to use the hyper-reduced mass matrix

MN = V (I, :)T WV (I, :)

to construct an entropy conservative ROM. For example, we can use the exact mass matrix MN = ∆xV TV

rather than the hyper-reduced mass matrix. If the projection matrix P is defined accordingly, the resulting
ROM remains entropy conservative. However, we observe significantly larger errors when using the exact
mass matrix instead of the hyper-reduced mass matrix.

4.5. Online cost estimates for the hyper-reduced system

In practice, the flux matrix F is not computed explicitly, but is instead formed on the fly by evaluating
the entropy stable flux fS . Due to the complexity of the formulas for fS , the computation of F constitutes
a significant portion of the computational cost. For the full order model, this cost is typically ameliorated
by exploiting the sparsity of Q. However, since the hyper-reduced matrix Qt is fully dense, the nonlinear
convective term Qt ◦ F in (18) requires O(N2

s ) nonlinear flux evaluations. In contrast, typical hyper-
reduction approaches target a nonlinear vector, which requires only O(Ns) nonlinear function evaluations.
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We emphasize that this O(N2
s ) online cost is specific only to the convective nonlinearity, and not to the

hyper-reduced treatment of other nonlinear terms such as viscosity.
While the O(N2

s ) nonlinear flux evaluations are trivially parallelizable, they constitute a significant
increase in online costs compared to traditional hyper-reduction procedures. However, we note that the
cost can be comparable to techniques for exactly treating higher order polynomial nonlinearities for a large
number of modes [30]. For example, suppose one wishes to compute V T g (V uN ), where g(x) = xm for
m ≥ 1 and m integer. We can rewrite this as

V T g(u) = V Tdiag (V uN )
m−1

V uN .

Suppose first that m = 2, such that the nonlinearity is quadratic. Define Vj = diag (V (:, j)) as the diagonal

matrix with the jth column of V on the diagonal. Then, diag (V uN ) =
∑N

j=1 Vj(uN )j , and

V T g (V uN ) =

N∑

j=1

(uN )jV
TVjV uN .

The matrices V TVjV can be precomputed, such that the cost of evaluating the above expression is N
matrix-vector multiplications, or O(N3) operations. For m = 3, repeating the same steps yields

V T g (V uN ) =

N∑

j=1

M∑

k=1

(uN )j(uN )kV
TVjVkV uN .

which requires N2 matrix-vector multiplications, or O(N4) operations. Generalizing this procedure to m > 3
yields that a degree m polynomial nonlinearity can be evaluated in O(Nm+1) operations.3

Experimental results suggest that the number of hyper-reduced points Ns scales as O(N), though the
constant increases with the spatial dimension (numerical experiments suggest the constant is approximately
2 in 1D and around 10 in 2D). Define constants α = Ns/N and β, where β denotes the number of operations
required to evaluate the flux fS . We note that different choices of entropy stable flux functions (see, for
example, [70, 52]) produce significantly different values of β. Then, the hyper-reduced treatment of the con-
vective nonlinearity requires N2

s flux evaluations. Assuming flux evaluations dominate costs, entropy stable
schemes require α2βN2 operations. Thus, rather than increasing the asymptotic computational complexity,
the entropy stable hyper-reduction presented here increases the associated constant.

4.6. Hyper-reduction and entropy dissipation

Given an entropy conservative ROM with hyper-reduction, we can construct an entropy stable ROM by
adding appropriate entropy-dissipative viscosity terms. Recall that the artificial diffusion matrix K in (7)
does not depend nonlinearly on u. Thus, typical model reduction techniques compress such operators using
Galerkin projection, e.g., V TKV . However, since one cannot in general show that this operator dicretely
dissipates entropy, we discuss two treatments of the viscous terms which are provably entropy dissipative.

This section introduces hyper-reduction procedures for K which provide a provable discrete dissipation
of entropy. We seek to mimic the entropy balance of the full order model in (8). Suppose the reduced order
model is given by

MN
duN

dt
+ 2V (I, :)T (Qt ◦ F )1+ εd(uN ) = 0

where d(u) is some hyper-reduced approximation to the viscous terms. Theorem 3 gives that the entropy
balance of the reduced order model is

∆x1T dS (V uN )

dt
= −εvTNd(uN ), vN = Pv (V (I, :)uN ) .

3Because entropy conservative fluxes for the compressible Euler equations include non-polynomial rational and logarithmic
terms, it is not possible to apply this exact treatment of polynomial nonlinearities to general entropy conservative discretizations.
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We will design hyper-reduced treatments of the viscous terms such that vTNd(uN ) ≥ 0, which implies that
the reduced model is entropy stable.

Let D denote the (K − 1)×K difference matrix

D =
1

∆x




1 −1
1 −1

. . .
. . .

1 −1


 .

The artificial diffusion matrix in (7) can be decomposed asK =DTD. To construct hyper-reduced diffusion
terms, we first compute (using the SVD) an auxiliary basis VD forDV , where V is the reduced basis matrix.
We then perform hyper-reduction to compute weights and sampled row indices such that

V T
D
VD ≈ VD (ID, :)

T
WDVD (ID, :) .

We can now construct entropy-dissipative diffusion terms using this second hyper-reduction of D. The
first treatment is relatively straightforward, and simply samples rows ofD corresponding to indices ID. The
viscous termsKu in the full order model are approximated using the sparse hyper-reduced matrix D (ID, :)

d(uN ) = V TD (ID, :)
T
WDD (ID, :) ũ. (19)

Here, the entropy-projected conservative variables ũ are mappings of grid values of the projected entropy
variables V vN . Repeating the steps used to derive (9) yields that the entropy dissipation of (19) is

vTNV
TDT (ID, :)

T
WDD (I, :) ũ = ṽTDT (ID, :)

T
WDD (I, :)u (ṽ)

=
∑

i∈ID

wD,i

∆x2
∂u

∂v

∣∣∣∣
i,i+1

(ṽi − ṽi+1)
2
.

The second treatment of the diffusion terms is motivated by approaches taken in [37, 38, 71, 57]. Recall
that, using the mean value theorem, the ith entry of Du is

(Du)i = ui − ui+1 =
∂u

∂v

∣∣∣∣
i,i+1

(v(ui)− v(ui+1)) =
∂u

∂v

∣∣∣∣
i,i+1

(Dv(u))i , (20)

where ∂u
∂v

∣∣
i,i+1

is ∂u
∂v evaluated at some intermediate state between ui and ui+1. This motivates a hyper-

reduction based on sampling and weighting rows of D applied to the vector of entropy variables v(u). The
diffusion terms can be approximated by

d(uN ) = V TD (ID, :)
T
WDHD (ID, :)V vN (21)

where vN are coefficients of the projected entropy variables in (18), WD is a diagonal matrix of positive
weights wD,i, and H is a diagonal matrix containing entries of the Jacobian ∂u

∂v
4 evaluated at all hyper-

reduced points in ID

Hii =
∂u

∂v

∣∣∣∣
u=ūi

, ūi =
ũi + ũi+1

2
.

Since we do not know the intermediate state used to evaluate ∂u
∂v

∣∣
i,i+1

in (20), we have arbitrarily chosen

to evaluate ∂u
∂v at the average of the entropy-projected conservative values ũi and ũi+1. Since the diagonal

4Recall that matrices are treated as Kronecker products, and that the diagonal entries of Hii correspond to block matrices
acting on the vector of solution components at a point.
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entries of WD are positive and ∂u
∂v is symmetric positive definite (for physically relevant values of ũ), the

entropy dissipation of the hyper-reduced diffusion term is given by

vTNV
TDT (ID, :)

T
WDHD (I, :)V vN =

∑

i∈ID

wD,i

∆x2
∂u

∂v

∣∣∣∣
u=ūi

(ṽi − ṽi+1)
2
.

This implies that the dissipation of entropy produced by the hyper-reduced approximation of the viscous
terms (21) also mimics the dissipation of entropy (9) derived for the full order model. The difference between
the hyper-reduction treatments of viscosity (19) and (21) are that (19) relies explicitly on the fact that D is
a two-point finite volume difference matrix, which enables the use of the mean value theorem in deriving a
statement of entropy dissipation. The first approach (19) results in a simpler online phase, though it involves
larger matrices compared to the second approach. The second approach (21) is not limited to finite volume
methods, and is entropy dissipative for any choice of differentiation matrix D. Both approaches require
computing an additional set of hyper-reduced points during the offline phase.

Remark. The hyper-reduction treatments of viscosity described in this section can also be applied to non-
linear interface dissipation models, such as local Lax-Friedrichs penalization. We do not focus on such
approximations for this paper, as the amount of dissipation applied is typically proportional to ∆x and thus
changes based on the dimension of the full order model.

We note that, in practice, a naive approximation of diffusive terms Ku by

d(uN ) = V TKV Pũ, (22)

is often effective. This approach is simpler to implement than (19), (21), and does not require a second set of
hyper-reduced points. We are unable to show that this treatment is provably entropy dissipative. However,
in all experiments, we observe that vTNV

TKV Pũ ≥ 0, which implies that entropy is discretely dissipated.

5. Weak imposition of boundary conditions

Until now, we have assumed periodic domains. In this section, we discuss how to extend the construction
of entropy stable ROMs to the non-periodic case. Boundary conditions are weakly imposed through a
numerical flux and a “hybridized” summation by parts operator [40].

In the non-periodic case, the matrix Q is nearly skew-symmetric, such that it satisfies a summation by
parts property

Q =
1

2




−1 1

−1 0
. . .

. . .
. . . 1
−1 1



, Q+QT = BSBP =




−1
0

. . .

1


 (23)

A non-periodic full order model can be expressed as

∆x
duh

dt
+ 2 (Q ◦ F )1+BSBP (f∗ − f(u)) = 0, (24)

where f∗ = [f∗
0 , 0, . . . , 0,f

∗
K ]

T
is a vector containing values of the nonlinear flux at the boundary points.

Following [38], a boundary numerical flux f∗ is entropy stable if

ψ (u)− v(u)Tf∗ ≤ 0. (25)

The flux is referred to as entropy conservative if the inequality in (25) is an equality. If an entropy stable or
entropy conservative flux fS(uL,uR) is used to evaluate both the volume and surface flux, then the resulting
full order model given by (24) is also entropy stable or entropy conservative [34, 72, 38].
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Extending entropy conservative treatments of boundary conditions to the reduced order model is less
straightforward due to fact that reduced matrices do not satisfy the same SBP property (23). If the full
order matrix Q satisfies the SBP property, then the hyper-reduced matrix Qt satisfies a generalized SBP
property [73]

Qt +Q
T
t = ETBE, Qt = P

T
t V

T
t QVtPt.

where the matrices B and E encode scaling by normals and evaluation at boundary points. In 1D, these
matrices are given by

B =

[
−1

1

]
, E = VbtPt, Vbt =

[
Vt(1, :)
Vt(N, :)

]
.

where Vbt interpolates test basis functions to boundary points, and Vt(:, 1),Vt(:,K) denote the first and last
columns (corresponding to points on the boundary) of the test basis matrix Vt.

For linear problems, it is possible to impose energy stable boundary conditions by combining general-
ized SBP operators with appropriate simultaneous approximation terms (SATs) [74]. However, due to the
presence of E within the boundary term ETBE, the accurate and entropy stable imposition of nonlinear
boundary conditions using generalized SBP-SATs remains an open problem [39, 75, 76]. We address this
issue by constructing a hybridized SBP operator [40, 41] (also referred to as a decoupled SBP operator in
[40])

Qh =
1

2

[
Qt −Q

T
t ETB

−BE B

]
.

Note that Qh satisfies a block version of the standard summation by parts property by construction

Qh +QT
h = Bh =

[
0

B

]
,

where Bh is diagonal and does not involve the boundary evaluation matrix E.
It is less straightforward to show that Qh1 = 0, which is also necessary for the proof of entropy stability

[41]. Note that the full order matrix Q in (23) satisfies Q1 = 0. Then, since 1 is exactly representable in
the test basis Vt, VtPt1 = 1, and

Qt = P
T
t V

T
t QVtPt1 = P T

t V
T
t Q1 = 0.

This implies that Qh1 simplifies to

Qh1 =
1

2

[
Qt1−QT

t 1+ETB1

−BE1+B

]
=

1

2

[
−QT

t 1+ETB1

0

]
,

where we have used that Qt1 = 0 and that (14) implies E1 = 1. Here, we abuse notation by letting 1

denote the vector of ones with appropriate dimension. Furthermore, since Qt satisfies a generalized SBP
property,

−QT
t 1+ETB1 =

(
−QT

t +ETBE
)
1 = Qt1 = 0.

we conclude that Qh1 = 0.
By replacing Qt in (18) with Qh, we can impose boundary conditions weakly through a numerical flux

f∗. We define Vb as the matrix which evaluates the reduced basis at boundary points {−1, 1}, and define Vh

as the matrix which evaluates the reduced basis at both boundarypoints and hyper-reduced volume points

Vb =

[
V (1, :)
V (N, :)

]
, Vh =

[
V (I, :)
Vb

]
.

We then have the following theorem:

16



Theorem 4. If the boundary flux f∗ is entropy stable in the sense of (25), then the hyper-reduced ROM

MN
duN

dt
+ 2V T

h (Qh ◦ F )1+ V T
b B (f∗ − f(ũb)) = 0 (26)

vN = Pv (V (I, :)uN ) , ṽ = VhvN , ṽb = VbvN ,

ũ = u (ṽ) , Fij = fS (ũi, ũj) , ũb = u (ṽb)

is also entropy stable such that

1TW
dS (V uN )

dt
≤ 0,

with equality holding for an entropy conservative flux.

Proof. The proof is identical in structure to the proof of Theorem 1 in [40]. We reproduce it here for
completeness. Testing with vN and using the summation by parts property of Qh then yields

1TW
dS (V uN )

dt
+ ṽT ((Qh −Qh) ◦ F )1+ ṽTb Bf

∗ = 0.

Here, we have used that, by the consistency of the entropy conservative flux (3), the diagonal entries of F
are Fii = f (ũi). Thus, since Bh is also diagonal,

(Bh ◦ F )1 = Bf(ũb).

Expanding out the term ṽT
((
Qh −QT

h

)
◦ F
)
1 and using skew-symmetry of Qh −QT

h yields

ṽT
((
Qh −QT

h

)
◦ F
)
1 =

1

2

∑

ij

(
Qh −QT

h

)
ij
(ṽi − ṽj)

T
fS (ũi, ũj)

=
1

2

∑

ij

(
Qh −QT

h

)
ij
(ψ(ũi)− ψ(ũj))

= ψ(ũ)TQh1− 1TQhψ(ũ) = −1TBhψ(ũ) = −1TBψ(ũb),

where we have used that Qh1 = 0 and the SBP property in the last two lines. Using that B is diagonal,
straightforward manipulations imply that

1TW
dS (V uN )

dt
− 1TB

(
ψ(ũb)− ṽ

T
b f

∗
)
= 0.

If the flux is entropy stable, then 1TW
dS(V uN )

dt ≤ 0. Equality holds if the flux is entropy conservative such
that ψ(ũb) = ṽ

T
b f

∗.

6. Extension to higher dimensions

6.1. Periodic domains

For periodic domains, the extension to higher spatial dimensions is relatively straightforward. We provide
a concrete construction of matrices and formulations in two dimensions. For finite volume methods on a
K × K structured quadrilateral elements of size ∆x × ∆x, differentiation matrices along each coordinate
direction can be constructed as Kronecker products of one-dimensional matrices. Let Q1D denote the one-
dimensional periodic differentiation matrix defined in (5). The differentiation matrix along the ith coordinate
direction Qi can be constructed as follows

Q1 = Q1D ⊗∆xI, Q2 = ∆xI ⊗Q1D.
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Given a basis matrix V and indices of hyper-reduced points I, we can introduce test basis matrices V i
t such

that the range of V i
t is equal to the direct sum of the ranges of V and QiV

R
(
V i
t

)
= R

([
V QiV

])
, i = 1, . . . , d.

Note that, unlike the 1D case, the test bases differ along each coordinate direction. However, the dimension
of the range of each test basis V i

t is still at most 2N + 1. We can now define hyper-reduced projection
matrices for the ith coordinate direction

P i
t =

(
V i
t (I, :)T WV i

t (I, :)
)−1

V i
t (I, :)T W .

These matrices can be used to construct reduced nodal differentiation matrices Qi
t

Qi
t =

(
P i

t

)T ((
V i
t

)T
QiV i

t

)
P i

t ,

which are used to construct an entropy conservative reduced order model in d dimensions

MN
duN

dt
+

d∑

i=1

2V (I, :)T
(
Qi

t ◦ F
i
)
1 = 0 (27)

MN = V (I, :)T WV (I, :) , F i
jk = f i

S (ũj , ũk) .

Here, f i
S (uL,uR) is the entropy conservative flux in the ith coordinate direction andMN is the mass matrix

as defined in (18). We can show that (27) is entropy conservative by repeating steps in the proof of Theorem 3
for each coordinate direction.

The diffusive matrices K can be similarly extended to higher dimensions via Kronecker products

K =K1D ⊗ I + I ⊗K1D.

An hyper-reduction of K analogous to the one described in Section 4.6 can be used to guarantee a discrete
dissipation of entropy.

6.2. Non-periodic domains in higher dimensions

Non-periodic domains and boundary conditions can be treated by combining hybridized SBP operators
and a weak imposition of boundary conditions as was done for the 1D hyper-reduced formulation (26).
Without loss of generality, we assume a square domain with 4 boundary faces, each of which is discretized
by K1D intervals of size ∆x. Denote values of the outward normal vector on the domain boundary by
n = [n1, . . . , nd]

T
. We enforce non-periodic boundary conditions through numerical fluxes at boundary

points. However, the number of boundary points scales with K1D. To ensure that the cost of the reduced
order model scales with the number of modes N rather than the dimension of the full order model, we
approximate boundary terms by a hyper-reduced weighted combination of sampled boundary points.

Let Vb denote the matrix whose columns correspond to values of the reduced basis at boundary points.
Let Ib denote a sub-sampled set of Nb boundary points, and let g denote a nonlinear function. We then
approximate the boundary inner product

V T
b g(VbuN ) ≈ Vb (Ib, :)

T
Wbg (Vb (Ib, :)) .

whereWb = diag (wb) is a diagonal matrix whose entries consist of positive weights. We also define Nb×Nb

operators B1,B2 as the diagonal matrices whose entries consist of weighted component values of outward
normals on the boundary

Bi = diag
(
ni
)
Wb,

where ni is a vector containing the values of the component ni at boundary points.
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We can now construct hybridized SBP operators using hyper-reduced points on both the volume and
boundary of the domain. Let Vbt be the matrix which evaluates the ith test basis at all points on the
boundary. Then, we can define Ei as the matrix which extrapolates from hyper-reduced volume points to
hyper-reduced boundary points through projection onto the ith test basis

Ei = V
i
bt (Ib, :)P

i
t .

The hybridized SBP operator for differentiation along the ith coordinate is then

Qi
h =

[
Qi

t −
(
Qi

t

)T
ET

i B
i

−BiEi Bi

]
.

These operators can be used to construct a hyper-reduced formulation in higher dimensions

MN
duN

dt
+

d∑

i=1

(
2V (I, :)T

(
Qi

h ◦ F i
)
1+ Vb (Ib, :)

T
Bi (f∗

i − fi(ub))
)
= 0, (28)

where MN and F i are as defined in (27), and fi(u),f
∗
i are the ith components of the flux function and

boundary numerical flux, respectively.
In contrast to the 1D case, additional steps are necessary to ensure that entropy stability is preserved

under this boundary hyper-reduction. Recall that the proof of entropy stability for 1D non-periodic domains
in Theorem 4 requires that Qh1 = 0. The analogous proof of entropy stability in multiple dimensions
requires that Qi

h1 = 0 for i = 1, . . . , d. However, this is not automatically satisfied under an arbitrary
hyper-reduction of the boundary points. Expanding out Qi

h1 yields

Qi
h1 =

[
Qi

t1−
(
Qi

t

)T
1+ET

i B
i1

0

]
=

[
−
(
Qi

t

)T
1+ET

i B
i1

0

]
.

In general, −
(
Qi

t

)T
1+ETBi1 6= 0, so Qi

h1 6= 0 and the proof of entropy stability does not hold. To enforce
that Qi

h1 = 0, we impose constraints on the boundary weights wb. Note that

−
(
Qi

t

)T
1+ETBi1 = −

(
P i

t

)T
V T
t QVtP

i
t 1+

(
P i

t

)T (
V i
bt (Ib, :)

)T
Bi1

=
(
P i

t

)T (
−
(
V i
t

)T
Q1+

(
V i
bt

)
(Ib, :)

T
diag

(
ni
)
wb

)
.

where we have used that V i
t P

i
t 1 = 1. Thus, to ensure that Qi

h1 = 0, it is sufficient to guarantee that

(
V i
bt

)
(Ib, :)

T
diag

(
ni
)
wb =

(
V i
t

)T
Q1, i = 1, . . . , d. (29)

The dN constraints encoded in (29) can be interpreted as enforcing a discrete version of the fundamental
theorem of calculus relating approximate integrals of reduced basis derivatives to boundary integrals of
reduced basis values. We enforce these constraints on the boundary weights wb (29) directly into a hyper-
reduction approach based on the solution of a linear programming problem using the dual simplex method,
and refer the reader to [64] for details. We note that it may also be possible to enforce these constraints, for
example, by augmenting the non-negative least squares solve in Algorithm 1 with equality constraints, and
will explore these directions in future work.

7. Numerical experiments

In this section, we study the behavior of entropy stable reduced order models for the compressible Euler

19



equations. In d dimensions, these are given by:

∂ρ

∂t
+

d∑

j=1

∂ (ρuj)

∂xj
= 0,

∂ρui
∂t

+

d∑

j=1

∂ (ρuiuj + pδij)

∂xj
= 0, i = 1, . . . , d

∂E

∂t
+

d∑

j=1

∂ (uj(E + p))

∂xj
= 0.

Here, ρ is density, ui is the ith component of velocity, and E is the total energy. The pressure p and specific
internal energy ρe are given by

p = (γ − 1)

(
E −

1

2
ρ |u|2

)
, ρe = E −

1

2
ρ |u|2, |u|2 =

d∑

j=1

u2j .

There is a unique entropy which symmetrizes the viscous heat conduction term in the compressible Navier-
Stokes equations [47]. This entropy S(u) is given by

S(u) = −ρs,

where s = log
(

p
ργ

)
is the physical specific entropy, and the dimension d = 1, 2, 3. The entropy variables in

d dimensions are given by

v1 =
ρe(γ + 1− s)− E

ρe
, vd+2 = −

ρ

ρe
, v1+i =

ρui
ρe

, i = 1, . . . , d.

while the conservation variables in terms of the entropy variables are given by

ρ = −(ρe)vd+2, E = (ρe)

(
1−

∑d
j=1 v

2
1+j

2vd+2

)
, ρui = (ρe)v1+i, i = 1, . . . , d,

where the quantities ρe and s in terms of the entropy variables are

ρe =

(
(γ − 1)

(−vd+2)
γ

)1/(γ−1)

e
−s
γ−1 , s = γ − v1 +

∑d
j=1 v

2
1+j

2vd+2
.

Let fi, fj denote two arbitrary values. We define the average and logarithmic average

{{f}} =
fi + fj

2
, {{f}}log =

fi − fj
log (fi)− log (fj)

.

To ensure numerical stability when the denominator is close to zero, we evaluate the logarithmic average
using the algorithm of [70]. Explicit expressions for entropy conservative fluxes are given by Chandrashekar
[52]. In 1D, these fluxes are

f1S(uL,uR) = {{ρ}}log {{u}}

f2S(uL,uR) = f1S(uL,uR) {{u}}+ pavg

f3S(uL,uR) = (Eavg + pavg) {{u}} ,
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where the auxiliary quantities are

β =
ρ

2p
, pavg =

{{ρ}}

2 {{β}}
, Eavg =

{{ρ}}log

2 {{β}}log (γ − 1)
+ {{ρ}}log

u2avg
2
.

In 1D, u2avg = 2 {{u}}2 −
{
{u2}

}
. In two dimensions, the x and y fluxes are given by

f1x,S(uL,uR) = {{ρ}}log {{u1}} , f1y,S(uL,uR) = {{ρ}}log {{u2}} ,

f2x,S(uL,uR) = f11,S {{u1}}+ pavg, f2y,S(uL,uR) = f12,S {{u1}} ,

f3x,S(uL,uR) = f22,S , f3y,S(uL,uR) = f1y,S {{u2}}+ pavg,

f4x,S(uL,uR) = (Eavg + pavg) {{u1}} , f4y,S(uL,uR) = (Eavg + pavg) {{u2}} ,

where in 2D, we redefine u2avg = 2({{u1}}
2
+ {{u2}}

2
)−

({
{u21}

}
+
{
{u22}

})
.

The viscous terms are treated as described in Section 2.1, and utilize evaluations of the Jacobian ∂u
∂v .

Explicit expressions for Jacobians in the compressible Euler and Navier-Stokes equations are given in [47].
The solution is evolved using an explicit 5-stage 4th order Runge-Kutta scheme.

7.1. 1D Euler equations

We begin by examining the 1D Euler equations with reflective wall boundary conditions. We utilize a
full order finite volume model with 2500 cells on [−1, 1] with a CFL of .75, and set the artificial viscosity
parameter to ε = 2 × 10−4. It was shown in [77, 38] that wall boundary conditions can be imposed using
a “mirror state”. We use a boundary numerical flux f∗ = fS (u+,u) augmented with local Lax-Friedrichs
penalization, where the exterior state u+ is defined by

ρ+ = ρ, u+ = −u, p+ = p.

The initial condition is set to be

ρ = 2 +
1

2
e−100(x− 1

2 )
2

, u =
1

10
e−100(x− 1

2 )
2

, p = ργ .

The solution exhibits a viscous shock some time after T = .25.
We first examine the impact of enriching solution snapshots with snapshots of the entropy variables. We

run the full order model until final time T = .7 and store the solution at 2801 time-steps. We compute a
reduced basis using SVD by subsampling every 10 snapshots. Figure 2a shows the decay of the singular
values with and without entropy variable enrichment. In both cases, the decay is similar, with entropy
variable enrichment resulting in a slightly slower decay for singular values smaller than 10−8. The difference
becomes more pronounced for a coarser subsampling of the snapshots. We note that the enrichment does
affect the form of the resulting singular vectors (Figure 2b). We also compute projection errors for each
solution snapshot using 25 modes in Figure 2c, along with differences between the projected solutions with
and without entropy variable enrichment. The projection errors are nearly indistinguishable.

We next examine solutions produced by the reduced order models. It is known that reduced models can
sometimes utilize a larger CFL compared the full order model [78, 79]; however, to ensure that temporal
errors are small, all solutions are computed using the same CFL used to generate the solution snapshots.
Figure 3 shows density computed using 25, 75, and 125 modes and the hyper-reduced treatment of viscosity
in (21) using ε = 2e − 4. For all resolutions, the shock is under-resolved and the solution possesses Gibbs-
type oscillations. However, despite this under-resolution, the ROM remains stable and does not blow up.
Moreover, the reduced order solution converges uniformly to the full order solution as the number of modes
increases.

Table 1 shows the number of hyper-reduced points computed for different numbers of modes. We report
on three different sets of points: empirical cubature points (used to approximate the mass matrix ∆xV TV ),
stabilizing points (added to control the condition number of the test mass matrix; see Section 4.3), and
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(a) Singular values (b) Fifth singular vector (c) Projection errors, 25 modes

Figure 2: Snapshot singular values and reduced basis functions with and without entropy variable enrichment.

(a) 25 modes, T = .25 (b) 75 modes, T = .25 (c) 125 modes, T = .25

(d) 25 modes, T = .75 (e) 75 modes, T = .75 (f) 125 modes, T = .75

Figure 3: Density ρ computed using 25, 75, and 125 modes at times T = .25, .75 for ε = 2e − 4. The solution of the reduced
order model is plotted at convective hyper-reduced points, shown in red. The viscous points are not shown.

viscous points (used to approximate viscous terms; see Section 4.6). All point sets are computed using
Algorithm 1 with dimensionality reduction as described in Section 4.2. In all cases, we observe that the
number of empirical cubature and viscous points grows roughly as 2N (similar observations were made in
[33]), while the number of stabilizing points hovers around 30 for N > 25.

Next, we verify that (in the absence of viscosity), the ROM is semi-discretely entropy conservative. The
proof of this property uses that the entropy contribution of the convective term vTNV

T
h (Qh ◦ F )1 = 0.

Figure 4 verifies this, plotting the absolute value of the entropy convective term over time. At all time-steps,∣∣vTNV T
h (Qh ◦ F )1

∣∣ is near O
(
10−14

)
(close to machine precision), confirming that the formulation (26) is

discretely entropy conservative in the absence of viscosity and boundary flux penalization terms. For 125

22



Number of modes N 25 75 125 175

Number of empirical cubature points 54 158 259 355
Number of stabilizing points 3 21 36 28
Number of viscous points 54 159 259 366

Table 1: Number of computed hyper-reduced points for the 1D Euler equations.

modes, the solution is significantly more oscillatory than the case of ε = 2 × 10−4; however, the reduced
solution does not blow up.

(a) Convective entropy contribution
∣

∣vT

N
V T

h
(Qh ◦ F )1

∣

∣ (b) Density ρ with 125 modes and no viscosity

Figure 4: Convective entropy contribution
∣

∣vT

N
V T

h
(Qh ◦ F )1

∣

∣ over time and reduced order solution with viscosity parameter
ε = 0 at T = .75. The solution does not blow up despite the presence of large oscillations resulting from the shock.

Next, we examine the difference in the hyper-reduced treatments of entropy dissipation (19), (21), and
(22) described in Section 4.6 (recall that (22) is not provably entropy dissipative). If the discrete entropy
dissipation vTNd(uN ) is positive, then the simulation is entropy stable. Figure 5 shows the computed en-
tropy dissipation over the time interval [0, .75]. All hyper-reduced treatments produce similar results, with
the entropy dissipation produced by the naive approximation (22) differing most significantly. The naive
approximation differs from the provably entropy stable approximations (19) and (21) by about O

(
10−1

)
to

O
(
10−2

)
, while (19) differs from (21) by O

(
10−6

)
.

We now compare the evolution of both the discrete entropy and the discrete L2 error between all solution
components of the full and reduced order models, and examine the effect of hyper-reduction on the discrete
solution in Figure 6. Here, the discrete L2 norm is defined as ‖u‖2 = ∆x2uTu in 1D or ‖u‖2 = (∆x∆y)2uTu

in 2D, and is the analogue of the continuous L2 norm evaluated at discretization points for the full order
model. Both error and entropy are computed on the original grid of the full order model (e.g., without hyper-
reduction), and the error is computed as the discrete relative L2 error over all the conservative variables.
We observe that the evolution of the average discrete entropy for the reduced model rapidly approaches the
average discrete entropy for the full order model as the number of modes increases from 25 to 75. For 125
modes, the average entropies for the ROM and FOM are indistinguishable and are not shown. The errors
behave similarly, decreasing as the number of modes increases. For reference, we also include errors computed
without hyper-reduction using (11). We observe that the hyper-reduced errors are virtually identical to errors
without hyper-reduction in all cases.

7.2. 2D Euler equations

We now study the Euler equations in 2D. We begin by considering periodic boundary conditions on the
domain [−1, 1]2 and a smoothed version of the Kelvin-Helmholtz instability. The initial condition is adapted
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(a) Entropy dissipation for 25 modes (b) Entropy dissipation for 75 modes

Figure 5: Discrete entropy dissipation vT

N
d(uN ) computed using hyper-reduced treatments of viscous terms (19), (21), and

(22) for 25 and 75 modes.

(a) Error between ROM and FOM (b) Entropy over time

Figure 6: Evolution of error (with and without hyper-reduction) and entropy over time interval [0, .75].

from [80, 30]

ρ = 1 +
1

1 + e−(y+1/2)/σ2
−

1

1 + e−(y−1/2)/σ2
, u =

1

1 + e−(y+1/2)/σ2
−

1

1 + e−(y−1/2)/σ2
−

1

2
,

v = α sin(2πx)
(
e−(y+1/2)/σ2

− e−(y−1/2)/σ2
)
, p = 2.5.

In the following experiments, we set α = .1 and σ = .1.
We utilize a full order model with 200×200 grid (40000 cells), which is run until time T = 3. We generate

301 solution snapshots with which to compute POD modes. The decay of the singular values of the solution
snapshots with and without enrichment by the entropy variables is shown in Figure 7. We observe that,
compared to the 1D case, the singular values decay more slowly when enriched with snapshots of the entropy
variables. However, as in 1D, the differences between the singular values with and withoutentropy variable
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Figure 7: Decay of singular values for snapshots of the 2D smoothed Kelvin-Helmholtz instability.

(a) Full order model (b) Reduced order model, 75 modes (c) Hyper-reduced points

Figure 8: Full and reduced order density for the 2D smoothed Kelvin-Helmholtz instability at T = 3 with ε = 1e − 3. The
reduced order model uses 75 modes and 884 hyper-reduced points (in red). The relative L2 error is .0102.

enrichment are significantly larger for lower energy modes as compared to higher energy modes.
The reduced order model utilizes 75 POD modes to achieves a 1.02% relative L2 error. We note that

the difference between the 75th singular value of the snapshot matrix with entropy variable enrichment is
only about 6% larger than the 75th singular value without entropy variable enrichment. This suggests that
entropy variable enrichment does not significantly impact the accuracy of the 75-mode POD approximation.

Since little difference is observed between the hyper-reducted treatments of viscosity, the naive treatment
(22) is used. No additional stabilizing points were necessary for this setting, as the condition numbers of the
hyper-reduced x and y test mass matrices were both O(1). Figure 8 compares results for the full and reduced
order models, and shows the hyper-reduced points selected by the greedy empirical cubature algorithm.

We next consider a 2D domain with wall boundary conditions. Entropy stable reflective wall boundary
conditions are again imposed using “mirror states”. Let n denote the outward normal at a wall, and let
un = unx + vny and un⊥ = uny − vnx denote the normal and tangential components of the velocity at the
wall. We use a boundary numerical flux f∗ = fS (u+,u) augmented with local Lax-Friedrichs penalization,
where the exterior state u+ is defined by

ρ+ = ρ, u+
n
= −un, u+

n⊥ = un⊥ , p+ = p.
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Figure 9: Decay of singular values for snapshots of the 2D Gaussian pulse problem.

(a) Full order model (b) Reduced order model (c) Hyper-reduction points

Figure 10: Full and reduced order density at time T = .25 computed with ε = 1e− 3. The reduced order model uses 25 modes,
300 hyper-reduced points (in red), and 66 hyper-reduced boundary points (in blue). The relative L2 error is .0071.

We set a Gaussian pulse initial condition

ρ = 1 + e−50(x2+(y+1/2)2), u = 0, p = ργ .

The full order model is computed on a 150× 150 grid with viscosity coefficient ε = 1e− 3. The POD basis
is computed from 75 solution snapshots with a CFL of .5. Figure 9 shows the decay of the singular values
with and without entropy variable enrichment. As before, we observe that the singular values decay more
slowly under entropy variable enrichment, but that the difference in the singular values with and without
enrichment is more evident for low energy modes. The 25th singular value with entropy variable enrichment
is less than 5% larger than the 25th singular value without entropy variable enrichment, suggesting that
entropy variable enrichment does not significantly affect the accuracy of the 25-mode POD approximation.

A 25-mode reduced order solution is shown in Figures 10. The hyper-reduction algorithm adds one
single stabilizing point to reduce the condition number of the x-coordinate test mass matrix from O(108)
to approximately 5.71. The solution does not form shock discontinuities, and is chosen instead to test the
imposition of boundary conditions. We note that, due to the nature of the linear programming software
used to compute the boundary weights, the constraints (29) on the boundary weights wb are imposed to a
tolerance of 5e − 8. Despite this inexact enforcement of constraints, the computed entropy RHS remained
small, oscillating around 10−11 in the absence of entropy dissipative terms.
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(a) Singular values (b) Zoomed view

Figure 11: Decay of singular values for snapshots for the 2D Riemann problem.

(a) FOM results (b) ROM results (c) Hyper-reduced points

Figure 12: Comparison of ROM and FOM behavior for the 2D Riemann problem. The reduced order model uses 50 modes and
812 hyper-reduced points (in red). The relative L2 error is .03278.

7.2.1. 2D Riemann problem

We finally consider a 2D Riemann problem to examine the stability of entropy stable ROMs for under-
resolved shock solutions. Because typical “natural” boundary conditions are not entropy stable [38], we
modify the problem to use periodic boundary conditions [40] as shown in Figure 12. The FOM is run
until final time T = .25 on a 200 × 200 grid with a CFL of .25 and viscosity coefficient ε = 5e − 3. The
initial conditions are taken from [81, 82] and are smoothed by applying a 3-point average 5 times in each
coordinate direction. In contrast to the Kelvin-Helmholtz instability and pulse problems, the singular values
of the entropy variable enriched snapshots decay noticeably more slowly than the singular values of the
non-enriched solution snapshots. Figure 11 shows the decay of the snapshot singular values along with a
zoomed in view. It can be observed that the enriched and non-enriched snapshot singular values begin to
differ after the first 20 terms.

The ROM uses 50 modes and 812 hyper-reduced points, and achieves a final L2 error of 0.03278. Despite
being highly under-resolved with oscillations trailing the shock, the ROM runs stably. These oscillations are
the result of approximating a traveling shock using a linear POD subspace, and are not signs of instability
within the numerical scheme. The solution appears reasonably well-approximated outside of the domain
over which the shock propagates.
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7.3. On computational performance

We note that the entropy stable reduced order models implemented in this work do not reduce com-
putational cost compared to the original full order models. This is due to explicit time-stepping, which is
used in this paper to validate the proposed semi-discrete formulation. However, we expect that for implicit
time-stepping, entropy stable ROMs will see more significant efficiency gains.

The cost of explicit time-stepping schemes scales with the cost of the ODE right hand side evaluation,
and the cost of a right hand side evaluation for an entropy stable scheme scales with the number of entropy
conservative flux evaluations required. The number of entropy conservative flux evaluations is the same as
the number of nonzero entries in the matrix Qi, since the nonlinear term is

(
Qi ◦ F i

)
1 and the entries of

the matrix F i (which are flux evaluations between different states) are evaluated on the fly.
For the 2D full order methods in this paper, the differentiation matrices Qi are sparse with O(K2) non-

zero entries. Thus, the cost of a 2D entropy stable finite volume method is O(K2) nonlinear flux evaluations
for each coordinate direction. For a reduced order model, however, the hyper-reduced matrices Qi

t are
dense, and evaluating (Qi

t ◦F
i)1 requires O(N2

s ) flux evaluations where Ns is the number of hyper-reduced
points. As an example, consider the Kelvin-Helmholtz results in Figure 8. The full order model requires
roughly 40000 flux evaluations. However, because the ROM has 884 hyper-reduced points, roughly 781456
flux evaluations are required. The result is a ROM which is more expensive per time-step than the original
full order model.

While the proposed ROMs could still provide savings for sufficiently large full order models, this increased
cost is a significant issue for explicit time-stepping. The cost is offset slightly if the ROM has a larger CFL
[83]; however, this situation only occurs if a smaller number of modes are used to simulate the solution.
The situation changes for implicit time-stepping, as full order models require multiple solutions of large (but
sparse) linear systems at each time-step. For a K ×K grid, these linear systems would require O(K2) flux
evaluations to assemble, but we expect the solution of the linear system to be the dominant cost. For a ROM
using implicit time-stepping, the assembly of the linear system still requires O(N2

s ) flux evaluations, but the
size of the system scales with the number of modes, which is notably smaller than even the number of hyper-
reduced points. For example, the Kelvin-Helmholtz example uses only 75 basis functions per component,
compared to 884 hyper-reduced points. We thus expect that the use of entropy stable ROMs will result in a
more significant speedup under implicit time-stepping, especially when combined with efficient methods for
computing Jacobian matrices [84].

8. Conclusion

We have presented a methodology for constructing projection-based reduced order models for nonlinear
conservation laws by combining a reduced basis, a modified Galerkin projection, and tailored hyper-reduction
techniques. The main novelty of these new reduced models is the approximation of the nonlinear convective
term, which combines a “flux differencing” approach with an appropriate hyper-reduced approximation of
the differentiation matrix.

Future work will aim to address computational costs associated with entropy stable reduced models.
Unlike standard hyper-reduction techniques, the number of nonlinear evaluations necessary scales withO(N2

s )
rather than O(Ns), where Ns is the number of hyper-reduced sampling points. This discrepancy is due to
the fact that the hyper-reduction presented here approximates a nonlinear matrix, rather than a nonlinear
vector. These costs can be reduced by combining domain decomposition [85] and a discontinuous Galerkin-
type discretization [40] to produce multi-domain reduced order models. Suppose there are k = 1, . . . ,K
subdomains. Then, a multi-domain reduced order model is expected to decrease costs if the sum of the
squares of the number of subdomain sampling points

∑
k(N

k
s )

2 is significantly smaller than the global
number of sampling points N2

s . Future work will also investigate implicit time-stepping for entropy stable
reduced models, as additional costs associated with the spatial formulation may be offset by the reduction
in cost for solving smaller matrix systems during the linearization process.
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