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By the Principle of Least Action, physical systems governed
by conservative forces typically assume energy-minimizing
states. As such, these ground states are stable stationary
points of the corresponding energy functional. On the
other hand, unstable stationary points may also have very
interesting features from a mathematical viewpoint, al-
though (or, perhaps, because) they are harder to find in
nature.
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If the way energy is measured depends on a parameter,
a family of stationary points may lose stability when that
parameter crosses a certain threshold. Remarkably, this
loss of stability creates a new branch of stationary points
that splits from the family. This phenomenon was first
explored by Poincaré [Poi85], who called it a bifurcation,
marking the dawn of a multifaceted theory with applica-
tions to Dynamical Systems, Analysis, PDEs, and, more re-
cently, to Differential Geometry and Geometric Analysis.

In this article, we give an overview of classical results in
variational Bifurcation Theory and some geometric appli-
cations, including multiplicity results for Geodesics, Con-
stant Mean Curvature Surfaces, and the Yamabe problem.
These are obtained by exploiting the growing instability
of families of trivial (often highly symmetric) solutions as
they degenerate. The resulting bifurcating solutions are of-
ten less symmetric, and give rise to interesting examples
where ground states need not be the most symmetric ones.
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Euler’s Buckling Problem
One of the most classical examples of bifurcation comes
from engineering, by subjecting a rod, or column, to com-
pressive stress. The parameter in this case is the amount
𝑃 of compressive force exerted on the rod (called load),
and determining the maximum load 𝑃max that can be sup-
ported without structural failures is, evidently, of para-
mount importance.

Figure 1. A rod in its original state (left), and buckled under
compressive stress from a load (right).

This problem was studied in the 1750s by Euler, who
established that the lateral deflection 𝑤(𝑥) at each point
𝑥 ∈ [0, 𝐿] in a rod with load 𝑃 solves the ODE

𝐸𝑤″(𝑥) + 𝑃 𝑤(𝑥) = 0, (1)

where 𝐸 > 0 is a physical constant determined by the rod’s
elasticity and the moments of inertia of its cross-sections.
As one learns in an undergraduate course on ODEs, all so-
lutions to (1) are of the form

𝑤(𝑥) = 𝐴 sin(𝜆𝑥) + 𝐵 cos(𝜆𝑥), 𝜆 = √
𝑃
𝐸 , (2)

with 𝐴, 𝐵 ∈ ℝ. In particular, if the rod is assumed to have
pinned ends, that is, 𝑤(0) = 0 = 𝑤(𝐿), then it follows that
𝐵 = 0 and 𝜆 = 𝜆𝑛 =

𝑛𝜋
𝐿

for some nonnegative integer 𝑛. In
other words, 𝑤(𝑥) is a boundary value problem eigenfunc-
tion (see Figure 2):

𝑤𝑛(𝑥) = 𝐴 sin(𝜆𝑛𝑥), 𝑛 = 0, 1, 2, … . (3)

Thus, for loads 𝑃 such that 𝜆 < 𝜆1, only the trivial solution
𝑤0 ≡ 0 exists. This means that the rod keeps its original

shape if 𝑃 < 𝐸 (𝜋
𝐿
)
2
, and for this reason 𝑃max = 𝐸 (𝜋

𝐿
)
2

is called Euler’s critical load. Meanwhile, for larger loads

𝑃 > 𝑃max, such that 𝜆 = √
𝑃
𝐸
∈ [𝜆𝑛, 𝜆𝑛+1), there are 𝑛 non-

trivial solutions 𝑤1, … , 𝑤𝑛 to (1), which represent 𝑛 buck-
ling modes that the rod may assume. These solutions can
be seen as branches in the space of solutions to (1) that
bifurcate from the trivial solution; see Figure 3.
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Figure 2. Graphs of 𝑤𝑛(𝑥) for 0 ≤ 𝑛 ≤ 3.

Figure 3. A bifurcation diagram with bifurcating branches
(blue) issuing from the trivial branch (red). The horizontal axis
represents the bifurcation parameter, which is the load 𝑃 in
Euler’s buckling problem. The trivial branch is 𝑤0(𝑥) ≡ 0, while

the 𝑛th bifurcating branch, that exists for 𝑃 ≥ 𝐸 (𝑛𝜋
𝐿
)
2
,

corresponds to 𝑤𝑛(𝑥), 𝑛 ≥ 1. For each value of 𝑃, the number
of different solutions to (1), up to rescaling by a positive
factor, is the number of points where the vertical line through
𝑃 intersects the diagram. Note that this number grows to +∞
as 𝑃 ↗ +∞.

Deformations of structures due to buckling can be very
serious and dangerous. For instance, train tracks may
buckle and derail a train if they receive excessive heat from
sun exposure or movement of trains; or external compres-
sion forces such as during an earthquake; see Figure 4. Al-
though it would have been desirable from an engineer’s
perspective that no nontrivial solutions to (1) existed (so
that no structures would buckle), from a mathematician’s
perspective, this bifurcation phenomenon can be used to
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Figure 4. Train tracks in Canterbury, New Zealand, that
buckled after an earthquake in 2010, in a shape that resembles
the graph of 𝑤2(𝑥).

produce new and otherwise hard-to-find solutions to cer-
tain problems. While the solutions (3) to the linear ODE
(1) were easy to find and classify, solutions to nonlinear
problems are generally much less accessible. It is in these
situations that Bifurcation Theory is most useful, provided
the equation at hand still has a readily available family of
trivial solutions (for all values of the parameter), such as
𝑤0 ≡ 0 for (1). In this case, certain “tests” can be made
on this family to detect the presence of bifurcations, and
hence of previously unknown nearby solutions. We now
describe some of these “tests” for variational equations.

Bifurcation via Morse Index
Let 𝑋 be the set of all states, or configurations, of a certain
system, and assume 𝑋 is a (possibly infinite-dimensional)
vector space or manifold. Suppose we are given a fam-
ily 𝑓𝑡 ∶ 𝑋 → ℝ of energy functionals on 𝑋 , that we shall
assume is sufficiently regular and parametrized by a real
number 𝑡 ∈ [𝑎, 𝑏]. With it, the energy of each state 𝑥 ∈ 𝑋
is measured to be 𝑓𝑡(𝑥), a quantity that depends on the pa-
rameter 𝑡 ∈ [𝑎, 𝑏]. Infinitesimal variations of 𝑥 ∈ 𝑋 are
described by tangent vectors to 𝑋 at 𝑥, which form a vector
space denoted 𝑇𝑥𝑋 . This space typically comes equipped
with a natural inner product ⟨⋅, ⋅⟩. Stationary points, also
called critical points, are solutions 𝑥 ∈ 𝑋 to the Euler–
Lagrange equation, or first variation equation:

d𝑓𝑡(𝑥) = 0, (4)

where the derivative is in the variable 𝑥. We are interested
in how solutions to (4) change with 𝑡. More precisely, say
we are given a trivial branch of solutions, i.e., a curve 𝑥𝑡 ∈ 𝑋 ,
𝑡 ∈ [𝑎, 𝑏], satisfying d𝑓𝑡(𝑥𝑡) = 0 for all 𝑡 ∈ [𝑎, 𝑏], and we
would like to know whether (4) has any other solutions
near 𝑥𝑡. So we are led to the following definition.

Definition 1. Bifurcation occurs at 𝑡∗ if there are converg-
ing sequences 𝑥𝑛 → 𝑥𝑡∗ in 𝑋 and 𝑡𝑛 → 𝑡∗, such that
d𝑓𝑡𝑛(𝑥𝑛) = 0 and 𝑥𝑛 ≠ 𝑥𝑡𝑛 ; see Figure 5. In this situation,
𝑡∗ is called a bifurcation instant.

t
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Figure 5. Graph of solutions to (4), i.e., a point
(𝑡, 𝑥) ∈ [𝑎, 𝑏] × 𝑋 is in the graph if and only if d𝑓𝑡(𝑥) = 0, with a
bifurcation sequence (blue) 𝑥𝑛 issuing from the trivial branch
(red) at (𝑡∗, 𝑥𝑡∗ ).

In other words, bifurcation occurs at 𝑡∗ if and only if
the conclusion of the Implicit Function Theorem regard-
ing equation (4) does not hold at 𝑥𝑡∗ . Thus, its hypothesis
must be violated, implying that a necessary condition for bi-
furcation to occur at 𝑡∗ is that 𝑥𝑡∗ be a degenerate critical
point of 𝑓𝑡∗ . Namely, the second derivative d2𝑓𝑡∗(𝑥𝑡∗) can-
not be invertible, i.e.,

ker 𝐽𝑡∗(𝑥𝑡∗) ≠ {0}, (5)

where 𝐽𝑡(𝑥)∶ 𝑇𝑥𝑋 → 𝑇𝑥𝑋 is the self-adjoint linear operator
that represents d2𝑓𝑡(𝑥), in the sense that

d2𝑓𝑡(𝑥)(𝜙, 𝜓) = ⟨𝐽𝑡(𝑥)𝜙, 𝜓⟩ ∀𝜙, 𝜓 ∈ 𝑇𝑥𝑋.
This operator 𝐽𝑡(𝑥) is called the Jacobi operator of this vari-
ational problem, which, if 𝑋 is finite dimensional, is just
the Hessian matrix d2𝑓𝑡(𝑥).

Nevertheless, (5) alone is not sufficient to guarantee
that bifurcation occurs at 𝑡∗. A sufficient condition is given
by a change in the degree of instability of 𝑥𝑡 as 𝑡 crosses
𝑡∗. This degree of instability is measured by an integer
called theMorse index, defined for any solution 𝑥 to (4), as
the number 𝑖Morse(𝑥) of linearly independent directions at
𝑥 ∈ 𝑋 that locally decrease the energy 𝑓𝑡. More precisely,
denoting by Spec(⋅) the set of eigenvalues of a linear oper-
ator,

𝑖Morse(𝑥) = #Spec(𝐽𝑡(𝑥)) ∩ (−∞, 0)
is the number of negative eigenvalues of 𝐽𝑡(𝑥). (Note that
𝑖Morse(⋅) depends on the parameter 𝑡 ∈ [𝑎, 𝑏].)

Theorem 1 (Krasnosel’skii, 1964). If the trivial branch
𝑥𝑡 ∈ 𝑋 of solutions to (4) is nondegenerate for all
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𝑡 ∈ [𝑡∗ − 𝜀, 𝑡∗ + 𝜀] ⧵ {𝑡∗} and 𝑖Morse(𝑥𝑡∗−𝜀) ≠ 𝑖Morse(𝑥𝑡∗+𝜀),
then bifurcation occurs at 𝑡∗.

In the above statement, to simplify the exposition, we
are omitting some technicalities (such as the requirement
that 𝐽𝑡∗(𝑥𝑡∗) be Fredholm) that are important if 𝑋 is infinite
dimensional; see [Kie12]. These conditions hold in the
applications below.

Note that if 𝑖Morse(𝑥𝑡) changes as 𝑡 crosses 𝑡∗, then 𝑥𝑡∗
must be degenerate; see (5). Indeed, a negative eigenvalue
of 𝐽𝑡(𝑥𝑡) is gained or lost (so it must cross zero, by continu-
ity) at 𝑡 = 𝑡∗. In just a few words, the proof of Theorem 1
goes by contradiction: if no bifurcation occurred, then d𝑓𝑡
could be continuously deformed near 𝑥𝑡, between 𝑡 = 𝑡∗−𝜀
and 𝑡 = 𝑡∗+𝜀, keeping its (local) mapping degree constant;
but this degree is precisely 𝑖Morse(𝑥𝑡).
A toy problem from multivariable calculus. Let 𝑋 = ℝ2,
and consider 𝑓𝑡 ∶ 𝑋 → ℝ,

𝑓𝑡(𝑥, 𝑦) =
1
2(𝑥

2 + 𝑦4 − 𝑡𝑦2). (6)

Since d𝑓𝑡(𝑥, 𝑦) = (𝑥, 2𝑦3 − 𝑡𝑦), the solutions to (4) in this
case are clearly (𝑥, 𝑦) = (0, 0) for all 𝑡 ∈ ℝ, and also (𝑥, 𝑦) =
(0, ±√𝑡/2) if 𝑡 ≥ 0.

Pretend, for a moment, we had not seen the latter solu-
tions when 𝑡 ≥ 0, and only knew about the former (trivial)
solutions (𝑥𝑡, 𝑦𝑡) = (0, 0), which are easier to find, and ex-
ist for all 𝑡 ∈ ℝ. From the Hessian matrix

d2𝑓𝑡(𝑥, 𝑦) = (1 0
0 6𝑦2 − 𝑡) ,

we compute the Morse index of (𝑥𝑡, 𝑦𝑡) = (0, 0) to be:

𝑖Morse(0, 0) = {0, if 𝑡 ≤ 0,
1, if 𝑡 > 0.

(7)

This jump of the Morse index at 𝑡∗ = 0 implies, by The-
orem 1, that 𝑡∗ = 0 is a bifurcation instant. Of course,
the branch of solutions bifurcating from (0, 0) as 𝑡 crosses
𝑡∗ = 0 consists precisely of the solutions (𝑥, 𝑦) = (0, ±√𝑡/2)
that we pretended not to see.

This can be illustrated with a bifurcation diagram (anal-
ogous to Figure 5), where the parameter 𝑡 is plotted along
the horizontal axis, the vertical axis represents the space
𝑋 = ℝ2, and a point (𝑡, 𝑥, 𝑦) is in the graph if and only if it
is a solution, i.e., d𝑓𝑡(𝑥, 𝑦) = 0; see Figure 6. Note that for
𝑡 ≤ 0, the trivial solution (𝑥𝑡, 𝑦𝑡) = (0, 0) is stable, since it is
a local minimum of 𝑓𝑡(𝑥, 𝑦); actually its global minimum.
However, for 𝑡 > 0, it is unstable, as it becomes a saddle
point for 𝑓𝑡(𝑥, 𝑦), 𝑡 > 0; see Figure 7. This is essentially the
same example Poincaré [Poi85] used as motivation.
Euler’s buckling problem revisited. A quick look at Fig-
ures 3 and 6 suggests that the buckling phenomena could
be interpreted as successive pitchfork bifurcations taking

(xt, yy) = (0,0)

t

X

Figure 6. Bifurcation diagram for (6). Given the obvious
resemblance, this is called pitchfork bifurcation.

ft(x, y), t≤0

(xt, yt) = (0,0)

ft(x, y), t >0

(xt, yt) = (0,0)

Figure 7. Schematic graphs of (6), where the horizontal axis
represents 𝑋 = ℝ2. Note the change in stability of the critical
point that belongs to the trivial branch (red) as 𝑡 crosses 𝑡∗ = 0.
The critical points in the bifurcating branches (blue) are stable.

place as the load 𝑃 increases. We now show this is indeed
the case.

Let 𝑋 be the space of functions 𝑤∶ [0, 𝐿] → ℝ that van-
ish at the endpoints, and consider the energy functional
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𝑓𝑃 ∶ 𝑋 → ℝ given by

𝑓𝑃(𝑤) =
1
2 ∫

𝐿

0
𝐸 (𝑤′)2 − 𝑃𝑤2 d𝑥,

with parameter 𝑃 > 0. The first variation of 𝑓𝑃 is

d𝑓𝑃(𝑤)𝑢 = ∫
𝐿

0
𝐸𝑤′𝑢′ − 𝑃𝑤𝑢d𝑥

= −∫
𝐿

0
(𝐸 𝑤″ + 𝑃𝑤) 𝑢 d𝑥,

(8)

from integration by parts and 𝑤(0) = 𝑤(𝐿) = 0. So, by the
Fundamental Lemma of Calculus of Variations, d𝑓𝑃(𝑤) =
0 if and only if 𝑤 solves the ODE (1).

Observing that the constant 𝑤0(𝑥) ≡ 0 is a solution for
all values of the parameter 𝑃 > 0, we are led to consider
this as our trivial branch. Since the equation d𝑓𝑃(𝑤) = 0 is
already linear in 𝑤 (cf. (8)), the Jacobi operator 𝐽(𝑤0) of
𝑤0 acts on 𝑇𝑤0𝑋 = 𝑋 simply as

𝐽(𝑤0)𝜙 = −𝐸𝜙″ − 𝑃𝜙. (9)

Its eigenvalues are 𝐸(𝑛𝜋
𝐿
)2−𝑃 for all positive integers 𝑛 ∈ ℕ.

Thus,
𝑖Morse(𝑤0) = # {𝑛 ∈ ℕ ∶ 𝐸(𝑛𝜋𝐿 )2 < 𝑃} (10)

increases by 1 each time 𝑃 crosses a value of the form

𝑃∗ = 𝐸(𝑛𝜋
𝐿
)2. By Theorem 1, each of these is a bifurcation

instant for the trivial branch 𝑤0, matching the bifurcation
diagram in Figure 3.

Due to its level of generality, this approach does not pro-
vide much more information about the bifurcating solu-
tions apart from their existence. In particular, the explicit
formula (3) is not recovered. However, it can be shown
that the solutions bifurcating from 𝑤0 form continuous
(i.e., connected) branches.
Continuity of bifurcating branches. Recall that, from
Definition 1, a bifurcating branch is just a sequence (and
not necessarily a curve) of other solutions. But, strengthen-
ing the hypotheses of Theorem 1 to require that 𝑖Morse(𝑥𝑡)
changes exactly by 1, it is possible to ensure the existence
of an actual smooth curve of bifurcating solutions.

Theorem 2 (Crandall–Rabinowitz, 1971). If the trivial
branch 𝑥𝑡 ∈ 𝑋 of solutions to (4) is nondegenerate for all
𝑡 ∈ [𝑡∗−𝜀, 𝑡∗+𝜀] ⧵ {𝑡∗}, and only a simple eigenvalue 𝜆(𝑡) of
𝐽𝑡(𝑥𝑡) crosses zero (transversely) at 𝑡 = 𝑡∗, then solutions to (4)
near (𝑡∗, 𝑥𝑡∗) ∈ ℝ × 𝑋 form two smooth curves that meet only
at (𝑡∗, 𝑥𝑡∗).

Both the Calculus Toy Problem and Euler’s Buckling
Problem are situations where Theorem 2 applies (see (7)
and (10)), yielding that bifurcating branches are contin-
uous, as we had observed “by hand.” Details on Theo-
rem 2 and further refinements can be found in the text-
book [Kie12].

Geometric Variational Problems
Wenowdiscuss some applications of Bifurcation Theory to
geometric problems that are variational, i.e., take the form
of the Euler–Lagrange equation (4) for some functional
𝑓𝑡 ∶ 𝑋 → ℝ, with parameter 𝑡.

These problems are naturally cast on Riemannian man-
ifolds 𝑀𝑛, which are metric spaces made by (smoothly)
patching together pieces ofℝ𝑛, where it is possible to mea-
sure lengths of vectors, compute angles, and, most impor-
tantly, use Differential and Integral Calculus. For instance,
all smooth hypersurfaces 𝑀𝑛 ⊂ ℝ𝑛+1 are automatically 𝑛-
dimensional Riemannian manifolds, and, of course, so is
ℝ𝑛 itself. Often, we omit the dimension 𝑛, writing 𝑀 for
𝑀𝑛.
Geodesics. One of the most elementary questions that
can be posed on a Riemannian manifold 𝑀 is to find a
curve joining two given points 𝑝, 𝑞 ∈ 𝑀 with the least
possible length. Such a curve always exists if 𝑀 is com-
plete (e.g., if 𝑀 is compact), and is called a minimal geo-
desic. More generally, a geodesic is a curve that minimizes
length between any two of its points, provided they are
sufficiently close. Of course, geodesics in Euclidean space
ℝ𝑛 are just straight lines. Similarly, geodesics on any Rie-
mannian manifold 𝑀 are curves whose second derivative
vanishes, or, in physical terms, trajectories traced by ob-
jects moving without acceleration. Thus, geodesics have
constant speed. In Classical or Relativistic Optics, an op-
tical medium is modeled by a Riemannian manifold, and
trajectories of light rays are its geodesics.

Geodesics between 𝑝, 𝑞 ∈ 𝑀 can be found using Calcu-
lus of Variations. Namely, they are stationary points of the
energy functional 𝑓∶ 𝑋 → ℝ given by

𝑓(𝛾) = ∫
1

0
|𝛾′(𝑠)|2 d𝑠, (11)

where 𝑋 is the space of piecewise smooth curves
𝛾∶ [0, 1] → 𝑀 with endpoints 𝛾(0) = 𝑝 and 𝛾(1) =
𝑞. Moreover, 𝛾 is a minimal geodesic if and only if it
is a minimizer of 𝑓. As a technical aside, despite hav-
ing (geometrically) the same curves as minimizers, (11) is
more convenient to use than the actual length functional
∫1
0 |𝛾′(𝑠)| d𝑠 because it is convex and its stationary points
come parametrized with constant speed.

Infinitesimal variations of 𝛾 are given by vector fields 𝑉
along 𝛾, and represent the direction of the variation. In par-
ticular, variations of 𝛾 within 𝑋 , i.e., with fixed endpoints,
are vector fields 𝑉 along 𝛾 that vanish at the endpoints.
The Jacobi operator 𝐽(𝛾) of 𝛾 acts on the space 𝑇𝛾𝑋 of such
vector fields 𝑉 as

𝐽(𝛾)𝑉 = 𝑉″ + 𝑅(𝑉), (12)

where 𝑅(𝑉) is a curvature term, that is linear on 𝑉 .
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Consequently, the Morse index of the geodesic 𝛾 is
𝑖Morse(𝛾) = #Spec(𝐽(𝛾)) ∩ (−∞, 0). (13)

It is very useful to also think of geodesics joining 𝑝, 𝑞 ∈
𝑀 from a dynamic point of view. Namely, consider all
curves with vanishing second derivative that depart from
𝑝 ∈ 𝑀, and look for those that eventually pass through
𝑞 ∈ 𝑀. With this approach, instead of minimizing (11) in
the space 𝑋 of curves with endpoints 𝑝, 𝑞 ∈ 𝑀, we analyze
the solution 𝛾𝑣(𝑡) to the geodesic ODEwith initial position
𝛾𝑣(0) = 𝑝 and initial velocity 𝛾′𝑣(0) = 𝑣, where 𝑣 ∈ 𝑇𝑝𝑀 is
any tangent vector to 𝑀 at 𝑝. The collection of solutions
to this geodesic initial value problem is conveniently en-
capsulated as the exponential map of𝑀 at 𝑝,

exp𝑝 ∶ 𝑇𝑝𝑀 → 𝑀, exp𝑝(𝑡𝑣) = 𝛾𝑣(𝑡). (14)

Critical values of (14) are points in 𝑀 called conjugate to
𝑝, which are important for two main reasons.

First, dynamically, conjugate points to 𝑝 are points
where a family of geodesics issuing from 𝑝 focalizes to
first order. For instance, on the round sphere 𝑆𝑛 ⊂ ℝ𝑛+1,
geodesics are great circles. All the geodesics issuing from
the North pole 𝑝 (called meridians, or longitude lines) fo-
calize at the South pole 𝑞, which is hence conjugate to 𝑝.
Moreover, this happens with multiplicity 𝑛 − 1, since the
family of geodesics issuing from 𝑝 that focalizes at 𝑞 de-
pends on 𝑛 − 1 independent parameters; for instance, in
dimension 𝑛 = 2, meridians depend on only one parame-
ter (the latitude). However, true focalization as in round
spheres is very special; in general, focalization of geodesics
at conjugate points occurs only to first order. Unfortunately,
first-order phenomena are meaningless in very large scales,
such as that of General Relativity models. In this context,
more refined tools are needed to detect focalization, and
we shall see below how Bifurcation Theory can provide
them.

Second, conjugate points can be used to compute the
Morse index 𝑖Morse(𝛾), defined in (13). Namely, if 𝛾 is a
geodesic starting at 𝑝, then 𝑖Morse(𝛾) is equal to the num-
ber of conjugate points to 𝑝 along 𝛾, counted with mul-
tiplicity. In particular, if there are no conjugate points
along 𝛾, then 𝑖Morse(𝛾) = 0 and hence 𝛾 minimizes length
among nearby curves with the same endpoints. However,
if 𝛾 is sufficiently long, it might eventually develop conju-
gate points. This is triggered by curvature, manifested as
𝑅(𝑉) in the Jacobi operator (12), and related to the focal-
ization phenomena described above. Nonpositive curvature
keeps 𝑖Morse(𝛾) = 0 while traveling along 𝛾, and it makes
geodesics that started nearby diverge away, as straight lines
in ℝ𝑛 or geodesics in the hyperbolic plane. On the other
hand, positive curvaturemakes 𝑖Morse(𝛾) eventually increase,
and geodesics focalize onto 𝛾, as meridians on a round
sphere. More precisely, by Theorem 1, bifurcation occurs
when we cross the first conjugate point 𝑞 along 𝛾, from

which we deduce the existence of geodesics near 𝛾 starting
at 𝑝 and terminating shortly after 𝑞. Here, the bifurcation
parameter 𝑡 is the distance travelled along 𝛾, and the nonde-
generacy hypothesis is satisfied because conjugate points
on a geodesic are isolated.

Bifurcation of geodesics is well illustrated by the parab-
oloid 𝑧 = 𝑥2+𝑦2. Consider a geodesic 𝛾 that starts at some
point 𝑝 and passes through the origin; which is a “merid-
ian” on this paraboloid. Due to positive curvature, some
time after passing through the origin, 𝛾 encounters a con-
jugate point 𝑞 to 𝑝. There, 𝑖Morse(𝛾) increases from 0 to 1.
This jump of the Morse index causes bifurcation, by Theo-
rem 1. In fact, the geodesics that constitute the bifurcating
branch can be found explicitly: they also start at 𝑝 (but
are not meridians) and meet 𝛾 shortly after 𝑞, arbitrarily
close to it; see Figure 8. Although these geodesics focal-
ize at 𝑞 to first order, 𝛾 is the unique geodesic joining 𝑝 to 𝑞.
Since the Morse index jumps exactly by 1, the assumptions
of Theorem 2 are also satisfied here, so there is actually a
continuum of bifurcating geodesics from 𝑝 focalizing at 𝑞.
More generally, this happens whenever a simple (i.e., mul-
tiplicity 1) conjugate point is reached, which is always the
case on surfaces due to dimensional reasons.

Figure 8. Geodesics on a paraboloid: a meridian 𝛾 (red) and
bifurcating geodesics (blue), issuing from 𝑝 and focalizing to
first order at the conjugate point 𝑞.

Rephrasing the above discussion in terms of the expo-
nential map (14) gives a bifurcation-theoretic proof of the
following classical result.

Theorem 3 (Morse–Littauer, 1932). The exponential map is
not locally injective near any critical point.

Indeed, from Definition 1, if 𝑣 ∈ 𝑇𝑝𝑀 is a unit vector
such that 𝑡∗𝑣 is a critical point of exp𝑝, then bifurcation gives
a sequence 𝑣𝑛 ∈ 𝑇𝑝𝑀 of initial velocities converging to
𝑡∗𝑣, with 𝑣𝑛 ≠ 𝑡∗𝑣, such that exp𝑝(𝑣𝑛) = exp𝑝(𝑡𝑛 𝑣) for
some sequence 𝑡𝑛 ↘ 𝑡∗. In other words, there exist pairs
of distinct vectors, arbitrarily close to the critical point 𝑡∗𝑣,
which exp𝑝 maps to the same point. Note this bifurcation-
theoretic proof yields a slightly stronger conclusion: all
these pairs can be chosen to include some multiple of 𝑣.
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Figure 9. A focal point 𝐹 that does not produce bifurcation of
orthogonal geodesics. The horizontal line segment 𝛾 (red) is
the unique geodesic in ℝ2 departing orthogonally from the
circular arc 𝑃 and arriving orthogonally at the vertical line
segment 𝑄. Crossing the focal point 𝐹 of 𝑃 at the center of the
circle does not produce bifurcation, since the Morse index
remains unchanged due to a cancellation phenomenon.

Geodesic bifurcation phenomena can also be studied
with more general boundary conditions. One may replace
the space 𝑋 of curves in 𝑀 from 𝑝 to 𝑞 with the space of
curves that end at 𝑞, but whose initial endpoint is free to
move along a given submanifold 𝑃 ⊂ 𝑀. Stationary points
for the energy (11) in this setup are geodesics that leave
the initial submanifold 𝑃 orthogonally, and focalization
of such geodesics occurs at so-called focal points of 𝑃, which
are simply conjugate points if 𝑃 = {𝑝}. As in the fixed end-
point case, the occurrence of focal points produces bifur-
cation of geodesics. If the final endpoint is also left free to
vary on a terminal submanifold 𝑄 ⊂ 𝑀, then an interest-
ing cancellation phenomenon may happen, depending on
the relative position of 𝑃 and 𝑄. In this case, focal points
do not correspond to jumps of the Morse index, and they
do not necessarily produce bifurcation; see Figure 9 for an
example from [GGP18].
Gravitational lensing. General Relativity uses four-
dimensional spacetimes to model the universe, or parts of
it. These are pseudo-Riemannian manifolds 𝑀4, where the
length of nonzero vectors can be positive, negative, or null.
Points in a spacetime are called events, since they not only
represent the physical location of an “event,” but also the
time when it takes place. Vectors with negative length
(called timelike vectors) represent velocities of objects with
mass, and vectors with null length (called lightlike vectors)
represent velocities of photons, which travel at the speed
of light. Tangent lightlike vectors at an event form the so-
called light cone of that event. Geodesics can also be de-
fined here, although the notion of length extremality must
be suitably reformulated. Consequently, the exponential
map (14) carries over to the case inwhich𝑀 is a general rel-
ativistic spacetime. Trajectories of light rays are geodesics
in 𝑀 whose tangent vectors are everywhere lightlike, and
the image of the light cone via the exponential map is the
set of all light rays issuing from a light source located at the
given event. The worldline of an observer is represented by
a curve in 𝑀 whose tangent vector is everywhere timelike,

Figure 10. This picture from the NASA/ESA Hubble Space
Telescope contains at least 12 simultaneous images
(distributed over four arcs, three clearly visible on the top
right corner) of the same light source, a galaxy (PSZ1
G311.65-18.48) almost 11 billion light-years from Earth. This
lensing effect is due to a foreground cluster of galaxies 4.6
billion light-years away.

and the parameter of this curve is interpreted as the time
measured by the observer.

To interpret bifurcation of geodesics representing light
rays, consider all possible lightlike curves issuing from a
given event 𝑝 ∈ 𝑀, the light source; and a timelike curve
𝛾, which is the worldline of an observer, say, a telescope
in space. (The interpretation can also be reversed: the
curve 𝛾 may represent the worldline of a light source, and
the event 𝑝 an instantaneous observer.) To each lightlike
curve from 𝑝 to 𝛾, i.e., each trajectory in spacetime with
the speed of light from the light source to the observer,
one assigns its arrival time, as measured by the observer.
The relativistic Fermat’s Principle states that geodesics cor-
respond exactly to minimizers, or more generally, station-
ary points for this arrival time function. Multiple lightlike
geodesics from 𝑝 to 𝛾 are interpreted as multiple images
of the same instantaneous light source that the observer
receives along its life (or, in the reverse interpretation, as
images of the light source emitted at different stages of its
life that are seen simultaneously by the observer). As in
the case of Riemannian geodesics, this is an effect of curva-
ture, which in a spacetime is caused by gravitational fields
of large masses. Multiple images caused by such gravita-
tional lensing were originally predicted by Einstein’s theory
of General Relativity in the 1930s, and first observed in the
late 1970s; see Figure 10 for an example, and [Per00] and
[GGP04] for details.
Constant mean curvature surfaces. One of the oldest
problems in Mathematics is the isoperimetric problem of
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Figure 11. Roulette (blue) of a conic section (red).

determining the shape of a surface that has least area
among surfaces bounding a given volume. These optimal
contours, called isoperimetric surfaces, are the “preferred”
configurations of many physical objects, such as soap bub-
bles. Solutions in Euclidean space are well known to be
round spheres, but this problem becomes extremely chal-
lenging on more general ambient spaces. Although the ex-
istence and regularity of solutions on any 𝑛-dimensional
Riemannian manifold 𝑀 has been established, there are
very few ambients where all isoperimetric surfaces are ex-
plicitly known; see [Ros05] for a survey. For example, de-
termining the isoperimetric surfaces in the complex projec-
tive plane ℂ𝑃2 remains an elusive open problem.

Using a Lagrange multiplier 𝐻 to deal with the volume
constraint, we see that solutions are global minimizers of
the functional 𝑓𝐻 ∶ 𝑋 → ℝ, given by

𝑓𝐻(𝑥) = Area(𝑥) + 𝐻 Vol(𝑥), (15)

where 𝑥∶ Σ𝑛−1 ↪ 𝑀𝑛 is a hypersurface that encloses 𝑛-
dimensional volume Vol(𝑥), and has (𝑛 − 1)-dimensional
volume equal to Area(𝑥). Of course, these quantities are
named according to their more familiar meaning if the di-
mension of𝑀𝑛 is 𝑛 = 3.

A possible strategy to solve the isoperimetric prob-
lem on 𝑀𝑛 is to first classify the hypersurfaces that are
local minima of (15), i.e., solutions to d𝑓𝐻(𝑥) = 0
with 𝑖Morse(𝑥) = 0, and then compare their volumes to
search for the global minima. (For instance, this strategy
was successfully used on sufficiently noncollapsed Berger
spheres.) This alsomotivates studying all stationary points
of (15), which are hypersurfaces that have constant mean
curvature equal to 𝐻. Intuitively, these are shapes that, on
average, bend the same amount 𝐻 in all directions, at all
of its points. The special case in which 𝐻 = 0 is of great
interest, since these are stationary points for the (uncon-
strained) area functional: they are called minimal hypersur-
faces, and have been studied for centuries.

An infinitesimal perturbation of the hypersurface
𝑥∶ Σ ↪ 𝑀 is encoded as a function 𝜙∶ Σ → ℝ, with 𝜙(𝑝)
being the amount by which 𝑥(𝑝) is to be moved in the nor-
mal direction ⃗𝑛𝑥(𝑝). The Jacobi operator 𝐽(𝑥) of 𝑥∶ Σ ↪ 𝑀

acts on such a function 𝜙 as

𝐽(𝑥)𝜙 = Δ𝑥𝜙 − (‖𝐴𝑥‖2 + Ric( ⃗𝑛𝑥))𝜙, (16)

where Δ𝑥, 𝐴𝑥, and Ric( ⃗𝑛𝑥) are respectively the Laplacian,
the second fundamental form, and the Ricci curvature of
𝑀 in the direction normal to 𝑥(Σ). In particular, 𝑖Morse(𝑥)
is the number of Laplace eigenvalues of the hypersurface
Σ that are smaller than ‖𝐴𝑥‖2 + Ric( ⃗𝑛𝑥). Both of these are
curvature terms: ‖𝐴𝑥‖2 encodes how 𝑥(Σ) is curved inside
𝑀, while Ric( ⃗𝑛𝑥)measures the intrinsic curvature of𝑀.

In 1841, Delaunay ingeniously classified surfaces of rev-
olution in ℝ3 that have constant mean curvature. Namely,
he showed that their profile curve is the roulette of a conic
section 𝐶, i.e., the curve traced by a focal point of 𝐶 as it
rolls without slipping along a line ℓ; see Figure 11. Revolv-
ing this roulette around ℓ produces a surface of revolution
with constant mean curvature. These surfaces of revolu-
tion are calledDelaunay surfaces and fall into three families
according to which type of conic 𝐶 is used (see Figure 12):

• unduloids, if 𝐶 is an ellipse (0 < 𝑒 < 1);
• catenoids, if 𝐶 is a parabola (𝑒 = 1);
• nodoids, if 𝐶 is a hyperbola (𝑒 > 1);

aside from the limiting cases of spheres and cylinders.
Delaunay surfaces depend smoothly on the eccentricity

𝑒 > 0 and focal parameter 𝑝 > 0 of the conic 𝐶, and have
constant mean curvature equal to

𝐻 = |𝑒2 − 1|
𝑒 𝑝 .

In particular, catenoids have 𝐻 = 0 and are the unique
minimal surfaces of revolution in ℝ3, apart from flat
planes.

While all unduloids are stable, i.e., any other nearby
constant mean curvature surface is again an unduloid,
nodoids become increasingly unstable as 𝑒 ↗ +∞, bi-
furcating infinitely many times. The resulting bifurcating
branches consist of (topological) cylinders in ℝ3 that have
constant mean curvature, but are no longer surfaces of rev-
olution. Instead, they are invariant under a discrete sym-
metry group; see Figure 13. This is an instance of symmetry-
breaking bifurcation, where bifurcating solutions are less
symmetric than those in the trivial branch.

As a side note, the careful reader might object that De-
launay surfaces in ℝ3 (other than the sphere) have infinite
area and enclose an infinite volume, hence (15) is not well-
defined. Indeed, this variational characterization is only
valid for hypersurfaces that bound a compact region. Nev-
ertheless, the analysis can be reduced to a compact setting,
adjusting 𝑋 accordingly, due to the periodic nature of De-
launay surfaces and of the bifurcating surfaces considered.

Bifurcation also provides a way to produce new
Delaunay-type hypersurfaces in ambient spaces other than
ℝ3. For example, consider the 3-dimensional sphere
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Figure 12. Compact portions of Delaunay surfaces (unduloid,
catenoid, and nodoid, respectively) in ℝ3.

𝑆3 = {(𝑧, 𝑤) ∈ ℂ2 ∶ |𝑧|2 + |𝑤|2 = 1}, and its partition

into 2-tori Σ𝑡 ⊂ 𝑆3 for 𝑡 ∈ (0, 𝜋
2
), given by

Σ𝑡 = {(𝑧, 𝑤) ∈ 𝑆3 ∶ |𝑧| = cos 𝑡, |𝑤| = sin 𝑡}.
NoteΣ𝑡 collapses to (Hopf-linked) great circlesΣ0 andΣ𝜋/2
at the endpoints 𝑡 = 0 and 𝑡 = 𝜋

2
. The torus Σ𝑡 is the set of

points at distance 𝑡 from Σ0 in 𝑆3, and has constant mean
curvature equal to 𝐻(𝑡) = |tan 𝑡 − cot 𝑡|. In particular, Σ𝜋/4
is the Clifford torus, which is notably the unique embedded
minimal torus in 𝑆3, up to rigid motions. Since the curva-
ture term in (16) becomes unbounded as 𝑡 ↘ 0 or 𝑡 ↗ 𝜋

2
,

while infinitely many eigenvalues of the Laplacian on Σ𝑡
remain bounded, we have that 𝑖Morse(Σ𝑡) ↗ +∞, which,
by Theorem 1, yields the following.

Theorem 4. There are infinitely many branches of embedded
constant mean curvature tori in 𝑆3 that bifurcate from Σ𝑡 as
𝑡 ↘ 0, and also as 𝑡 ↗ 𝜋

2
.

Figure 13. A surface with constant mean curvature in ℝ3,
found numerically, that bifurcates from a nodoid.

These bifurcating tori are Delaunay surfaces in 𝑆3 (see
Figure 14), and are actually its only embedded tori of con-
stant mean curvature, up to rigid motions. This is another
instance of symmetry-breaking, as the bifurcating tori have
fewer symmetries than the trivial branch Σ𝑡. The same
ideas can be used to construct Delaunay-type surfaces in
much more general ambient spaces (cohomogeneity one
manifolds), which include compact rank one symmetric
spaces and even Kervaire exotic spheres [BP16].

Figure 14. Delaunay tori in 𝑆3 that bifurcate from Σ𝑡, viewed
through stereographic projection to ℝ3.
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Yamabe problem. A foundational result in Differential
Geometry and Complex Analysis is the Uniformization The-
orem, which originated with Klein and Poincaré in the
1880s; see [dSG10] for a fascinating historic account. One
of its many possible formulations states that every surface
𝑀2 which is closed (i.e., compact and without boundary)
can be deformed to have constant Gaussian curvature via a
conformal transformation. This is a deformation in the way
distances are measured that keeps all angles unchanged,
but it may be difficult to visualize. For example, if 𝑀2 is a
surface in ℝ3 which is not topologically a sphere, then the
resulting conformally deformed surface of constant Gauss-
ian curvature can no longer be embedded (isometrically)
in ℝ3. This deformation is also unique up to global rescal-
ings, except again if𝑀2 is a sphere.

The Uniformization Theorem is inherently a 2-dimen-
sional result, as it relies heavily on the intertwined na-
ture of conformal deformations and complex structures
in this dimension. In dimensions 𝑛 ≥ 3, one possible
extension is to replace Gaussian curvature with scalar cur-
vature, which at each 𝑝 ∈ 𝑀𝑛 is an average of Gaussian
curvatures of surfaces in 𝑀𝑛 through 𝑝. Using this no-
tion, Yamabe proposed that every closed 𝑛-dimensional
Riemannian manifold can be conformally deformed to
have constant scalar curvature 𝑐 ∈ ℝ. This corresponds
to finding a positive solution 𝑢∶ 𝑀𝑛 → ℝ to the PDE

4𝑛 − 1
𝑛 − 2 Δ𝑔𝑢 + scal𝑔 𝑢 = 𝑐 𝑢

𝑛+2
𝑛−2 , (17)

where scal𝑔 ∶ 𝑀𝑛 → ℝ is the original scalar curvature of
𝑀𝑛, and Δ𝑔 its Laplacian (here, 𝑔 denotes the Riemannian
metric of𝑀𝑛). Given a solution, the desired conformal de-
formation is to multiply lengths of tangent vectors at each

point 𝑥 ∈ 𝑀𝑛 by 𝑢(𝑥)
2

𝑛−2 . However, due to the value of
the exponent causing the nonlinearity in the right-hand
side of (17), standard existence results do not apply to
such a PDE. Yamabe attempted to analyze it as a limit of
PDEs with more favorable (subcritical) exponents in a pa-
per published in 1960, but there were serious gaps in this
approach. Tragically, he died of a stroke in that same year,
at age 37. It took another 24 years for the result idealized
by Yamabe to be eventually proven correct, as a combina-
tion of his work with that of Trudinger, Aubin, and Schoen;
see [LP87] for a survey.

Although this completely solved the existence question,
issues regarding uniqueness of solutions to the Yamabe
problem, i.e., positive solutions to (17), remain an active
area of research today. Using the maximum principle, it is
easy to show that if (17) has a solution with 𝑐 ≤ 0, then
it is the only solution. On the other hand, one typically
expects nonuniqueness if 𝑐 > 0. A concrete instance of
multiple solutions was described by Kobayashi and
Schoen (independently), on the product 𝑀𝑛

𝑡 of a sphere

𝑆𝑛−1 of fixed radius and a circle 𝑆1(𝑡) of varying radius 𝑡,
as follows.

Theorem 5 (Kobayashi, Schoen). For all 𝑛 ≥ 3, the number
of different solutions to the Yamabe problem on 𝑀𝑛

𝑡 = 𝑆𝑛−1 ×
𝑆1(𝑡) tends to +∞ as 𝑡 ↗ +∞.

The Yamabe equation (17) is variational. Namely, its
solutions are stationary points of the functional 𝑓∶ 𝑋 → ℝ
given by

𝑓(𝑢) = ∫
𝑀
4𝑛 − 1
𝑛 − 2‖∇𝑢‖

2 + scal𝑔 𝑢2, (18)

where 𝑋 is the space of functions 𝑢∶ 𝑀 → ℝ with

∫
𝑀
|𝑢|

2𝑛
𝑛−2 = 1.

This constraint corresponds to a volume normalization
of the conformal deformation. Aiming to prove non-
uniqueness, let us assume that 𝑀𝑛 already has constant
scalar curvature scal𝑔 ≡ 𝑐 and volume 1, so that 𝑢0 ≡ 1 ∈ 𝑋
is a solution to (17), and seek other (nonconstant) solu-
tions 𝑢 ∈ 𝑋 . Infinitesimal variations of 𝑢0 in 𝑋 are iden-
tified with functions 𝑣∶ 𝑀 → ℝ satisfying the linearized
constraint ∫𝑀 𝑣 = 0. Up to a dimensional constant, the
Jacobi operator 𝐽(𝑢0) of 𝑢0 ≡ 1 acts on such functions as

𝐽(𝑢0)𝑣 = Δ𝑔𝑣 −
scal𝑔
𝑛 − 1 𝑣. (19)

Consequently, its Morse index is

𝑖Morse(𝑢0) = #Spec(Δ𝑔) ∩ (−∞,
scal𝑔
𝑛 − 1) . (20)

The general setup for bifurcation of solutions to the
Yamabe problem is a 1-parameter family of Riemannian
manifolds 𝑀𝑛

𝑡 , 𝑡 ∈ [𝑎, 𝑏], with constant scalar curvature
scal𝑔(𝑡) > 0. If 𝜆(𝑡) is a family of eigenvalues of the Lapla-

cian Δ𝑔(𝑡) of 𝑀𝑛
𝑡 such that 𝜆(𝑡) − scal𝑔(𝑡)

𝑛−1
changes sign at

𝑡 = 𝑡∗, then 𝑖Morse(𝑢0) jumps at 𝑡 = 𝑡∗ and hence bifurca-
tion occurs by Theorem 1. If 𝜆(𝑡) is a simple eigenvalue,
then also Theorem 2 applies, implying continuity of the
resulting bifurcating branch. Combined with other topo-
logical techniques, this can be used to show that the bi-
furcation diagram for 𝑀𝑛

𝑡 = 𝑆𝑛−1 × 𝑆1(𝑡) is qualitatively
the same as the one in Figure 3. This gives a bifurcation-
theoretic proof of Theorem 5.

Rescaling a factor in more general products also pro-
duces infinitely many bifurcations of solutions to the Yam-
abe problem. When closed manifolds 𝑀 and 𝑁 have con-
stant scalar curvature, say scal𝑀 > 0 and scal𝑁 > 0, then
so does 𝑀 × 𝑁, and scal𝑀×𝑁 = scal𝑀 +scal𝑁 . Further-
more, rescaling 𝑁 by 𝑡 > 0 produces a manifold 𝑁𝑡 with
scal𝑁𝑡 =

1
𝑡
scal𝑁 . Thus, 𝑀 × 𝑁𝑡 has constant scalar curva-

ture scal𝑀 + 1
𝑡
scal𝑁 > 0. This quantity diverges to +∞ as
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𝑡 ↘ 0, while infinitely many eigenvalues of the Laplacian
remain bounded (those coming from𝑀), so 𝑖Morse(𝑢0) ↗
+∞ by (20). Thus, from Theorem 1, infinitely many bifur-
cations occur as 𝑡 ↘ 0. Switching the roles of 𝑀 and 𝑁
corresponds to replacing 𝑡 with 1/𝑡, and hence we arrive at
the following.

Theorem 6. Infinitely many bifurcations occur for the Yamabe
problem on 𝑀 × 𝑁𝑡 as 𝑡 ↘ 0 or 𝑡 ↗ +∞.

Generalizations of Theorem 6 from products to fiber
bundles can be found in [BP13a,BP13b,OP].

The Yamabe problem can also be considered on non-
compact manifolds 𝑀𝑛. In this situation, aside from be-
ing positive, a solution 𝑢∶ 𝑀𝑛 → ℝ to (17) must diverge
to +∞ fast enough as one approaches infinity on 𝑀𝑛, so
that the resulting conformal deformation is complete. Com-
pleteness can be thought of in the usual sense of met-
ric spaces, i.e., Cauchy sequences must converge, and this
plays the role of a boundary condition at infinity. Unlike the
case of compact manifolds, the Yamabe problem on non-
compact manifolds may have no solutions at all.

On the other hand, there are special cases where a so-
lution can be built explicitly. For example, consider the
complement 𝑀𝑛 = 𝑆𝑛 ⧵ 𝑆1 of a great circle in a round
sphere 𝑆𝑛, 𝑛 ≥ 3. Since the round sphere has constant cur-
vature scal𝑔 = 𝑛(𝑛− 1), so does the open subset𝑀𝑛, but it
is clearly not complete. However, rescaling 𝑀𝑛 by the ap-
propriate (negative) power of the distance to its boundary,
one obtains a complete Riemannianmanifold which turns
out to be conformally equivalent to the product 𝑆𝑛−2×𝐻2,
where 𝐻2 is the hyperbolic plane. This product manifold
has constant scalar curvature (because both of its factors
do) equal to (𝑛−4)(𝑛−1). Thus, we have found a solution
to the Yamabe problem on𝑀𝑛. Bifurcation Theory allows
us to turn it into many more solutions.

Theorem 7. For all 𝑛 ≥ 5, there are uncountably many
branches of (complete) solutions to the Yamabe problem on
𝑆𝑛 ⧵ 𝑆1 conformal to the round metric.

We remark that the condition 𝑛 ≥ 5 is actually neces-
sary for nonuniqueness of solutions, since it ensures that
𝑐 = (𝑛−4)(𝑛−1) > 0. In order to use Bifurcation Theory to
prove Theorem 7, we need a 1-parameter family of “trivial”
solutions as the starting point, but so far we only have one
solution, coming from the product 𝑆𝑛−2 × 𝐻2. The trick
to overcome this is to replace 𝐻2 with compact quotients
𝐻2/Γ, that is, hyperbolic surfaces. While there are uncount-
ably many non-conformal hyperbolic surfaces, all of them
are covered by the (same) hyperbolic plane 𝐻2. Thus, new
solutions to the Yamabe problem on 𝑆𝑛−2 × 𝐻2/Γ can be
pulled back to 𝑆𝑛−2 × 𝐻2, and then to 𝑀𝑛 = 𝑆𝑛 ⧵ 𝑆1. Since
they come from a compact quotient, these solutions are
automatically complete. Making a judicious choice of hy-
perbolic surfaces 𝐻2/Γ𝑡 (see Figure 15), as 𝑛 ≥ 5, one can

arrange for arbitrarily many eigenvalues of the Laplacian

on 𝑆𝑛−2 × 𝐻2/Γ𝑡 to become smaller than
scal𝑔
𝑛−1

= 𝑛 − 4 as
𝑡 ↘ 0. This forces 𝑖Morse(𝑢0) ↗ +∞ by (20), and hence
infinitely many bifurcations by Theorem 1. Pulling back
the bifurcating solutions to 𝑀𝑛 as described above, one
completes the proof of Theorem 7; see [BPS16] for details.

Figure 15. A curve 𝐻2/Γ𝑡 of hyperbolic surfaces has the desired
spectral behavior if its shortest nontrivial closed geodesic
(systole) becomes arbitrarily small as 𝑡 ↘ 0. Although the
surfaces drawn above attempt to illustrate this, no hyperbolic
surface can be actually seen (isometrically embedded) in ℝ3.

Generalizations
Equivariant bifurcation. In many interesting situations,
geometric variational problems have a nontrivial group
of symmetries. More precisely, in terms of the abstract
setup (4), suppose 𝑓𝑡 ∶ 𝑋 → ℝ is invariant under the ac-
tion of a group 𝖦 of transformations of 𝑋 ; that is, 𝑓𝑡 is
constant along 𝖦-orbits for all 𝑡 ∈ [𝑎, 𝑏]. In this situation,
Theorem 1 cannot be applied if the stationary points 𝑥𝑡
along the trivial branch have nontrivial (i.e., nondiscrete)
𝖦-orbit, since tangent directions to them violate the non-
degeneracy requirement.

However, Theorem 1 can be extended using a suitable
equivariant nondegeneracy assumption, which requires the
kernel of the Jacobi operator to be no larger than the
tangent space to the 𝖦-orbit of the critical point. This
is also the appropriate framework to study the symmetry-
breaking phenomenon briefly mentioned above with Con-
stant Mean Curvature hypersurfaces. This happens when
the stabilizer subgroup of bifurcating solutions is smaller
than that of solutions in the trivial branch. Symmetry-
breaking also happens in the Yamabe problem; e.g., if the
trivial branch consists of homogeneous manifolds, then
every bifurcating solution is nonhomogeneous (since con-
formal homogeneous metrics are homothetic).

More sophisticated tools are available to detect bifurca-
tion in equivariant problems. For instance, instead of only
looking for jumps of the (equivariant) Morse index, repli-
cating Theorems 1 and 2, finer representation-theoretic
invariants of the negative eigenspaces of Jacobi operators
can be used. For some details on these methods, see
[SW90,BPS14].
Infinite Morse index. An essential assumption for the Bi-
furcation Theory discussed above is that the Morse index

DECEMBER 2020 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 1689



of all stationary points in the trivial branch is finite. This
is always the case if the space of configurations 𝑋 is finite
dimensional, but may fail in many interesting situations
with infinite-dimensional 𝑋 . Roughly speaking, finiteness
of the Morse index is related to ellipticity of the Jacobi oper-
ator, such as in Euler’s Buckling Problem (9), Riemannian
geodesics (12), Constant Mean Curvature surfaces (16),
and the Yamabe problem (19). Ellipticity implies that
the negative part of the spectrum consists of finitely many
eigenvalues, each with finite multiplicity, hence 𝑖Morse <
+∞.

Functional analytical techniques have been recently de-
veloped to study bifurcation in cases where the Morse
index may be infinite. For instance, geodesics in man-
ifolds endowed with a non-positive-definite (pseudo-
Riemannian) metric are stationary points with infinite
Morse index; see for instance [AM05, AM08]. Although
this is the case for general geodesics in spacetimes, we
remark that the above discussion of gravitational lens-
ing avoids this by using an alternative variational princi-
ple for light rays (with the arrival time functional) that
yields stationary points of finite Morse index; see [GGP04].
More generally, infinite Morse index arises on stationary
points of action functionals associated to nonconvex La-
grangians.

Despite remaining a largely unexplored area of Math-
ematics, important steps have been taken towards under-
standing a few special cases. A key notion that can replace
the Morse index is the spectral flow, which is an integer-
valued invariant associated to paths of self-adjoint Fred-
holm operators on a Hilbert space. The spectral flow of a
path gives a sort of algebraic count of how many eigenval-
ues cross 0 along the path, and can be defined in several dif-
ferent ways with tools from Functional Analysis. In some
cases, bifurcation along a path of stationary points can be
inferred from the corresponding path of Jacobi operators
having nonzero spectral flow; see [FPR99].

To study bifurcation of pseudo-Riemannian geodesics,
another key notion is the Maslov index of a geodesic 𝛾,
which is an integer that replaces the number of conju-
gate points (since they can accumulate along pseudo-
Riemannian geodesics). It is defined using symplectic tech-
niques, passing to the Hamiltonian formulation, and lin-
earizing the geodesic flow along 𝛾. In this situation, jumps
of the Maslov index detect bifurcation; see [PPT04].
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