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Flow of a semidilute neutrally buoyant and non-colloidal suspension is numerically studied
in the Taylor–Couette geometry where the inner cylinder is rotating and the outer one is
stationary. We consider a suspension with bulk particle volume fraction φb = 0.1, the
radius ratio (η = ri/ro = 0.877) and two particle size ratios ε (= d/a) = 60, 200, where
d is the gap width (= ro − ri) between cylinders, a is the suspended particles’ radius and
ri and ro are the inner and outer radii of the cylinder, respectively. Numerical simulations
are conducted using the suspension balance model (SBM) and rheological constitutive
laws. We predict the critical Reynolds number in which counter-rotating vortices arise
in the annulus. It turns out that the primary instability appears through a supercritical
bifurcation. For the suspension of ε = 200, the circular Couette flow (CCF) transitions
via Taylor vortex flow (TVF) to wavy vortex flow (WVF). Additional flow states of
non-axisymmetric vortices, namely spiral vortex flow (SVF) and wavy spiral vortex flow
(WSVF) are observed between CCF and WVF for the suspension of ε = 60; thus, the
transitions occur following the sequence of CCF→ SVF→WSVF→WVF. Furthermore,
we estimate the friction and torque coefficients of the suspension. Suspended particles
substantially enhance the torque on the inner cylinder, and the axial travelling wave of
spiral vortices reduces the friction and torque coefficients. However, the coefficients are
practically the same in the WVF regime where particles are almost uniformly distributed
in the annulus by the axial oscillating flow.
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1. Introduction

Taylor–Couette flow (TCF) between two coaxial cylinders has been one of the
paradigmatic flows for a long time, since it allows the study of various physical phenomena
in fluid dynamics, such as flow instability and transition (Coles 1965; DiPrima, Eagles
& Ng 1984; Marques & Lopez 1997; Caton, Janiaud & Hopfinger 1999; Hristova et al.
2002), nonlinear dynamics (Pfister & Rehberg 1981; Mullin, Cliffe & Pfister 1987),
pattern formation (Andereck, Liu & Swinney 1986; Boubnov, Gledzer & Hopfinger 1995;
Lim, Chew & Xiao 1998; Guillerm et al. 2015) and turbulence (Lathrop, Fineberg &
Swinney 1992a,b; Huisman et al. 2012; Grossmann, Lohse & Sun 2016). Moreover,
flows of a dispersed phase (bubbles, drops or particles) and the migration behaviour of
dispersions have been widely examined in the Taylor–Couette system due to numerous
practical applications in chemical engineering, such as the oil industry, filtration and
transformation of thermal energy (Chan & Leal 1981; Wereley & Lueptow 1999; Resende
et al. 2001; Rudman 2004; Climent, Simonnet & Magnaudet 2007). In this work, we
explore a semidilute suspension in a Taylor–Couette flow using rheological laws such as
the suspension balance model (SBM): (1) to understand if such a model could be used as a
tool to examine suspensions in a TCF, (2) to characterize the particle migration and (3) to
examine parameters that might be challenging to be analysed using experiments including
friction and torque coefficients. Although several experiments were performed to examine
the behaviour of particles in a TCF (Ali et al. 2002; Majji, Banerjee & Morris 2018; Majji
& Morris 2018), to the best of the authors’ knowledge, little work has been performed to
predict the flow transitions in a TCF using a continuum model.
At low Reynolds numbers, neutrally buoyant particles in dilute suspensions follow the

streamlines. However, micron-size particles undergo a self-diffusion phenomenon arising
from hydrodynamic interactions between particles at higher concentrations. It triggers the
shear-induced particle migration in non-uniform shear flows (Eckstein, Bailey & Shapiro
1977; Leighton & Acrivos 1987; Phillips, Armstrong & Brown 1992; Sierou & Brady
2004). To understand the shear-induced diffusion, a shear flow of particulate suspensions
in the Taylor–Couette geometry has been utilized in various studies (Phillips, Armstrong
& Brown 1992; Tetlow et al. 1998; Morris & Boulay 1999; Fang et al. 2002). At low
Reynolds regime, particles migrate from regions of a higher shear rate to those of a lower
shear rate. As a result, a non-uniform distribution of the particle concentration is caused
and the velocity profile is altered.
In Taylor–Couette flows, the flow becomes unstable and a transition occurs at sufficient

ratio rates of the inner and outer cylinders which induce the centrifugal instability.
For the flow of a pure Newtonian fluid, the flow instability and transitions have been
well-documented by numerous studies as mentioned earlier. For example, Andereck, Liu
& Swinney (1986) determined transitions as functions of Reynolds numbers based on the
rotating angular velocity of the inner and outer cylinders, and mapped out the observed
flow patterns. By contrast, a few studies have examined the instability and transition of
finite-size particles contained in the Taylor–Couette system with the rotating inner cylinder
and stationary outer one. Ali et al. (2002) carried out a linear stability analysis (LSA)
for dilute suspensions (φb ≤ 0.05) of rigid spherical particles in cylindrical Couette flow,
where φb is the bulk particle volume fraction. Their result of LSA showed that dispersed
particles destabilize the flow and the degree of destabilization depends on the density ratio
between the particle and the suspending fluid. However, their experiments with neutrally
buoyant particles of φb ≤ 0.005 present a stabilizing effect of particles by increasing
the effective viscosity. Dherbécourt et al. (2016) and Rida et al. (2019) performed
a series of experiments for neutrally buoyant particles of size dp = 800–1500 μm
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(dp is the diameter of particles), gap-to-particle ratio of 7.3–13.75 and volume fractions
ranging from 0.01 to 0.08, and observed an improved mixing in TVF. Majji & Morris
(2018) conducted experiments for the flow of a dilute suspension (φb = 0.001) confined
in a finite cylindrical annulus. Similar to the pure Newtonian fluid flow, they observed
that very dilute suspension undergoes transitions from the circular Couette flow (CCF)
via Taylor vortex flow (TVF) to wavy vortex flow (WVF). They also showed that, in the
CCF, particles migrate to an equilibrium location near the middle of the annulus with an
offset toward the inner cylinder because of the competition between the shear gradient in
the flow and the wall interactions. For the TVF state, however, particles were trapped in
a circular equilibrium region inside each vortex. Unlike in the CCF and TVF, particles in
the WVF did not reach a steady equilibrium location and they were uniformly distributed
in the annular region.
In another study, Majji, Banerjee & Morris (2018) performed a set of flow-visualization

experiments on inertial transitions of neutrally buoyant suspensions for various Reynolds
numbers (Re) and particle volume fractions (0 ≤ φb ≤ 0.3) to investigate the influence of
particle loading and size on flow transitions. For 0.05 ≤ φb ≤ 0.15 and ε (= d/a) = 60,
where d is the gap width between two cylinders and a is the radius of particles, when
the Reynolds number of the inner cylinder was slowly decreased (the decreasing-Re
protocol), they discovered additional non-axisymmetric flow states, namely spiral vortex
flow (SVF) and ribbons (RIB). For the reduced particle size (i.e. ε = 200) at φb =
0.1, only the RIB was observed between TVF and CCF. While these are absent in a
similar TCF with a pure Newtonian fluid, both spiral vortices and ribbons are known
to appear in counter-rotating TCF (Coles 1965; Andereck, Liu & Swinney 1986), as
primary bifurcations from the CCF in the narrow-gap limit. Their experiments with
φb = 0.1 also showed a hysteresis during the transitions of WVF ↔ TVF and TVF
↔ SVF. By further increasing the particle volume fractions (i.e. φb = 0.2, 0.3) at
ε = 60, another non-axisymmetric flow pattern, the so-called WSVF, was observed.
In addition, by decreasing Re, the suspensions transitioned following the sequence
of WSVF→WVF→WSVF→TVF→SVF→RIB→CCF for φb = 0.2, whereas, for
φb = 0.3, only non-axisymmetric structures appeared and the sequence was simplified
as WSVF→ SVF→CCF. Recently, Gillissen & Wilson (2019) employed the LSA of
axisymmetric perturbations of the two-fluid theory to examine the stability analysis for
the Taylor–Couette flow of suspensions from dilute to highly concentrated suspensions
(0 ≤ φb ≤ 0.5). They predicted the critical, effective Taylor number based on the effective
suspension viscosity as a function of particle volume fraction (φb) and revealed the
destabilization effect of the flow due to non-Brownian spherical particles. Recently,
Ramesh, Bharadwaj & Alam (2019) visualized flows and measured the velocity field
using particle image velocimetry (PIV) for the flow of non-Brownian suspension in
a narrow-gap Taylor–Couette cell. They found that the bifurcation sequence for dilute
suspensions (φb < 0.05) remained the same as in the flow of a pure Newtonian fluid (i.e.
CCF→TVF→WVFwith increasing Re). However, for φb ≥ 0.05, the non-axisymmetric
SVF appeared as the primary bifurcation when Re was slowly reduced and the transition
route ofWVF→TVF→ SVF→CCFwas presented by decreasing Re. On the other hand,
new coexisting states, namely TVF + WVF and TVF + SVF, were uncovered when the
rotation rate of the inner cylinder was gradually ramped up. The TVF + WVF occurred
with the onset of the primary instability from the CCF for 0.05 ≤ φb ≤ 0.12, whereas the
TVF + SVF appeared between CCF and TVF as the secondary bifurcation for φb ≥ 0.13.
They also found that the secondary bifurcation from TVF to WVF is subcritical (or
hysteretic) for φb ≥ 0.05 and the value of the critical Reynolds number is reduced for both
primary and secondary transitions. Lately, Ramesh &Alam (2020) presented a new pattern
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Figure 1. Schematic diagram of a flow of suspensions in Taylor–Couette geometry.

for φb ≥ 0.1, the so-called interpenetrating spiral vortices (ISVs) which is a coexisting
state of upward and downward propagating spiral (or helical) vortices, in the suspension
Taylor–Couette flow of a higher radius ratio (η) and aspect ratio (Γ ).
The focus of this study is to conduct, for the first time, numerical simulations for

non-Brownian and non-colloidal suspension flows employing rheological constitutive
models known as the SBM. In particular, we assume that the suspension undergoes the
shear-induced migration while the inertial migration of particles is neglected. To compare
our results with the experimental data reported byMajji, Banerjee &Morris (2018), herein,
we consider a suspension flow of φb = 0.1 with various particle sizes of ε = d/a =
60, 200. The primary and secondary bifurcations are investigated with varying Reynolds
number based on the rotating angular velocity of the inner cylinder, and the transition
states are presented by determining the flow patterns. We characterize the flow structures,
particle concentration fields and the dimensionless coefficients related to the torque
exerted on the inner cylinder. This paper is organized as follows. In § 2, mathematical
formulations for the flow of suspension are described following with the rheological
constitutive laws, numerical procedure and parameters. The results and discussion are
presented in § 3. Section 4 addresses the summary and conclusion of this study.

2. Problem formulation

A flow of neutrally buoyant, non-colloidal, rigid, spherical particles suspended in a viscous
fluid of viscosity μ and density ρ is considered. The suspension is confined between two
coaxial cylinders of the gap width d with the inner one rotating at a constant angular
velocity (Ωi), while the outer one is fixed (figure 1). The radii of the inner and outer
cylinders are ri and ro(= ri + d), respectively. We assume that the suspensions are in the
Stokes flow regime, i.e. Rep � 1, where Rep = ργ̇ a2/μ is the particle Reynolds number
based on the fluid shear rate γ̇ and the radius of the suspended particles a. We also consider
the suspensions in the limit of Pe → ∞ where Pe = 6πμγ̇ a3/kT is the Péclet number
defined with the thermal energy kT.

2.1. Balance equations and constitutive laws
To model the flow of suspension, we employ the SBM introduced by Nott & Brady (1994)
and later by Morris & Brady (1998), in which mass and momentum balances are written
for the bulk suspension and they are solved simultaneously for the particle concentration
and bulk velocity.
Using the SBM for non-Brownian particles suspended in an incompressible fluid, the

conservation equations for particle mass and momentum are obtained simply by ensemble
and volume averages over the particles as (Drew & Lahey 1993)

∂φ

∂t
+ ∇ · φ〈u〉p = 0, (2.1)
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ρpφ
Dp〈u〉p
Dt

= 〈b〉p + 〈F 〉p + ∇ · 〈Σ〉p, (2.2)

where the substantial derivative, Dp/Dt = ∂/∂t + 〈u〉p · ∇, follows the average particle
motion (Nott & Brady 1994; Morris & Brady 1998). It has been assumed that the density
of a particle ρp is constant. 〈 〉p represents a particle-phase average and thus 〈u〉p is
the average particle velocity. In (2.2), 〈b〉p, 〈F 〉p and 〈Σ〉p are the average body force,
hydrodynamic force and stress of the particles, respectively (Nott & Brady 1994; Morris
& Brady 1998).
The balance equations for the suspension are derived from the mass and momentum

conservation equations by taking the averages over the bulk suspensions (Drew & Lahey
1993), and can be stated as

∇ · 〈u〉 = 0, (2.3)

D〈ρu〉
Dt

= 〈b〉 + ∇ · 〈Σ〉, (2.4)

where the material derivative is that following the suspension-averaged, D/Dt = ∂/∂t +
〈u〉 · ∇ (Nott & Brady 1994; Morris & Brady 1998). 〈 〉 denotes a suspension average and
then 〈u〉 is the suspension-averaged velocity. Here, 〈b〉 and 〈Σ〉 are the average body force
acting on the suspension and the average suspension stress, respectively.
For neutrally buoyant particles, the particle mass and momentum equations ((2.1) and

(2.2)) can then be coupled by vanishing Reynolds number and taking infinite Péclet
number (Morris & Brady 1998; Morris & Boulay 1999). Therefore, the particle mass
conservation (2.1) reduces to

∂φ

∂t
+ 〈u〉 · ∇φ = −∇ · j, j = 2a2

9μ
f (φ)∇ · 〈Σ〉p. (2.5)

Here, j implies the particle migration flux relative to the mean motion of the suspension;
f (φ) is the sedimentation hindrance function that indicates the sedimentation rate of a
homogeneous suspension of spheres at a volume fraction (φ) to the isolated Stoke settling
velocity. We take the form reported by Miller & Morris (2006) for the sedimentation
hinderance function as f (φ) = (1 − φ/φm)(1 − φ)α−1 with α = 4. This formula is similar
to the one proposed by Richardson & Zaki (1954) as f (φ) = (1 − φ)α , but it has been
altered to ensure that particle migration ceases when the volume fraction approaches to the
maximum packing φm (Miller & Morris 2006). We also ignore the impact of the particle
lift force causing the inertial migration in the flow.
For non-Brownian suspensions, the constitutive law for the suspension stress stated in

(2.4) can be given by (Nott & Brady 1994; Morris & Brady 1998)

〈Σ〉 = −〈p〉f I + 2μ〈S〉 + 〈Σ〉p, (2.6)

where 〈p〉f is the average pressure in the fluid, I is the identity tensor and 〈S〉 is the bulk
suspension rate of strain defined as S = [∇u + (∇u)T]/2. The particle stress 〈Σ〉p is
defined as (Morris & Boulay 1999)

〈Σ〉p = −μμn(φ)γ̇Q + 2μμp(φ)〈S〉, (2.7)

where γ̇ = (2S : S)1/2 is the local shear rate. The first term in (2.7) represents the
particle contribution to the normal stress. The function μn(φ) is the ‘normal stress
viscosity’ that can be expressed as μn(φ) = Kn(φ/φm)2(1 − φ/φm)−2 where Kn = 0.75
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(Morris & Boulay 1999; Miller &Morris 2006); μp is the particle contribution to the shear
viscosity. The constant tensor Q describes the anisotropy of the normal stresses as

Q =
⎛
⎝ λ1 0 0

0 λ2 0
0 0 λ3

⎞
⎠ . (2.8)

The values of λ1 = 0.8, λ2 = 1 and λ3 = 0.5 have provided a good fit to the experimental
data in a wide-gap Couette flow of concentrated suspensions (Morris & Boulay 1999),
while a set of λ1 = 0.6, λ2 = 1.2 and λ3 = 1.2 has been also adopted to the flow of highly
concentrated suspensions in the same geometry (Fang et al. 2002). In this study, in a
narrow-gap Couette flow, we choose λ1 = λ2 = 1 and λ3 = 0.8 using our numerical tests.
The last term of (2.7) is the particle contribution to the shear stress, and it can be combined
with the shear stress of the fluid 2μ〈S〉. Finally, the suspension stress can be written as

〈Σ〉 = −〈p〉f I − μμn(φ)γ̇Q + 2μμs(φ)〈S〉. (2.9)

Here, μs(φ) is the effective shear viscosity of the bulk suspension, where μs = 1 + μp. To
define the effective shear viscosity of the suspension, we employ the Krieger’s empirical
correlation μs(φ) = (1 − φ/φm)−1.82 where φm = 0.68 is the maximum packing particle
volume fraction (Krieger 1972). Hereafter, the suspension average 〈 〉 is omitted for
simplicity.

2.2. Control parameters
We have defined the suspension Reynolds number as Res = ρriΩid/μμs(φb), then used
it as a control parameter based on the bulk particle volume fraction φb (Majji, Banerjee
& Morris 2018). The radius ratio (η = ri/ro) of concentric cylinders is η = 0.877, and
the aspect ratio (Γ = Lz/d) is Γ = 4 (∼=2λc/d) where λc is the critical wavelength for
the flow of a pure Newtonian fluid. Note that Ali et al. (2002) and Majji, Banerjee &
Morris (2018) found the same critical wavenumber for suspensions from the LSA as it is
for a pure Newtonian fluid. To compare our results with Majji, Banerjee & Morris (2018),
we have considered suspensions of φb = 0.1 with the particle size ε = d/a = 60, 200.
For non-dimensionalization, we have chosen the gap width d as the scale for length, the
rotating velocity of the inner cylinder riΩi as the scale for velocity and ρd2/μ as the time
scale. While the suspension Reynolds number has been varied up to Res = 180, based on
the relation between the particle and suspension Reynolds number as Rep = Resμs/ε

2, the
maximum particle Reynold number was computed as Rep < 10−1, i.e. negligible particles
inertia. For convenience, we also use a reduced radial coordinate as x = (r − ri)/d ∈
[0, 1].

2.3. Numerical schemes and boundary conditions
The governing equations (2.3)-(2.5) were discretized using a finite volume method in a
cylindrical coordinate system (r, ϕ, z) shown in figure 1. A second-order central difference
scheme was used for spatial discretization of derivatives except for the convective term (u ·
∇φ) of the particle mass conservation (2.5) where we employed the QUICK (quadratic
upstream interpolation for convective kinematics) scheme for the discretization (Kang &
Mirbod 2020). A hybrid scheme was utilized for the time advancement: nonlinear terms
and cross-diffusion terms were explicitly advanced by a third-order Runge–Kutta scheme,
and the diffusion terms were implicitly advanced by the Crank–Nicolson method (Kang
et al. 2017a,b). A fractional step method was used for time integration, and the Poisson
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Figure 2. Comparisons of (a) particle volume fraction (φ) and (b) azimuthal velocity (uϕ) normalized by
riΩi for φb = 0.5 in a wide-gap Couette flow with η = 0.269.

equation that resulted from the second stage of the fractional step method was solved by a
fast Fourier transform (FFT) (Kim & Moin 1985).
The no-slip boundary condition was employed at the cylindrical surfaces, and the

migration flux of particles was set to be zero at the walls. The flow and particle
concentrations were also assumed to be periodic in the axial direction (z). These can be
expressed as

u = ri�i, j · n = 0 at r = ri,
u = 0, j · n = 0 at r = ro,
u(r, ϕ, z) = u(r, ϕ, z + Γ ),

φ(r, ϕ, z) = φ(r, ϕ, z + Γ ).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.10)

Computations were performed in a grid systemwith 96(r) × 512(ϕ) × 64(z) determined
by grid refinement study. The radius ratio of η = 0.877 leads to a long domain length in
the azimuthal direction. Moreover, for the WVF, flow and particle concentration fields
vary with the azimuthal direction. For these reasons, we used large enough grid points in
the azimuthal direction to resolve the variations of both velocity and concentration fields.
More grid points were allocated near the cylinder walls in the radial direction (r) with

rmin = 0.005d, where 
rmin is the minimum grid size, whereas the grid cells in the
azimuthal (ϕ) and axial (z) directions were uniform.

2.4. Validation
To verify our code, we performed a direct comparison with previous studies for the
wide-gap steady Couette flow shown in figure 2 that presents the variations of particle
volume fraction and azimuthal velocity for a wide-gap steady Couette flow of φb = 0.5
explored by Phillips, Armstrong & Brown (1992). Our computed distribution of particle
volume fraction, shown in figure 2(a), is consistent with the measurements of Phillips,
Armstrong & Brown (1992) and also previous numerical predictions that employed the
SBM (Morris & Boulay 1999; Fang et al. 2002). The profile of azimuthal velocity also
shows a good agreement with that of Morris & Boulay (1999) as displayed in figure 2(b).

3. Results

3.1. Base flow
To analyse in detail the suspension flow transition and structure, we performed numerical
simulations in our proposed geometry. In the classical Taylor–Couette flow, the transition
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Figure 3. Profiles of the base flow; (a) particle volume fraction (φ), (b) azimuthal velocity (uϕ) for Res = 110
and for φb = 0.1 of both particle sizes.

from CCF to TVF occurs at a primary bifurcation when the Reynolds number (Re) is
larger than its critical value (Re ≥ Rec). Below the critical Reynolds number, the slowly
rotating inner cylinder causes a simple shear flow where the base state is stationary, an
axisymmetric CCF of suspension. In the CCF, the velocity and particle concentration
depend only on the radial coordinate, i.e. u = uϕ(r)eϕ and φ = φ(r), see figure 3. As
can be observed, the distributions of particle concentration and azimuthal velocity are
linear over the gap, and the velocity profile is almost in-line with that of a pure fluid flow.
Therefore, one can expect that the profiles of a semidilute suspension (φb = 0.1) in a
narrow gap display dissimilar properties with those of the highly concentrated suspension
flow in a wide-gap Couette flow presented in figure 2.
It should be noted that Majji & Morris (2018) and Baroudi, Majji & Morris (2020)

experimentally observed the inertial migration that particles migrate to an equilibrium
location near the middle of the annulus with an offset toward the inner cylinder for very
dilute suspensions (φb = 0.001 for d/a= 40 and 0.01 for d/a= 60.8); however, none of the
previous studies reported inertial migration and the corresponding concentration profiles
for semidilute and concentrated suspensions. One expects that for very dilute suspensions
the lift force acting on the particles is dominant, leading to particle migration towards the
middle between walls as theoretically verified by Cox &Brenner (1968), Ho & Leal (1974),
Vasseur & Cox (1976), McLaughlin (1993), Hogg (1994) and Asmolov (1999). Indeed, the
collision of particles with each other and the cylindrical walls might not be negligible for
semidilute and concentrated suspensions; however, the related lift force acting on particles
due to particle inertia, that needs to be added as an additional term in SBM, has not yet
been identified in any literature. Because of these reasons, we assumed that the particle
inertia and the corresponding lift force are negligible, while the shear-induced diffusion is
dominant in the flow which results in the linear profile of the particle concentration over
the annulus gap as shown in figure 3(a).

3.2. Flow instability
As the rotation rate of the inner cylinder and consequently Res increases, the centrifugal
force exceeds the viscous force and the flow becomes unstable in the annulus region. To
characterize the critical states of the flow, we have employed the Landau model which
describes the evolution of the flow perturbation in its weakly nonlinear regime and it can
be determined as (Landau & Lifshitz 1976; Guckenheimer & Holmes 1983; Kang et al.
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Figure 4. (a) Growth rates of perturbations near the critical Reynolds number for ε = 60. (b) The derivative
of the amplitude logarithm plotted against the square of the amplitude for Res = 122, ε = 60 and φb = 0.1.

2017a,b, 2019)
dA
dt

= σ(1 + ic1)A − l(1 + ic2)|A|2A + · · · . (3.1)

The parameters σ and l represent the linear growth rate of the perturbation and the Landau
constant where the sign of l indicates the nature of the bifurcation (i.e. supercritical vs
subcritical), and the constants c1 and c2 are the linear and nonlinear dispersion coefficients.
We have introduced the norm of the radial velocity component at the central surface in the
annulus to define the amplitude of the perturbation |A|, as

|A| = 1
2πΓ

∫ Γ

0

∫ 2π

0
|ur(rm, ϕ, z)| dϕ dz, where rm = (ri + ro)/2. (3.2)

The growth rates (σ ) obtained from the evolution of the amplitude |A| for several Res near
the threshold are plotted in figure 4(a) where the linear extrapolation gives the critical
value of suspension Reynolds number (Res,c). The predicted critical value is Res,c = 120
for the suspension of ε = 60 and φb = 0.1. We also found the same critical Reynolds
number (Res,c) for ε = 200, and it appears that the particle size has no influence on the
critical Reynolds number. In contrast, Majji, Banerjee & Morris (2018) found a reduction
in critical suspension Reynolds number by increasing the particle size. This difference
might be because, in the experiments, particles are impacted by finite inertia along with
the existence of flow curvature in rotating flow, thus undergo inertial migration leading to
non-uniform particle distribution that cannot be predicted by the SBM.
Note that the critical Reynolds number (Rec), using LSA, for a pure Newtonian fluid

with η = 0.877 is found to be 119.1 (DiPrima, Eagles & Ng 1984). Majji, Banerjee &
Morris (2018) also experimentally observed the primary bifurcation at Re= 120 for a pure
fluid flow, where Re = ρriΩid/μ. By linear extrapolation of the growth rates, we also
obtained Rec = 119.4 for the flow of a pure Newtonian fluid (i.e. φb = 0). However, when
Re is based on the viscosity of suspending fluid, the suspension critical Re can be computed
as Rec = 160.3 for φb = 0.1, meaning that, by adding particles in a viscous fluid, the flow
is blocked and it is stabilized. Also, adding particles increases the effective viscosity of
suspensions resulting in stronger viscous force leading to the higher shear rate, thereby
a larger rotation rate of the inner cylinder is required to induce more intense centrifugal
force to reach the critical value (Ali et al. 2002).
The critical Reynolds number (Res,c) is compared with the previous theoretical and

experimental results in table 1. Note that the critical values reported in previous works
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Present

Gillissen &
Wilson
(2019)

Majji et al.
(2018)

Ramesh
et al. (2019)

Ramesh &
Alam (2020)

Method Numerical simulation LSA Visualization PIV PIV
ε 60, 200 60 60 70 50
η 0.877 0.877 0.877 0.914 0.94
Γ 4 (Periodic) ∞ 20.5 11 16.5
Res,c 120 127 118 122 160

Table 1. Comparison of critical Reynolds numbers (Res,c) in the Taylor–Couette flow of non-Brownian
suspension for φb = 0.1. Note that, for comparison, we converted the Res,c reported in previous literatures
by the definition of Res used in this study.

(Majji, Banerjee & Morris 2018; Gillissen & Wilson 2019; Ramesh, Bharadwaj & Alam
2019) were converted to our definition for Res accordingly. We employed the maximum
packing particle volume fraction as of φm = 0.68 in the Krieger’s empirical correlation
while they considered φm = 0.55 in their studies. We have obtained the critical value
lower than that reported by Gillissen & Wilson (2019) who predicted Res,c = 127 using
the LSA of the two-fluid theory. This might be because the interactions of particles,
which is significant for concentrated suspensions, have been ignored in their analysis.
However, our prediction for Res,c at ε = 60 shows a good agreement with the experiments
of Majji, Banerjee & Morris (2018). The Res,c is also consistent with the value reported
by Ramesh, Bharadwaj & Alam (2019) for a radius ratio η = 0.914, but it reveals a distinct
disagreement with the experimental result performed by Ramesh & Alam (2020) for
η = 0.94. This could be due to the curvature effect arising from different radius ratios.
In (3.1), the sign of the Landau constant l determines the type of transition. The

transition from the base flow is supercritical if l > 0; otherwise, it is subcritical (l <

0) (Kang et al. 2017a, 2019). The sign of l can be identified from the behaviour of
the instantaneous growth rate d ln |A|/dt as a function of |A|2 at a vanishing |A|2. We
plotted d ln |A|/dt versus |A|2 at the critical Reynolds threshold Res,c, in figure 4(b). The
intersection with the vertical axis provides the linear growth rate (σ ) of the amplitude
|A|, where the slope at the origin (i.e. |A|2 = 0) determines the nonlinear bifurcation
characteristics. This reveals that the instability appears through a supercritical bifurcation
(l > 0). We also found that the transition is supercritical (non-hysteretic) for both particle
sizes.
Majji, Banerjee & Morris (2018) have also studied the hysteresis in flow transitions.

They have observed flow transitions and structures by slowly increasing and decreasing
Reynolds number (i.e. increasing-Re ramp and decreasing-Re ramp). They showed the
hysteresis for the secondary bifurcation, during the increasing-Re ramp, occur at higher
Reynolds number (TVF→WVF); however, the transition for the primary instability has
not been captured in their experiment.
Ramesh, Bharadwaj & Alam (2019) have also investigated the presence of hysteresis by

up-sweep (increasing-Re) and down-sweep (decreasing-Re) experiments. They indicated
that the secondary bifurcation from TVF to WVF is subcritical (or hysteretic), while
the critical Re for the up-sweep is higher than that for the down-sweep. Nonetheless,
the primary bifurcation leading to the onset of SVF has not shown the hysteresis
for φb = 0.2 and the transition was supercritical similar to our results (in particular for
ε = 60). They also reported that they could not determine the type of the transition for
φb = 0.1 because different flow patterns have been uncovered during the up-sweep and

916 A12-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

75
D

ow
nl

oa
de

d 
fr

om
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e.

 Je
on

bu
k 

N
at

io
na

l U
ni

ve
rs

ity
, o

n 
06

 A
pr

 2
02

1 
at

 1
0:

05
:1

2,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2021.75
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Flow instability and transitions in Taylor–Couette flow

down-sweep behaviours. Therefore, detail examination of the nature of the transition for
different values of φb remains still unknown.

3.3. Flow patterns for small particles (ε = 200)
With the onset of the instability, axisymmetric counter-rotating vortices are formed,
namely the TVF, in a suspension with φb = 0.1 and ε = 200 confined between two
concentric cylinders (see figure 5). In figure 5(a–c), the spatial and temporal characteristics
of the suspension flow are clearly depicted. These vortices are stationary in time and
symmetric in the azimuthal direction. As can be seen in figure 5(d), the particles are
migrated inside the vortices and they are distributed uniformly in the azimuthal direction.
The flow and particle concentration fields at the cross-section of the r–z plane are also
presented in figure 5(e–h). The vortices exhibit mirror symmetry that is characterized with
a pair of counter-rotating vortices (figure 5e, f ). These vortices result in the convective
flow and the gradient in the shear, causing the shear-induced particle migration towards
the core of the vortices (figure 5g,h). When neutrally buoyant particles are transferred by
the convective flow, the particles are simultaneously migrated to the region of the lower
shear rates, which is the centre of the vortices.
As Res increases, the WVF is set in the annulus region at Res = 135 (figure 6) where

the space–time diagram clearly shows an oscillation of vortices in time (figure 6a). The
oscillation propagates in both axial and azimuthal directions resulting from the rotating
wave of the wavy vortices (figure 6b,c). In contrast to the particle concentrations of the
TVF state shown in figure 5(d), here, fewer particles migrate towards the vortices and they
are distributed non-uniformly. Figure 6(e–h) display the flow and particle concentration
fields in the r–z plane. Counter-rotating vortices, established in the annulus gap, are
connected by the convective flow (figure 6e, f ). Consequently, fewer particles flow into
clockwise-rotating vortices with negative ωϕ , migrated by the shear and accumulated in
the core of the vortices, where the local shear rate (γ̇ ) is lower (figure 6g,h).
When Res increases further, at moderately high Res, the waviness in vortices becomes

stronger where the distinct accumulation of particles does not appear any longer in the
particle concentration field of the WVF state (figure 7). The distribution of particles
becomes roughly uniform in the bulk flow (figure 7d,h) that is due to the axial oscillation
of the WVF state (Majji & Morris 2018). The shear-induced particle migration appears to
occur slowly due to the diffusion in the flow of non-colloidal suspensions. For the TVF
state, the suspension flow is symmetric in the azimuthal direction and therefore particles
have enough time to reach the equilibrium state due to the shear-induced diffusion. On the
other hand, the WVF oscillates more rapidly in the axial direction against the diffusion
time; thus, particles do not have enough time to undergo the shear-induced diffusion.
Consequently, particles are almost uniformly distributed within the annulus gap since the
suspension flow pulsates more strongly with the increase of Res.
To further analyse the flow structure, we represent mean concentration profiles for

several Res plotted in figure 8(a). Here, 〈X〉A denotes the averaged value over a cylindrical
area A(r) = 2πrLz at a given r, i.e. 〈X〉A = (1/A)

∫∫
Xr dϕ dz. As shown earlier, the profile

for Res = 125 (TVF) has higher values of particle concentration in the middle of the
annulus gap where particles accumulate in the core of the vortices. At higher Res where
the WVF state appears, the concentration profile gradually becomes flat in the bulk flow.
This verifies that particles remain almost uniformly dispersed in the bulk flow. The profiles
of the mean azimuthal velocity are also plotted in figure 8(b) for several Res. The presence
of counter-rotating vortices in the annulus gap leads to the distortion in the mean velocity
profile. With the increasing Res, the velocity is more distorted because the vortices are
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Figure 5. Flow and particle concentration fields for Res = 125, ε = 200 and φb = 0.1: (a) space–time diagram
of radial velocity (ur) at the mid-gap (x= 0.5) and a given ϕ, (b) iso-surface of −λ2 = 0.01 (Jeong & Hussain
1995), contours of (c) azimuthal vorticity (ωϕ) and (d) particle volume fraction versus φ, where φ indicates
the nondimensionalized length in the azimuthal direction, (φ) at the central surface (x= 0.5), contours of (e)
azimuthal vorticity (ωϕ) with velocity vectors, ( f ) azimuthal velocity (uϕ) with streamlines, (g) particle volume
fraction (φ) and (h) local shear rate (γ̇ ) with velocity vectors in an r–z plane (ϕ = π). Velocity vectors were
plotted for every four and two points in the radial (x) and axial (z) directions, respectively.

intensified in the suspension flow and the slope of the velocity at both walls becomes
sharper.

3.4. Flow patterns for large particles (ε = 60)
Above the threshold Res,c, unlike the suspension of small particles (ε = 200),
non-axisymmetric counter-rotating vortices are developed in the annulus of large
particle suspensions (ε = 60). Figure 9(a–c) clearly describe the spatial and temporal
characteristics of the suspension flow of non-axisymmetric vortices. The SVF
characterized by the inclination of vortices and the travelling to the axial direction
(Andereck, Liu & Swinney 1986) is definitely verified. Interestingly, bands of higher
particle concentration are presented only in vortices of positive ωϕ (figure 9d), whereas
they appeared in both vortices for the TVF state of small particle suspensions (ε =
200) (figure 5d). This results from the interaction between the convective flow and the
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Figure 6. Flow and particle concentration fields for Res = 135, ε = 200 and φb = 0.1: (a) space–time diagram
of radial velocity (ur) at the mid-gap (x= 0.5) and a given ϕ, (b) iso-surface of −λ2 = 0.02, contours of
(c) azimuthal vorticity (ωϕ) and (d) particle volume fraction (φ) at the central surface (x= 0.5), contours of
(e) azimuthal vorticity (ωϕ) with velocity vectors, ( f ) azimuthal velocity (uϕ) with streamlines, (g) particle
volume fraction (φ) and (h) local shear rate (γ̇ ) with velocity vectors in an r–z plane (ϕ = π). Velocity vectors
were plotted for every four and two points in the radial (x) and axial (z) directions, respectively.

shear-induced migration (figure 9e–h). Non-axisymmetric counter-rotating vortices built
in the annulus gap are linked with each other (figure 9e, f ), while the axisymmetric ones
are separated (figure 5f ). As expressed by the streamlines shown in figure 9( f ), the
suspensions flow from counter-clockwise vortices (with negative ωϕ) to the clockwise
vortices (with positive ωϕ). Particles are then transported into the clockwise-rotating
vortices and they are migrated by the shear gradient caused by the vortices (figure 9h).
Eventually, particles are concentrated in the core of clockwise-rotating vortices (figure 9g)
resulting in the bands of higher concentration observed in figure 9(d).
By increasing Res to 130 and further to 135, the intensity of spiral vortices becomes

stronger (figure 10a,d). As a consequence, more particles accumulate in the vortex core
(figure 10b,c,e, f ), which is because the intensified vortices cause stronger shear-induced
diffusion by generating larger shear gradient in the flow. The distributions of the
mean concentration profile (〈φ〉A) verify the enhancement of accumulation quantitatively
(figure 10g), in which the particle concentrations are enhanced by increasing Res in the
mid-gap.
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Figure 7. Contours of azimuthal vorticity (ωϕ) with velocity vectors and particle volume fraction (φ) in an
r–z plane (ϕ = π) and at the central surface (x= 0.5) for Res = 150 (a–d) and Res = 170 (e–h), ε = 200 and
φb = 0.1. Velocity vectors were plotted for every four and two points in the radial (x) and axial (z) directions,
respectively.

With increase in the Reynolds number to Res = 140, an oscillation occurs in the axial
travelling wave (figure 11a). These oscillations arise from the appearance of a wavy pattern
propagating to the azimuthal direction in spiral vortices (figure 11b,c). We refer to these
non-axisymmetric flow structures as WSVF. Figure 11(d) shows the structure of particle
distribution in the central surface (x= 0.5) between two cylinders that reveals combined
features of SVF and WVF (figures 6d and 9d). As can be seen, more particles are gathered
in non-wavy spiral vortices of positive ωϕ , displaying distinct bands of higher particle
concentration. On the other hand, few particles are collected in oscillating wavy vortices of
negative ωϕ where the marked band does not appear in the oscillating vortices. As shown
for the SVF state in figure 9, the connected vortices transfer particles to the vortex core of
positive ωϕ (figure 11e, f ). The transferred particles are concentrated in the vortex core by
the shear-induced diffusion resulting in migration of particles to the centre of the vortices
with lower shear rates (γ̇ ) (figure 11g,h). It appears that the particles do not undergo
sufficient shear-induced particle migration in wavy vortices due to the axial oscillation as
mentioned earlier; therefore, particles are mixed and dispersed more broadly in the region
of wavy vortices.
A transition to WVF occurs at higher Res = 165 (figure 12). As we observed earlier,

the axial oscillation of vortices in the WVF limits the accumulation of particles caused by
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fraction (φ) and (h) local shear rate (γ̇ ) with velocity vectors in an r–z plane (ϕ = π). Velocity vectors were
plotted for every four and two points in the radial (x) and axial (z) directions, respectively.
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the shear-induced diffusion. Although stronger vortices induced by higher rotation rate of
the inner cylinder trigger large shear rates and the gradient in the flow, few particles are
sparsely gathered that are mixed and more evenly distributed in the annulus.
While particles were more uniformly dispersed in the annulus for the WVF of

suspension (figure 12), accumulating particles to the vortex core has been clearly detected
in the SVF (figures 9 and 10) and partially in the WSVF (figure 11). For the SVF and
WSVF, the suspension flow travels to the axial direction with a constant rotating wave.
As a result, the suspended particles have sufficient time to reach their equilibrium states.
However, as stated earlier, the particles in the WVF do not reach the steady state situation
since the flow oscillates in the axial direction (Majji & Morris 2018). In fact, the time
frequency of the oscillations are very small compared with the time scale of the inertial
migration of particles.
Figure 13 displays distributions of mean volume fraction and azimuthal velocity between

two cylinders for various Res representing different flow structures ranging from CCF to
WVF. For the SVF and WSVF, a gentle peak appears in the mean concentration profiles
due to the particle accumulation at the middle of the gap (figure 13a). By contrast, the
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Figure 11. Flow and particle concentration fields for Res = 140, ε = 60 and φb = 0.1: (a) space–time diagram
of radial velocity at the mid-gap (x= 0.5) and a given ϕ, (b) iso-surface of −λ2 = 0.025, contours of
(c) azimuthal vorticity (ωϕ) and (d) particle volume fraction (φ) at the central surface (x= 0.5), contours
of (e) azimuthal vorticity (ωϕ) with velocity vectors, ( f ) azimuthal velocity (uϕ) with streamlines, (g) particle
volume fraction (φ) and (h) local shear rate (γ̇ ) with velocity vectors in an r–z plane (ϕ = π). Velocity vectors
were plotted for every four and two points in the radial (x) and axial (z) directions, respectively.

distribution becomes flatter in the WVF because of the roughly uniform dispersion of
particles. Similar to the suspension flows of ε = 200, the mean velocity profile is more
distorted by increasing Res and the slope of the velocity at both walls becomes steeper
(figure 13b).

3.5. Transition scenario
In figure 14, flow patterns for φb = 0.1 suspension of both particle sizes (i.e. ε = 60
and 200) are summarized and compared with the pure Newtonian flow. Beyond Res,c,
from CCF where the primary bifurcation occurs, various transitions appear for both
particle sizes. This is because axisymmetric counter-rotating vortices (TVF) are formed
for ε = 200 similar to the flow of a pure Newtonian fluid, while non-axisymmetric flow
structures (SVF) appear for ε = 60. Although we did not discover the ribbons (RIB),
which is a stationary pattern arising from the nonlinear interactions between up- and
down-propagating spirals different from the experiment of Majji, Banerjee & Morris
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Figure 14. Phase diagrams of flow patterns for φb = 0.1 of both particle sizes and their comparison with a
pure Newtonian flow.

(2018), the onsets of TVF and SVF for the corresponding particle sizes (ε) are in good
agreement with their experiment. It appears that the onset of the suspension primary
instability (Res,c = 120) is almost similar to that of a pure fluid flow, indicating no particle
effects. In Taylor–Couette flow, the destabilization from CCF is induced by the centrifugal
force resulting from the curvature of the cylinders and the rotating velocity. Therefore, we
can infer that migration of particles has a very weak influence on destabilizing the flow.We
also obtained the same Res,c for suspensions of both particle sizes, while Majji, Banerjee
& Morris (2018) found a smaller value for the flow of larger particles. As mentioned
earlier, this difference might be due to the finite inertial force acting on particles, which is
neglected in this study. On the other hand, Ramesh, Bharadwaj & Alam (2019), for radius
ratio (η = 0.914) and particle size (ε = 70), found the transition from CCF to SVF without
going through RIB under the ramp-down protocol. Note that we did not find the coexisting
pattern (WVF+TVF) which was detected by Ramesh, Bharadwaj & Alam (2019) during
the ramp-up experiment. For suspension of small particles (ε = 200), the stationary TVF
transitions to the travelling WVF occur at Res (≥ 130) that is lower than Res ≥ 135 for a
pure Newtonian fluid flow and also Res ≥ 135 for ε = 200 reported by Majji, Banerjee &
Morris (2018). In our study, for suspension of ε = 60, an additional non-axisymmetric
flow pattern, WSVF, appears between SVF and WVF that is not consistent with the
experimental observation. In the experiment reported by Majji, Banerjee & Morris (2018),
an axisymmetric TVF has been detected between SVF and WVF and the WSVF has been
found at higher φb (= 0.2, 0.3). These might be because they performed their experiments
in a finite cylindrical annulus with a relatively short length (Γ = 20.5), while we have used
the periodic boundary conditions in the axial direction. Moreover, flows of suspension
could be affected by the inertia of particles that has been neglected in our computations.
In short, transitions from CCF via TVF to WVF occur for the suspension flow of small

particles (ε = 200), similar to the flow of a pure Newtonian fluid. For the suspension of
large particles (ε = 60), CCF transitions appear via SVF and WSVF to WVF.

3.6. Friction coefficient
The friction coefficient is a dimensionless measure of the torque that the suspension
exerts on the inner cylinder. For the current geometry, it can be given by
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Figure 15. Friction coefficients (CMz ) versus Res for φb = 0.1 suspensions of both particle sizes and its
comparison with pure fluid. The solid line corresponds to the value for CCF given by (3.4).

(Kang, Yang & Mutabazi 2015)

CMz = Mz

ρπr2i Lz(riΩi)
2/2

, (3.3)

where Mz is the axial momentum over the cylindrical surface on the inner cylinder.
Figure 15 presents the variations of the friction coefficient CMz for both pure Newtonian
fluid and suspensions versus Res together with the values for the CCF with a uniform
particle concentration over the annulus given by

CMz,lam = 8
η(1 + η)

Re−1
s . (3.4)

For the CCF, the values are in-line with CMz,lam, although the distribution of particle
concentration is non-uniform over the annulus as shown in figure 3(a). With the
development of counter-rotating vortices (i.e. the TVF and SVF states), the friction
coefficient CMz increases sharply. The values for suspension of ε = 200 (at TVF state) are
larger than those of ε = 60 (at SVF state). However, the coefficients of suspensions are
reduced compared with those of a pure fluid flow. When oscillating waves (i.e. the WSVF
and WVF states) occur, the friction coefficient CMz gradually decreases with the increase
of Res. In particular, for the WSVF state, it decreases more steeply in comparison with
that of the WVF state. However, it appears that the friction coefficients have practically
the same values for suspensions of different particle sizes and the flow of a pure fluid
in the WVF state. Accordingly, we could deduce that the spiral pattern weakens the
friction acting on the inner cylinder and the particle size has little influence on the friction
coefficient when particles are completely mixed by the oscillating wave in the WVF state.
In addition, the non-axisymmetric vortices have the azimuthal momentum Mϕ and the

azimuthal friction coefficient CMϕ (Kang, Yang & Mutabazi 2015), but we found that the
computed values of CMϕ are very small compared with CMz (CMϕ ∼ 10−3CMz); therefore,
the values of CMϕ are not shown in the graph.
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3.7. Torque and pseudo-Nusselt number
The friction coefficient is related to the dimensionless torqueG acting on the inner cylinder
that can be stated as (Guillerm et al. 2015)

G = CMzRe
2
s

4

(
η

1 − η

)2

. (3.5)

For infinite cylindrical annulus, the dimensionless torque of laminar flow with a uniform
particle concentration over the annulus is stated as

Glam = 2η Res
(1 + η)(1 − η)2

. (3.6)

In analogy with thermal convection, the pseudo-Nusselt number (Nω) introduced by
Eckhardt, Grossmann & Lohse (2007) can be defined as

Nω = G/Glam. (3.7)

The pseudo-Nusselt number Nω is the analogue of the Nusselt number Nu of the thermal
convection. The quantity Nω measures how effective the transverse convective angular
velocity transport is in terms of the purely molecular transverse transport (Eckhardt,
Grossmann & Lohse 2007); it also represents a direct measure of the dissipation rate (ε)

of the kinetic energy through the relation Nω = (1 + η)2ε/4 (Guillerm et al. 2015).
Figure 16(a) displays the variation of the dimensionless torque G with Res. Here, for

comparison, the values for a pure Newtonian fluid have been computed by

G = CMz Re
2

4[(1 − 0.1/φm)−1.82]
2

(
η

1 − η

)2

, (3.8)

where φm = 0.68. The dimensionless torque G increases steadily with Res. However, the
slope is changed when transitions occur. The values of G for the flow of suspensions
are certainly larger than those for a pure fluid flow. This means that suspended particles
enhance the torque exerted on the inner cylinder; in other words, more power is
required to rotate the cylinder with a given angular velocity. Above the critical values,
the torque coefficient is significantly enhanced. As depicted in the inset of figure 16(a),
the suspension of ε = 200 at the TVF state requires a slightly larger torque compared
with the suspension of ε = 60 at the SVF state. When the WVF and WSVF states appear,
the slope (or increasing rate) of the dimensionless torque G is slightly reduced. Also,
for suspension of ε = 60 at the WSVF state (140 ≤ Res ≤ 160), the values are a little
smaller than those of ε = 200 at the WVF state; therefore, we could conclude that the
spiral vortices travelling to the axial direction cause the reduction of torque. However, the
particle size does not impact the torque in the WVF state (Res ≥ 165) where particles are
almost uniformly dispersed in the annulus region.
Figure 16(b) shows the variation of the pseudo-Nusselt number (Nω) with Res. As

mentioned earlier, Nω indicates the efficiency of the transfer of the angular velocity
in the radial direction by the perturbed flow. With the onset of vortices (≥ Res,c), the
pseudo-Nusselt number increases rapidly with Res; however, the values of suspensions are
lower than those of a pure fluid flow as plotted in the inset of figure 16(b). Furthermore,
the values of Nω for the suspension of ε = 60 at SVF state are slightly smaller than those
of ε = 200 at TVF state similar to figure 16(a). Apparently, it could be concluded that
particles suspended in a viscous fluid reduce the transverse momentum transfer; moreover,
the axial travelling wave of spiral vortices decays the momentum transport in the radial
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Figure 16. Variations of (a) dimensionless torque (G) and (b) pseudo-Nusselt number (Nω) with Res for
φb = 0.1 suspensions of both particle sizes and their comparison with pure fluid.
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Figure 17. Radial distributions of angular velocity current (Jω) and the constitutive parts (Jω
c , Jω

v ) for Res =
125; (a) ε = 200 (TVF) and (b) ε = 60 (SVF) and for Res = 155; (c) ε = 200 (WVF) and (d) ε = 60 (WSVF).

direction. When the transition appears in the flow, the slope of the pseudo-Nusselt number
is changed similar to the torque coefficient. Nevertheless, the pseudo-Nusselt numbers of
a pure fluid and suspensions are practically the same in the WVF state where particles are
almost uniformly distributed in the annulus region of the cylinder.
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3.8. Current density of the angular velocity
The pseudo-Nusselt number (Nω) can also be defined by the current density of the angular
velocity (ω = uϕ/r) (Eckhardt, Grossmann & Lohse 2007). The angular velocity current
(Jω) is derived by averaging the uϕ-momentum equation over a cylindrical surface A(r) =
2πrLz, defined as

Jω = Jω
c + Jω

v = r3
[
〈urω〉A −

〈
μμs(φ)

ρ

∂ω

∂r

〉
A

]
. (3.9)

The transverse transport of angular velocity Jω is the sum of the convective transport Jω
c

and of the viscous diffusion transport Jω
v . The quantity Jω indicates the transverse current

of the azimuthal flow and can be related to the pseudo-Nusselt number as well as the
dimensionless torque. Then, the pseudo-Nusselt number can be stated as Nω = Jω/Jω

lam
where Jω

lam is the current density of angular velocity in the laminar flow with a uniform
particle concentration over the annulus, which is given by Jω

lam = 2Res/η(1 + η).
In figure 17, the variations of the angular velocity current Jω and its constitutive parts

(Jω
c and Jω

v ) are represented for various flow states. The current density is conserved
in the radial direction (dJω/dr = 0). The contribution of Jω

v on the total transport
of angular velocity is dominant at low Res, while the portion of Jω

c is enhanced by
increasing Res, especially in the middle of the annular gap where the cores of
counter-rotating vortices exist. As mentioned earlier, the axial travelling wave of spiral
patterns reduces the transverse momentum transfer, leading to the decrease of Nω. This
could also be interpreted by the profiles of Jω

c . As can be seen in figure 17, the quantity of
the convective transport Jω

c is slightly reduced when the spiral pattern appears, i.e. for the
SVF and WSVF states. Therefore, we could conclude that the axial travelling wave decays
the convective momentum transfer in the radial direction; in consequence, it results in the
reduction of the pseudo-Nusselt number and torque acting on the inner cylinder.

4. Conclusion

The Taylor–Couette flow of neutrally buoyant, non-colloidal and non-Brownian rigid
particles has been numerically examined in this study. Numerical simulations for φb = 0.1
suspension of both particle sizes (i.e. ε (= d/a) = 60 and ε (= d/a) = 200) undergoing
the shear-induced particle migration have been conducted using rheological constitutive
models known as SBM. Same as the experiments by Majji, Banerjee & Morris (2018) and
Ramesh, Bharadwaj & Alam (2019), we also considered that the flow of suspensions is
in the Stokes flow regime; thus, the inertia of particles is neglected (Rep � 1), and the
Péclet number (Pe) is very large (Pe = ∞). However, we assumed that the shear-induced
migration is dominant in the flow of suspensions while the inertial migration is prevalent
in the experiments reported by Majji, Banerjee & Morris (2018) and Ramesh, Bharadwaj
& Alam (2019). We have varied the Reynolds number of suspensions (Res) based on the
rotating angular velocity of the inner cylinder and the effective viscosity of suspension.
The flow and particle concentration fields have been investigated to clarify the effect of
non-colloidal particles on the flow instability and transitions in suspension flows.
At low Reynolds number, below the critical value, the CCF of suspension occurs where

the velocity and particle concentrations are basically linear depending only on the radial
coordinate (r). It also reveals that the semidilute suspension (φb = 0.1) has little impact
on the azimuthal velocity over the narrow-gap where the inertial migration of particles is
neglected.
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The onset of the primary bifurcation has been estimated by employing the Landau
model. We found that the particle size does not affect the critical values of suspension
Reynolds number where the predicted critical Reynolds number was found to be Res,c =
120 for φb = 0.1 suspensions of both particle sizes (i.e. ε = 60, 200). This implies that
particles dispersed in a viscous fluid lead to stabilizing the flow, meaning that suspensions
require a larger rotation rate of the cylinder to cause instability in the flow. The obtained
critical values show a good agreement with the previous experiments reported by Majji,
Banerjee & Morris (2018) in a finite cylindrical annulus gap; therefore, it is expected that
neither the length of the cylinder nor the inertial migration might impact the onset of the
primary instability. We have also evaluated the type of the primary instability and we found
that the transition appears through a supercritical (or non-hysteretic) bifurcation for both
suspensions’ particle sizes (i.e. ε = 60, 200) similar to the experiments.
By varying Reynolds number (Res), different transition scenarios have been observed

for φb = 0.1 suspensions of both particle sizes. While we confirmed the non-axisymmetric
patterns, such as the wavy vortices and spiral vortices to occur for φb = 0.1 suspensions,
in contrast to Majji, Banerjee & Morris (2018), we did not observe the RIB state. This
discrepancy might be due to the impact of the finite length of the cylinders and/or the
influence of the microstructure of the particles that was not considered in this analysis.
Also, in the experiment, particles undergo the inertial migration leading to non-uniform
particle distribution, while the SBM models the shear-induced migration that occurs at
very low Reynolds number. In general, the present work and the experiments reported
by Majji, Banerjee & Morris (2018) confirm that different states can appear in the
Taylor–Couette suspension flow even if the aspect ratio and the radius ratio are Γ = 20.5
and η = 0.877, respectively.
For suspensions of small particles (ε = 200), the suspension flow transitions from the

CCF via TVF to WVF, i.e. CCF→TVF→WVF, similar to the flow of a pure Newtonian
fluid. In the TVF state, particles migrate towards the centre of counter-rotating vortices
due to the shear-induced diffusion and accumulate in the core of vortices. However, for
the WVF, particle migration is not significant due to the axial oscillation of the WVF.
Although few particles are collected in vortex cores when weak oscillating waves appear,
particles are almost uniformly dispersed in the annulus gap at higher Reynolds numbers.
By contrast, for suspensions of large particles (ε = 60), as the Reynolds number increases,
transitions occur following the sequence of CCF→SVF→WSVF→WVF. Unlike the
suspension flow of small particles, additional non-axisymmetric counter-rotating vortices,
i.e. the SVF and WSVF states, appear between the CCF and WVF states. In the SVF
state, particles migrated by the shear are transferred by the convective flow into vortex
cores of positive azimuthal vorticity (ωϕ), which links counter-rotating vortices resulting
in particle accumulation only in vortices of positive ωϕ . For the WSVF state, two features
of the SVF andWVF states are presented in the particle concentration field. More particles
are migrated in non-wavy spiral vortices of positiveωϕ , while they are mixed and dispersed
in wavy vortices because of the axial oscillation.
We also evaluated the friction and torque coefficients for φb = 0.1 suspensions of both

particle sizes and compared our results with the values for a pure Newtonian fluid. When
counter-rotating vortices occur, the coefficients are considerably enhanced. Beyond the
critical Reynolds number, the friction coefficient CMz rises with the Reynolds number
in the flow regimes of non-oscillating waves (i.e. the TVF and SVF states). However, it
gradually decreases with the increase of the Reynolds number after the appearance of
oscillating waves (i.e. the WSVF and WVF states). By contrast, the dimensionless torque
G and the pseudo-Nusselt number Nω steadily increase as the Reynolds number rises. It
appears that suspended particles significantly enhance the torque, which is the required
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power to rotate the inner cylinder in comparison with the values of a pure fluid flow,
while the particles cause the reduction of CMz and Nω above the threshold of Res,c.
Moreover, the axial travelling wave of spiral vortices reduces both the friction coefficient
(CMz) and the torque (G) acting on the inner cylinder. It also weakens the transverse
momentum transfer (Nω) in the radial direction by decreasing the convective transport
of angular velocity. However, the coefficients are practically the same in the WVF regime
where particles are almost uniformly dispersed in the annulus gap by the axial oscillation
of WVF. It appears that the axial oscillating vortices do not allow the particles to undergo
the shear-induced diffusion.
Our study represents the very first numerical analysis of suspensions in a Taylor–Couette

flow using continuum models of suspensions including SBM. It also represents a new
approach to numerically deal with the flow instability and transitions that take place in
the rotating flow of non-Brownian, non-colloidal suspensions undergoing shear-induced
diffusion with various aspect ratio, radius ratio, gap width and particle size to understand
the role of particles in Taylor vortices (Ramesh & Alam 2020). The present work can
be served as a first step towards extending the analysis of dense suspensions in the
Taylor–Couette geometry using SBMwhere the inertial migration of particles is neglected.
Further experiments should be performed to verify the inhomogeneity in concentration
distribution observed herein. Examining whether the observed patterns during both
ramp-up and ramp-down are associated with hysteresis and/or new patterns might occur
for various concentrations is the subject of our current investigation.
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