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Abstract

We present a high-order entropy stable discontinuous Galerkin (ESDG) method for nonlin-
ear conservation laws on both multi-dimensional domains and on networks constructed from
one-dimensional domains. These methods utilize treatments of multi-dimensional interfaces
and network junctions which retain entropy stability when coupling together entropy stable
discretizations. Numerical experiments verify the stability of the proposed schemes, and com-
parisons with fully 2D implementations demonstrate the accuracy of each type of junction
treatment.

1 Introduction

There is an increasing interest in the mathematical modeling of physical systems posed on
spatial domains with network-like structures. In this situation, the 2D (or 3D) partial differential
equations (PDEs) that describe the physics of the system can be well-approximated by 1D PDEs.
Simulations over network-like domains can then be performed by coupling together 1D subdomains
at junctions. This reduction from fully 2D or 3D simulations to simulations over 1D domains
both simplifies the construction of meshes for network-like domains and reduces computational
cost [1, 2, 3, 4, 5].

Applications of network models include the simulation of gas flow in pipelines [6, 7, 8], water
flow through channels [9, 10, 11], and blood flow in the human cardiovascular system [2, 12, 13, 14].
In gas networks, flow is governed by equations derived from the compressible Euler equations. In
water flow through open channels, the physics are described by the shallow water equations. In
blood vessels, the system is governed by a system of equations which closely resembles the shallow
water equations [2]. For each of these examples, however, the systems involved are nonlinear
conservation laws. To demonstrate the idea, we present the fully 2D discretization of a river with
turning channel and its 1D-2D model in Figure 1.
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where x ∈ Ω ⊆ R
d, u(x, t) = [u1, ...un]

T denote the conservative variables and fi(u) denote the
flux functions. We assume that there exists a convex scalar entropy function S(u) such that

S′′(u)A(u) =
(
S′′(u)A(u)

)T
, A(u)ij =

(
∂f(u)

∂uj

)

i

, (2.2)

where A(u) is the flux Jacobian matrix.
We next define the entropy variables v = S′(u). For values of u over which the entropy function

is convex, the mapping between conservative variables and entropy variables is invertible. Then, it
can be shown [21] that there exists entropy flux functions Fi(u) and entropy potentials ψi(u) such
that

v(u)T
∂fi((u))

∂u
=
∂Fi(u)

T

∂u
, ψi(u) = v(u)Tfi(u)− Fi(u), ψ′

i(u) = fi(u). (2.3)

In regions where the solution is smooth, an entropy equality can be derived for u by multiplying the
conservation law by vT and integrating over the domain. Then, using the chain rule and definition
of the entropy flux, we have the following statement of entropy conservation on domain Ω

∫

Ω

∂S(u)

∂t
= 0. (2.4)

In this paper, we will construct a high order DG scheme for multi-dimensional and network
domains that is entropy conservative at the semi-discrete level. By adding appropriate entropy
dissipation terms at inter-element interfaces, multi-dimensional interfaces, and junctions, these
entropy conservative schemes can be made entropy stable. In this work, we focus specifically on 1D
junction treatments and coupling between 1D-2D domains for the shallow water equations (SWE)
and the compressible Euler equations.

2.1 Shallow water equations in one and two dimensions

We begin with introducing the two-dimensional shallow water equations

∂

∂t



h
hu
hv


+

∂

∂x




hu
hu2 + gh2/2

huv


+

∂

∂y




hv
huv

hv2 + gh2/2


 = 0. (2.5)

Here, h denotes the water height as measured from the lake or channel bottom. The velocity in the
x direction is denoted by u and the velocity in the y direction is denoted by v. The gravitational
constant is denoted by g. In this example, we have the conservative variable u = [h, hu, hv]T and
the flux functions are f1 = [hu, hu2 + gh2/2, huv]T and f2 = [hv, huv, hv2 + gh2/2]T .

We can derive the 1D shallow water equations from the 2D shallow water equations by assuming
a rectangular domain with length Lx and Ly in the x and y directions, respectively. If Ly � Lx and
wall boundary conditions are imposed, then we expect v to be small and h, u to be near-constant
along the y-direction. These simplifications result in the one-dimensional shallow water equations

∂

∂t

[
h
hu

]
+

∂

∂x

[
hu

hu2 + gh2/2

]
= 0. (2.6)
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The mathematical entropy for the shallow water equations corresponds to total energy, and is
given by

S(u) =
1

2

(
h ‖U‖2 + gh2

)

where ‖U‖2 = u2 in one dimension and ‖U‖2 = u2 + v2 in two dimensions. The entropy variables
v in two dimensions are given by

v1 = gh− 1

2
‖U‖2 , v2 = u, v3 = v.

In one dimension, the entropy variables are simply v = [v1, v2]
T . The inverse mapping in 2D is

given by

h =
v1 +

1
2 ‖U‖2

g
, hu =

v1 +
1
2 ‖U‖2

g
v2 = hv2, hv =

v1 +
1
2 ‖U‖2

g
v3 = hv3.

where we can compute ‖U‖2 = v22 + v23 in terms of the entropy variables. The inverse mapping in
1D follows by ignoring hv and setting ‖U‖2 = v22.

In this paper, we only consider systems where the conservative variables, the entropy potential,
and the numerical fluxes can all be transformed between 1D and 2D.

3 Entropy stable DG discretizations in 1D and 2D

3.1 On notation

We adopt a notation which distinguishes between discretized and continuous quantities. Unless
otherwise specified, continuous vector and matrix quantities are denoted using lower and upper case
bold font, respectively. We denote spatially discrete quantities using a bold sans serif font. Finally,
the output of continuous functions evaluated over discrete vectors is interpreted as a discrete vector.

For example, if x denotes a vector of point locations, i.e., (x)i = xi, then u(x) is interpreted as
the vector

(u(x))i = u(xi).

Similarly, if u = u(x), then f(u) corresponds to the vector

(f(u))i = f(u(xi)).

Vector-valued functions are treated similarly. For example, given a vector-valued function f : Rn →
R
n and a vector of coordinates x, (f(x))i = f(xi).

3.2 Discretization matrices for high order DG methods

We construct entropy stable numerical schemes for networks based on high order entropy sta-
ble DG formulations in 1D and 2D. These formulations ensure entropy stability over individual
segments and subdomains of a multi-dimensional network [16]. We begin by introducing some
mathematical notation. We denote the reference element by D̂ with boundary ∂D̂. In 1D, the ref-
erence element is the interval [−1, 1] and in 2D, the reference element is the bi-unit right triangle.
We construct entropy conservative schemes on multiple elements, where the domain Ω is broken up
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into K non-overlapping elements Dk. Each element can be represented as the affine mapping Φk

of the reference interval D̂. Because this mapping is affine, Jk (the determinant of the Jacobian
of Φk) is constant over each element. We use n̂i to represent the ith component of the outward
normal vector scaled by the face Jacobian on the boundary of the reference element.

The solution is approximated over the reference element by polynomials of total degree N

PN (D̂) = {x̂iŷj , (x̂, ŷ) ∈ D̂, 0 ≤ i+ j ≤ N}. (3.1)

We denote the dimension of PN as Np = dim(PN(D̂)). Moreover, let {φi}Np

i=1 denote a basis for

PN , such that for u(x) ∈ PN (D̂), there exist coefficients ui such that

u(x) =

Np∑

i=1

uiφi(x̂), PN (D̂) = span{φi(x̂)}Np

i=1. (3.2)

We also assume the use of volume and surface quadrature rules {x̂i, wi}Nq

i=1,
{
x̂
f
i , w

f
i

}Nf
q

i=1
. We

denote the number of volume and surface quadrature nodes by Nq and N
f
q respectively, and assume

that the volume and surface rules are exact for polynomials of degree 2N − 1 and 2N , respectively.
We furthermore assume the volume quadrature is sufficiently accurate such that the mass matrix
is positive-definite.

We now introduce quadrature-based operators. Let W and Wf denote diagonal matrices whose
entries are volume and surface quadrature weights. We then define the volume and surface quadra-
ture interpolation matrices Vq and Vf as:

(Vq)ij = φj(x̂i), 1 ≤ j ≤ Np, 1 ≤ i ≤ Nq, (3.3)

(Vf )ij = φj(x̂
f
i ), 1 ≤ j ≤ Np, 1 ≤ i ≤ Nf

q , (3.4)

The matrix Vq maps coefficients of u =
[
u1, u2, . . . , uNp

]
in terms of polynomial basis to evalua-

tions of u(x) at volume quadrature points and, similarly, the matrix Vf interpolates u to surface
quadrature points.

We now define Di as the differentiation matrix with respect to the ith coordinate. Di is defined
implicitly by:

u(x) =

Np∑

i=1

uiφi(x̂),
∂u

∂x̂i
=

Np∑

j=1

(Diu)jφj(x̂). (3.5)

Here, Di maps the basis coefficients of some polynomial u ∈ PN to coefficients of its ith directional
derivative with respect to the reference coordinate x̂i.

With the matrix Vq, we can now introduce the element mass matrix whose entries are the
evaluations of inner products of different basis functions with quadrature points:

M = V
T
q WVq, Mij =

Nq∑

k=1

wkφj(x̂k)φi(x̂k) ≈
∫

D̂
φjφidx̂ = (φj , φi)D̂. (3.6)

We can define the quadrature-based L2 projection matrix Pq, by inverting the mass matrix:

Pq = M
−1

V
T
q W. (3.7)
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The matrix Pq maps a function in terms of its evaluations at quadrature points to its coefficients
of the L2 projection in the basis φi(x̂).

In d-dimensions, define the following matrices

Q̂i = MDi, Bi = Wfdiag (n̂i) , i = 1, ..., d. (3.8)

With the above definitions, we have can show that [16]

Q̂i + Q̂
T

i = V
T
f BiVf . (3.9)

By combining the projection matrix Pq with the matrix Q̂i, we can construct a nodal differen-
tiation operator at quadrature points [16]:

Qi = P
T
q Q̂iPq (3.10)

We also define the the matrix E, which extrapolates volume quadrature nodes to surface quadra-
ture nodes, as

E = VfPq (3.11)

Then we have the following generalized summation-by-parts (SBP) property:

Qi +Q
T
i = E

T
BiE (3.12)

Entropy stable formulations for nonlinear conservation laws usually introduce numerical flux
terms which couple together all degrees of freedom on neighboring elements [22]. To avoid this, we
introduce the hybridized operator Qi,h, which is given explicitly as

Qi,h =
1

2

[
Qi −QT

i ETBi

−BiE Bi

]
. (3.13)

This operator is designed to be applied to vectors of solution values at both volume and surface
quadrature nodes and mimics the structure of boundary terms used in hybridized DG methods
[23]. When used in a DG formulation, it allows one to construct entropy stable formulations using
more standard DG numerical fluxes. We have the following theorem:

Theorem 3.1. Qi,h satisfies the SBP − like property [16]:

Qi,h +Q
T
i,h = Bi,h, Bi,h =

[
0

Bi

]
, (3.14)

and Qi,h1 = 0, where 1 is the vector of all ones

We also construct differentiation and boundary matrices Qk
i,h,B

k
i on the physical element Dk

through the chain rule and linear combinations of differentiation matrices on the reference element.
These will be used to construct entropy conservative and entropy stable schemes in the following
section. Let gkij = Jk ∂xi

∂x̂j
denote geometric terms on Dk. Then, physical SBP operators can be

constructed by taking a linear combination of the reference SBP operators

Q
k
i,h =

d∑

j=1

gkijQi,h. (3.15)
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It was shown in [16] that these operators satisfy a physical SBP property

Q
k
i,h +

(
Q

k
i,h

)T
=

[
0

Bk
i

]
,

where Bk
i is a diagonal matrix containing the ith component of the outward unit normal on Dk

scaled by quadrature weights and surface Jacobian factors. We note that this construction uses
the fact that gkij is constant over Dk for affinely mapped elements. We also introduce the physical

mass matrix Mk = JkM, which is scaled by a Jacobian factor. Finally, we note that physical SBP
operators on curved elements can be constructed using a “split form” version of (3.15) [24].

Finally, we introduce vh as the L2 projection of the entropy variables and ũ as the evaluations
of the conservative variables in terms of the L2 projected entropy variables

uq = Vquh, vq = v(uq), vh = Pqvq, (3.16)

ṽ =

[
ṽq
ṽf

]
=

[
Vq

Vf

]
vh, ũ =

[
ũq

ũf

]
= u(ṽ). (3.17)

Here uq and vq denote the conservative variables and entropy variables evaluated at the volume
quadrature points. The vector ṽ denotes the evaluations of the L2 projection of the entropy variables
at both volume and surface quadrature points, while ũ denotes the evaluations of the conservative
variables in terms of the projected entropy variables u(ΠNv), where ΠN denotes the L2 projection
operator.

3.3 Entropy conservation and flux differencing

In this section, we introduce entropy conservative numerical fluxes and discrete formulations
[25, 26, 15, 27]. To construct entropy stable schemes in d dimensions, we utilize entropy conservative
fluxes as defined in [28]:

Definition 3.1. Let fi,S(uL,uR) be a bivariate function which is symmetric and consistent with
the flux function fi(u), for i = 1, ..., d

fi,S(u,u) = fi(u), fi,S(u,v) = fi,S(v,u). (3.18)

fi,S(uL,uR) is called entropy conservative if, for entropy variables vL = v(uL) and vR = v(uR),

(vL − vR)
T
fi,S (uL,uR) = ψi(v(uL))− ψi(v(uR)). (3.19)

The flux fi,S can be used to construct entropy conservative and entropy stable finite volume
methods. This numerical flux can also be used to construct discretely entropy stable DG schemes
using an approach referred to as flux differencing [25, 29, 26, 15].

Using flux differencing [16, 30], we can approximate the derivative of fi(u(x)) using the differ-
entiation matrices Qk

i,h and fi,S . We define a flux matrix Fi by evaluating fi,S using solution values
at quadrature points:

(Fi)lm = fi,S(ul,um), 1 ≤ l,m ≤ Nq. (3.20)
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Then,
∫ ∂fi(u)

∂xi
can be approximated by the term 2(Qk

i,h ◦ Fi)1, where ◦ denotes the Hadamard
product between two matrices. A discrete entropy conservative formulation is then given as follows
on an element Dk:

M
k du

dt
+

d∑

i=1

[
Vq

Vf

]T (
2Qk

i,h ◦ Fk
i

)
1+ V

T
f B

k
i

(
fi,S(ũ

k+, ũk)− fi(ũ
k
f )
)
= S, (3.21)

where S denotes source terms depending on the bottom geometries.
Entropy stable schemes can be constructed from an entropy conservative scheme by adding

appropriate penalization term that dissipate entropy at element interfaces [15]. This modification
converts schemes which satisfy a global entropy equality into schemes which satisfy a global entropy
inequality.

4 Entropy stable coupling terms for junctions and multi-dimensional

interfaces

In this section, we describe how to construct entropy conservative and entropy stable coupling
terms for 1D junctions (which we will refer to as 1D-1D couplings) and couplings between 1D and
2D domains (which we will refer to as 1D-2D couplings). We refer to both individual channels in
networks and 1D and 2D parts of a multi-dimensional domain as subdomains, and discretize over
each individual sub-domain using the entropy stable DG methods in [16]. We note, however, that
the proposed approach is applicable to any entropy stable SBP-type discretization.

We proceed by designing interface coupling terms which are entropy conservative in the sense
that they do not contribute to entropy production. The addition of entropy dissipation (both at
coupling interfaces and over each sub-domain) then yields entropy stable schemes over networks or
multi-dimensional domains.

4.1 Notation and assumptions

We first introduce notation for 1D and 2D fluxes. Let fi,S denote the 2D flux, where the
subscript i denotes the ith component of the 2D fluxes, (where i = 1, 2 correspond to the x and y
direction respectively). We denote the 1D flux vector by fS , without the subscript for the coordinate
index. We use fJ,1D and fJ,2D to denote the numerical flux at a multi-dimensional junction on
1D and 2D sides respectively. We use fJ,i to denote the fluxes at a 1D-1D junction, where the
subscript i denotes the numerical flux for the ith 1D channel. We use n1D and n2D to denote the
sign of the outward surface normal on the 1D and 2D domains at a 1D-2D junction.

Finally, we restrict ourselves to velocity-based systems, where in d dimensions, the conservative
variables contain a velocity or momentum vector with d components. We also assume that 1D
system can be derived from 2D system by ignoring or projecting certain velocity components. We
note our approach is not directly applicable to systems which do not satisfy these assumptions,
such as Burger’s equation.

4.2 1D-2D domain coupling

For flows over networks of 1D channels, one approach to model junction behavior is to explicitly
discretize the junction using a 2D mesh [3, 1]. Since each junction can be accurately modeled using
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vector of values of the conservative variables at surface quadrature points on the 2D and 1D side
of a 1D-2D interface. Then the flux on the 2D side of the 1D-2D interface fJ,2D is defined as

fJ,2D(u
+
J,2D,uJ,2D) =

d∑

i=1

nifi,S(u
+
J,2D,uJ,2D), u+

J,2D = RuJ,1D. (4.4)

We next apply the transformation matrixRT to the 2D fluxes to reduce them down to 1D dimension.
We define the surface flux for 1D side of the 1D-2D interface as follows:

fJ,1D =
wT

J,f

(
RTfJ,2D

)

wT
J,f1

n1D, (4.5)

where wJ,f is the vector containing the quadrature weights of the surface quadrature points on
the entire 1D-2D interface. Note that operation RTfJ,2D is performed point-wise at each surface
quadrature point.

We now present a proof of entropy conservation for our 1D-2D coupling scheme. Let K1D and
K2D denote the number of elements in the 1D and 2D domains respectively. Let Jk

1D and Jk
2D be

the Jacobian on the kth elements in the 1D and 2D domains respectively. We first introduce the
following lemma:

Lemma 4.1. Let ũ1D and ũ2D denote the 1D and 2D entropy projected conservative variables, and
let r1D(ũ1D) and r2D(ũ2D) denote the entropy stable DG spatial formulation such that

r1D(ũ1D) =

K1D∑

k=1

(

[
Vq

Vf

]T
2
((

Q
k − (Qk)T

)
◦ F
)
1+ V

T
f Bf

∗
1D), (4.6)

r2D(ũ2D) =

K2D∑

k=1

∑

i=1,2

(

[
Vq

Vf

]T
2
(
Q

k
i − (Qk

i )
T ◦ Fi

)
1+ V

T
f B

k
i f

∗
i,2D), (4.7)

(F)j,k = fS(ũj , ũk), (Fi)j,k = fS(ũj , ũk), (4.8)

where

f∗
1D = fS(ũ

+
f,1D, ũf,1D) (4.9)

f∗
i,2D = fi,S(ũ

+
f,2D, ũf,2D) (4.10)

(4.11)

on interior interfaces and

f∗
1D = 0 f∗

i,2D = 0 (4.12)

at the junction boundaries of the 1D and 2D domains. Let v1D and v2D denote the projected entropy
variables. Assuming that the entropy flux ψ(ũ)− vTf∗ = 0 on non-junction boundaries, then

v
T
1Dr1D(ũ1D) = ψ(ũJ,1D) (4.13)

v
T
2Dr2D(ũ2D) =

∑

i=1,2

ψi(ũJ,2D)ni. (4.14)
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The proof of the lemma is restatement of results from [16]. Next, assume a simple 1D-2D
coupling as shown in Figure 2, where we assume the 1D and 2D domain are channels of the same
width denoted by A. The 1D-2D junction terms can be expressed as

K1D∑

k=1

M
k du1D

dt
+ r1D(ũ1D) + V

T
f fJ,1D(ũJ,1D, ũJ,2D)n1D = 0 (4.15)

K2D∑

k=1

M
k du2D

dt
+ r1D(ũ2D) + V

T
f WffJ,2D(ũJ,1D, ũJ,2D)n2D = 0, (4.16)

where fJ,2D(ũJ,1D, ũJ,2D) and fJ,1D(ũJ,1D, ũJ,2D) are defined in (4.5) and (4.4) respectively. To-
gether, these 1D-2D discretizations imply entropy conservation:

Theorem 4.2. Let fluxes at a 1D-2D interface be defined as in (4.4) and (4.5). Let uq,1D and uq,2D

denote the values of the 1D and 2D solutions at quadrature points on the kth 1D or 2D element.
Then, assuming continuity in time and that the entropy flux ψ(ũ) − vTf∗ = 0 on non-junction
boundaries, the DG scheme defined by (3.21) is entropy conservative in the sense that

A

K1D∑

k=1

1TJk
1DW

dS(uq,1D)

dt
+

K2D∑

k=1

1TJk
2DW

dS(uq,2D)

dt
= 0, (4.17)

which is a quadrature approximation to

∂

∂t

(
A

∫

Ω1D

S(u) +

∫

Ω2D

S(u)

)
= 0, (4.18)

where Ω1D and Ω2D denote the 1D and 2D domain respectively.

Proof. It is sufficient to prove entropy conservation for the setup shown in Figure 2. From the
results in [16] and Lemma 4.1, we only need to show that the flux contributions from 1D and 2D
sides of the 1D-2D junction interface cancel. Testing with the entropy variables, scaling with the
Jacobian Jk in both domains and width A of the 1D domain, it can be shown that the 1D and 2D
schemes each satisfy

A

K1D∑

k=1

1TJk
1DW

dS(uq,1D)

dt
= A1Tn1D

(
ψ1D(ũJ,1D)− ṽ

T
1DfS(ũ

+
J,1D, ũJ,1D)

)
, (4.19)

K2D∑

k=1

1TJk
2DW

dS(uq,2D)

dt
=
∑

i=x,y

1Twfni,2D

(
ψi(ũJ,2D)− ṽ

T
2Dfi,S(ũ

+
J,2D, ũJ,2D)

)
. (4.20)

Without loss of generality, we assume n1,2D = 1 and n2,2D = 0, so we denote n1,2D with shorthand
n2D. On 1D side of the junction, the flux contribution is:

An1D(ṽ
+
J,1D)

TfJ,1D = ATn1D(ṽ
+
J,1D)

T
wT

J,f

(
RTfJ,2D

)

wT
J,f1

, (4.21)
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where n1D is the normal in the 1D domain. Using that wT
J,f1 = A, we have the flux contribution

from the 1D side is

An1D(ṽ
+
J,1D)

T
wT

f

(
RTfJ,2D

)

wT
J,f1

(4.22)

=n1D(ṽ
+
J,1D)

T
w

T
J,fR

TfJ,2D ((RũJ,1D)1, ũJ,2D)) (4.23)

=n1D(Rṽ
+
J,1D1)

T
WJ,ffJ,2D ((RũJ,1D)1, ũJ,2D)) (4.24)

where, WJ,f is a diagonal matrix that contains the surface quadrature weights at the junction
interface. In going from (4.23) to (4.24), we use that wT

J,f = 1TWJ,f by the definitions ofWJ,f ,wJ,f .

We also use that since multiplication by RT acts on discrete solution values on junction surface
quadrature points (to account for the fact that ṽ+J,1D is a scalar and fJ,2D is a vector), multiplication

by WT
f and RT commute.

Similar in 2D, we have the following flux contribution on the junction

n2D(ṽ
+
J,2D)

T
WJ,ffJ,2D ((RũJ,1D)1, ũJ,2D)) (4.25)

Because the outward normal for the 1D domain is the negative of the outward normal for the 2D
domain, we can combine the 1D and 2D surface terms from (4.24) and (4.25) together. Using that
1TwJ,f = A, we have

n1D(Rṽ
+
J,1D1)

T
WJ,ffJ,2D + n2D(ṽ

+
J,2D)

T
WJ,ffJ,2D (4.26)

=
(
(Rṽ

+
J,1D1)

T − (ṽ+J,2D)
T
)
WJ,ffJ,2D ((RũJ,1D)1, ũJ,2D)) (4.27)

First, note ũJ,2D = u(ṽJ,2D) by construction. Then, note that the 2D mapping between conservative
and entropy variables reduces to a 1D mapping in the normal direction upon multiplication by RT .
Thus, u ((Rv1D)1) = Rũ1D1, where u1D = u(v1D).

The flux contributions from 1D and 2D side of the junction cancel since the operator R transform
the 1D projected entropy variables to 2D, such that (Rṽ

+
J,1D1)

T = (ṽ+J,2D)
T . Therefore, with

ψ(ũ)− vTf∗ = 0 on non-junction boundaries, we have

A

K1D∑

k=1

1TJk
W

dS(uq,1D)

dt
+

K2D∑

k=1

1TJk
W

dS(uq,2D)

dt
= 0. (4.28)

We note that a 2D domain can be coupled to multiple 1D domains. For example, in Figure 3,
we calculate the flux for Channel 1 with fluxes from the top two cells and the flux for Channel 2
with the bottom six cells of the 1D-2D interface.
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fJ,i(u
+
f,i,uf,i) =

∑

j∈IJ

cijfS(uf,i,uf,j), (4.29)

where we have the weighting coefficients cij . We require these coefficients to satisfy
∑

j∈IJ

cij = 1, and Aicij = Ajcji, for all i, j. (4.30)

We introduce the convention that non-zero values of cii represent “partial” wall boundary conditions
(which we describe in more detail in Section 4.3.2), where the solution of the a domain partially
interacts with itself.

Let Ki denote the number of elements in the ith channel and let Jk
i be the Jacobian of the kth

element of the ith channel. With Lemma 4.1, we have the following theorem:

Theorem 4.3. Let fluxes at the 1D-1D junction interface be defined as in (4.29) with the coefficients
satisfying (4.30), and let uq,i denote the solution values on the quadrature points on the ith channel.
Then, assuming continuity in time, the DG scheme defined by (3.21) for the entire network is
entropy conservative for periodic boundary conditions

∑

i∈IJ

Ai

Ki∑

k=1

1TJk
i W

dS(uq,i)

dt
= 0. (4.31)

This is a quadrature approximation to

d

dt


∑

i∈IJ

Ai

∫

Ωi

S(ui)


 = 0. (4.32)

Proof. Consider a network of 1D channels which join at a junction. Since we are using an entropy
conservative DG formulation on each channel, our scheme is entropy conservative up to the coupling
interface, and satisfies on each channel [16]

1TW
dS(uq,i)

dt
= 1TnJ,i

(
ψ(ũf,i)− ṽ

T
i fS

)
, ∀i ∈ Ij . (4.33)

Scaling by the Jacobian Jk
i and width, then summing over all channels and elements gives

∑

i∈IJ

Ai

Ki∑

k=1

1TJk
i W

dS(uq,i)

dt
=
∑

i∈IJ

Ai

Ki∑

k=1

1TnJ,i

(
ψ(ũf,i)− ṽ

T
J,1DfS(ũ

+
f,i, ũf,i)

)
. (4.34)

Notice that n+ = −n, where n is the outward normal and recall that the entries of B correspond
to the value of n at the channel. Then splitting the interface contribution between neighboring
elements gives

−
∑

i∈IJ

Ai

Ki∑

k=1

1TnJ,i

(
ṽ
T
i fS(ũ

+
f,i, ũf,i)

)
=−

∑

i∈IJ

Ai

∑

k/∈J

1TnJ,i

(
ṽ
T
i fS(ũ

+
f,i, ũf,i)

)

−
∑

i∈IJ

Ai

∑

k∈J

1TnJ,i

(
ṽ
T
i fJ,i(ũ

+
f,i, ũf,i)

)
. (4.35)
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The first part of (4.35) corresponds to the elements away from junction. By Lemma 4.1, we
only need to consider the numerical flux contribution at the junction. Without loss of generality,
assume that only one element from each domain is connected to the junction. For elements at the
junction, we can write the remaining term in (4.35) as

−
∑

i∈IJ

Ai

∑

k∈J

1TnJ,i

(
ṽ
T
i fJ,i(ũ

+
f,i, ũf,i)

)
(4.36)

=
1

2

∑

i∈IJ

Ai1
TnJ,i




|IJ |∑

j=1

(ṽj − ṽi)
T cijfS(ũf,i, ũf,j)


 (4.37)

=
1

2

∑

i∈IJ

Ai1
TnJ,i




|IJ |∑

j=1

cij (ψ(ũf,j)− ψ(ũf,i))


 (4.38)

=
1

2
1TnJ,i


∑

i∈IJ

|IJ |∑

j=1

Aicij (ψ(ũf,j)− ψ(ũf,i))


 (4.39)

=
1

2
1TnJ,i




|IJ |∑

j=1

Ajψ(ũf,j)−
∑

i∈IJ

Aiψ(ũf,i)


 , (4.40)

where we use the symmetry and conservation properties of the entropy conservative fluxes from
Definition 3.1. Distributing these contributions among all channels, the interface contributions on
the ith channel are

1

2
1TnJ,i


 1

|IJ |

|IJ |∑

j=1

Ajψ(ũf,j)−Aiψ(ũf,i)


 . (4.41)

The flux contributions 1
|IJ |

∑|IJ |
j=1Ajψ(ũf,j) in (4.41) cancel at the junction interface because the

neighboring elements have opposite normals. Combining the results at and away from the junction
and using (4.30) with ψ(ũ)− vTf∗ = 0 on non-junction boundaries, we reach the conclusion that

∑

i∈IJ

Ai

Ki∑

k=1

1TJk
i W

dS(uq,i)

dt
= 0. (4.42)

We note that, for our numerical experiments, cij are fixed values, but they can potentially vary
with time or depend on solution values. However, determining expressions for junction coefficients
cij is beyond the scope of this paper. Fixed values of cij still provide reasonable approximations in
certain cases. We illustrate the application of this framework with two junction examples.
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conditions [15]. The partial wall boundary conditions correspond to the general junction treatment
(4.30) with the following coefficients:

c1,1 =
A1,w

A1
, c1,2 = 0, c1,3 =

A1,3

A1

c2,1 = 0, c2,2 =
A2,w

A2
, c2,3 =

A2,3

A2

c3,1 =
A1,3

A3
, c3,2 =

A2,3

A3
, c3,3 = 0.

Here, note that the coefficients c11 and c22 scale fS(ui,u
w
i ) rather than fS(ui,ui).

4.4 Entropy dissipation at interfaces

The final step of building the entropy stable DG method is adding entropy dissipation terms
at the coupling interfaces. To accomplish this, we apply Lax-Friedrichs penalization [16]. Local
Lax-Friedrichs penalization augments the flux function at element interfaces with an additional
term:

fS(u,u
+) −→ fS(u,u

+)− λ

2
JuK in 1D, (4.51)

fi,S(u,u
+) −→ fi,S(u,u

+)− λ

2
JuK in 2D, (4.52)

where λ is an estimate of the maximum wave speed and J·K denotes the jump across the interface,
JuK = u+−u. While defining JuK is straightforward on meshes in a single dimension, the procedure
is more involved for 1D-2D meshes. Let fp

J,2D denote the penalized 2D flux. We first compute the
flux as specified in (4.4), then adding the Lax-Friedrichs penalization yields

f
p
J,2D(u1D,u2D) =

d∑

i=1

nifi,S(u2D,u
+
2D)−

λ

2
Ju2DK, u+

2D = Ru1D, (4.53)

where ni is the ith component of the unit outward normal on the 2D side of the 1D-2D interface.
Then, we can define the 1D flux at the interface in a manner similar to equation (4.5):

fJ,1D,p(u1D,u2D) =
wT

J,f

(
RTf

p
J,2D(u1D,u2D)

)

wT
J,f1

. (4.54)

We pass the penalized fluxes calculated at the 1D-2D interface to the 1D domain. We then scale
the fluxes in 1D by the surface normal to ensure they have the correct sign. For mesh elements not
on the 1D-2D interface, we use standard 1D or 2D Lax-Friedrichs penalization in their respective
domains [15].

For 1D-1D junction treatments, to implement Lax-Friedrichs penalization, we simply make the
following changes to fluxes between solutions on each channel:

fS(uf,i,uf,j) −→ fS(uf,i,uf,j)−
λ

2
JuK. (4.55)
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5 Numerical results

In this section, we present numerical experiments to demonstrate the accuracy and stability of
the entropy stable DG scheme with 1D-2D and 1D-1D junction couplings. The first experiment
is a simple parallel “split and converge” channel network as shown in Figure 7. In the second
experiment, the setup consists of a channel “split and converge” in the shape of diamond, as shown
in Figure 12. We test both 1D-2D and 1D-1D coupling on these two setups. The third experiment
studies the T-shaped junction as shown in Figure 14. The fourth experiment focuses on channels
turning at different angles as shown in Figure 19. In the last experiment, we simulate a dam break
on the domain shown in Figure 22. Here, a large reservoir is connected to a long channel with a
45◦ turn in the middle.

We perform computations with the shallow water equations on all setups. We also present
experiments for the compressible Euler equations on select setups in Appendix A. For the shallow
water equations, we have the following well-balanced and entropy conservative fluxes in 2D [32, 29,
33, 19]

fx
S (uL,uR) =




{{hu}}
{{hu}} {{u}}+ g {{h}}2 − 1

2g
{
{h2}

}

{{hu}} {{v}}


 , (5.1)

f
y
S (uL,uR) =




{{hv}}
{{hv}} {{u}}

{{hv}} {{v}}+ g {{h}}2 − 1
2g
{
{h2}

}


 . (5.2)

The shallow water equations fluxes in 1D are

fS1D (uL,uR) =

[
{{hu}}

{{hu}} {{u}}+ 1
2ghLhR

]
. (5.3)

For all experiments, we use 4th order 5-stage low storage Runge-Kutta method of [34]. Following
the derivation of stable timestep restrictions in [17], we define the timestep ∆t as the following:

CN2D =
(N2D + 1)(N2D + 2)

2
, CN1D =

(N1D + 1)2

2
, (5.4)

∆t = min

(
CFL× h1D

CN1D
, CFL× h2D

CN2D

)
, (5.5)

where CN is the degree dependent constant in the inverse trace inequality [35], and CFL is a user-
defined constant. We use CFL = 0.25 and g = 1 for all experiments. When comparing 1D and 2D
solutions, we average the 2D solution along the width of the channel.

5.1 Shallow water equation experiments

5.1.1 Parallel split and converge (1D-2D and 1D-1D junction treatments)

We first consider the parallel “split and converge” geometry shown in Figure 7. We have a
channel which split into two parallel channels. The fully 2D domain ranges from −4 to 4 in x
direction and −1 to 1 in y direction. We apply periodic boundary conditions in the x direction and
wall boundary conditions in y direction for the fullly 2D simulation. We consider both fully 2D,
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(a) P1 (b) P2 (c) P3

Figure 8: Water height in parallel split with initial conditions (5.6) at points P1 (a), P2 (b), and
P3 (c) for the fully 2D, 1D-2D, and 1D-1D junction models.

(a) P1 (b) P2 (c) P3

Figure 9: Water height in parallel split with initial conditions (5.8) at points P1 (a), P2 (b), and
P3 (c) for the fully 2D, 1D-2D, and 1D-1D junction models.

We also test with the following initial conditions:

h0 =





4 in channel 1

5 in channel 2

6 in channel 3

, u0 = v0 = 0. (5.8)

We plot the water height at points P1, P2, and P3 under initial conditions (5.8) in Figure 9. We
notice that the reduced 1D-2D model produces results close to the fully 2D model as was observed
in [1, 3]. The 1D-1D model deviates from the 2D model more significantly under initial conditions
(5.8). With initial conditions (5.8), there is significant vertical water motion at the junction which
the 1D-1D model fails to capture.

We also consider the parallel split with non-matching widths, where the sum of the widths of
channels 2 and 3 does not match the width of channel 1. The mesh is shown in Figure 10, where
channels 1, 2, and 3 have widths of

√
2, 1, and 1. Each channel has a length of 4 for the fully 2D

simulation. We enforce wall boundary conditions in both the x and y direction. We use the mesh
generator within PDEModel from MATLAB to construct our 2D mesh [36], with hmin = 0.25. In
the 1D-1D model, each 1D domain consist of 32 uniform elements of size 0.25.

For 1D-1D model, we implement partial wall boundary conditions at the junction. We use the
initial conditions (5.6) and plot the water height at the midpoints P1, P2, and P3 from the fully
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The second numerical experiment consists of a diamond split and converge setup, as shown in
Figure 12. We enforce wall boundary conditions everywhere except at the left side of the channel 1,
which connects back to the right side of the domain to enforce periodicity. The horizontal channel
has a width of

√
2 and each channel in the diamond has a width of 1. The length of each 1D

channel is 10, not including the junction. We visualize the solution at P1 and P2, the midpoints
of channels 1 and 2. We use the mesh generator within PDEModel from MATLAB to construct
our 2D mesh [36], with hmin =

√
2.

The 1D-2D junction treatment is shown in Figure 12, where we represent junction using tri-
angular meshes. Each 1D domain consists of 16 uniform elements of size 0.625. For this diamond
split, we also implement a 1D-1D coupling scheme with partial wall boundary conditions at the
junctions. We note that the 1D-1D junction treatments do not account for channel angles.

The initial conditions for shallow water equations with this setup are

h0 =

{
3 in channel 1

4 otherwise
, u0 = v0 = 0. (5.9)

(a) P1 (b) P2

Figure 13: Water height in diamond split with initial conditions (5.9) at points P1 (a) and P2 (b)
for the fully 2D, 1D-2D, and 1D-1D junction models.

The computed entropy RHS (5.7) during the run are on the order of 10−15 to 10−13 when
not applying Lax-Friedrichs dissipation, which verifies entropy conservation. To demonstrate the
accuracy of the 1D-2D junction treatment, we use the same initial conditions with Lax-Friedrichs
dissipation. We plot the water height at points P1 and P2 in Figure 13. We observe that the
solutions from the 1D-2D model match the arrival time of the solutions from the fully 2D model,
but display discrepancies in amplitude at P2. The results from 1D-1D model produce an earlier
arrival time for the shock at P2.

5.1.3 T-junction (1D-1D junction treatment)

For the T-junction experiment, we present the setup in Figure 14. Since previous experiments
and other authors [1, 3] confirmed the accuracy of the 1D-2D junction treatments, we focus on the
comparison between the 1D-1D junction model and the fully 2D junction model for this case. Each
channel has a width of 1 and length of 10. We define P1, P2, and P3 as the midpoints of each
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(a) P1 (b) P2 (c) P3

Figure 15: Water height in T-junction with initial conditions (5.11) at points P1 (a), P2 (b), and
P3 (c) for the fully 2D and 1D-1D junction models.

(a) P1 (b) P2 (c) P3

Figure 16: Water height in T-junction with initial conditions (5.12) at points P1 (a), P2 (b), and
P3 (c) for the fully 2D and 1D-1D junction models.

(a) P1 (b) P2 (c) P3

Figure 17: Water height in T-junction with initial conditions (5.13) at points P1 (a), P2 (b), and
P3 (c) for the fully 2D and 1D-1D junction models.
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We continue testing 1D-1D junction treatments by investigating the effect of channel angle for
turning channels. In the turning channel experiment, we use a channel with a 45◦ and a channel
with a 90◦ turn, as shown in Figure 19. Each channel has a width of 1 and length of 10. We choose
P1 and P1 to be the midpoint of each channel. PDEModel is used to construct the 2D mesh, with
hmin = 0.25. For 1D-1D model, we represent each channel with 32 uniform elements of size 0.3125.
We use polynomial degree N = 3 in all experiments and run the experiment up to time T = 6. We
turn on Lax-Friedrichs dissipation to compare solutions at midpoints of the each 1D channel with
solutions from the fully 2D model. We test on the same initial conditions for the shallow water
equations:

h0 =

{
6 in x ≤ 4 channel 1

4 otherwise
, u0 = v0 = 0. (5.15)

These initial conditions contain discontinuities. We plot the water heights at P1 and P2 in Figure
20, 21.

(a) P1 (b) P2

Figure 20: Water height in 45◦ turn at points P1 (a) and P2 (b) for the fully 2D and 1D-1D junction
models.
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(a) P1 (b) P2

Figure 21: Water height in 90◦ turn at points P1 (a) and P2 (b) for the fully 2D and 1D-1D junction
models.

We observe that the turning channel reflects part of the water back into channel 1. The mag-
nitude of the reflected wave is greater for a larger turning angle. The 1D model approximates the
fully 2D model reasonably well, but does not capture the reflected wave. We note that it may be
possible to model this behavior using a partial wall boundary condition. However, this is beyond
the scope of the paper and will be explored in the future work.

5.1.5 Dam break and turning channel (1D-2D junction treatment)

In this numerical experiment, we model a dam break and turning channel from [1] as shown
in Figure 22. The reservoir is represented by a square with dimension 2.5 × 2.5 and the channel
(with a width of 0.5) is connected to the right side of the reservoir. The length of each channel is
4. We also use the mesh generator within PDEModel to construct the 2D mesh, with hmin = 0.25.
For the 1D-2D junction treatment, we model the reservoir using a 2D mesh. The point at which
the channel turns is also modeled as a 2D domain. In the 1D mesh, we have 16 uniform elements
for each channel of size 0.25. Wall boundary conditions are imposed on all boundaries for each
simulation. We use polynomial degree N = 3 in all experiments. The initial conditions for the
shallow water equations are taken to be the following:

h0 =

{
10 in reservoir

6 in channel
, u0 = v0 = 0. (5.16)
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(a) P1 (b) P2

Figure 24: Water height in dam break and turning channel with discontinuous initial conditions
(5.17) at points P1 (a) and P2 (b) for the fully 2D and 1D-2D junction models.

6 Conclusions

In this work, we present high-order entropy stable DG schemes for coupling 1D channels
together. We construct both 1D-1D and 1D-2D junction treatments. We prove conservation
of entropy for both junction treatments and describe how to apply entropy dissipation using
Lax–Friedrichs interface penalization terms. We verify these results with numerical experiments
for the shallow water and compressible Euler equations. We also compare numerical results on sev-
eral different geometries with different initial conditions and conclude that 1D-2D model produces
results similar to the fully 2D model, matching the observations in [1, 3], whereas, the performance
of the 1D-1D model is more sensitive to the domain geometry and initial conditions. This is due to
the fact that the 1D-1D model cannot capture higher dimensional flows behavior (e.g., flow in the
direction perpendicular to each 1D channel). Apart from computational cost, the only advantage
of the 1D-1D junction is simplicity of implementation. The 1D-2D junction model is more robust
to higher-dimensional flow effects at junctions; however, 1D-1D junction models can be used for
flows which are known to be less sensitive to junction geometry. We note that this paper does not
address the issue related to the accuracy of 1D-1D and 1D-2D junction models, but on ensuring
that such junctions can be modeled numerically in an entropy stable fashion. Since comparisons of
1D-1D and 1D-2D junction models lie outside the scope of this paper, we refer interested readers
to [3, 1] for comparisons between types of junction models.
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Appendix A

In this appendix, we examine junction treatments for the compressible Euler equations with
entropy conservative fluxes. The compressible Euler equations for gas dynamics in two dimensions
are given by

∂

∂t




ρ
ρu
ρv
E


+

∂

∂x




ρu
ρu2 + p
ρuv

u(E + p)


+

∂

∂y




ρv
ρuv

ρv2 + p
v(E + p)


 = 0. (A.1)

Here, ρ and p denote density and the pressure, respectively. The velocity in the x direction is
denoted by u and the velocity in the y direction is denoted by v. The total energy is denoted by E
and satisfies the constitutive relation involving the pressure p

E =
1

2
ρ ‖U‖2 + p

γ − 1
, (A.2)

where ‖U‖2 = u2 + v2, and γ = 1.4 is the ratio of specific heat a diatomic gas. In this example, we
have conservative variables u = [ρ, ρu, ρv, E]T and flux functions f1 = [ρu, ρu2 + p, ρuv, u(E+ p)]T

and f2 = [ρv, ρuv, ρv2 + p, v(E + p)]T .
The one-dimensional compressible Euler equations can also be derived under assumptions sim-

ilar to those used to derive the one-dimensional shallow water equations from the two-dimensional
system. In one dimension, the compressible Euler equations are

∂

∂t



ρ
ρu
E


+

∂

∂x




ρu
ρu2 + p
u(E + p)


 = 0. (A.3)

where we define ‖U‖2 = u2 in one dimension.
The transform matrix R between 1D and 2D for the compressible Euler equations is

R =




1 0 0
0 n1 0
0 n2 0
0 0 1


 , RTR = I. (A.4)

In this work, the mathematical entropy for the compressible Euler equations is taken to be the
unique mathematical entropy for the compressible Navier-Stokes equations [37]

S(u) = −ρs,

where s = log
(

p
ργ

)
is the physical specific entropy. The entropy variables v in d dimensions are

v1 =
ρe(γ + 1− s)− E

ρe
, v1+i =

ρui
ρe
, vd+2 = − ρ

ρe
, (A.5)

for i = 1, . . . , d. The inverse map from entropy to conservative variables is

ρ = −(ρe)vd+2, ρui = (ρe)v1+i, E = (ρe)

(
1−

∑d
j=1 v

2
1+j

2vd+2

)
,
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where i = 1, . . . , d, and ρe and s in terms of the entropy variables are

ρe =

(
(γ − 1)

(−vd+2)
γ

)1/(γ−1)

e
−s
γ−1 , s = γ − v1 +

∑d
j=1 v

2
1+j

2vd+2
.

To introduce the entropy conservative fluxes for the compressible Euler equations, we start with
some notations. Let f denote some piecewise continuous function, and f+ denote the exterior value
of f across an element face. The average and logarithmic averages are

{{f}} =
f + f+

2
, {{f}}log =

f+ − f

log(f+)− log(f)
. (A.6)

The average and logarithmic average are assumed to act component-wise on vector valued functions.
The entropy conservative numerical fluxes for the 2D compressible Euler equations are given

by Chandrashekar [38]:

fx
S (uL,uR) =




{{p}}log {{u}}
{{p}}log {{u}}2 + pavg
{{p}}log {{u}} {{v}}
(Eavg + pavg) {{u}}


 , f

y
S (uL,uR) =




{{p}}log {{v}}
{{p}}log {{u}} {{v}}
{{p}}log {{v}}2 + pavg
(Eavg + pavg) {{v}}


 . (A.7)

where we need to introduce the auxiliary quantities β = ρ
2p and

pavg =
{{ρ}}
2 {{β}} , Eavg =

{{ρ}}log

2 {{β}}log (γ − 1)
+
u2avg
2
, u2avg = uLuR + vLvR. (A.8)

The entropy conservative fluxes for the compressible Euler equations in 1D are

fS1D (uL,uR) =




{{p}}log {{u}}
{{p}}log {{u}}2 + pavg
(Eavg + pavg) {{u}}


 , (A.9)

where we need calculate the term Eavg with u2avg = uLuR in 1D

A Numerical experiments for the compressible Euler equations

A.1 Parallel split and converge (1D-2D and 1D-1D junction treatments)

For the compressible Euler equations, we reuse the same mesh and setup in Section 5.1.1 (as
shown in Figure 7) with the following initial conditions:

ρ0 = sin(πx/2) + 2, u0 = 2, v0 = 0, γ = 1.4, p0 = 2. (A.10)

We also test with different polynomial degree on each domain and list the maximum absolute value
of the entropy RHS (5.7) up to time T = 1. Results for the 1D-2D model are shown in Table 2 and
results for the 1D-1D model are shown in 3.
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N2D = 3 N2D = 4 N2D = 5

N1D = 3 2.0872e-14 4.9950e-14 1.3084e-13

N1D = 4 1.1824e-13 2.3324e-13 3.6135e-13

N1D = 5 3.6599e-13 4.5905e-13 7.9016e-13

Table 2: Maximum of absolute value of entropy RHS (5.7) for compressible Euler 1D-2D coupling.

N1D = 3 N1D = 4 N1D = 5

SWE 1.1191e-13 7.5495e-14 8.3311e-13

Euler 2.3082e-13 1.7586e-13 2.9110e-13

Table 3: Maximum of absolute value of entropy RHS (5.7) for compressible Euler 1D-1D coupling.

(a) P1 (b) Error

Figure 25: Density ρ in the parallel split problem with initial conditions (A.10) at point P1 for the
fully 2D, 1D-2D, and 1D-1D junction models. Errors are computed using the fully 2D model as
the “exact” solution.

To test accuracy of these three models, fully 2D, 1D-2D and 1D-1D junction treatments, for
the compressible Euler equations, we plot the results at the midpoints of each channel, as marked
in Figure 7. Coincidentally, because we have the periodic initial conditions and these points are
separated by exactly one wavelength, all three points share the same solutions. We notice that
with continuous solutions, all three models produce very solutions with small errors as shown in
Figure 25.

From these experiments, we can conclude that our numerical method is entropy conservative
for both the shallow water equations and the compressible Euler equations using either 1D-2D or
1D-1D junction treatments. Different models produce different oscillations near the jump, but the
their magnitudes are on the same scale. For the solutions that remain continuous, both 1D-2D and
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(a) (b)

Figure 26: Density ρ in diamond split and converge with initial conditions (A.11) at points P1 (a)
and P2 (b) for the fully 2D model and 1D-2D junction models.

1D-1D junction models generate solutions extremely close to the fully 2D model with absence of
vertical flows. However, we expect the 1D-1D junction model to fail where fully 2D motions exist
near the junction as in the shallow water experiment in Section 5.

A.2 Diamond split and converge

For our second experiment with the compressible Euler equations, we reuse the diamond split
setup in Section 5.1.2 (as shown in Figure 12) with the following initial conditions:

ρ0 = 2, u0 = v0 = 0, γ = 1.4, p0 =

{
3 in channel 1

4 otherwise
. (A.11)

We run the test without local Lax-Friedrichs penalization up to time T = 5 to verify the
conservation of entropy. Then, we enable local Lax-Friedrichs penalization for our accuracy test.
We plot the values of ρ at midpoints P1 and P2 from both fully 2D and 1D-2D junction treatments
in Figure 26.

We also test the compressible Euler equations with continuous initial conditions:

ρ0 = 2, u0 = v0 = 0, γ = 1.4, p0 =

{
2 + sin(π(x+ 5.5

√
2 + 5)/5) in channel 1

2 otherwise
. (A.12)

We run the test up to time T = 5 and plot the values of ρ at P1 and P2 from fully 2D and
1D-2D junction models in Figure 27. In both shallow water and compressible Euler equations,
we observe that the 1D-2D capture the general trend of the flow, but produce slightly different
oscillation patterns compared to the fully 2D model.
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Figure 27: Density ρ in the diamond split and converge with initial conditions (A.12) at points P1
(a) and P2 (b) for the fully 2D and 1D-2D junction models.

A.3 Dam break and turning channel

Last, we test the compressible Euler equations on the dam break and turning channel setting
in Section 5.1.5, as shown in Figure 22. We first confirm conservation of entropy in the absence of
Lax-Friedrichs penalization with the initial conditions:

ρ0 = 2, u0 = v0 = 0, γ = 1.4, p0 =

{
5 in reservoir

2 in channel
. (A.13)

We test the accuracy of the model with Lax-Friedrichs penalization and plot ρ at midpoints P1
and P2 in the Figure 28. We run up to time T = 5 and notice that similar patterns are generated
from both the 1D-2D and fully 2D models. At P1, the oscillations from the fully 2D and 1D-2D
junction models have noticeable discrepancies from time T = 1.5 to T = 3.5. We also find that
there is a small bump at point P2 around time T = 2, which the 1D-2D model does not capture.
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(a) (b)

Figure 28: Density ρ in the dam break and turning channel with initial conditions (A.13) at points
P1 (a) and P2 (b) for the fully 2D and 1D-2D junction models.
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