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Fig. 1. We introduce a method to capture SVBRDF material maps from a small number of mobile flash photographs, achieving high quality results both on
original and novel views. Our key innovation is optimization in the latent space of Material GAN, a generative model trained to produce plausible material maps;
Material GAN thus serves as a powerful implicit prior for result realism. Here we show re-rendered views for several different materials under environment
illumination. We use 7 inputs for these results (with 2 of them shown). (Please use Adobe Acrobat and click the renderings to see them animated.)

We address the problem of reconstructing spatially-varying BRDFs from a
small set of image measurements. This is a fundamentally under-constrained
problem, and previous work has relied on using various regularization priors
or on capturing many images to produce plausible results. In this work, we
present Material GAN, a deep generative convolutional network based on
StyleGANZ2, trained to synthesize realistic SVBRDF parameter maps. We
show that Material GAN can be used as a powerful material prior in an inverse
rendering framework: we optimize in its latent representation to generate
material maps that match the appearance of the captured images when
rendered. We demonstrate this framework on the task of reconstructing
SVBRDFs from images captured under flash illumination using a hand-held
mobile phone. Our method succeeds in producing plausible material maps
that accurately reproduce the target images, and outperforms previous state-
of-the-art material capture methods in evaluations on both synthetic and
real data. Furthermore, our GAN-based latent space allows for high-level
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semantic material editing operations such as generating material variations
and material morphing.
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1 INTRODUCTION

Despite a few decades of effort in computer graphics and vision, cap-
turing spatially-varying reflectance of real-world materials remains
a challenging and actively researched task. Measurement methods
have traditionally used custom hardware systems to densely sample
illumination and viewing directions [Marschner et al. 1999; Matusik
et al. 2003], followed by post-processing such as fitting parametric
BRDF models [Ngan et al. 2005]. However, such approaches are
restricted to laboratory conditions.

Recent work has explored methods for casual capture of spatially-
varying BRDFs (SVBRDFs) using commodity hardware and in less
constrained environments [Aittala et al. 2013, 2015; Francken et al.
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2009; Hui et al. 2017; Ren et al. 2011]. These methods usually fol-
low an inverse-rendering approach: they define a forward rendering
model and optimize reflectance parameters so that the simulated
appearance matches physical measurements under certain image
metrics. With a small number of measured images, this approach
is fundamentally under-constrained: there usually exist many ma-
terial estimates capable of producing renderings that match the
measurements, but many of these estimates can be unrealistic and
may not generalize to novel illumination and viewing conditions.
The solution to this problem has been to regularize the optimization
using pre-determined material priors such as linear low-dimensional
BRDF models [Hui et al. 2017; Ren et al. 2011] or stationary stochas-
tic textures [Aittala et al. 2016, 2015]. However, such hand-crafted
priors do not generalize to a wide range of real-world materials.

More recently, learning-based approaches have demonstrated re-
markable results for reconstructing SVBRDFs from one [Deschaintre
et al. 2018; Li et al. 2018] or more images [Deschaintre et al. 2019].
While these methods use rendering-based losses (similar to the
inverse rendering approaches) during training, at test time they
predict SVBRDFs from images using a single feed-forward pass
through a deep network. As a result, the reconstructed material
parameters may not accurately reproduce the measured appearance.
In contrast, Gao et al. [2019] propose using an optimization-based
approach in conjunction with a learned material prior. Specifically,
they train a fully-convolutional auto-encoder on a large material
dataset and optimize in the latent space of this auto-encoder. This
ensures that the reconstructed SVBRDF parameters both reproduce
the measurements and are plausible real-world materials. However,
while this learned material prior is a significant improvement over
hand-crafted priors, it still produces a relatively localized and highly
flexible latent space that requires a good initialization (for example,
from single image methods [Deschaintre et al. 2018; Li et al. 2018])
and even then can fail to produce good results.

In this paper, we propose a different material prior that builds
on the remarkable progress in image synthesis using deep Genera-
tive Adversarial Networks (GANs) [Goodfellow et al. 2014a; Karras
et al. 2018a,b]. We train Material GAN—a StyleGAN2-based deep
convolutional neural network [Karras et al. 2019]—to generate plau-
sible materials from a large-scale, spatially-varying material dataset
[Deschaintre et al. 2018]. Material GAN learns global correlations in
material parameters, both spatially (thus encoding texture patterns)
as well as across parameters (for example, relationships between dif-
fuse and specular parameters). As illustrated in Figure 2, sampling
from the Material GAN latent space produces plausible, realistic
materials with complex variations and diverse appearance.

While GANSs have traditionally been used to synthesize images,
we demonstrate a very different application, using Material GAN
as a powerful prior in an inverse rendering-based material capture
framework. We append a rendering layer to Material GAN, setting
up a differentiable pipeline from the learned latent space, through
generating material maps, to rendering images under specified views
and lighting. This allows us to optimize the Material GAN latent
vector(s) to minimize the error between the rendered and measured
images and reconstruct the corresponding material maps. Doing
so ensures that the reconstructed SVBRDFs lie on the “manifold of
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realistic materials”, while at the same time accurately reproducing
the captured images.

We demonstrate that our GAN-based optimization framework
produces high-quality SVBRDF reconstructions from a small num-
ber (3-7) images captured under flash illumination using hand-held
mobile phones, and improves upon previous state-of-the-art meth-
ods [Deschaintre et al. 2019; Gao et al. 2019]. In particular, it pro-
duces cleaner, more realistic material maps that better reproduce
the appearance of the captured material under both input and novel
lighting. Moreover, as illustrated in Figure 10, Material GAN adapts
to a wide range of SVBRDF samples ranging from diffuse to specular
materials and near-stochastic textures to structured patterns with
multiple distinct, complex materials.

Furthermore, our GAN-based latent space offers the ability to edit
the latent vector in semantically meaningful ways (via operations
like interpolation in the latent space) and generate realistic materials
that go beyond the captured images. This is not possible with current
material capture methods that do not afford any control over their
per-pixel BRDF estimates.

2 RELATED WORK

Reflectance capture. Acquiring material data from physical mea-
surements is the goal of a broad range of methods. Please refer to
surveys [Dong 2019; Guarnera et al. 2016; Weyrich et al. 2009] for
more comprehensive introduction to the related works.

Most reflectance capture approaches observe a material sample
under varying viewing and lighting configurations. They differ in
the number of light patterns required and their types such as moving
linear light [Gardner et al. 2003; Ren et al. 2011], Gray code patterns
[Francken et al. 2009], spherical harmonic illumination [Ghosh et al.
2009], and Fourier patterns [Aittala et al. 2013].

Methods have also been proposed for material capture “in the
wild”, i.e., under uncontrolled environment conditions with com-
modity hardware, typically captured with a hand-held mobile phone
with flash illumination. Some of these methods impose strong priors
on the materials, such as linear combinations of basis BRDFs [Hui
et al. 2017; Xu et al. 2016] (where the basis BRDFs can come from
the measured data [Matusik et al. 2003]). Later work by Aittala et al.
[2016; 2015] estimated per-pixel parameters of stationary spatially-
varying SVBRDFs from two-shot and one-shot photographs. In the
latter case, the approach used a neural Gram-matrix texture de-
scriptor based on the texture synthesis and feature transfer work
of Gatys [2015; 2016] to compare renderings with similar texture
patterns but without pixel alignment.

More recently, deep learning-based approaches have demon-
strated remarkable progress in the quality of SVBRDF estimates
from single images (usually captured under flash illumination) [De-
schaintre et al. 2018; Li et al. 2017, 2018]. These methods train deep
convolutional neural networks with large datasets of artistically
created SVBRDFs, and with a combination of losses that evaluate
the difference in material maps and renderings from the dataset
ground truth.

Deschaintre [2019] extended the single-shot approach to multiple
images. The key idea is to extract features from the input images
with a shared encoder, max-pooling the features and decoding the



final maps from the pooled features. This architecture has the ben-
efit of being independent of the number of inputs, while also not
requiring explicit light position information. In our experience, this
approach produces smooth, plausible maps with low artifacts; how-
ever, re-rendering the maps tends to be not as close to the target
measurements because the network cannot “check” its results at
runtime. Moreover, we find that especially on real data, this method
also has strong biases such as dark diffuse albedo maps and exagger-
ating surface normals (especially along strong image gradients that
might be caused by albedo variations). We believe this is not due to
any technical flaw; the method may be reaching the limit of what
is possible using current feed-forward convolutional architectures
and currently available datasets.

Gao et al. [2019] introduced an inverse rendering-based mate-
rial capture approach that optimizes for material maps to minimize
error with respect to the captured images. Since this is an under-
constrained problem, they propose optimizing over the latent space
of a learned material auto-encoder network to minimize rendering
error. This approach has the benefit of explicitly matching the ap-
pearance of the captured image measurements, while also using the
auto-encoder as a material “prior”. Moreover, the encoder and de-
coder are fully convolutional, which has the advantage of resolution
independence. However, we find that the convolutional nature of
this model also has the disadvantage of only providing local regular-
ization and not capturing global patterns in the material, such as the
long-range spatial patterns and correlations between the different
material parameter maps. As a result, this method relies on previous
methods (for example, Deschaintre et al. [2018]) to provide a good
initialization, without which it can converge to poor results. In con-
trast, our Material GAN is a more globally robust latent space and
produces higher quality reconstructions without requiring accurate
initializations, though it is no longer resolution-independent.

Generative adversarial networks. GANs [Goodfellow et al. 2014b]
have become extremely successful in the past few years in various
domains, including images [Radford et al. 2015], video [Tulyakov
et al. 2018], audio [Donahue et al. 2018], and 3D shapes [Li et al.
2019]. A GAN typically consists of two competing networks; a gen-
erator, whose goal is to produce results that are indistinguishable
from the real data distribution, and a discriminator, whose job is to
learn to identify generated results from real ones. For generating re-
alistic images (especially of human faces), there has been a sequence
of improved models and training strategies, including Progressive-
GAN [Karras et al. 2018a], StyleGAN [2018b] and StyleGAN2 [2019].
StyleGAN?2 in particular is the state-of-the-art GAN model and our
work is based on its architecture, modified to output more channels.

Recently, GANs have also been used to solve inverse problems
[Asim et al. 2019; Bora et al. 2017; O’Malley et al. 2019]. In com-
puter graphics and vision, this work has focused on embedding
images into the latent space, with the goal of editing the images
in semantically meaningful ways via latent vector manipulations
[Zhu et al. 2016]. This embedding requires solving an optimization
problem to find the latent vector. More recent work such as Im-
age2StyleGAN [Abdal et al. 2019b] and Image2StyleGAN++ [Abdal
et al. 2019a] has looked at problem of embedding images specifically
into the the StyleGAN latent space. While these methods focus on
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projecting portrait images into face-specific StyleGAN models, we
find their analysis can be adapted to our problem. We build on this
to propose a GAN embedding-based inverse rendering approach.

3  MATERIALGAN: A GENERATIVE SVBRDF MODEL

Generative Adversarial Networks [Goodfellow et al. 2014a] are
trained to map an input from a latent space (often randomly sampled
from a multi-variate normal distribution) to a plausible instance of
the target distribution. In recent years, GANs have made remarkable
progress in synthesizing high-resolution, photo-realistic images. In-
spired by this progress, we propose Material GAN, a GAN that is
trained to generate plausible materials, thus implicitly learning an
SVBRDF manifold. Material GAN is based on the architecture of
StyleGAN?2 [Karras et al. 2019].

3.1 Overview of StyleGAN and its latent spaces

StyleGAN2 [Karras et al. 2019] is an improvement of StyleGAN
[Karras et al. 2018b] and is the state-of-the-art generative adversar-
ial network (GAN) for image synthesis, especially for human faces.
The architecture has several advantages over previous models like
ProgressiveGAN [Karras et al. 2018a] and DCGAN [Radford et al.
2015]. For our purposes, the main advantage is that the model is
not simply a black-box stack of convolution and upsampling layers,
but has additional, more specific structure, allowing for much easier
inversion (latent space optimization). The StyleGAN2 architecture
starts with a learned constant 4 X 4 X 512 tensor and progressively
upsamples it to the final output target resolution via a sequence of
convolutional and upsampling layers (7 in total to end with a final
image resolution of 256 X 256). Given an input latent code vector
z € Z c R*'2, StyleGAN2 transforms it through a non-linear map-
ping network of fully-connected layers into an intermediate latent
vector w € ‘W C R3!2, The rationale for the introduction of the
space of ‘W is that while Z requires (almost) every latent z € Z to
correspond to a realistic output, vectors w € W are free from this
overly stringent constraint, which leads to a less “entangled” map-
ping, with more meaningful dimensions (see [Karras et al. 2018b,
2019] for more discussion). In the original StyleGAN, the vector
w € ‘W is mapped via a learned affine transformation to mean and
variance “style” vectors that control adaptive instance normaliza-
tions (AdaIN) [Huang and Belongie 2017] that are applied before and
after every convolution in the generation process (thus 7 x 2 = 14
times for a model of resolution 256 X 256). The statistics of the
AdalIN normalizations caused the feature maps and output images
of StyleGAN to suffer from droplet artifacts. StyleGAN2 removes
the droplet artifacts entirely by replacing the Adaln normalization
layers with a demodulation operation which bakes the entire style
block into a single layer while maintaining the same scale-specific
control as StyleGAN. We construct a matrix w* € W+ c R>12x14
by replicating w 14 times. During training and standard synthesis,
the columns of w* are identical, and correspond to w. However,
as we will discuss later (and similar to Abdal et al. [2019b]), we
relax this constraint when optimizing for an embedding; W* thus
becomes an extended latent space, more powerful than ‘W or Z.
Additionally, StyleGAN2 injects Gaussian noise, &, into each of the
14 layers of the generator. This noise gives StyleGAN?2 the ability
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Fig. 2. Seven materials generated by randomly sampling Material GAN. Top
to bottom: diffuse albedo, normal, roughness, specular albedo and renderings
under flash illumination. As can be seen, the material maps are high-quality
with meaningful correlations both spatially and across materials parameters,
and visually look like plausible real-world materials.

to synthesize stochastic details at multiple resolutions. Abdal et al.
[2019a] make the observation that one can also treat these noise
inputs & as a latent space N. Thus, combining these two spaces
defines yet another latent space W*N.

3.2 Material GAN training

Material GAN was trained with the dataset provided by Deschaintre
et al. [2018] (and also used in Gao et al. [2019]). They generated this
dataset by sampling the parameters of procedural material graphs
from Allegorithmic Substance Share to create an initial set of 155
high-quality SVBRDFs at resolution 4096 X 4096. The dataset was
augmented by blending multiple SVBRDFs and generating 256 X 256
resolution crops at random positions, scales and rotations. The final
dataset consists of around 200,000 SVBRDFs. For detailed informa-
tion about the curation of dataset we refer the reader to [Deschaintre
et al. 2018]. Since pairs of SVBRDFs in the dataset were the same
with only a slight variation, we selected 100,000 SVBRDFs. The
maps for each SVBRDF are stacked in 9 channels (3 for albedo, 2 for
normals, 1 for roughness, and 3 for specular albedo). We account for
this by adapting the Material GAN architecture to output 9-channel
outputs. Material GAN is trained in TensorFlow (version 1.15) with
the same loss functions and similar hyper-parameters from Style-
GAN?2 [Karras et al. 2019]. StyleGAN2 configuration F was used for
all experiments. The generator and discriminator were trained using
Adam optimizers. The learning rate was increased per resolution
from 0.001 to 0.0025 for both the generator and the discriminator.
The discriminator was shown 25 million images. Training on 8x
Nvidia Tesla V100 takes about 5 days. Figure 2 shows materials
generated by randomly sampling the Material GAN latent space and
images rendered from them. As can be seen here, Material GAN gen-
erates a wide variety of nearly photorealistic materials ranging from
structured to stochastic, diffuse to specular, and with large-scale
variations to fine detail. Furthermore, Figure 3 and the accompany-
ing video show example interpolations between pairs of generated

ACM Trans. Graph., Vol. 39, No. 6, Article 254. Publication date: December 2020.

Fig. 3. Interpolation in Material GAN latent space. Each row shows
an example of interpolation between two randomly generated materials,
demonstrating non-linear morphing behavior.

materials in the latent space, producing plausible non-linear mor-
phing results.

4 SVBRDF CAPTURE USING MATERIALGAN

We utilize Material GAN, the powerful generative model described
in the previous section, in a fundamentally new fashion: to cap-
ture SVBRDF maps. Specifically, we use Material GAN as a material
prior for SVBRDF acquisition via an inverse rendering framework.
Our goal is to estimate the SVBRDF parameter maps from one or a
small number of photographs of a near-planar material sample. We
utilize a common BRDF model that involves a diffuse and a specu-
lar component using the microfacet BRDF with the GGX normal
distributions [Walter et al. 2007]. Our unknown parameter vectors
0 := (a,n, r,s) encode the four per-pixel parameter maps: diffuse
albedo a, surface normal n, roughness r, and specular albedo s. To re-
cover the unknown parameter maps, we capture k images Iy, - - - , I.
We assume known viewing and lighting configurations for each
image, which we denote as (L;, C;). Further, we assume that the
material is lit by a single point source, collocated with the camera.!
The images can be reprojected into a common frontal view (which
is straightforward with a known viewing configuration). We intro-
duce a differentiable rendering operator R that takes as input the
parameter maps as well as the viewing and lighting configurations,
and synthesizes corresponding images of the material. Under this
setup, our goal is to find values of the unknown parameters 6 so
that renderings with these parameters match the measurements
I;. In other words, we focus on solving the following optimization
problem:

0* = argmin, . X | L(R(6; Li,C)). I), ¢Y)

!n theory, non-collocated lights, area lights or projection patterns (e.g. on an LCD or
similar screen) can be used as well, and would require a straightforward modification
to our forward rendering process.
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Fig. 4. Ourinverse rendering pipeline. We optimize for latent vectors w* and
£, that feed into the layers of the StyleGAN2-based Material GAN model. The
Material GAN generator produces material maps (diffuse albedo, normal,
roughness and specular albedo), that are rendered under the captured
view/light settings. Finally, the renderings and measurements are compared
using a combination of L2 and perceptual losses.

where £ is a loss function that measures the difference between the
captured images, I; and the renderings generated from the estimated
SVBRDF parameters, R(0; L, C;).

4.1 Incorporating the Material GAN prior

Eq. (1) is, in general, a challenging optimization to solve due to
its under-constrained nature. Given a small number of input mea-
surements, the optimization can overfit to the input, producing
implausible maps that do not generalize to novel views and lighting.
To overcome this challenge, we leverage the Material GAN prior:
instead of directly optimizing for the parameter maps 0, we can
optimize for a vector u in the Material GAN latent space and map (de-
code) this latent vector back into material maps 6. The optimization
problem then becomes:

u* =argmin, Y5 | L(R(G(u); L;, Ci), Ip), @)

where G is the learned Material GAN generator. Given that both
G and R are differentiable operations, Eq. (2) can be optimized
via gradient-based methods to estimate u* and the corresponding
SVBRDF maps G (u*). The above operation is similar to recent
work on embedding images in the StyleGAN latent space [Abdal
et al. 2019a,b]. The key difference is that we do not match material
parameters directly, but evaluate their error through the rendering
operator R(-). To our knowledge, ours is the first approach to use a
GAN latent space in combination with a rendering operator.

Loss function. We optimize Eq. 2 using a combination of a standard
per-pixel L2 loss and a “perceptual loss” [Johnson et al. 2016] that
has been shown to produce sharper results in image synthesis tasks:

L(LI) = /11‘£pixe1 + A2 Lpercepts 3)

The perceptual loss is defined as:

t 2
Lpercept(I, I’) = ;1':1 errcep ||Fj (I) - Fj (I,)l 2 (4)
where Fy, - - -, F4 are the flattened feature maps corresponding to the

outputs of VGG-19 layers conv1_1, conv1_2, conv3_2, and conv4_2
from a pre-trained VGG network [Simonyan and Zisserman 2015].
See section 4.3 for more details.

Optimization details. We convert the TensorFlow-trained Materi-
alGAN model to PyTorch, in which our optimization framework is
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Fig. 5. Embedding SVBRDFs into different latent spaces. We take
two synthetic SVBRDF material maps (top) and embed them into different
latent spaces with and without the noise space (second—fourth rows). For
illustration, we also embed the maps into a pure-noise space only; this is
unable to recover the color at all.

implemented. We optimize Eq. 2 using the Adam optimizer in Py-
Torch, with a learning rate of 0.01. We set all other hyper-parameters
to default values. Now that our basic optimization framework is set
up, there remain two key ingredients to implement our GAN-based
optimization framework (Eq. (2)): (i) the choice of latent space that
we optimize u over, and (ii) our optimization strategy to minimize
the objective function. In the following sections, we describe our
approach, along with an empirical analysis of these design choices.

4.2 Latent space

As discussed in Sec. 3.1, StyleGAN2 (and consequently, Material-
GAN) has a number of potential latent spaces. In particular, Materi-
alGAN uses three different style latent spaces: the input latent code
z € Z, the intermediate latent code w € ‘W and per-layer styles
wt € W*. StyleGAN2 also injects noise £ € N into every layer of
the network to generate stochastic variations. The typical forward
generation process of the GAN only uses z, with w being generated
from z via a mapping network, and w* being generated from w via
affine transformations. However, Abdal et al. [2019b] note that the
space of Z is too restrictive for accurate embedding of faces or other
content into the GAN space. In other words, given the image of a
human face, it is generally impossible to find a single z € Z such
that the generated image closely matches the target. This remains
the case even when extending the space to ‘W, i.e., when searching
for aw instead of a z. The space W™, on the other hand, offers much
stronger representative power. Our experiments on embedding ma-
terial maps into Material GAN demonstrate that optimizing for ‘W*
is also needed for Material GAN to accurately reproduce input maps.
We demonstrate this in Figure 5, via an experiment where we embed
a given material (with known material maps) into Material GAN. As
shown in rows (2) and (3), maps generated by optimizing w* € W*
contain more detail compared to those usingw € W.

On the other hand, some small-scale details are still missing.
In fact, according to our experiments, only colors and large-scale
features can be captured by the W* space. For depicting high-
frequency patterns, as demonstrated in rows (4) and (5) of Figure
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Fig.6. Optimization strategy. We evaluated three optimization strategies:
(1) optimize w* first, then &; (2) jointly optimize w* and &; (3) alternate
between w* and £ every 10 iterations. Strategy (1) causes artifacts during
the optimization, and (2) brings more noise into the maps. Particularly, for
textures with small features, (1) and (2) may drive the optimization to bad
local minima while the per-pixel loss could still be very low. Strategy (3)
appears to be a good compromise, giving us better results in most cases.
Note: “Opt.” means an optimized input view or its re-rendering, i.e. not a
novel view.

5, we need to go even further and optimize the noise vector & (in-
stead of drawing it from multi-variate normal distributions). We
note that optimizing for the noise component is even more impor-
tant in Material GAN, compared to embedding faces in StyleGAN
or StyleGAN2. We suspect that this is because with human faces,
the distinction between large-scale features (e.g., eyes, noise, and
mouth) and small-scale features (e.g., winkles) is very prominent,
allowing the ‘W* space to focus mostly on the large-scale features
while leaving the small-scale ones to the noise vector & € N. In
our case, the boundary between large-scale and small-scale material
features is much less distinct. The physical scales of real-world ma-
terials varies in a continuous fashion, making it virtually impossible
to assign them to only one of the W* and N spaces. We hypoth-
esize that for this reason, we need to focus on both W* and N
to achieve high-quality reconstruction of SVBRDF maps. Based on
these empirical observations, estimating SVBRDF parameter maps
from photographs using our pre-trained Material GAN boils down
to solving the following optimization:

k
u = argmin ) LRGW,E); L,C)L).  (5)
wrteW+ EeN 5

Since there are two variables w" and £ that behave in a correlated
fashion, a proper optimization strategy is crucial to achieve high-
quality results. We now discuss our alternating two-step optimiza-
tion method.

4.3 Optimization strategy

Abdal et al. [2019a; 2019b] recommended using a two-stage setting
by first optimizing w* (with £ fixed) and then & (with w* fixed). In
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SVBRDF maps

Fig. 7. Noise optimization vs. post-refinement. (1) Optimize w* and
£ but no post-refinement; (2) Optimize w* only but with post-refinement.
This shows that £ takes an important role; optimizing only w* has too
little expressive power and converges to suboptimal solutions, which post-
refinement cannot fix (see especially normal maps in (2)).

our case, this approach does work in some cases but is not always
the top-performing option. In addition to this strategy, we propose
two alternatives, leading to three different optimization schemes:

(1) Strategy 1: Optimize w” first, then optimize &;

(2) Strategy 2: Jointly optimize both w" and &;

(3) Strategy 3: Alternatively optimize w* and £ for a small num-
ber (for example, 10) of iterations each.

Figure 6 shows a comparison of these strategies. All of them give
reasonable results, but Strategy 1 is better suited for materials with
strong large-scale features. Strategy 2 provides the fastest conver-
gence because it allows the noise vector £ to be modified from the
very beginning. This, however, generally causes the optimization to
use & for encoding higher-level features and is prone to overfitting.
Finally, Strategy 3—a hybrid of Strategies 1 and 2—behaves in a more
robust fashion than either of the previous strategies in most cases.
We use Strategy 3 for all the results in our paper. Additionally, our
experiments indicate that it is desirable to use different VGG layer
weights for the optimization of w* and &. The weights we are using
are, forw*: [1/512,1/512,1/128,1/64]; for &: [1/64,1/64,1/256,1/512].

Noise optimization vs. post-refinement. Instead of optimizing la-
tent spacew? with noise €, another option is to apply post-refinement
(that is, pixel-space optimization without any latent space) after op-
timizing w* only. However, the space w” is too small to realistically
match per-pixel detail: if optimizing w* only, the resulting maps
have significant artifacts. Adding post-refinement to such a result
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(b) Low roughness initialization
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Fig. 8. Visualization of our constant initializations. We initialize our
optimization with the two materials shown here and pick the result with
the lowest final loss. (This applies in cases where we do not use the result
from Deschaintre et al. as initialization, as detailed in the results section and
supplementary materials.) Left: Material maps generated from the mean
latent vector w. Right: An additional low roughness, specular initialization.

essentially becomes per-pixel optimization (with little regulariza-
tion), which tends to to work poorly with a small number of inputs.
Optimizing & offers more powerful regularization, as the noise is
inserted into all layers of the generator, rather than just appended
at the end (like post-refinement). We show two failure examples in
Figure 7, where optimizing w* leads to unsatisfactory texture maps.

4.4 Initialization

We find that our method is robust to the initialization of the latent
vectors. We experimented with using the same initial configuration—
represented by the material produced by the mean w of our GAN
training data (see Figure 8(a))—and found that is works well for most
of the materials we tried (both synthetic and real). However, this
initialization represents a material with a high roughness (reflecting
a bias in our training data) and sometimes leads to errors when
fitting highly specular / low roughness materials. Therefore, we
add an additional low roughness initialization (see Figure 8(b)).
In practice, given the captured images, we run our Material GAN
optimization starting from both initializations and retain the result
with the lowest optimization error of Eq. (3). All of our results in
this paper followed this scheme.

5 RESULTS

Only a small subset of our results fits into the paper. Please
see our supplemental material and video for more results.

Test data. For synthetic tests, we use several examples from the
test set of Deschaintre [2018], as well as some from the Adobe Stock
dataset [Li et al. 2018]. This gives a total of 39 synthetic results.
For our real results, we use a hand-held mobile phone to capture
images with flash, resulting in a collocated camera and point light
illumination. Similar to previous work [Deschaintre et al. 2019; Hui
etal. 2017], we use a paper frame to register the multiple images. We
add markers to the frame to improve camera pose estimation. Using
this process, we capture 28 physical samples with nine images per
material, roughly covering the sample with 3 X 3 specular highlights.
Unless otherwise specified, all our results use seven images for
inverse-rendering optimizations and the remaining two (under novel
lighting) for evaluating the results.

Material GAN: Reflectance Capture using a Generative SVBRDF Model + 254:7

SVBRDF maps

Opt. Novel views

Ui

Fig.9. SVBRDF reconstruction on synthetic data. We demonstrate re-
sults on synthetic SVBRDFs, one from [Deschaintre et al. 2019] (top) and
one from the Adobe Stock Material dataset (bottom). We are able to accu-
rately reconstruct these materials from 7 input images (one input shown).
Many more synthetic results are available in supplementary materials.

Inverse-rendering performance. Our optimization takes about 2
minutes to complete 2000 iterations on a Titan RTX GPU. In many
cases, the results converge after 500 iterations, but we use 2000
everywhere for simplicity.

Testing on synthetic data. Figure 9 contains two synthetic results
using our method, showing a close match both in maps and in novel
view renderings. For more results, please refer to supplemental
materials. We note that all methods perform better on synthetic
data than on real data, possibly because of the exact BRDF model
match and perfect calibration, and also because the synthetic test
set, while distinct from the training set, is relatively similar in style.

5.1 Comparison with prior work on real data

Here we compare our method and Gao et al. [2019]. For more re-
sults and comparisons, including with Deschaintre et al. [2019], and
including with and without initialization for ours and Gao’s method,
please refer to supplemental materials. We show 10 real examples
from our cell phone capture pipeline in Figure 10. Note that Gao’s
method is significantly dependent on initialization, while the same
is not true for our method. Therefore, in this figure, we show Gao’s
result with initialization by Deschaintre et al. [2019], while our re-
sult is shown without initialization. Furthermore, note that we are
initializing Gao’s method with the 2019 multi-input method by De-
schaintre, which is a better initialization than the 2018 single-input
method. Thus the baseline we are comparing against is, strictly
speaking, even higher than what is published in Gao et al., and
combines the two best methods published at this time. Generally,
we find that our method produces cleaner maps and is less prone
to overfitting (burn-in) than Gao’s, while producing more accurate
re-renderings under original and novel lighting. Table 1 shows a
quantitative evaluation of the re-rendering quality on novel lighting.
As these novel views would be hard to match pixel-wise using any
method, as they have never been observed, we use a perceptual
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Fig. 10. SVBRDF reconstruction on real data. We reconstruct SVBRDF maps from 7 inputs, and compare the resulting maps and images rendered under 2
novel views. Gao’s method [2019] initialized with Deschaintre’s [2019] direct predictions (denoted as “[Gao19]+”) tends to have complex reflectance burnt
into the specular albedo map, leading to inaccurate predictions under novel views. Our method with simple initializations, in contrast, is less prone to such
burn-ins and generally produces more accurate renderings under novel views. Please refer to Table 1 for more information on the quality of these renderings.
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Fig. 11. Performance statistics of Gao [2019] and our method. For each technique, we compute (i) the Learned Perceptual Image Patch Similarity (LPIPS)
metric between renderings of the output SVBRDF maps and the reference images for 28 real and 39 synthetic examples; and (ii) the root-measure-square
error (RMSE) of the inferred maps for the synthetic examples. For both metrics, a lower score indicates a better accuracy. Using identical initializations, our
technique (“Ours” and “Ours+”) outperforms Gao’s (“[Gao19]” and “[Gao19]+”) consistently for both real and synthetic examples, as demonstrated in the
top and the middle row. Furthermore, our technique with constant initializations (“Ours”) has a similar performance with Gao’s method initialized using
Deschaintre’s [2019] direct predictions (“[Gao19]+”) on the synthetic examples and outperforms the latter on the real examples, as shown on the bottom.

Table 1. Accuracy of the novel-view renderings shown in Figure 10 measured
using the Learned Perceptual Image Patch Similarity (LPIPS) metric where
our method produces better predictions than Gao’s [2019] in most cases.

Material Ours [Gao19]+ Material Ours [Gao19]+

wall-plaster-white 0.071  0.132  plastic-red-carton 0.095  0.166
leather-blue 0.146  0.356 bathroomtile2 0.225  0.231
wood-walnut 0.226  0.252 wood-tile 0.202  0.192
book1 0.147 0.318 book2 0.042 0.122

giftbagl 0.183  0.218 cards-red 0.059  0.092

method, specifically the Learned Perceptual Image Patch Similarity
(LPIPS) metric [Zhang et al. 2018] (lower is better). Note that our
method (without initialization by Deschaintre’s method) produces
better scores for novel views than Gao’s method (with initializa-
tion) for most images; even in the case where our LPIPS score is
worse, our maps still look more plausible overall. We also report
quantitative evaluations (histograms) for our entire set of results
(see Figure 11). For synthetic data, we compare the RMSE of all
predicted maps (diffuse albedo, normal, roughness, specular albedo),
as we do know the ground truth for them. For both synthetic and
real data, we compare the LPIPS scores on novel lighting. We use a
+ sign to indicate initialization by Deschaintre et al. In the top row,
we compare both methods without initialization by Deschaintre’s
method, while in the middle row, both methods are initialized, and
in the bottom row, we compare our method without initialization
to Gao’s with initialization. Generally, we find that if both methods
are initialized the same way, our method outperforms Gao’s. Even
in the last row, our performance is comparable on synthetic data
(worse on normal map and better on diffuse/specular maps) and still
better on real data overall.

Note about Deschaintre et al. We find that the results from [De-
schaintre et al. 2019] have much less accurate re-rendering than
either ours or Gao’s method, as they are not doing any optimization
to precisely fit the target images. The mismatches we observe are

definitely not due to simple scaling or gamma correction issues, as
that would be consistent across examples; rather, we find that the
method performs much better on synthetic examples that match
the visual style of its training set. On the other hand, their method
is fast and results tend to be clean and artifact-free, so they are very
suitable for initialization of optimization methods.

5.2 Additional comparisons

Optimization with different initializations. In Figure 12, we com-
pare our method to Gao’s with and without initialization by De-
schaintre’s method in all 4 combinations, on a synthetic and a real
example. This shows that Gao’s method more significantly depen-
dent on good initialization that ours (even though our method can
still occasionally benefit).

Post-refinement. In general, the quality of our maps is sufficient
after using our Material GAN-based optimization. However, Gao’s
method introduced a post-refinement step, where the maps are fur-
ther optimized without any latent space, and with at most minor reg-
ularization. Therefore, we also implement a similar post-refinement
step. However, like good initialization, this post-refinement makes
less of a difference in our method, and Gao’s method is more de-
pendent on it, as it produces significantly blurry maps without it.
This is shown in Figure 13; note the difference in sharpness of the
maps.

Optimization with different numbers of input images. While most
of our results are shown with 7 inputs, using two additional inputs
for novel lighting evaluation, our method does work with various
numbers of input images. We show 3 synthetic examples in Fig-
ure 14, with different numbers of inputs from 1 to 25. All the three
examples are the same as used in Gao’s work. The errors of both
reconstructed SVBRDF maps and novel-view renderings generally
decrease with more input images, as is expected for an inverse-
rendering method. In Figure 15, we compare real capture results
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SVBRDF maps Novel views
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Fig. 12. SVBRDF results with different initialization Unlike Gao’s method, ours is less strongly dependent on a good initialization from Deschaintre’s
method [2019]. In most of cases, starting from simple texture maps (given by our constant initializations) is already good enough to converge to a clean
solution. We show all combinations (with and without good initializations) for both methods, for one synthetic and one real example, where techniques
initialized with [Deschaintre] are denoted with the suffix “+” (i.e., “Ours+” and “[Gao19]+”). Note the failure of Gao’s method without good initializations (i.e.,

“Gao19”).

with 1, 3, and 7 inputs, with and without initialization by Deschain-
tre’s method, and also include Gao’s results for 3 and 7 inputs (with
initialization). Our result remains plausible with 3 inputs, though
artifacts do get reduced with more inputs. For all numbers of inputs,
our result (with or without initialization) tends to be cleaner than
Gao’s.

Editing operations. An additional advantage of the StyleGAN-
based latent space is the ability to achieve semantically meaningful
operations such as morphing, by interpolating two or more par-
ent latent codes to create a hybrid offspring material. Morphing in
latent space often preserves semantic features qualitatively better
than naive interpolation in pixel space. Figure 16 and the supple-
mental video show morphing of a few real materials using linear
interpolation in latent space, compared to the corresponding naive
interpolation (linear in pixel space).

6 CONCLUSION AND FUTURE WORK

Discussion and limitations. While we believe our framework im-
proves upon the state of the art, there are also some limitations. Our
current BRDF model is shared by previous work, but certain com-
mon effects (layering on book covers, subsurface fiber scattering in
woods, anisotropy in fabrics) are not correctly captured by it. An
extension of our generative model and rendering operator would be

ACM Trans. Graph., Vol. 39, No. 6, Article 254. Publication date: December 2020.

possible, though the key challenge is finding high-quality training
data for these effects.

Our assumption of almost flat samples will fail for materials
with strong relief patterns, and will produce blurring or ghosting
if there are obvious parallax effects in the aligned captured images.
Strong self-shadowing or inter-reflections are also not currently
handled. Solving for height instead of normal, with a more advanced
rendering operator, may be able to resolve parallax effects and to
correctly predict (and undo) shadowing effects from strong height
variations.

Furthermore, more precise calibration may improve our accura-
cycd. This would likely require knowledge of the cell phone hard-
ware, and/or pre-calibration of its properties (e.g. flash light falloff,
lens vignetting, and color processing properties).

Conclusion. We propose a novel method for acquiring SVBRDFs
from a small number of input images, typically 3 to 7, captured using
a hand-held mobile phone. We use an optimization framework that
leverages a powerful material prior, based on a generative network,
Material GAN, trained to synthesize plausible SVBRDFs. Material-
GAN learns correlations in SVBRDF parameters and provides local
and global regularization to our optimization. This produces high-
quality SVBRDFs that accurately reconstruct the input images, and
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Fig. 13. Per-pixel post-refinement. Unlike Gao’s method, post-refinement via per-pixel optimization makes less of a difference in our method. Without
post-refinement, [Gao19]+ (i.e., Gao’s method initialized with Deschaintre’s [2019] direct predictions) usually produces blurry results, as shown in the row
marked as “[Gao19]+ (NR)”. Our method, on the contrary, does not rely nearly as heavily on post-refinement: Without it, our results are already quite sharp
(see “Ours (NR)”), thanks to the generative power of our Material GAN. A zoomed-in version is attached below each SVBRDF map and novel-view image.

because of our Material GAN prior, lie on a plausible material man-
ifold. As a result, our reconstructions generalize better to novel
views and lighting than previous state-of-the-art methods.

We believe that our work is only a first step toward GAN-based
material analysis and synthesis and our experiments suggest many
avenues for further exploration including improving material la-
tent spaces and optimization techniques using novel architectures
and losses, learning disentangled and editable latent spaces, and
expanding beyond our current isotropic BRDF model.

ACKNOWLEDGMENTS

This research was started during Yu Guo’s internship at Adobe Re-
search. We thank TJ Rhodes for help with material capture hardware
setup. This work was supported in part by NSF IIS-1813553.

REFERENCES

Rameen Abdal, Yipeng Qin, and Peter Wonka. 2019a. Image2StyleGAN++: How to Edit
the Embedded Images? arXiv:1911.11544

Rameen Abdal, Yipeng Qin, and Peter Wonka. 2019b. Image2StyleGAN: How to Embed
Images Into the StyleGAN Latent Space? arXiv:1904.03189

Miika Aittala, Timo Aila, and Jaakko Lehtinen. 2016. Reflectance Modeling by Neural
Texture Synthesis. ACM Trans. Graph. 35, 4 (2016), 65:1-65:13.

Miika Aittala, Tim Weyrich, and Jaakko Lehtinen. 2013. Practical SVBRDF Capture in
the Frequency Domain. ACM Trans. Graph. 32, 4 (2013), 110:1-110:12.

Miika Aittala, Tim Weyrich, and Jaakko Lehtinen. 2015. Two-shot SVBRDF Capture for
Stationary Materials. ACM Trans. Graph. 34, 4 (2015), 110:1-110:13.

Muhammad Asim, Ali Ahmed, and Paul Hand. 2019. Invertible generative models for
inverse problems: mitigating representation error and dataset bias. arXiv preprint
arXiv:1905.11672 (2019).

Ashish Bora, Ajil Jalal, Eric Price, and Alexandros G. Dimakis. 2017. Compressed
Sensing using Generative Models (Proceedings of Machine Learning Research), Vol. 70.
537-546.

Valentin Deschaintre, Miika Aittala, Fredo Durand, George Drettakis, and Adrien
Bousseau. 2018. Single-image SVBRDF Capture with a Rendering-aware Deep
Network. ACM Trans. Graph. 37, 4 (2018), 128:1-128:15.

Valentin Deschaintre, Miika Aittala, Frédo Durand, George Drettakis, and Adrien
Bousseau. 2019. Flexible SVBRDF Capture with a Multi-Image Deep Network.
Computer Graphics Forum 38, 4 (2019).

Chris Donahue, Julian McAuley, and Miller Puckette. 2018. Synthesizing Audio with
Generative Adversarial Networks. CoRR abs/1802.04208 (2018). arXiv:1802.04208

Yue Dong. 2019. Deep appearance modeling: A survey. Visual Informatics 3, 2 (2019),
59-68.

ACM Trans. Graph., Vol. 39, No. 6, Article 254. Publication date: December 2020.


http://arxiv.org/abs/1911.11544
http://arxiv.org/abs/1904.03189
http://arxiv.org/abs/1802.04208

254:12 «  Yu Guo, Cameron Smith, Milo§ Hasan, Kalyan Sunkavalli, and Shuang Zhao

SVBRDF maps Novel-view renderings

SVBRDF maps

SVBRDF maps Novel-view renderings

02 —4— Ours 10 —e— Ours 4 —— Ours —e— Ours 02 —&— Ours 0.8 —e— Ours
—a— Ours+ —o— Ours+ \ —&— Ours+ —o— Ours+ —a— Ours+ —o— Ours+
—&— [Gao19]+ —o— [Gao19]+ —&— [Gaol9]+ —o— [Gaol9)+ A —o— [Gao19)+

w » w @ w 0

9 |4 al \ & & |4

= a = \ a = a

& 5 H 5 z 5

GT Novel

34 Novel-view renderings

15 913172125
# of inputs

1 5 9 13172125

# of inputs # of inputs

Ours+ Ours

[Gao19]+

0.
15 913172125

15 913172125
# of inputs

15 913172125
# of inputs

15 913172125
# of inputs

Fig. 14. Performance using different numbers of input images (synthetic data). The quality of recovered SVBRDF maps, as demonstrated by the plots,
generally improves with more input images for both our and Gao’s [2019] methods. Our method with constant (Ours) and neural (Ours+) initializations are
comparable or better than Gao’s ([Gao19]+) with neural initialization [Deschaintre et al. 2019] . For a highly specular material shown on the right, although
the LPIPS metric computed using renderings under 5 novel views of our results is similar to that of Gao’s, ours better preserve the specular highlight. For each
material, all the renderings including the references (GT Novel) are generated using one of the 5 novel views.

Yannick Francken, Tom Cuypers, Tom Mertens, and Philippe Bekaert. 2009. Gloss and
Normal Map Acquisition of Mesostructures Using Gray Codes. In Advances in Visual
Computing, Vol. 5876. Springer, 788-798.

Duan Gao, Xiao Li, Yue Dong, Pieter Peers, Kun Xu, and Xin Tong. 2019. Deep inverse
rendering for high-resolution SVBRDF estimation from an arbitrary number of
images. ACM Trans. Graph. 38, 4 (2019).

Andrew Gardner, Chris Tchou, Tim Hawkins, and Paul Debevec. 2003. Linear Light
Source Reflectometry. ACM Trans. Graph. 22, 3 (2003), 749-758.

Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. 2015. A Neural Algorithm of
Artistic Style. arXiv:1508.06576

L. A. Gatys, A. S. Ecker, and M. Bethge. 2016. Image Style Transfer Using Convolutional
Neural Networks. In CVPR 2016. 2414-2423.

Abhijeet Ghosh, Tongbo Chen, Pieter Peers, Cyrus A. Wilson, and Paul Debevec. 2009.
Estimating Specular Roughness and Anisotropy from Second Order Spherical Gra-
dient Illumination. In EGSR 2009. 1161-1170.

Tan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. 2014a. Generative Adversarial Nets. In
Advances in Neural Information Processing Systems 27. 2672-2680.

Tan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. 2014b. Generative Adversarial Nets. In
Advances in Neural Information Processing Systems 27. 2672-2680.

Dar’ya Guarnera, Giuseppe Claudio Guarnera, Abhijeet Ghosh, Cornelia Denk, and
Mashhuda Glencross. 2016. BRDF Representation and Acquisition. Computer
Graphics Forum (2016).

Xun Huang and Serge Belongie. 2017. Arbitrary Style Transfer in Real-time with
Adaptive Instance Normalization. In ICCV 2017.

Zhuo Hui, Kalyan Sunkavalli, Joon-Young Lee, Sunil Hadap, Jian Wang, and Aswin C.
Sankaranarayanan. 2017. Reflectance Capture Using Univariate Sampling of BRDFs.
In ICCV 2017.

Justin Johnson, Alexandre Alahi, and Fei-Fei Li. 2016. Perceptual Losses for Real-Time
Style Transfer and Super-Resolution. In ECCV 2016.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. 2018a. Progressive Growing
of GANs for Improved Quality, Stability, and Variation. In ICLR 2018.

Tero Karras, Samuli Laine, and Timo Aila. 2018b. A Style-Based Generator Architecture
for Generative Adversarial Networks. arXiv:1812.04948

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila.
2019. Analyzing and Improving the Image Quality of StyleGAN. arXiv:1912.04958

Xiao Li, Yue Dong, Pieter Peers, and Xin Tong. 2017. Modeling Surface Appearance
from a Single Photograph Using Self-Augmented Convolutional Neural Networks.
ACM Trans. Graph. 36, 4 (2017), 45:1-45:11.

ACM Trans. Graph., Vol. 39, No. 6, Article 254. Publication date: December 2020.

Xiao Li, Yue Dong, Pieter Peers, and Xin Tong. 2019. Synthesizing 3d shapes from
silhouette image collections using multi-projection generative adversarial networks.
In CVPR 2019. 5535-5544.

Zhenggin Li, Kalyan Sunkavalli, and Manmohan Chandraker. 2018. Materials for
Masses: SVBRDF Acquisition with a Single Mobile Phone Image. In ECCV 2018,
Vol. 11207. 74-90.

Stephen R. Marschner, Stephen H. Westin, Eric P. F. Lafortune, Kenneth E. Torrance,
and Donald P. Greenberg. 1999. Image-Based BRDF Measurement Including Human
Skin. In Eurographics Workshop on Rendering.

Wojciech Matusik, Hanspeter Pfister, Matt Brand, and Leonard McMillan. 2003. A
Data-Driven Reflectance Model. ACM Trans. Graph. 22, 3 (2003), 759-769.

Addy Ngan, Frédo Durand, and Wojciech Matusik. 2005. Experimental Analysis of
BRDF Models. In EGSR 2005. 117-226.

Daniel O’Malley, John K Golden, and Velimir V Vesselinov. 2019. Learning to regularize
with a variational autoencoder for hydrologic inverse analysis. arXiv preprint
arXiv:1906.02401 (2019).

Alec Radford, Luke Metz, and Soumith Chintala. 2015. Unsupervised Representa-
tion Learning with Deep Convolutional Generative Adversarial Networks. CoRR
abs/1511.06434 (2015). arXiv:1511.06434

Peiran Ren, Jiaping Wang, John Snyder, Xin Tong, and Baining Guo. 2011. Pocket
Reflectometry. ACM Trans. Graph. 30, 4 (2011), 45:1-45:10.

Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Networks for
Large-Scale Image Recognition. In ICLR 2015.

Sergey Tulyakov, Ming-Yu Liu, Xiaodong Yang, and Jan Kautz. 2018. MoCoGAN:
Decomposing Motion and Content for Video Generation. In CVPR 2018.

Bruce Walter, Stephen R. Marschner, Hongsong Li, and Kenneth E. Torrance. 2007.
Microfacet Models for Refraction Through Rough Surfaces. EGSR 2007 (2007),
195-206.

Tim Weyrich, Jason Lawrence, Hendrik PA Lensch, Szymon Rusinkiewicz, and Todd
Zickler. 2009. Principles of appearance acquisition and representation. Now Publishers
Inc.

Zexiang Xu, Jannik Boll Nielsen, Jiyang Yu, Henrik Wann Jensen, and Ravi Ramamoorthi.
2016. Minimal BRDF Sampling for Two-Shot near-Field Reflectance Acquisition.
ACM Trans. Graph. 35, 6 (2016), 188:1-188:12.

Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. 2018.
The Unreasonable Effectiveness of Deep Features as a Perceptual Metric. CoRR
abs/1801.03924 (2018).

Jun-Yan Zhu, Philipp Krahenbiihl, Eli Shechtman, and Alexei A. Efros. 2016. Generative
Visual Manipulation on the Natural Image Manifold. arXiv:1609.03552


http://arxiv.org/abs/1508.06576
http://arxiv.org/abs/1812.04948
http://arxiv.org/abs/1912.04958
http://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1609.03552

Material GAN: Reflectance Capture using a Generative SVBRDF Model « 254:13

SVBRDF maps Novel views SVBRDF maps Novel views

; .

Ours (1)

Ours (3)

Ours (7)

Ours+ (3) Ours+ (1)

Ours+ (7)

[Gao19]+ (7) [Gao19]+ (3) [Gaol9]+ (1)

Fig. 15. Performance using different numbers of input images (real data). The quality of SYBRDF maps recovered by our method generally improves
with more input images under both constant initialization (see “Ours”) and Deschaintre [2019] initialization (see “Ours+”).
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Fig. 16. Material interpolation. Renderings of interpolations between two SVBRDFs recovered from real images using our method. Results on the left and
right columns are obtained, respectively, using our GAN latent space and naive linear interpolation.
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