
To Not Miss the Forest for the Trees - A Holistic Approach for
Explaining Missing Answers over Nested Data
Ralf Diestelkämper

University of Stuttgart - IPVS, Germany
ralf.diestelkaemper@ipvs.uni-stuttgart.de

Seokki Lee
University of Cincinnati, USA

lee5sk@ucmail.uc.edu

Melanie Herschel
University of Stuttgart - IPVS, Germany

National University of Singapore, Singapore
melanie.herschel@ipvs.uni-stuttgart.de

Boris Glavic
Illinois Institute of Technology, USA

bglavic@iit.edu

ABSTRACT
Query-based explanations for missing answers identify which op-
erators of a query are responsible for the failure to return a missing
answer of interest. This type of explanations has proven useful,
e.g., to debug complex analytical queries. Such queries are frequent
in big data systems such as Apache Spark. We present a novel ap-
proach to produce query-based explanations. It is the first to support
nested data and to consider operators that modify the schema and
structure of the data (e.g., nesting, projections) as potential causes of
missing answers. To efficiently compute explanations, we propose a
heuristic algorithm that applies two novel techniques: (i) reasoning
about multiple schema alternatives for a query and (ii) re-validating
at each step whether an intermediate result can contribute to the
missing answer. Using an implementation on Spark, we demon-
strate that our approach is the first to scale to large datasets while
often finding explanations that existing techniques fail to identify.

CCS CONCEPTS
• Information systems → Data provenance; MapReduce-
based systems;MapReduce languages; Semi-structured data.

KEYWORDS
query-based explanations; why-not provenance; nested data
ACM Reference Format:
Ralf Diestelkämper, Seokki Lee, Melanie Herschel, and Boris Glavic. 2021.
To Not Miss the Forest for the Trees - A Holistic Approach for Explaining
Missing Answers over Nested Data. In Proceedings of the 2021 International

Conference on Management of Data (SIGMOD ’21), June 20–25, 2021, Virtual

Event, China. ACM, , 13 pages. https://doi.org/10.1145/3448016.3457249

1 INTRODUCTION
Debugging analytical queries in data-intensive scalable comput-
ing (DISC) systems such as Apache Spark is a tedious process.
Query-based explanations for missing answers can aid users in this
process by narrowing down the debugging task to parts of the query

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGMOD ’21, June 20–25, 2021, Virtual Event, China

© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8343-1/21/06.
https://doi.org/10.1145/3448016.3457249

name address1 address2
Peter

Sue

city year
NY 2010
LA 2019
LV 2017

city year
LA 2010
SF 2018

city year
LA 2019
NY 2018

city year
LA 2019
NY 2018

city nList
LA name

Sue

(a) Sample input data

name address1 address2
Peter

Sue

city year
NY 2010
LA 2019
LV 2017

city year
LA 2010
SF 2018

city year
LA 2019
NY 2018

city year
LA 2019
NY 2018

city nList
LA name

Sue

(b) Sample output

Flatten
address2

Faddress2

Selection
year ≥ 2019

!year≥2019

Projection
name, city

πname,city

Nesting
name → nList
"name → nList

(c) Operator pipeline for sample program
Figure 1: Given person input data (a), we obtain a list of cities
with associated persons (b) when running a Spark program
that corresponds to the operator pipeline shown in (c).

that are responsible for the failure to compute an expected answer.
In this work, we present an approach for producing query-based
explanations and implement this approach on Spark. Our approach
is defined for a nested relational algebra for bags [19]. This allows
us to cover a large variety of practical queries expressible in big
data systems, like in [1].

In general, missing answers approaches have three inputs: a
why-not question specifying which missing results are of interest, a
query, and the input data. Three categories of explanations have
been considered [21]: (i) instance-based explanations attribute miss-
ing answers to missing input data; (ii) query-based explanations
pinpoint which parts of the query, typically at the granularity of
individual operators, cause the derivation of the expected results
to fail; and (iii) refinement-based explanations produce a rewrit-
ten query that returns the missing answer. Our approach returns
query-based explanations that consist of a set of operators. Each
explanation indicates a set of operators that should be fixed for the
missing answers to be returned.

Example 1. Each person tuple in Figure 1a contains two nested

address relations (cities with associated years). These may correspond

to work and home addresses. Figure 1c shows a query that returns

cities that are the workplace of at least one person since 2019. For

each such city, the query returns the list of persons that work in

this city. The query is composed of four operators (explained further

below). The query’s result over the person table consists of a single

nested tuple (Figure 1b). An analyst may wonder why NY is not in the

https://doi.org/10.1145/3448016.3457249
https://doi.org/10.1145/3448016.3457249

result and pose this concern as a why-not question. Multiple query-

based explanations exist. For instance, the selection year ≥ 2019
prevents the tuple (NY, {(Sue)}) that matches the why-not question to

appear in the result. Thus, one explanation for the missing answer

is that the selection operator needs to be fixed. Another possibility

is that the analyst assumed address2 stores work addresses, while
in fact, address1 does. However, given the data in address1, this is
not satisfactory to explain the missing answer, as no tuple featuring

NY has a sufficiently recent year. Thus, an explanation involving

a “misconfigured” flattening operation also requires adjusting the

selection, which results in an explanation that includes both operators.

The idea of providing operators as query-based explanations
for a missing answer is at the core of lineage-based approaches [6,
9, 11, 20]. They identify compatible tuples in the input data that
contain the values necessary to produce the missing answers and
trace them through the query to determine picky operators. These
operators filter successors of compatible tuples. The rationale is that
it may be possible to change the parameters of a picky operator
such that it no longer filters the successors of compatible tuples.

Example 2. Applying the lineage-based explanation approach to

our example for the why-not question asking for NY, we identify tuple

(NY, 2018) nested in the address2 attribute of Sue as the only com-

patible tuple. When tracing this tuple through the query’s operators,

we observe that it is in the lineage of the flatten operator’s intermedi-

ate result. In other words, its successor passes this first operator and is

in the input of the subsequent selection. The selection’s result does not

include any successor of this compatible. Thus, we would identify the

selection as a picky operator and return it as an explanation.

Example 2 already makes non-trivial adaptations to state-of-the-
art solutions for relational data. It extends the set of supported
operators with flatten and nesting and assumes tracing support
for nested tuples. Straightforward extensions of existing solutions
would trace top-level tuples only and, thus, return no result at
all. More importantly, a purely lineage-based formulation of the
problem fails to find all query-based explanations from Example 1.

In this paper, we propose a novel formalization of query-based
why-not explanations for both flat and nested data models. We
further present a practical algorithm to compute such explanations,
which is implemented and evaluated in Apache Spark.
Why-not explanations for flat and nested data based on repa-
rametrizations. Alternative approaches to lineage-based why-not
explanations have been investigated recently [5, 10, 14]. However,
their practical use is limited since they only support conjunctive
queries over relational data or lack an efficient or effective algo-
rithm or implementation. Inspired by [14], our formalization is
based on reparameterizations of query operators. These are changes
to the parameters of one or more operators that “repair” the query
such that the missing answer is returned. We define an explanation
to be the set of operators modified by aminimal successful reparam-

eterizations (MSRs), which is a reparameterization that is minimal
wrt. to a partial order based on the number of operators that are
modified (we do not want to modify operators unless needed) and
the side effects of the reparameterization (“repairs” should avoid
changes to the original query result). Our formalization has two
advantages over past work: (i) it guarantees that neither false neg-
atives (operators not returned that have to be changed) nor false

positives are returned (operators part of explanations that do not
have to be changed); and (ii) explanations may include operators
such as projections and nesting (not supported by past work). Such
richer explanations require reasoning about the effect that changes
to the schema and (nesting) structure of intermediate results have on
the final query result. However, this precision and expressiveness
come at a price: computing MSRs is NP-hard and even restricted
cases that are in PTIME require further optimizations to be practical.
Ascalable heuristic algorithm leveraging schema alternatives
and revalidation. In light of this result, we explore a heuristic al-
gorithm that approximates explanations. Given the corners we cut
to be efficient, e.g., disregarding reparameterizations of equi-joins
to theta-joins that rely on cross products and are of little practical
interest in DISC systems, our algorithm may miss certain operators
and corresponding MSRs in its returned explanations. Even though
our algorithm is heuristic in nature and, like past approaches, uses
lineage and forward tracing of compatibles, it often finds expla-
nations they cannot produce. This is due to two novel technical
contributions: (i) Our algorithm reasons about multiple schema

alternatives. It traces changes of the schema and (nesting) struc-
ture of intermediate results caused by possible reparameterizations
of operators, e.g., flattening address1 instead of address2 in our
example. (ii) Like previous approaches, it uses compatibles to find
missing answers. In contrast to them, it revalidates compatibility
of successors of compatible tuples to avoid false positives (tuples
are incorrectly identified as compatible). All past lineage-based
approaches are subject to this issue that is exacerbated by consider-
ing nested data. For instance, in our example, the complete second
input tuple is initially flagged as compatible. After flattening, only
one of its two successors is compatible.
Implementation and evaluation.We implement our algorithm
in Apache Spark. We highlight design choices that, as experiments
validate, make our approach the first to scale to large datasets
(we evaluate on datasets several orders of magnitude larger than
previous work) and to offer the most expressive query-based expla-
nations to date for both relational and nested data models.

We review related work in Section 2 and introduce preliminaries
in Section 3. Our why-not explanations are covered in Section 4. We
present our heuristic algorithm in Section 5, our implementation
and evaluation in Section 6, and conclude in Section 7.

2 RELATEDWORK
Why-not explanations. Most closely related to our work are
query-based (e.g., [5, 6, 9–11]) and refinement-based (e.g., [38])
approaches for explaining missing answers. All these approaches
target flat relational data and, except for [4, 9], which target work-
flows, support queries limited to subclasses of relational algebra
plus aggregation. As we have seen in the introduction, these ap-
proaches do not trivially extend to handling nested data with a
richer set of operators and would return fewer explanations than
one may expect. This work is an extension of [14].
Query-by-example (QBE) and query reverse engineering
(QRE). Query-based explanations for missing answers are also
closely related to QBE [12, 13, 43] and QRE techniques [3, 24, 37, 39],
which generate a query from a set of input-output examples pro-
vided by the user. In contrast to QBE, our explanations start from a
given database, query, and output. Opposed to some approaches for

QRE, which return a query equivalent to an unknown query𝑄 , our
explanations apply on a given input query that is assumed to be
erroneous. Furthermore, in contrast to QBE, QRE, and refinement-
based approaches, our approach points out which operators need
to be modified rather than returning a complete query.
Query refinement (QR) and the empty answer problem (EAP).
QR is also related to our approach [30–32]. QR comes in two forms:
relax queries to return more results or contract queries to return
fewer results. The former addresses the EAP where a query fails
to produce any result, and the latter deals with queries that return
too many answers. QR is concerned with quantitative constraints,
i.e., how many answer are returned by the query result. In contrast,
our work addresses qualitative constraints: the query should return
answers with a certain structure and/or content.
Provenance in DISC systems. DISC systems natively support
nested data formats such as JSON, XML, Parquet, or Protocol Buffers.
Provenance capture for DISC systems has been studied in, e.g.,
[1, 15, 22, 23, 28, 42]. Why-not explanations are practically relevant
in these systems. However, we are not aware of any scalable solution
that computes why-not explanations.
Provenance for nested data. Since why-not explanations typi-
cally build on the provenance of existing results, our work also re-
lates to work on provenance models for nested data. Like [1, 15, 18],
we use a nested data model and query language (a nested relational
algebra for bags inspired by [19] in our case).

3 PRELIMINARIES AND NOTATION
3.1 Nested Relational Types and Instances
As in existing work on nested relations [19, 27], we define nested
relations as bags (denoted as {{·}}) of tuples. The attributes of a
nested relation are either of a primitive type (e.g., booleans or
integers), tuples type, or are themselves nested relations.

Definition 1 (Nested Relation Schema). Let L be an infinite

set of names. A nested type𝜏 is an element conforming to the grammar

shown below, where each 𝐴𝑖 ∈ L. A type R is called a nested relation
schema. A nested database schema D is a set of R types.

P := int | str | bool | . . . R :={{T }}
T :=⟨𝐴1 : A, . . . , 𝐴𝑛 : A⟩ A := P | T | R

Definition 2 (Nested Relation Instance). Let P denote the
domain of primitive type 𝑃 . We assume the existence of a special value

⊥ (null) which is a valid value for any nested type. We use type(𝐼)
to denote the type of an instance 𝐼 . The instances 𝐼 of type 𝜏 are de-

fined recursively based on the following rules for primitive types,

homogeneous bags, and tuples:
𝐼 ∈P

type(𝐼)=𝑃 ,
type(𝐼1)=𝜏,...,type(𝐼𝑛)=𝜏
type({{𝐼1,...,𝐼𝑛 }})={{𝜏 }} ,

type(𝐼1)=𝜏1,...,type(𝐼𝑛)=𝜏𝑛
type(⟨𝐴1:𝐼1,...,𝐴𝑛:𝐼𝑛 ⟩)=⟨𝐴1:𝜏1,...,𝐴𝑛:𝜏𝑛 ⟩ .

Example 3. All tuples of the nested relation shown in Figure 1a

are of type ⟨𝑛𝑎𝑚𝑒 : str, 𝑎𝑑𝑑𝑟𝑒𝑠𝑠1 : 𝜏𝑟 , 𝑎𝑑𝑑𝑟𝑒𝑠𝑠2 : 𝜏𝑟 ⟩, where 𝜏𝑟 is a
nested relation of type {{⟨𝑐𝑖𝑡𝑦 : str, 𝑦𝑒𝑎𝑟 : date⟩}}.

3.2 Nested Relational Algebra
Let 𝑅 and 𝑆 denote nested relations, which are manipulated through
a nested relational algebra for bags (NRAB). We define NRAB
based on the algebra from [19, 27], which we denote as NRAB0.
NRAB0 includes operators with bag semantics for selection𝜎𝜃 (𝑅),

restructuring𝑚𝑎𝑝 𝑓 (𝑅), cartesian product 𝑅×𝑆 , additive union 𝑅∪𝑆 ,
difference 𝑅 − 𝑆 , duplicate elimination 𝜖 (𝑅), and bag-destroy 𝛿 (𝑅).
We further define SPC as the subset of NRAB0 sufficient to ex-
press select-project-join queries, and SPC+ the algebra that addi-
tionally includes additive union to express select-project-join-union
queries. These less expressive fragments of NRAB0 represent the
operators commonly supported by lineage-based missing-answers
approaches. We use them later for a comparative discussion.

Similarly to [1, 8], we introduce additional operators to ensure a
close correspondence between big data programs and the algebra.
This is crucial to provide explanations that aid users in debugging
their programs. Similarly to [8], we can derive the additional op-
erators from NRAB0 operators. They include attribute renaming
𝜌𝐵1←𝐴1,...,𝐵𝑛←𝐴𝑛

(𝑅) that renames each attribute 𝐴𝑖 of 𝑅 into 𝐵𝑖 ,
the projection 𝜋𝐴1,· · · ,𝐴𝑛

(𝑅) and join variants (i.e., 𝑅 ⋈︁𝜃 𝑆 , 𝑅 ⋈︁𝜃 𝑆 ,
𝑅 ⋈︁ 𝜃 𝑆 , and 𝑅 ⋈︁ 𝜃 𝑆), as well as aggregation and variants of nesting
and flattening. Together with the operators ofNRAB0, they form
our algebra NRAB. Before discussing selected operators of our
algebra in more detail, we introduce some notational conventions.
Notation. We denote tuples as 𝑡, 𝑡 ′, . . ., nested relations as 𝑅, 𝑆, . . .,
and nested databases as 𝐷,𝐷 ′, R and D denote the type of a
nested relation 𝑅 and database 𝐷 , respectively. 𝑡 .𝐴 denotes the pro-
jection of tuple 𝑡 on a set of attributes or single attribute 𝐴. sch(𝑅)
is the list of attribute names of 𝑅. Operator ◦ concatenates tuples
(types). We also apply ◦ to relation types, e.g., {{⟨𝐴 : 𝜏1⟩}} ◦ {{⟨𝐵 :
𝜏2⟩}} = {{⟨𝐴 : 𝜏1, 𝐵 : 𝜏2⟩}}. We use 𝑡𝑛 ∈ 𝑅 to denote that 𝑡 appears in
𝑅 withmultiplicity𝑛 and use arithmetic operations onmultiplicities,
e.g., 𝑡2+3 means that 𝑡 appears 5 times. mult(𝑅, 𝑡) denotes the multi-
plicity of 𝑡 in 𝑅. J𝑄K𝐷 denotes the result of evaluating𝑄 over𝐷 . We
omit 𝐷 if clear from the context. Finally, type(𝑄) denotes the result
type of J𝑄K. We define some of these operators below. Assume that
𝑅 is an n-ary input relation of type R = {{⟨𝐴1 : 𝜏𝐴1 , . . . , 𝐴𝑛 : 𝜏𝐴𝑛

⟩}}.
See [16] for the remaining definitions.
Flatten. The flatten operator unnests the values of an attribute
𝐴 ∈ sch(𝑅) which must be of a tuple or relation type. If 𝐴 is of
a tuple type 𝜏 = ⟨. . .⟩, then the tuple flatten operator returns a
tuple (𝑡 ◦ 𝑡 .𝐴)𝑘 for each 𝑡𝑘 in𝑅: J𝐹𝑇

𝐴
(𝑅)K = {{(𝑡 ◦ 𝑡 .𝐴)𝑘 |𝑡𝑘 ∈ 𝑅}}. Its

result type is the concatenation ofR and 𝜏 : type(𝐹𝑇
𝐴
(𝑅)) = R◦{{𝜏}}.

If 𝐴 is of a nested relation type 𝜏 = {{⟨𝐵1 : 𝜏 ′1, . . . , 𝐵𝑚 : 𝜏 ′𝑚⟩}},
then inner relation flatten returns each tuple 𝑢𝑙 in the nested
relation concatenated with the tuple 𝑡𝑘 it was initially nested in:
J𝐹 𝐼

𝐴
(𝑅)K = {{(𝑡 ◦ 𝑢)𝑘 ·𝑙 |𝑡𝑘 ∈ 𝑅∧𝑢𝑙 ∈ 𝑡 .𝐴}} and type(𝐹 𝐼

𝐴
(𝑅)) = R◦𝜏 .

We require that none of the attribute names 𝐵𝑖 already exist in R.
An outer relation flatten behaves similarly to inner relation

flatten but additionally returns tuples of 𝑅 padded with null values
if their value of the flattened attribute is the empty relation. That is,
using 𝑢⊥ = ⟨𝐵1 : ⊥, . . . , 𝐵𝑚 : ⊥⟩, we define J𝐹𝑂

𝐴
(𝑅)K = 𝐹 𝐼

𝐴
(𝑅) ∪

{{(𝑡 ◦ 𝑢⊥)𝑘 | 𝑡𝑘 ∈ 𝑅 ∧ 𝑡 .𝐴 = ∅}}.
Nesting. Analogously to the flatten operators, we define two nest-
ing operators: tuple nesting and relation nesting.

Given an attribute set 𝐴 ⊆ sch(𝑅), tuple nesting removes at-
tribute(s) 𝐴 from each tuple 𝑡 ∈𝑅 and adds new attribute 𝐶 of type
𝜏𝐴 (the tuple type in relation type type(𝜋𝐴 (𝑅))) storing 𝑡 .𝐴. Using
𝑀 = sch(𝑅) −𝐴 and 𝜏𝑀 to denote the tuple type of type(𝜋𝑀 (𝑅)),
we define JN𝑇

𝐴→𝐶
(𝑅)K = {{(𝑡 .𝑀 ◦ ⟨𝐶 : 𝑡 .𝐴⟩)𝑘 | 𝑡𝑘 ∈ 𝑅}}. Accord-

ingly, type(N𝑇
𝐴→𝐶

(𝑅)) = {{𝜏𝑀 ◦ ⟨𝐶 : 𝜏𝐴⟩}}.

Relation nesting N𝑅
𝐴→𝐶

(𝑅) groups 𝑅 on 𝑀 . For each group
in 𝑔𝑟 (𝑅,𝑀) = {𝑡 .𝑀 | 𝑡𝑛 ∈ 𝑅}, the operator returns a tuple
with the group-by values (𝑡 .𝑀) and a fresh attribute 𝐶 of rela-
tion type 𝜏𝐴 = type(𝜋𝐴 (𝑅)) that stores the projection of all tu-
ples from the group on 𝐴 as a nested relation 𝑛𝑠 (𝑅,𝑀,𝐴,𝐶, 𝑡) =
⟨𝐶 : J𝜋𝐴 (𝜎𝑀=𝑡 .𝑀 (𝑅))K⟩. Overall, the result of relation nesting is
JN𝑅

𝐴→𝐶
(𝑅)K = {{(𝑡 .𝑀 ◦ 𝑛𝑠 (𝑅,𝑀,𝐴,𝐶, 𝑡))1 |𝑡 ∈ 𝑔𝑟 (𝑅,𝑀)}} with as-

sociated type type(N𝑅
𝐴→𝐶

(𝑅)) = {{𝜏𝑀 ◦ ⟨𝐶 : {{𝜏𝐴}}⟩}}.
Aggregation. Let 𝜏𝑖𝑛 = {{⟨𝐶 : 𝜏⟩}}. Consider an aggregation func-
tion 𝑓 of type 𝜏𝑖𝑛 → 𝜏𝑜𝑢𝑡 . The aggregation operator applies 𝑓 to
the set of values of unary tuples in the results of 𝜋𝐴 (𝑅) and stores
the result in a new attribute 𝐵 that is of type 𝜏𝑜𝑢𝑡 . Attribute𝐴 has to
be of type 𝜏𝑖𝑛 . Thus, J𝛾𝑓 (𝐴)→𝐵 (𝑅)K = {{(𝑡 ◦ ⟨𝐵 : 𝑓 (𝑡 .𝐴)⟩)𝑘 |𝑡𝑘 ∈ 𝑅}}
and its output type is type(𝛾𝑓 (𝐴)→𝐵 (𝑅)) = R ◦ {{⟨𝐵 : 𝜏𝑜𝑢𝑡 ⟩}}.

Example 4. The operator pipeline of Figure 1c corresponds to the
following expression in NRAB:
N𝑅
𝑛𝑎𝑚𝑒→𝑛𝐿𝑖𝑠𝑡

(︂
𝜋𝑛𝑎𝑚𝑒,𝑐𝑖𝑡𝑦

(︂
𝜎𝑦𝑒𝑎𝑟 ≥2019

(︂
𝐹 𝐼
𝑎𝑑𝑑𝑟𝑒𝑠𝑠2 (person)

)︂)︂)︂
4 WHY-NOT EXPLANATIONS
We are now ready to formalize the problem of computing why-not
explanations for nested (and flat) data.

4.1 Why-Not Questions
A why-not question describes a (set of) expected (nested) tuple(s)
that are missing from a query’s result J𝑄K𝐷 . We let users specify
why-not questions as nested instances with placeholders (NIPs) that
encode a set of missing answers, any of which is acceptable to the
user. A NIP is a nested instance that in addition to constant values
may also contain the instance placeholder ? that can stand in for any
value and the multiplicity placeholder ∗, which can only be used as
an element of a nested relation type and represents 0 or more tuples
of the nested relation’s tuple type. Note that for finite domains,
the expressive power of why-not questions with placeholders is not
larger than why-not questions based on fully specified tuples. But
efficiently supporting the former avoids the exponential blow-up
incurred when naively translating them to the latter representation.

Definition 3 (Instanceswith Placeholders). Let 𝜏 be a nested
type. The rules to construct nested instances with placeholders (NIPs)

of type 𝜏 are: If type(𝐼) = 𝜏 or 𝐼 =?, then 𝐼 is a NIP of type 𝜏 .

Furthermore, if 𝜏 = ⟨𝐴1 : 𝜏1, . . . , 𝐴𝑛 : 𝜏𝑛⟩, then ⟨𝐼1, . . . , 𝐼𝑛⟩ is a NIP
of type 𝜏 if each 𝐼𝑖 is a NIP of type 𝜏𝑖 . Finally, if 𝜏 = {{𝜏𝑡𝑢𝑝 }}, then
{{𝐼1, . . . , 𝐼𝑛}} is a NIP of type 𝜏 if (i) ∀ 𝐼𝑖 either 𝐼𝑖 is a NIP of type 𝜏𝑡𝑢𝑝
or 𝐼𝑖 = ∗ and (ii) ∄ 𝑖 ≠ 𝑗 ∈ {1, . . . , 𝑛} such that 𝐼𝑖 = 𝐼 𝑗 = ∗.

Example 5. A NIP that conforms to the output schema of our

running example is 𝑡𝑒𝑥 = ⟨𝑐𝑖𝑡𝑦 : 𝑁𝑌,𝑛𝐿𝑖𝑠𝑡 : {{?, ∗}}⟩. It stands for
all tuples with city equal to NY and at least one name in nList.

Next, we define the set of nested instances that match a NIP.

Definition 4 (Matching NIPs). An instance 𝐼 of type 𝜏 matches

a NIP 𝐼 ′ of type 𝜏 , written as 𝐼 ≃ 𝐼 ′ if one of these conditions holds:

(1) 𝐼 ′ = ?
(2) 𝐼 = 𝐼 ′

(3) type(𝐼) = ⟨𝐴1 : 𝜏1, . . . , 𝐴𝑛 : 𝜏𝑛⟩ and ∀𝑖 ∈ [1, 𝑛], 𝐼 .𝐴𝑖 ≃ 𝐼 ′.𝐴𝑖

(4) type(𝐼) = {{𝜏𝑡𝑢𝑝 }} and there exists an assignmentM ⊆ 𝐼 ×
𝐼 ′ → N such that all conditions below hold:

(a) for all 𝑡 ∈ 𝐼 and 𝑡 ′ ∈ 𝐼 ′, ifM(𝑡, 𝑡 ′) > 0 then either 𝑡 = 𝑡 ′,
𝑡 ′ = ?, or 𝑡 ′ = ∗

(b) for all 𝑡 ∈ 𝐼 , ∑︁𝑡 ′∈𝐼 ′M(𝑡, 𝑡 ′) = mult(𝐼 , 𝑡)
(c) for all 𝑡 ′ ∈ 𝐼 ′, either∑︁𝑡 ∈𝐼M(𝑡, 𝑡 ′) = mult(𝐼 ′, 𝑡 ′) or 𝑡 ′ = ∗

Condition (4) ensures that multiplicies are taken into account.

Example 6. Consider NIP 𝑡𝑒𝑥 from Example 5 as well as NIP 𝑡 ′𝑒𝑥 =

⟨𝑐𝑖𝑡𝑦 : 𝑁𝑌,𝑛𝐿𝑖𝑠𝑡 : {{?, ?}}⟩. Only the former matches the tuple

𝑡 = ⟨𝑐𝑖𝑡𝑦 : 𝑁𝑌,𝑛𝐿𝑖𝑠𝑡 : {{⟨𝑛𝑎𝑚𝑒 : 𝑆𝑢𝑒⟩2, ⟨𝑛𝑎𝑚𝑒 : 𝑃𝑒𝑡𝑒𝑟 ⟩}}⟩. Since
𝑡 is of a tuple type, condition (3) in Definition 4 must hold. While

both 𝑡𝑒𝑥 .𝑐𝑖𝑡𝑦 ≃ 𝑡 .𝑐𝑖𝑡𝑦 and 𝑡 ′𝑒𝑥 .𝑐𝑖𝑡𝑦 ≃ 𝑡 .𝑐𝑖𝑡𝑦 hold (condition (2)), we

only have 𝑡𝑒𝑥 .𝑛𝐿𝑖𝑠𝑡 ≃ 𝑡 .𝑛𝐿𝑖𝑠𝑡 (condition (4)). For 𝑡 ′𝑒𝑥 , the definition
enforces thatM(⟨𝑛𝑎𝑚𝑒 : 𝑆𝑢𝑒⟩, ?) > 0 andM(⟨𝑛𝑎𝑚𝑒 : 𝑃𝑒𝑡𝑒𝑟 ⟩, ?) >
0 (condition (4a)) andM(⟨𝑛𝑎𝑚𝑒 : 𝑆𝑢𝑒⟩, ?) = 2 (4b). Then, (4c) cannot
hold, since the sum is 3 and mult(𝑡 ′𝑒𝑥 , ?) = 2. Alternatively assigning
each occurrence of ⟨𝑛𝑎𝑚𝑒 : 𝑆𝑢𝑒⟩ to ? causes (4b) to be violated.

Using NIPs, we now define why-not questions. To ensure that a
why-not question asks for a tuple absent from the result, we require
that none of the result tuples matches the why-not question’s NIP.

Definition 5 (Why-not qestions). Let 𝑄 be a query, 𝐷 a

database, and type(J𝑄K𝐷) = {{𝜏}}. A why-not question Φ is a triple

Φ = ⟨𝑄, 𝐷, 𝑡⟩ where why-not tuple 𝑡 is a NIP of type 𝜏 .

Example 7. Given 𝐷 and 𝑄 from Figure 1, and the NIP 𝑡𝑒𝑥 from

Example 5, the example why-not question is Φ𝑒𝑥 = ⟨𝑄,𝐷, 𝑡𝑒𝑥 ⟩.

4.2 Reparameterizations and Explanations
We define query-based explanations for a given why-not question
Φ as sets of operators. An explanation is a combination of oper-
ators that conjunctively cause tuples matching the NIP 𝑡 in Φ to
be missing from the query result, i.e., it is possible to “repair” the
query to return a tuple matching the NIP 𝑡 (the missing answer)
by changing the parameters of these operators. We refer to such
repairs as successful reparameterizations. The set of explanations
produced for a why-not question should consist of sets of operators
changed by successful reparameterizations. However, we do not
want to return explanations that require more changes than strictly
necessary. That is, we want explanations to be minimal in terms of
the set of operators they include and in terms of their “side effects”
(changes to the original query result beyond appearance of missing
answers) a reparametrization of an explanation’s operators would
have. Existing lineage-based definitions, which generally support
queries in SPC+, do not fulfill our desiderata: (i) They suffer from
possibly incomplete explanations (false negatives) [6, 9, 20], i.e.,
changing the operator they return as an explanation may not be suf-
ficient for returning the missing answer. This motivated alternative
definitions [5, 10, 14], albeit limited to conjunctive queries in SPC.
(ii) They only reason about operators that prune data (explanations
only contain selections and joins) and miss causes at the schema
level (e.g., projecting the wrong attribute). (iii) They disregard side
effects (which have been considered for instance-based and refine-
ment based explanations [21]). Our formalization addresses all these
drawbacks for queries in the rich algebra NRAB.

Our formalization is based on reparameterizations (RPs). A
RP for an input query 𝑄 is a query 𝑄 ′ that is derived from 𝑄 by
altering the parameters of operators while preserving the query

Operator 𝑜𝑝 𝑝𝑎𝑟𝑎𝑚 (𝑄,𝑜𝑝) Admissible parameter changes
Selection 𝜎𝜃 (𝑅) , with 𝜃 includ-
ing attribute references, compar-
ison operators (=,>, ≥,<, ≤,≠
}), and constant values

{𝜃 } Replacing (i) an attribute reference
with another attribute from 𝑅 of the
same type; (ii) a comparison operator
with another; and (iii) a constant with
another constant of the same type.

Restructuring𝑚𝑎𝑝𝑓 (𝑅) {𝑓 } Change 𝑓
Projection 𝜋𝐿 (𝑅) {𝐴𝑖 |𝐴𝑖 ∈ 𝐿} Any substitution of an attribute 𝐴𝑖

with an attribute𝐴𝑗 from 𝑅

Renaming
𝜌𝐵1←𝐴1,...,𝐵𝑛←𝐴𝑛 (𝑅)

{(𝐵1 ← 𝐴1, . . . ,
𝐵𝑛 ← 𝐴𝑛) }

Changing the output attributes based
on a permutation of (𝐵1, . . . , 𝐵𝑛)

Join variants𝑅⋄𝜃 𝑆 , where ⋄ ∈
{⋈︁, ⋈︁,⋈︁ , ⋈︁ }

{𝜃, type(𝑜𝑝) }, where
type(𝑜𝑝) = ⋄

(i) Changing the type of join; (ii) re-
placing a reference to an attribute 𝐴
with a different attribute 𝐵 in 𝜃 ; (ii)
replacing a comparison operator with
one of {=,>, ≥,<, ≤,≠}.

Flatten variants 𝐹⋄
𝐴
(𝑅) , where

⋄ ∈ {𝑇, 𝐼,𝑂 }
{𝐴, type(𝑜𝑝) }, where
type(𝑜𝑝) = ⋄ distin-
guishes tuple flatten, re-
lation inner flatten, and
relation outer flatten

(i) Replacing 𝐴 by an attribute 𝐵 in
𝑅 of tuple type for ⋄ = 𝑇 or relation
type otherwise, (ii) changing the flat-
tening type from inner flatten to outer
flatten or vice versa

Nesting variants N𝑅
𝐴→𝐶

(𝑅) or
N𝑇
𝐴→𝐶

(𝑅)
{𝐴,𝐶 } (i) Changing the attributes to be

nested / grouped-on (𝐴) or (ii) the
name of the attribute storing the re-
sult of nesting (𝐶)

Aggregation 𝛾𝑓 (𝐴)→𝐵 (𝑅) {𝐴, 𝐵, 𝑓 } (i) Changing the aggregation function
𝑓 , (ii) the attribute that we are aggre-
gating over (𝐴), or (iii) the name of
the attribute storing the aggregation
result (𝐵)

Further parameter-free NRAB operators are: additive union 𝑅 ∪ 𝑆 , difference 𝑅 − 𝑆 ,
deduplication 𝜖 (𝑅) , cartesian product 𝑅 × 𝑆 , bag-destroy 𝛿 (𝑅) , and table access 𝑅

Table 1: Admissible parameter changes of NRAB operators.

structure (no operators are added or removed). For instance, chang-
ing 𝜎𝑦𝑒𝑎𝑟 ≥2019 to 𝜎𝑦𝑒𝑎𝑟 ≥2018 in our running example is a RP, but
substituting the selection with a projection is not. We made the
choice to preserve query structure to avoid explanations that do not
provide meaningful information about errors in the input query.

Table 1 summarizes all admissible parameter changes for all
NRAB operators. They are motivated by what we consider errors
commonly arising in practice. Nonetheless, our formalism also ap-
plies to alternative definitions of valid parameter changes. However,
the choice of allowed parameter changes affects the compuational
complexity of the problem (see Section 4.3).

Definition 6 (Valid Parameter Changes). Given an operator

𝑜𝑝 ∈ 𝑄 with parameters 𝑝𝑎𝑟𝑎𝑚(𝑄,𝑜𝑝) and a set of predefined ad-

missible parameter changes for this operator type (Table 1), a valid

parameter change applies one admissible change to 𝑝𝑎𝑟𝑎𝑚(𝑄,𝑜𝑝).

Based on the parameter changes, we define reparameterizations.

Definition 7 (Reparameterizations). Given a query𝑄 , a query

𝑄 ′ is a reparameterization of 𝑄 if it can be derived from 𝑄 using a

sequence of valid parameter changes.

For the ease of presentation, we assign each operator 𝑜𝑝 ∈ 𝑄
a unique identifier. Since 𝑄 and 𝑄 ′ have same structure, we fur-
ther assume that an operator 𝑜𝑝 ∈ 𝑄 retains its identifier in 𝑄 ′.
Next, we relate RPs to a why-not question. RPs are Successful
reparameterizations (SRs) if they produce the missing answer.

Definition 8 (Successful Reparameterizations). Let Φ =

⟨𝑄,𝐷, 𝑡⟩ be a why-not question and Re(𝑄) denote the set of RPs for a
query 𝑄 , we define SR(Φ), the set of successful RPs for 𝑄 and 𝐷 , as

SR(Φ) = {𝑄 ′ | ∃𝑡 ′ ∈ J𝑄 ′K𝐷 , 𝑡 ′ ≃ 𝑡 ∧𝑄 ′ ∈ Re(𝑄)}

Example 8. Figure 2 shows a tree representation of nested relations
(introduced here as these will become relevant later). The tree 𝑇1 in
Figure 2a corresponds to the result J𝑄K𝐷 in our example (Figure 1b).

The example why-not question asks why city NY with associated

names is missing from J𝑄K𝐷 . One possible SR (𝑆𝑅𝜎) changes the

selection predicate (e.g., to𝑦𝑒𝑎𝑟 ≥ 2018). This SR produces the result𝑇2
in Figure 2b. Another SR (𝑆𝑅𝐹𝜎) modifies the selection and changes the

flattened attribute to 𝑎𝑑𝑑𝑟𝑒𝑠𝑠1. It yields tree𝑇3 (Figure 2c). Additional
SRs exist, e.g., changing the year to anything lower than 2018. However,

they result in additional changes to J𝑄K𝐷 .

The example above illustrates our rationale to not consider
all SR(Φ) as explanations:. (i) some SRs may apply unnecessary
changes to 𝑄 (e.g., why change both the selection and flatten op-
erator when one is enough?) and (ii) some SRs may cause more
changes to the query result than others (e.g., the side effects caused
by a less restrictive selection). Figure 2 shows that these two goals
(minimizing changes to operators and minimizing side effects) may
conflict. Green nodes indicate data matching the why-not tuple,
orange nodes mark data not machting the why-not tuple. While 𝑇2
has an entirely orange tuple ⟨𝑐𝑖𝑡𝑦 : 𝑆𝐹, 𝑛𝐿𝑖𝑠𝑡 : {{⟨𝑛𝑎𝑚𝑒 : 𝑃𝑒𝑡𝑒𝑟 ⟩}}⟩,
𝑇3 only has an additional name Peter in attribute 𝑛𝐿𝑖𝑠𝑡 for LA.
Thus, 𝑆𝑅𝜎 changes only a subset of 𝑆𝑅𝐹𝜎 ’s operators, but 𝑆𝑅𝜎 en-
tails “more significant” changes to the data (𝑇2) than 𝑆𝑅𝐹𝜎 (𝑇3). To
strike a balance between changes to the query and to the data, we
define a partial order ⪯Φ over SRs and defineminimal successful
reparameterizations (MSRs) as SRs that are minimal wrt. to ⪯Φ.

Definition 9 (MSRs). Let Φ = ⟨𝑄, 𝐷, 𝑡⟩ be a why-not question

and 𝑄 ′, 𝑄 ′′ be two SRs. Let Δ(𝑄,𝑄 ′) denote the set of identifiers

of operators whose parameters differ between 𝑄 and 𝑄 ′, i.e.,

Δ(𝑄,𝑄 ′) = {𝑜𝑝 | 𝑝𝑎𝑟𝑎𝑚(𝑄,𝑜𝑝) ≠ 𝑝𝑎𝑟𝑎𝑚(𝑄 ′, 𝑜𝑝)}. Let 𝑑 be a

distance function quantifying the distance between two nested

relations. We define a partial order 𝑄 ′ ⪯Φ 𝑄 ′′ as follows:

(1) Δ(𝑄,𝑄 ′) ⊆ Δ(𝑄,𝑄 ′′) (2) 𝑑 (J𝑄K𝐷 , J𝑄 ′K𝐷) ≤ 𝑑 (J𝑄K𝐷 , J𝑄 ′′K𝐷)

We call 𝑄 ′ ∈ SR(Φ) minimal if ¬∃𝑄 ′′ ∈ SR(Φ) : 𝑄 ′′ ⪯Φ 𝑄 ′.

We consider operators corresponding to MSRs as explanations.

Definition 10 (Explanations). Let Φ be a why-not question and

MSR(Φ) be the set of MSRs for Φ. We define the set of explanations

E(Φ) with respect to Φ as E(Φ) = {Δ(𝑄,𝑄 ′) | 𝑄 ′ ∈ MSR(Φ)}.

Example 9. 𝑆𝑅𝜎 and 𝑆𝑅𝐹𝜎 from Example 8 are both MSRs, be-

cause, even though Δ(𝑄,𝑄 ′𝜎) ⊆ Δ(𝑄,𝑄 ′
𝐹𝜎
), we established that

𝑑 (J𝑄K, J𝑄 ′𝜎 K) > 𝑑 (J𝑄K, J𝑄 ′
𝐹𝜎

K), so 𝑄 ′𝜎 ̸⪯Φ 𝑄 ′
𝐹𝜎

(and vice versa). We

now highlight why we define query-based explanations even though

refinement-based explanations are not far fetched given reparame-

terizations. Assuming we had 𝑛 address attributes (not just 2), there

would be equally many refinement-based explanations involving the

flatten operator, some also modifying the selection, others not. A de-

veloper would need to understand similarities and differences of all of

these before settling on how to fix the query. In contrast, query-based

explanations identify sets of operators that need to be fixed.

The MSR definition leaves the choice of distance function 𝑑 open.
To equally support nested and flat data, a good fit is the tree edit
distance for unsorted trees [7, 34]. However, it is NP-hard [41]. Con-
sidering an alternative PTIME distance metric 𝑑 will not necessarily
result in an efficient algorithm for computing explanations, because,
as discussed next, computing explanations is NP-hard in general.

〈〉

city:
LA

nList {{}}

name: Sue

〈〉

〈〉

city:
LA

nList {{}}

name: Sue

〈〉

name: Peter

〈〉

{{}} {{}}

〈〉

city:
NY

nList {{}}

name: Sue

〈〉

〈〉

city:
LA

nList {{}}

name: Sue

〈〉

{{}}

〈〉

city:
NY

nList {{}}

name: Sue

〈〉

〈〉

city:
SF

nList {{}}

name: Peter

〈〉

(a)𝑇1

〈〉

city:
LA

nList {{}}

name: Sue

〈〉

〈〉

city:
LA

nList {{}}

name: Sue

〈〉

name: Peter

〈〉

{{}} {{}}

〈〉

city:
NY

nList {{}}

name: Sue

〈〉

〈〉

city:
LA

nList {{}}

name: Sue

〈〉

{{}}

〈〉

city:
NY

nList {{}}

name: Sue

〈〉

〈〉

city:
SF

nList {{}}

name: Peter

〈〉

(b)𝑇2, result for 𝑆𝑅𝜎

〈〉

city:
LA

nList {{}}

name: Sue

〈〉

〈〉

city:
LA

nList {{}}

name: Sue

〈〉

name: Peter

〈〉

{{}} {{}}

〈〉

city:
NY

nList {{}}

name: Sue

〈〉

〈〉

city:
LA

nList {{}}

name: Sue

〈〉

{{}}

〈〉

city:
NY

nList {{}}

name: Sue

〈〉

〈〉

city:
SF

nList {{}}

name: Peter

〈〉

(c)𝑇3, result for 𝑆𝑅𝐹𝜎

Figure 2: Tree representations of the result from Figure 1b (𝑇1) and the results of SRs

Algorithm 1:Why-Not(Φ)
1 ⟨M𝑠𝑏𝑡 ,𝑇 ⟩ ← schemaBacktracing(Φ)
2 S ← schemaAlternatives(M𝑠𝑏𝑡 ,𝑇 ,Φ)
3 𝑅𝐴,← dataTracing(S,Φ)
4 E≈ ← computeExplanations(𝑅𝐴, S,Φ)
5 return E≈

Algebra Lineage-based Reparameterization-based
SPC 𝜎𝜃 *, ⋈︁𝜃 𝜎𝜃 *,𝑚𝑎𝑝𝑓 *, ⋈︁𝜃 , 𝜋𝐿
SPC+ 𝜎𝜃 *, ⋈︁𝜃 𝜎𝜃 *,𝑚𝑎𝑝𝑓 *, ⋈︁𝜃 , 𝜋𝐿
NRAB 𝜎𝜃 *, *, ⋈︁𝜃 , ⋈︁𝜃 ,

⋈︁𝜃 , ⋈︁𝜃 , 𝐹 𝐼𝐴 (𝑅)
𝜎𝜃 , 𝑚𝑎𝑝𝑓 , ⋈︁𝜃 , ⋈︁𝜃 , ⋈︁𝜃 , , ⋈︁𝜃 ,
𝜌𝐵1←𝐴1,...,𝐵𝑛←𝐴𝑛 , 𝐹𝑇

𝐴
(𝑅) , 𝐹 𝐼

𝐴
(𝑅) , 𝐹𝑂

𝐴
(𝑅) ,

N𝑇
𝐴→𝐶

(𝑅) , N𝑅
𝐴→𝐶

(𝑅) , 𝛾𝑓 (𝐴)→𝐵 (𝑅)

Table 2: Which operators can be part of explanations for
which approach? NRAB0 operators are marked with ∗.

4.3 Discussion
First, we demonstrate that computing explanations for why-not
questions is generally NP-hard in terms of data complexity for
queries in NRAB0 (see [16]). We observe that the problem is
sensitive to the choice of admissible parameter changes. While it is
intractable for the parameter changes shown in Table 1, we identify
restrictions of Table 1 for which the problem is in PTIME.

Theorem 1. Given a why-not question Φ = ⟨𝑄,𝐷, 𝑡⟩ and a set 𝑒
of operators from the query𝑄 , testing the membership of 𝑒 in E(Φ) is
NP-hard in the size of 𝐷 for queries that only consist of the operators

aggregation, map, projection, renaming, and join. The problem is in

PTIME if the map operator is restricted to being a projection and if

aggregation functions are restricted to the default ones in SQL.

Proof Sketch. We prove the hardness claim for queries with
aggregation through a reduction from set cover and sketch a brute
force algorithm for the PTIME result. See [16] for the full proof. □

The algorithm we present in Section 5 restricts aggregation and
does not consider map. Thus, according to Theorem 1, the prob-
lem is in PTIME. However, the search space is still much too large,
requiring additional heuristic optimizations to scale.

Next, we discuss differences between reparameterization-based
explanations and lineage-based explanations (e.g., [9]). Table 2
shows which operators of SPC, SPC+, and NRAB can be iden-
tified as causes by these two approaches. Lineage-based solutions
generally support SPC+. They only return operators that re-
move compatible input data. Thus, for operators overlapping with
NRAB0, only selections become part of explanations. Given that
the join operator can be expressed using cross product and selec-
tion, lineage-based approaches may return joins as explanations. In
our reparameterization-based formalism, the set of operators that
can be part of an explanation is already more diverse for the least
expressive query class SPC, e.g, we may return projections. The
benefits are even more pronounced for NRAB (last row).

Finally, note that the operators in an explanation depend on
a query’s algebraic translation and explanations may differ for
equivalent translations. For example, 𝜎𝜃 (𝑅 × 𝑆) may only yield the
selection while 𝑅 ⋈︁𝜃 𝑆 may only yield the join. Lineage-based and
reparameterization-based solutions share this property.

5 COMPUTING EXPLANATIONS
We now present an algorithm that restricts admissible parameter
changes to achieve PTIME data complexity. Furthermore, we intro-
duce novel heuristics that are necessary for efficiency in practice.
The algorithm takes a why-not question Φ = ⟨𝑄,𝐷, 𝑡⟩ as input
and returns a set of explanations E≈ that approximates E. We first
present the algorithm and, then, discuss in Section 5.5 how E≈
relates to E according to Definition 10. A core concept of our ap-
proach is schema alternatives (SAs). An SA represents a set of RPs
that all change attribute references in the query in the same way.
For instance, one SA for our running example is to replace 𝑎𝑑𝑑𝑟𝑒𝑠𝑠1
with 𝑎𝑑𝑑𝑟𝑒𝑠𝑠2. The RPs corresponding to this SA differ in how (and
if) they modify the condition of the query’s selection. Our approach
determines for each SA a set of NIPs (one per table accessed by the
query) such that for any SR corresponding to the SA, only tuples
matching these NIPs may contribute to the missing answer. The
purpose of these NIPs is to exclude irrelevant data early-on.

Algorithm 1 shows the four main steps of our algorithm. First,
given the missing tuple 𝑡 that is defined over the output schema of
𝑄 , the algorithm computes a set of NIP tuples 𝑇 over the schema
of 𝑄’s input tables in 𝐷 . It also computes a mappingM𝑠𝑏𝑡 which
associates each attribute in 𝑡 and each attribute referenced in an
operator of 𝑄 with a set of attributes from the input. We refer to
these input attributes as source attributes.M𝑠𝑏𝑡 and𝑇 represent the
SA which does not change any attributes. In the second step, Algo-
rithm 1 determines alternatives for each source attribute inM𝑠𝑏𝑡 .
These alternatives account for attributes that may not have been
chosen appropriately when writing 𝑄 . The alternative attributes
allow the algorithm to enumerate the set of SAs denoted as S. For
each SA, we also compute the NIPs 𝑇 for filtering irrelevant input
tuples as described above. In the third step (dataTracing), we con-
struct a single query that computes the results of the input query
under all SAs. Since computing the results for all RPs corresponding
to an SA is infeasible, we settle for a more practical alternative: we
only compute results for one representative RP for an SA, the one
that only changes attribute references in operators according to
the SA and nothing else. However, these RPs may not be successful.
To be able to reason about other RPs corresponding to a SA, we in-
strument the query to propagate annotations that encode sufficient
information for reasoning about other RPs. For example, instead
of filtering tuples that do not match a selection’s condition (under
some SA), we use an annotation attribute to record which tuples are
filtered out by the selection under the representative RP for an SA.
The 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐸𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛𝑠 function leverages these annotations to
compute explanations for Φ ranked according to the partial order
of Definition 9 (approximated for performance).

5.1 Step 1: Schema backtracing
Taking the why-not question Φ = ⟨𝑄,𝐷, 𝑡⟩ as input, schema back-
tracing analyzes schema dependencies and schema transformations
of the query 𝑄 in a data-independent way. It has two goals: (i)
rewrite the missing answer 𝑡 into a set of NIPs 𝑇 (Definition 3)
over the schema of 𝐷 . We refer to the SA that does not change any
attributes as the base SA.𝑇 contains one NIP for each input relation
𝑅 in 𝐷 such that all tuples of 𝑅 that could produce 𝑡 under some
RPs of the base SA match the NIP; (ii) identify attributes from 𝐷’s
schema that serve as alternatives to attributes in 𝑄 ’s input.

To achieve the first goal, we iterate over the query’s operators
and analyze each operator’s parameters to trace data dependencies
at the schema level. Eventually, schema backtracing returns 𝑇 =

{𝑡𝑅1 , . . . , 𝑡𝑅𝑛 }, where 𝑅1 through 𝑅𝑛 are 𝑄’s input relations. Each
𝑡𝑅𝑖 is a NIP. The set of tuples from 𝑅𝑖 matching 𝑡𝑅𝑖 includes all
tuples that may contribute to tuples matching 𝑡 under the base SA.

Example 10. In our running example, one such NIP is 𝑡𝑝𝑒𝑟𝑠𝑜𝑛 =

⟨𝑛𝑎𝑚𝑒 :?, 𝑎𝑑𝑑𝑟𝑒𝑠𝑠1 :?, 𝑎𝑑𝑑𝑟𝑒𝑠𝑠2 : {{⟨𝑐𝑖𝑡𝑦 : 𝑁𝑌,𝑦𝑒𝑎𝑟 :?⟩}}⟩ com-

puted from 𝑡 = ⟨𝑐𝑖𝑡𝑦 : “NY", 𝑛𝐿𝑖𝑠𝑡 : {{?, ∗}}⟩. To obtain the NIP, the

algorithm traces back both dependencies for 𝑡 .𝑐𝑖𝑡𝑦 and 𝑡 .𝑛𝐿𝑖𝑠𝑡 . When

it iterates through the operator N𝑅
𝑛𝑎𝑚𝑒→𝑛𝐿𝑖𝑠𝑡

, it traces the nested tu-

ples in 𝑛𝐿𝑖𝑠𝑡 back to the 𝑛𝑎𝑚𝑒 attribute. The algorithm identifies the

𝑛𝑎𝑚𝑒 attribute of the 𝑝𝑒𝑟𝑠𝑜𝑛 relation as the 𝑛𝑎𝑚𝑒 attribute’s origin.

Similarly, it traces 𝑐𝑖𝑡𝑦 back to the source attribute 𝑎𝑑𝑑𝑟𝑒𝑠𝑠2.𝑐𝑖𝑡𝑦,
whose value has to match NY.

𝑇 is coupled with a mapping M𝑠𝑏𝑡 . This mapping associates
each attribute 𝑡 .𝐴 of the why-not tuple 𝑡 with source attributes to
identify the source attributes that produce the values of 𝑡 .𝐴. To also
identify source attributes potentially relevant for operator repa-
rameterizations (the second goal outlined above), the backtracing
algorithm further adds associations for each attribute reference
𝑜𝑝.𝐴 at operator 𝑜𝑝 toM𝑠𝑏𝑡 while it iterates through the query
tree. Notationwise, we distinguish the two types of associations: (i)
Associations between a source attribute 𝑡 .𝑋 and a missing-answer
attribute 𝑡 .𝐴 are denoted as 𝐴

𝑋
. (ii) Associations between a source

attribute 𝑡 .𝑋 and an operator attribute 𝑜𝑝.𝐴 are written as 𝑜𝑝.𝐴

𝑋
.

In the following, we represent a pair (𝑡,M𝑠𝑏𝑡) as a single nested
tuple mirroring the nesting structure of 𝑡 but using associations
fromM𝑠𝑏𝑡 as attribute names instead. For instance, if 𝐴

𝑋
, 𝑜𝑝.𝐴

𝑋
, and

𝑜𝑝.𝐵

𝑋
, then we substitute 𝑋 with 𝐴,𝑜𝑝.𝐴,𝑜𝑝.𝐵

𝑋
.

Example 11. Continuing with Example 10, M𝑠𝑏𝑡 associates

𝑡 .𝑛𝐿𝑖𝑠𝑡 to 𝑡𝑝𝑒𝑟𝑠𝑜𝑛 .𝑛𝑎𝑚𝑒 and 𝑡 .𝑐𝑖𝑡𝑦 to 𝑡𝑝𝑒𝑟𝑠𝑜𝑛𝑠 .𝑎𝑑𝑑𝑟𝑒𝑠𝑠2.𝑐𝑖𝑡𝑦. It also
associates 𝜎.𝑦𝑒𝑎𝑟 with 𝑡𝑝𝑒𝑟𝑠𝑜𝑛 .𝑎𝑑𝑑𝑟𝑒𝑠𝑠2.𝑦𝑒𝑎𝑟 . The associations in

M𝑠𝑏𝑡 coupled with 𝑇 = {𝑡𝑝𝑒𝑟𝑠𝑜𝑛} are represented as:

𝑡𝑝𝑒𝑟𝑠𝑜𝑛 =

⟨︂ 𝑡 .𝑛𝐿𝑖𝑠𝑡, 𝜋 .𝑛𝑎𝑚𝑒,N.𝑛𝐿𝑖𝑠𝑡,N.𝑛𝑎𝑚𝑒

𝑛𝑎𝑚𝑒
:?, 𝑎𝑑𝑑𝑟𝑒𝑠𝑠1 :?,

𝐹 .𝑎𝑑𝑑𝑟𝑒𝑠𝑠2
𝑎𝑑𝑑𝑟𝑒𝑠𝑠2

: {{ ⟨ 𝑡 .𝑐𝑖𝑡𝑦, 𝜋 .𝑐𝑖𝑡𝑦
𝑐𝑖𝑡𝑦

: “NY”,
𝜎 .𝑦𝑒𝑎𝑟

𝑦𝑒𝑎𝑟
:?⟩ }}

⟩︂
5.2 Step 2: Schema alternatives
Next, the algorithm determines schema alternatives (SAs), which
potentially produce the missing answer based on reparameteri-
zations implementing these SAs. A SA substitutes zero or more

F?

!?=2019

Π?,?

"? -> ?

!?=2019

address2

address1

address2.year

address1.year

name, address2.city

name, address1.city

name. nList

Π?,?

"? -> ?

address2.year

address1.year
name, address2.city

name, address1.city S2name. nList

S1

Figure 3: Enumerating and pruning schema alternatives

attributes in operator parameters with alternatives. The set of all
SAs covers all such substitutions.
Finding attribute alternatives. The first step of identifying SAs is
to find alternatives for attributes referenced by𝑄 . For each 𝑡𝑅𝑖 ∈ 𝑇 ,
we identify, for each 𝐴

𝑋
∈ M𝑠𝑏𝑡 a set of alternative attributes

X′ = {𝑋 ′1, . . . 𝑋
′
𝑘
} such that 𝑋 ′

𝑗
∈ 𝑅𝑖 and type(𝑋 ′

𝑗
) = type(𝑋).

We restrict alternatives to attributes of the same relation, because
replacing an attribute with an attribute from another relation would
require more changes to the query than reparametrizations allow.
We assume that the set of attribute alternatives is provided as input
to our algorithm. For instance, these can be determined by hand,
through schema matching techniques [2, 17], or using schema-free
query processors [25, 26]. These strategies ensure that we only
consider meaningful alternatives.
Enumerating and pruning SAs. The attribute alternatives are
used to enumerate all possible SAs, which requires considering
alternatives for attributes of intermediate results that appear as
𝑜𝑝.𝐴

𝑋
∈ M𝑠𝑏𝑡 . Formally, a schema alternative 𝑆 = ⟨𝑇,M⟩ is a set of

NIPs 𝑇 (as in schema backtracing, one tuple per table accessed by
𝑄) and a mappingM (likeM𝑠𝑏𝑡 ,M records which input attributes
are referenced by which operator and are used to derive which
attribute in 𝑄 ′s output). As mentioned above, 𝑇 over-approximates
the set of tuples that contribute to the derivation of the missing
answer under the SRs for the SA.

Example 12. Consider the following attribute alternatives:

𝑛𝑎𝑚𝑒 ′={𝑛𝑎𝑚𝑒}, 𝑐𝑖𝑡𝑦′={𝑎𝑑𝑑𝑟𝑒𝑠𝑠2.𝑐𝑖𝑡𝑦, 𝑎𝑑𝑑𝑟𝑒𝑠𝑠1.𝑐𝑖𝑡𝑦}, 𝑦𝑒𝑎𝑟 ′={𝑎𝑑𝑑
𝑟𝑒𝑠𝑠2.𝑦𝑒𝑎𝑟, 𝑎𝑑𝑑𝑟𝑒𝑠𝑠1.𝑦𝑒𝑎𝑟 }, and 𝑎𝑑𝑑𝑟𝑒𝑠𝑠2′={𝑎𝑑𝑑𝑟𝑒𝑠𝑠2, 𝑎𝑑𝑑𝑟𝑒𝑠𝑠1}.
Figure 3 shows how the algorithm incrementally derives all SAs (ig-

nore the dashed parts for now). Based on the set of alternatives for

𝑎𝑑𝑑𝑟𝑒𝑠𝑠2′ and 𝑦𝑒𝑎𝑟 ′, it starts evaluating options for the flatten opera-
tor’s parameters. We can either use the original attribute 𝑎𝑑𝑑𝑟𝑒𝑠𝑠2, or
the alternative 𝑎𝑑𝑑𝑟𝑒𝑠𝑠1. For each alternative for flatten, we can then

choose 𝑎𝑑𝑑𝑟𝑒𝑠𝑠2.𝑦𝑒𝑎𝑟 or 𝑎𝑑𝑑𝑟𝑒𝑠𝑠1.𝑦𝑒𝑎𝑟 for the selection operator.

SAs replace attributes of one operator independently from at-
tributes of another operator. Thus, some SAs may lead to an invalid
query that references non-existing attributes in some operators
or alter Q’s output schema (not allowed). The algorithm prunes
these alternatives. For instance, after flattening 𝑎𝑑𝑑𝑟𝑒𝑠𝑠2, the only
“accessible” alternative for 𝑦𝑒𝑎𝑟 is 𝑎𝑑𝑑𝑟𝑒𝑠𝑠2.𝑦𝑒𝑎𝑟 in the selection.
Further assuming the source data included 𝑎𝑑𝑑𝑟𝑒𝑠𝑠1.𝑐𝑖𝑡𝑦1 instead
of 𝑎𝑑𝑑𝑟𝑒𝑠𝑠1.𝑐𝑖𝑡𝑦, flattening 𝑎𝑑𝑑𝑟𝑒𝑠𝑠1 changes𝑄 ’s output schema to
{{⟨𝑐𝑖𝑡𝑦1, 𝑛𝐿𝑖𝑠𝑡⟩}}, which is not allowed.

Example 13. In our example, all dashed subtrees in Figure 3 are

pruned. Only two SAs remain, denoted as 𝑆1 and 𝑆2. The SA 𝑆1 =

⟨{𝑡1},M1⟩, with 𝑡1 being equal to 𝑡𝑝𝑒𝑟𝑠𝑜𝑛 shown in Example 11, and

𝑆2 = ⟨{𝑡2},M2⟩ with 𝑡2 “swapping” the address attribute, i.e.,

𝑡2 =⟨
𝑡 .𝑛𝐿𝑖𝑠𝑡, 𝜋 .𝑛𝑎𝑚𝑒,N.𝑛𝐿𝑖𝑠𝑡,N.𝑛𝑎𝑚𝑒

𝑛𝑎𝑚𝑒
:?, 𝑎𝑑𝑑𝑟𝑒𝑠𝑠2 :?,

𝐹 .𝑎𝑑𝑑𝑟𝑒𝑠𝑠1
𝑎𝑑𝑑𝑟𝑒𝑠𝑠1

: {{ ⟨ 𝑡 .𝑐𝑖𝑡𝑦, 𝜋 .𝑐𝑖𝑡𝑦
𝑐𝑖𝑡𝑦

: “NY”,
𝜎 .𝑦𝑒𝑎𝑟

𝑦𝑒𝑎𝑟
:?⟩ }}⟩

5.3 Step 3: Data tracing
At this point, the algorithm has identified the source attributes
to consider for reparameterizations (“blue numerators” identified
during schema backtracing) and has determined the reparameteriza-
tions to consider for attributes (through SAs). Next, it identifies and
traces data that may yield the missing answer through reparameter-
izations of query operators. It instruments operators to compactly
keep track of possible reparameterizations and their results.

We define individual tracing procedures for each operator. The
procedures commonly take the operator 𝑜𝑝 , an annotated relation
𝑅𝐴 , and schema alternatives S as input. Their output consists of
an annotated relation 𝑅𝐴

′
and updated schema alternatives S′. The

algorithm extends operator semantics to collect result tuples under
all SAs and record information about all RPs corresponding to these
SAs in annotation attributes added to the operator’s result schema.

We distinguish four annotation types each stored in additional
attributes added to each tuple 𝑡 ′ in the instrumented operator’s
output 𝑅𝐴

′
.

• 𝑖𝑑 : Each top-level tuple is assigned a unique identifier. Our
algorithm leverages the 𝑖𝑑s to trace fine-grained provenance
as in [15]. It utilizes the provenance to correctly maintain
tuples throughout tracing and during E≈ computation.
• 𝑣𝑎𝑙𝑖𝑑𝑆𝑖 : For each SA 𝑆𝑖 , this boolean annotation describes
whether 𝑡 ′ is part of the operator output under SA 𝑆𝑖 . Our
algorithm leverages this annotation to determine which 𝑡 ′ ∈
𝑅𝐴
′
correspond to which SA.

• 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡𝑆𝑖 : For each SA 𝑆𝑖 , this boolean annotation identi-
fies if a tuple 𝑡 ′ is consistent with the why-not question. 𝑡 ′ is
consistent if it potentially contributes to the missing answer
under some SR for the SA. This annotation stores the result
of re-validating compatibles as hinted at in the introduction.
• 𝑟𝑒𝑡𝑎𝑖𝑛𝑒𝑑𝑆𝑖 indicates if 𝑡 ′ is an output tuple of the original
query except for attribute changes given by 𝑆𝑖 (true) or if it
requires additional operator reparameterizations, e.g., chang-
ing constants in a selection condition, to exist (false).

In the following, we describe the tracing algorithms for the
operators used in our running example, omitting projection since
it simply propagates consistent and valid annotations of its input.
Table access. The tracing procedure for the table access operator
iterates over each tuple 𝑡 in the input relation 𝑅 and extends 𝑡 with
annotation attributes. It adds the 𝑖𝑑 attribute and a 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡𝑆𝑖
attribute for each SA 𝑆𝑖 . The value 𝑣 of this attribute is only true if
𝑡 matches the tuple 𝑡𝑅 in the set of tuples 𝑇 𝑖 of 𝑆𝑖 . To add correctly
named annotations in function of 𝑆𝑖 , we use the 𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑒 function
(Algorithm 2), e.g., we call 𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑒 (𝑡 ′, [(𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡, 𝑣)], 𝑆𝑖 , 𝑜𝑝).
The table access operator does not change the structure of its input,
so input SAs are simply propagated to its output.

Example 14. Applying the procedure for table access to our run-
ning example yields the annotated relation shown in Figure 4. Schema

Algorithm2:𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑒
1 Function 𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑒(𝑡 ,

𝑎𝑣𝑀𝑎𝑝 , 𝑆𝑖 , 𝑜𝑝):
2 foreach

(𝑎, 𝑣) ∈ 𝑎𝑣𝑀𝑎𝑝 do
3 𝑙𝑎𝑏𝑒𝑙 ←

𝑎+“S”+𝑖+“_”+𝑜𝑝.𝑔𝑒𝑡𝐼𝐷 ()
4 𝑡 ← 𝑡 ◦ ⟨𝑙𝑎𝑏𝑒𝑙 : 𝑣⟩
5 return t

name address1 address2
Peter

Sue

city year
NY 2010
LA 2019
LV 2017

city year
LA 2010
SF 2018

city year
LA 2019
NY 2018

city year
LA 2019
NY 2018

name address1 address2 id_1 consistent
S1_1

consistent
S2_1

Peter 1 0 1

Sue 2 1 1

city year
NY 2010
LA 2019
LV 2017

city year
LA 2010
SF 2018

city year
LA 2019
NY 2018

city year
LA 2019
NY 2018

Input table

Annotated table read

Figure 4: Example of annota-
tions after table access

Algorithm 3: 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝑜𝑝, 𝑅𝐴,S)
1 Function 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝑜𝑝 , 𝑅𝐴 , S):
2 ∀𝑆𝑖 ∈ S, let𝑂𝑖 be the result of executing 𝑜𝑝 wrt 𝑆𝑖 and generalized to an outer flatten
3 ∀𝑆𝑖 ∈ S, let 𝑆′𝑖 = ⟨𝑇

′
𝑖 ,M′𝑖 ⟩ be the schema alternative reflecting the flattening wrt 𝑆𝑖

4 𝑂𝑚𝑒𝑟𝑔𝑒𝑑 ← ∅
5 foreach 𝑡 ∈ 𝑂1 do
6 𝑟 ← 𝑡 is in the result of original flatten wrt 𝑆1
7 𝑐 ← 𝑡 ≃ 𝑡′𝑅 , where 𝑡′𝑅 ∈ 𝑇

′
1

8 𝑎𝑣𝑀𝑎𝑝 ← [(𝑣𝑎𝑙𝑖𝑑, 1), (𝑟𝑒𝑡𝑎𝑖𝑛𝑒𝑑, 𝑟), (𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡, 𝑐)]
9 𝑂𝑚𝑒𝑟𝑔𝑒𝑑 ← 𝑂𝑚𝑒𝑟𝑔𝑒𝑑 ∪ {𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑒 (𝑡, 𝑎𝑣𝑀𝑎𝑝, 𝑆𝑖 , 𝑜𝑝) }

10 foreach𝑂𝑖 , 1 < 𝑖 ≤ |S | do
11 𝑡 ← 𝑡

′
𝑅 ∈ 𝑇

′
𝑖

12 𝑂𝑚𝑒𝑟𝑔𝑒𝑑 ←𝑚𝑒𝑟𝑔𝑒 (𝑂𝑚𝑒𝑟𝑔𝑒𝑑 ,𝑂𝑖 , 𝑆𝑖 , 𝑜𝑝, 𝑡)
13 return ⟨𝑂𝑚𝑒𝑟𝑔𝑒𝑑 ,

⋃︁
𝑆𝑖 ∈S 𝑆

′
𝑖
⟩

alternative 𝑆1 is associated to 𝑡1 shown in Example 13 and consid-

ers 𝑎𝑑𝑑𝑟𝑒𝑠𝑠2.𝑐𝑖𝑡𝑦, while 𝑆2 comprises 𝑡2 using 𝑎𝑑𝑑𝑟𝑒𝑠𝑠1.𝑐𝑖𝑡𝑦. The
first tuple in Figure 4 has 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡𝑆1_1 = 0 because it has no

value in 𝑎𝑑𝑑𝑟𝑒𝑠𝑠2.𝑐𝑖𝑡𝑦 that matches 𝑡1’s constraint 𝑐𝑖𝑡𝑦 =“NY”, while

𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡𝑆2_1 = 1 because 𝑎𝑑𝑑𝑟𝑒𝑠𝑠1.𝑐𝑖𝑡𝑦 nests ⟨𝑐𝑖𝑡𝑦 : “NY”, 2010⟩.

Flatten. The tracing procedure for the flatten operator (Algo-
rithm 3) computes the results of the operator under all schema
alternatives. It obtains the result 𝑂𝑖 of the outer flatten for each
SA 𝑆𝑖 . It uses an outer flatten for two reasons. First, changing an
inner flatten to an outer flatten is a valid parameter change. Sec-
ond it has to track tuples that the inner flatten filters because the
flattened attribute is null or the empty set. Next, the algorithm
updates the SAs to reflect the restructuring of the tuples. It then
combines all 𝑂𝑖 as follows. Lines 5–9 process 𝑂1, i.e., the result
of the outer flatten parameterized as given by 𝑆1. For each tuple
𝑡 in 𝑂1, it evaluates boolean conditions to determine the values 𝑐
and 𝑟 for the 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 and 𝑟𝑒𝑡𝑎𝑖𝑛𝑒𝑑 flags. The algorithm sets the
𝑣𝑎𝑙𝑖𝑑 annotation to 1. To process the remaining SAs (lines 10–12),
it uses the𝑚𝑒𝑟𝑔𝑒 function. Intuitively,𝑚𝑒𝑟𝑔𝑒 concatenates tuples
with the same 𝑖𝑑 across the outer flatten results of all SAs, ensur-
ing not to replicate columns that remain the same across all SAs.
Since the number of tuples with a given 𝑖𝑑 may vary across the
different results (due to nested relations of varying cardinality), it
pads missing “concatenation partners” with null values (⊥). The
algorithm creates annotations for each SA. Thus, it sets annotations
corresponding to null-padded (non-existent) alternatives to 0. The
annotations of tuples in each 𝑂𝑖 are set analog to the ones for 𝑆1.
Each tuple produced in the output also receives a fresh unique 𝑖𝑑 .

Example 15. Given the annotated relation in Figure 4 and the

SAs in Example 13, the inner flatten produces the annotated re-

lation shown in Figure 5 and updates 𝑆1 with 𝑇
′
1 = {⟨𝑛𝐿𝑖𝑠𝑡𝑛𝑎𝑚𝑒 :

?, 𝑐𝑖𝑡𝑦

𝑐𝑖𝑡𝑦𝑆1 : “NY”, 𝑦𝑒𝑎𝑟𝑆1 :?⟩} and 𝑆2 analogously. It combines both

SAs, as both 𝑎𝑑𝑑𝑟𝑒𝑠𝑠1 and 𝑎𝑑𝑑𝑟𝑒𝑠𝑠2 are flattened. The columnmarked

with . . . summarizes all annotation columns of the input. They are

treated as “regular” input columns when executing the outer flatten.

name city
S2

year
S2

city
S1

year
S1

… consistent
S1_2

retained
S1_2

valid
S1_2

consistent
S2_2

retained
S2_2

valid
S2_2

id_2

Peter NY 2010 LA 2010 … 0 1 1 1 1 1 3
Peter LA 2019 SF 2018 … 0 1 1 0 1 1 4
Peter LV 2017 ⊥ ⊥ … 0 0 0 0 1 1 5
Sue LA 2019 LA 2019 … 0 1 1 0 1 1 6
Sue NY 2018 NY 2018 … 1 1 1 1 1 1 7

Annotations after flatten

name address1 address2
Peter

Sue

city year
NY 2010
LA 2019

LV 2017

city year
LA 2010
SF 2018

city year
LA 2019
NY 2018

city year
LA 2019
NY 2018

Figure 5: Example of annotations after flatten

Focusing on the new annotations, we see in the column 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡𝑆1_2
that only the last tuple is consistent with 𝑇

′
1, because it is the only

tuple that features “NY” in 𝑐𝑖𝑡𝑦𝑆1. Further, the 1 values in 𝑣𝑎𝑙𝑖𝑑𝑆1_2
indicate that the flatten produces 4 tuples under 𝑆1. The third tuple is
not valid under 𝑆1, being an artifact of unnesting 𝑎𝑑𝑑𝑟𝑒𝑠𝑠1 for SA 𝑆2.
The other tuples all have the 𝑟𝑒𝑡𝑎𝑖𝑛𝑒𝑑𝑆1_2 = 1. Thus, no tuple is lost
due to the more restrictive inner flatten type.

Selection. The tracing procedure for the selection operator returns
all input tuples with additional annotation columns. It propagates
the 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 , 𝑣𝑎𝑙𝑖𝑑 and 𝑖𝑑 attributes of the previous operator, since
it neither manipulates the schema nor the identity of top-level
tuples. However, the procedure adds a new 𝑟𝑒𝑡𝑎𝑖𝑛𝑒𝑑 attribute for
each 𝑆𝑖 . The value of the 𝑟𝑒𝑡𝑎𝑖𝑛𝑒𝑑 attributes is 1 if a tuple from the
input under 𝑆𝑖 satisfies the selection condition 𝜃 , and 0 otherwise.

Example 16. Ignoring the red highlighting for now, Figure 6 shows
the tracing output after the selection checking if 𝑦𝑒𝑎𝑟 ≥ 2019. For in-
stance, the last tuple has𝑦𝑒𝑎𝑟 = 2018 under 𝑆1, so 𝑟𝑒𝑡𝑎𝑖𝑛𝑒𝑑𝑆1_3 = 0.

Relation nesting. Due to space constraints, we explain the al-
gorithm for relation nesting only based on our running example.
Since the nesting changes the structure of the input relation, our
algorithm first updates the set of SAs. For each 𝑆𝑖 , it derives an
alternative 𝑆 ′

𝑖
from 𝑆𝑖 that reflects nesting. This, for instance, yields

𝑆 ′1 with 𝑇
′
1 = {⟨ 𝑛𝐿𝑖𝑠𝑡

𝑛𝐿𝑖𝑠𝑡𝑆1 : {{⟨𝑛𝑎𝑚𝑒 :?⟩, ∗}}⟩, 𝑐𝑖𝑡𝑦

𝑐𝑖𝑡𝑦𝑆1 : “NY”} . Then,
the algorithm computes the result of relation nesting considering
the schema alternatives and annotates the result tuples as shown in
Figure 7. First, for each 𝑆𝑖 , it computes 𝑅𝑖 by “isolating” all columns
involved in schema alternative 𝑆𝑖 and retaining valid tuples only.
Similarly, 𝑆𝑖 yields 𝑅

𝑝𝑟𝑜𝑣

𝑖
by projecting on all annotation columns

related to 𝑆𝑖 and selecting valid tuples. Figure 7 1○ shows the result
of tracing the preceding projection operator. It highlights data of
𝑅1 in yellow and 𝑅2 in cyan, while data of 𝑅𝑝𝑟𝑜𝑣1 and 𝑅

𝑝𝑟𝑜𝑣

2 are
highlighted in orange and dark blue, respectively. In step 2○, the
algorithm nests 𝑅𝑖 and 𝑅

𝑝𝑟𝑜𝑣

𝑖
. Processing 𝑆1 results in the top row

of tables for step 2○, while 𝑆2 yields the two bottom relations. An-
notations are added to tuples of 𝑅𝑖 in step 3○, resulting in 𝑅𝐴

𝑖
. For

all tuples, the valid annotation is set to 1, whereas the consistent
annotation is set to 1 only if 𝑡 ∈ 𝑅𝑖 matches 𝑡 ′𝑅 ∈ 𝑇

′
𝑖 . For instance,

in Figure 7 3○, the third tuple of 𝑅1 (left) is flagged as consistent,
because it matches the constraints defined by𝑇 ′1. Finally, in step 4○,
all relations 𝑅𝐴

𝑖
and 𝑅𝑝𝑟𝑜𝑣

𝑖
of all schema alternatives are combined

using a function similar to a full outer join. Instead of padding
values with nulls when no join partner exists, the algorithm pads
the nested relations with ∅ and the annotations with 0. That allows

name city
S2

year
S2

city
S1

year
S1

… consistent
S1_3

retained
S1_3

valid
S1_3

consistent
S2_3

retained
S2_3

valid
S2_3

Peter NY 2010 LA 2010 … 0 0 1 1 0 1
Peter LA 2019 SF 2018 … 0 0 1 0 1 1
Peter LV 2017 ⊥ ⊥ … 0 0 0 0 0 1
Sue LA 2019 LA 2019 … 0 1 1 0 1 1
Sue NY 2018 NY 2018 … 1 0 1 1 0 1

Figure 6: Example of annotations after selection

④ Apply full-outer-join-like operation over all annotated Ri
A and add new id annotations

③ For each Ri , create Ri
A with valid and consistent annotations

② apply the nesting operator to each Ri and Ri
prov① For each schema alternative Si , create Ri and Ri

prov

name city
S2

city
S1

… consistent
S1_4

valid
S1_4

consistent
S2_4

valid
S2_4

Peter NY LA … 0 1 1 1
Peter LA SF … 0 1 0 1
Peter LV ⊥ … 0 0 0 1
Sue LA LA … 0 1 0 1
Sue NY NY … 1 1 1 1

nListS1 cityS1
{Peter, Sue} LA
{Peter} SF
{Sue} NY

cityS1 NestedProvS1_5
LA {<…,0,1>, <…,0,1>}
SF {…,0,1}
NY {…,1,1}

nListS2 cityS2
{Peter, Sue} NY
{Peter, Sue} LA
{Peter} LV

cityS2 NestedProvS2_5
NY {<…,1,1>,<…,1,1>}
LA {<…,0,1>,<…,0,1>}
LV {<…,0,1>}

nListS1 cityS1 validS1_5 consistentS1_5
{Peter, Sue} LA 1 0
{Peter} SF 1 0
{Sue} NY 1 1

nListS2 cityS2 validS2_5 consistentS2_5
{Peter, Sue} NY 1 1
{Peter, Sue} LA 1 0
{Peter} LV 1 0

nListS1 nListS2 cityS1S2 … validS1_5 consistentS1_5 validS2_5 consistentS2_5 id_5
{Sue} {Peter, Sue} NY … 1 1 1 1 8
{Peter, Sue} {Peter, Sue} LA … 1 0 1 0 9
{} {Peter} LV … 0 0 1 0 10
{Peter} {} SF … 1 0 0 0 11

R1 R2 R1Prov R2Prov

Figure 7: Example of annotations after relation nesting

the algorithm to compose operators extended with our tracing pro-
cedure. It also collapses joined columns (the non-nested attributes)
from the different schema alternatives (e.g., 𝑐𝑖𝑡𝑦𝑆1 and 𝑐𝑖𝑡𝑦𝑆2), by
coalescing their values. The final result of step 4○ is shown at the
bottom of Figure 7 (ignore red highlighted boxes for now).

5.4 Step 4: Computing Explanations
The result of the data tracing step is a nested relation that extends
the original query result with (i) data that could belong to the
result under some reparameterization and (ii) annotations needed
to identify the operators that require a reparameterization to obtain
the missing data. Algorithm 4 approximates the set of explanations
formally defined in Section 4.2. It first initializes partial explanations
𝐸𝑖 based on attribute substitutions imposed by schema alternatives
𝑆𝑖 ∈ S. For instance, in Figure 3, 𝑆1 does not involve any change
in the attributes referenced by query operators (and thus, 𝐸1 = ∅),
whereas 𝑆2 involves changing the attribute referenced by the flatten
operator (and thus 𝐸2 = {𝐹 }). Then Algorithm 4 initializes a 𝑞𝑢𝑒𝑢𝑒
with pairs of the last operator in 𝑄 and the partial explanations 𝐸𝑖
for each 𝑆𝑖 . Next, it retrieves each operator 𝑜𝑝 𝑗 of the query (top-
down) and their associated partial explanations 𝐸𝑖 from 𝑞𝑢𝑒𝑢𝑒 to
check if 𝑜𝑝 𝑗 needs to be added to an 𝐸𝑖 . More precisely, 𝑜𝑝 𝑗 extends
𝐸𝑖 when the annotations relative to 𝑜𝑝 𝑗 and the schema alternative
𝑆𝑖 contain at least one valid tuple that is consistent with the why-
not question, is not retained, and in the lineage of a consistent tuple
of the final result. The algorithm further adds 𝑜𝑝 𝑗 ’s predecessor
𝑜𝑝 𝑗−1 with unchanged 𝐸𝑖 to the queue when it is possible that
explanations without 𝑜𝑝 𝑗 but with some of its predecessors can be
found (i.e., all annotations are set to 1 for 𝑜𝑝 𝑗). When no further
operators can be added, it adds 𝐸𝑖 to E≈.

Example 17. E≈
𝑒𝑥𝑎𝑚𝑝𝑙𝑒

contains two explanations: 𝐸1= {𝜎} and
𝐸2= {𝐹,𝜎} computed from the annotations in red boxes in Figures 6

and 7. These explanations are based on the MSRs 𝑆𝑅1 and 𝑆𝑅2 de-
scribed in Example 9.

Currently, we only compute loose upper and lower bounds (UB
and LB) for side effects. Obtaining the exact number of side effects
would require comparing the original query result to the result
of any possible actual reparameterization for each operator. For
example, 𝑦𝑒𝑎𝑟 ≥ 2018 and 𝑦𝑒𝑎𝑟 ≠ 2019 are both possible actual

Algorithm 4: 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐸𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛𝑠 (𝑅𝐴,S,Φ)
1 Let 𝐸𝑖 be the explanation prefix determined for each 𝑆𝑖 ∈ S
2 Let 𝑜𝑝𝑙𝑎𝑠𝑡 be the final operator in Φ.𝑄
3 𝑞𝑢𝑒𝑢𝑒 ← add all pairs (𝑜𝑝𝑙𝑎𝑠𝑡 , 𝐸𝑖)𝑆𝑖 in the context of 𝑆𝑖
4 E≈ ← ∅
5 while 𝑞𝑢𝑒𝑢𝑒 ≠ ∅ do
6 (𝑜𝑝 𝑗 , 𝐸𝑖)𝑆𝑖 ← 𝑞𝑢𝑒𝑢𝑒.𝑟𝑒𝑚𝑜𝑣𝑒𝐹𝑖𝑟𝑠𝑡 ()
7 𝑅𝐴

𝑖 𝑗
← annotations relative to 𝑜𝑝 𝑗 and 𝑆𝑖

8 𝑒𝑥𝑡𝑒𝑛𝑑𝑊𝑖𝑡ℎ𝑂𝑝 ← 𝑓 𝑎𝑙𝑠𝑒

9 if 𝑅𝐴
𝑖 𝑗

contains a valid tuple 𝑡 where 𝑟𝑒𝑡𝑎𝑖𝑛𝑒𝑑𝑆𝑖_𝑗 = 0 and 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡𝑆𝑖_𝑗 = 1
and 𝑡 is in the lineage of a consistent output tuple then

10 𝑒𝑥𝑡𝑒𝑛𝑑𝑊𝑖𝑡ℎ𝑂𝑝 ← 𝑡𝑟𝑢𝑒

11 if 𝑗 > 1 then
12 if 𝑒𝑥𝑡𝑒𝑛𝑑𝑤𝑖𝑡ℎ𝑂𝑝 then
13 𝑞𝑢𝑒𝑢𝑒.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑜𝑝 𝑗−1, 𝐸𝑖 ∪ {𝑜𝑝 𝑗 })

14 if 𝑅𝐴
𝑖 𝑗

contains a valid tuple with all its annotations being set to 1 then
15 𝑞𝑢𝑒𝑢𝑒.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑜𝑝 𝑗−1, 𝐸𝑖)

16 else
17 if 𝑒𝑥𝑡𝑒𝑛𝑑𝑤𝑖𝑡ℎ𝑂𝑝 then
18 E≈ ← E≈ ∪ {𝐸𝑖 ∪ {𝑜𝑝 𝑗 }}

19 if 𝑅𝐴
𝑖 𝑗

contains a valid tuple with all its annotations being set to 1 then
20 E≈ ← E≈ ∪ {𝐸𝑖 }, if 𝐸𝑖 ≠ ∅

21 Prune E≈ based on upper and lower bounds of side effects for each explanation in E≈
and sort them according to the partial order defined in Definition 9.

22 return E≈

reparameterizations of the selection operator in 𝐸1 and 𝐸2, but may
yield a different number of side effects.

We compute 𝐿𝐵 = 𝐿𝐵(Δ+)+𝐿𝐵(Δ−) and𝑈𝐵 =𝑈𝐵(Δ+)+𝑈𝐵(Δ−)
based on estimates on the maximum (for 𝑈𝐵) and minimum (for
𝐿𝐵) number of top-level tuples any operator reparameterization
in an explanation adds (Δ+) or removes (Δ−) from the original
query result J𝑄K𝐷 . For explanations within the original schema
alternative, which we will consistently denote as 𝑆1,𝑈𝐵(Δ+) equals
the number of valid top-level tuples in the result that have at least
one retained flag set to 0 for one of the explanation’s operators.
For instance, in Figure 7, tuples 9 and 11 satisfy this condition for
explanation 𝐸1. For explanations linked to a SA 𝑆𝑖 , 𝑖 ≠ 1 that does
not represent the original query 𝑄 , the upper bound is the number
of valid top-level tuples with values under 𝑆𝑖 different from tuples
under 𝑆1 having all their retained and valid flags set to 1, e.g.,
tuple 9 and tuple 10. 𝑈𝐵(Δ−) equals |J𝑄K𝐷 | minus the number
of valid top-level tuples under the considered SA that match an
original tuple (with only true valid and retained flags) under 𝑆1. In
our example, all result tuples not matching the why-not question
have at least one nested value with a false retained flag, so we get
𝑈𝐵(Δ−) = 1 for both explanations. For explanations involving a
selection or join, the lower bound is always set to 0, because we do
not know if a reparametrization different from the “full relaxation”
of the operator that our tracing algorithms model may avoid
the side effects. In all other cases, we estimate 𝐿𝐵(Δ+) =

𝑚𝑎𝑥 (number of valid and retained tuples − |J𝑄K𝐷 |,0) and
𝐿𝐵(Δ−) = 𝑚𝑎𝑥 (|J𝑄K𝐷 | − number of valid and retained tuples,0).
We leave algorithms that compute tighter bounds to future work.
Finally, the explanations are ordered following the partial order
defined in Definition 9, ranking 𝐸1 higher than 𝐸2.

5.5 Discussion
We observe that our algorithm guarantees that any returned expla-
nation is a correct explanation. However, given our loose bounds

on side effects, we cannot guarantee that they all yield MSRs. Fur-
thermore, we may miss some operators / explanations due to the
algorithm’s heuristic nature. Essentially, the proposed algorithm
cuts the following corners for efficiency, causing certain cases not
to be accurately covered: (i) It considers only equi-joins and does
not model a reparameterization to theta-joins. This avoids cross
products that enumerate all possible outputs of join reparameteri-
zations. If such a reparameterization was an explanation, our algo-
rithm misses it. (ii) The tracing procedures for selection, join, and
flatten faithfully cover reparameterizations yielding more tuples,
compared to the original query operator. So we miss explanations
where a more restrictive selection condition, join type, or flatten
type would yield a missing answer. (iii) Finally, for aggregations, we
generally do not trace the result for different subsets of their input
data, which is particularly problematic when selections precede it
(for changing equi-join types and flatten types, this is manageable).
Also, we do not consider changing the aggregation function.

6 IMPLEMENTATION AND EVALUATION
We implement the algorithm of Section 5 as summarized in Sec-
tion 6.1. We describe the test setup in Section 6.2. Section 6.3 covers
our quantitative evaluation on scalability, while Section 6.4 dis-
cusses the quality of returned explanations.

6.1 Implementation
While the concepts apply to DISC systems in general, we implement
them in Spark’s DataFrame API. DataFrames are tuple collections
matching our data model from Section 3. The transformations sup-
ported by Spark’s DataFrame API can be expressed in our algebra
(Section 3.2). To express and process why-not questions (Defini-
tion 5), we leverage the tree-patterns implementation from [29].

Our prototype integrates into Spark’s query planning and exe-
cution phases. The schema backtracing (Section 5.1) and schema
alternatives computation (Section 5.2) integrate into the query plan-
ning phase. Data tracing (Section 5.3) and computing explanations
(Section 5.4) span across both phases. Similar to [33], our prototype
rewrites the query plan to directly obtain the explanations from
provenance annotations added for data tracing.

A straightforward implementation of data tracing does not result
in efficient query plans. We incorporate multiple optimizations
to avoid blow-up in query size and avoid cross products. These
careful design choices make our algorithm scale to dataset sizes
several orders of magnitude larger than those any other state-of-
the-art solution can handle. At the same time, we produce many
explanations that lineage-based approaches do miss.

6.2 Test Setup
We test on a Spark 2.4 cluster with 50 executors of 16GB RAM
each. We define 16 scenarios on three nested datasets: T1 to T4
and T𝐴𝑆𝐷 (the latter adapted from [36]) on Twitter data, D1 to
D5 on DBLP data, and 6 scenarios on a nested version of TPCH
that nests lineitems into orders [35] with queries corresponding
mostly (as explained later) to the benchmark queries Q1, Q3, Q4,
Q6, Q10, and Q13 without the unsupported sorting and top-k se-
lection. The Twitter dataset consists of tweets with roughly 1000
mostly nested attributes [40]. DBLP contains records of different

D1 D2 D3 D4 D5100

101

102

103

104
Ru

nt
im

e
(s

ec
)

Spark
100GB 200GB 300GB 400GB 500GB

Figure 8: Runtime for DBLP
T1 T2 T3 T4 TASD

100

101

102

103

104

Ru
nt

im
e

(s
ec

)

Spark
100GB 200GB 300GB 400GB 500GB

Figure 9: Runtime for Twitter

Q1 Q3 Q4 Q6 Q10 Q13100

101

102

103

Ru
nt

im
e

(s
ec

)

SparkRPnoSA RP

6 12 12 6 2 1
of SAs

Figure 10: TPC-H

1 2 3 4
of SA

0
10
20
30
40
50
60

Ru
nt

im
e

(m
in

)

D1
D4
TASD

T3
Q3

Figure 11: Varying SAs

types, such as article, author, etc. Table 3 summarizes our sce-
narios. For each scenario, it provides a short description and high-
lights its query operators (ignore the rest for now). By default, each
Twitter and DBLP scenario has 2 schema alternatives (SAs), i.e.,
the basic SA plus one SA using an attribute alternative. For the
TPCH scenarios, we identify three sets of attribute alternatives: (i)
{𝑙_𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡, 𝑙_𝑡𝑎𝑥}, (ii) {𝑙_𝑠ℎ𝑖𝑝𝑑𝑎𝑡𝑒, 𝑙_𝑐𝑜𝑚𝑚𝑖𝑡𝑑𝑎𝑡𝑒, 𝑙_𝑟𝑒𝑐𝑒𝑖𝑝𝑡𝑑𝑎𝑡𝑒},
and (iii) {𝑜_𝑜𝑟𝑑𝑒𝑟𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦, 𝑜_𝑠ℎ𝑖𝑝𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦}. This can result in up to
12 SAs, depending on the attributes used by a query. Additional
details including the queries inNRAB and why-not questions are
provided in [16].

When not mentioned otherwise, we apply a scale factor of 10 for
TPCH and consider 100GB of DBLP or Twitter data. To evaluate
runtime and scalability, we vary the DBLP and Twitter dataset size
between 100GB and 500GB. To assess explanation quality, we delib-
erately modified operators in the T𝐴𝑆𝐷 and TPCH queries. The un-
modified queries serve as a gold standard, such that the explanations
precisely containing the modified operators are the correct ones.
We study the explanations returned by our reparameterization-
based algorithm with (RP) and without (RPnoSA) multiple schema
alternatives. We further compare these to the explanations of a
lineage-based approachWN++. To this end, we extended Why-Not
[9] to scale to big data and to support nested data.

6.3 Performance Evaluation
Varying dataset size. The bars in Figures 8 and 9 report RP’s run-
time for DBLP and Twitter scenarios for varying dataset sizes given
a 2 hours time-out. The line reports the original query runtime.

First, we note linear scalability with the input size. Second, our
implementation exceeds the runtime of the original query by a
factor between 2.4 and 78.2, depending on the scenario. This over-
head is in line with the overhead of state-of-the art solutions on
relational data. This overhead is particularly low for queries with a
low number of operators, such as D3, T2, and T𝐴𝑆𝐷 . The overhead
increases when the queries become more complex (D4, D5, T3, T4).
For such queries, our annotations grow in size, causing additional
runtime overhead and even exceeding our time-out limit for larger
input sizes of T3. Furthermore, joins are expensive. Spark rewrites
the joins in D4 and T3 from Hash-Joins to much slower Sort-Merge-
Joins, since it does not support outer Hash-Joins. However, we
require the outer joins to accurately trace tuples without a join
partner. Moreover, high runtime overhead occurs when the output
is based on a small subset of the input tuples. For example, in D5,
two inner flatten operators on nested relations that are empty for
most tuples yield much fewer output tuples than input tuples. In
contrast, our tracing algorithm retains at least one output tuple for
each input tuple. Finally, for T4, we only show results for 100GB
input data, because we did hit a Spark limitation for larger sizes. It
is related to a reported bug in Spark’s grouping set implementation,

which we use in the aggregation tracing procedure, and Spark’s
current item limit in nested collections (231).

For the TPCH scenarios (Figure 10) the overhead was between
a factor of 3.9 and 10.1 for RPnoSA, and up to 105.2 for RP. It is
higher for two reasons. First, all TPCH queries use aggregations.
Thus, their result size is insignificant compared to the number of
traced tuples (analogous to D5). Second, the higher numbers of
SAs cause higher overhead (up to 12 compared to 2 for DBLP and
Twitter).
Varying the number of SAs. To study the runtime impact of SAs,
we consider between 1 and 4 SAs. We report results for a simple
scenario with only a few operators and insignificant changes in
intermediate result sizes (T𝐴𝑆𝐷), two scenarios of intermediate
difficulty with relation flatten and join operators (D1, T3), and two
difficult scenarios featuring flatten, join, nesting, and aggregation
(D4, Q3). Figure 11 shows the results. For all but the most difficult
scenarios, the runtime increases by a constant factor of 0.15 (T𝐴𝑆𝐷),
0.5 (D1), or 0.8 (T3) per added SA. Since the factor is below 1, adding
an SA to the rewritten query is faster than executing seperate
queries for each SA. In D4, adding SAs causes some slow down.
While the factor is 0.96 for adding the first alternative, it is 1.47 for
adding the last alternative. Similarly, for Q3, going up to 12 SAs
has an overhead of 4.76x compared to 4 SAs and 17.92 compared
to one SA. The reason is twofold. First, with each added SA, each
tuple’s size increases. Second, the grouping set implementation
in Spark used for our aggregations duplicate each input tuple for
each alternative. Thus, both the tuple width and the tuple number
increase with each SA, explaining observed runtimes.

6.4 Explanation Quality
We summarize the explanations returned by WN++, RPnoSA, and
RP for all scenarios in Table 3. Flag denotes that all algorithms did
find an explanation involving this operators. The flag indicates
that WN++ misses an explanation involving an operator of this
type, which both RPnoSA and RP find. Operators appearing only
in RP’s explanations are marked . denotes that WN++ did
produce incomplete explanations, i.e., explanations that involve
the marked operator, but require modifying another operator that
WN++ misses. denotes incorrect explanations only found by
WN++. Note that some cells have multiple flags, because a query
may contain multiple operators (with different id) of the same type.
As shown in the three rightmost columns in Table 3, WN++ finds
12, RPnoSA detects 21, and RP yields 48 explanations. The numbers
in brackets behind the number of explanations indicate the position
of the correct explanations for the scenarios with a gold standard.

Next, we describe scenarios Q3, Q10, and T𝐴𝑆𝐷 . We use 𝑜𝑝𝑖𝑑
to distinguish multiple operators of the same type (see [16] for
the queries in NRAB). Scenario Q3 computes unshipped orders.
We have introduced a typo in the constant commitdate in 𝜎27 and

Scen. Query Operators # explanations
𝜎 𝜋 ⋈︁ 𝐹 N 𝛾 WN++ RPnoSA RP

D1 All authors and titles of papers that are published at SIGMOD 1 1 2
D2 Number of articles for authors who do not have "Dey" in their name 0 0 1
D3 Lists all author-paper-pairs per booktitle and year 0 0 1
D4 Papers per author that have published through ACM after 2010 1 2 4
D5 List of (hompage) urls for each author 1 1 2
T1 List of tweets providing media urls about a basketball player 1 1 2
T2 All users who tweeted about BTS in the US 1 2 4
T3 Hashtags and medias for users that are mentioned in other tweets 1 1 2
T4 Nested list of countries for each hashtag of tweets containing “UEFA” 1 1 3

T𝐴𝑆𝐷 ASD example [36]: flatten, filter, project quoted tweets (2 modifications) 0 (-) 0 (-) 2 (2)
Q1 TPCH query 1 with one modified aggregation 1 (-) 1 (-) 3 (2)
Q3 TPCH query 3 with two modified selections 1 (-) 1 (1) 2 (1)
Q4 TPCH query 4 with a modified selection and aggregation 0 (-) 0 (-) 4 (3)
Q6 TPCH query 6 with one modified selection 1 (-) 7 (2) 11 (2)
Q10 TPCH query 10 with two modified selections and a modified projection 1(-) 2(-) 4 (4)
Q13 TPCH query 13 with one modified join 1 (1) 1(1) 1 (1)
: Found by all algorithms, : found only by RPnoSA and RP, : found only by RP, : WN++ is incomplete WN++ is incorrect

Table 3: Summary of explanations returned for the lineage-based approach WN++, our reparameterization-based approach
without SAs (RPnoSA) and our fully fledged approach RP. Shaded fields indicate that a scenario’s query uses one or more
operators of this type, and the shaded circles indicate operators found by the different approaches (see legend).

replaced the marketsegment in 𝜎26 as errors and miss a certain
order in the output.WN++ finds only𝜎27 as an explanation, because
it removes the order entirely from its output. Unlike our solution,
WN++misses that𝜎26 on themarketsegmentwould also remove the
missing order. Thus, RPnoSA, and RP return {𝜎26, 𝜎27} as their first
and correct explanation. RP also returns explanation {𝜎26, 𝜎27, 𝛾25}.
It is based on schema alternatives reflecting the tax as alternative
to the discount. The last explanation yields the missing order since
the order appears in the result regardless of the SA. This scenario
shows that our solution already outperforms WN++ without SAs.

Scenario Q10 reports returned items and the associated revenue
loss. We introduce three errors in the query. We replace the con-
stants in the selections 𝜎35 on the returnflag and 𝜎36 on the order-
date. Additionally, we substitute the discount with the tax in the
projection 𝜋37 that computes the discount on the correct, non-zero
revenue. We expect a missing customer in the result who generates
noticable revenue. WN++ returns the join ⋈︁38 on customer and
order as an explanation because it removes the expected customer
from the result. While the explanation makes the customer appear
in the result, it cannot yield a non-zero revenue, which we did ask
for. Thus, this explanation is incorrect. RPnoSA and RP first point
to 𝜎35 since it removes all potential join partners for the expected
customer. Next, RPnoSA and RP return both selections {𝜎35, 𝜎36}
because 𝜎36 also removes tuples that join with the expected cus-
tomer. RP further returns {𝜎35, 𝜋37} and {𝜎35, 𝜎36, 𝜋37} , which add
𝜋37 to the discussed explanations. The last explanation is based on
SAs and precisely points at all our modifications. It is ranked last,
since it modifies the most operators. However, note that one would
have obtained the correct solution iteratively when observing the
provided selections before the projection. Our solution does not
return ⋈︁38 since it cannot yield a non-zero revenue.

We finally describe the adaptive schema database (ASD) scenario
T𝐴𝑆𝐷 from [36]. An ASD extracts and refines relational schemata
from semi- or unstructured data. T𝐴𝑆𝐷 extracts one relation each
for the nested retweeted tweets, and the nested quoted tweets. To

extract the retweeted tweets the ASD (i) flattens them with 𝐹 21,
(ii) filters a non-null retweet count in 𝜎22, and (iii) projects only
the attributes from the retweet. To reflect the ambiguity between
retweets and quotes, we add two errors to T𝐴𝑆𝐷 . We flatten the
quoted tweets and filter on the quote count. The missing answer is a
certain retweet. As finding these errors requires SAs, only RP finds
explanations, i.e., {𝐹 21} and {𝐹 21, 𝜎22}. T𝐴𝑆𝐷 shows that RP adds
two key features to ASDs. It helps resolving schema ambiguities
through SAs and finding missing data in the output relations.

In general, even RPnoSA finds explanations that WN++ misses
(T1, T4, Q3, Q6, Q10) because RPnoSA traces through the entire
query. While these results are for nested data, WN++ exhibits the
same problem for flat relational data. as described in [16]. Further-
more, RPmay find explanations based on SAs that both RPnoSA and
WN++ miss (as in all scenarios except Q13). In fact, the SAs may be
the only means to obtain an explanation at all (D2, D3, T𝐴𝑆𝐷 , Q4).
When multiple operators need reparameterizations, our solution
provides the correct explanation, but possibly not ranked at the top,
like in Q10 and T𝐴𝑆𝐷 . However, the operators of higher ranked
explanations typically intersect with the operators in the correct
explanation. Thus, starting investigations with the higher-ranked
explanations seems a viable option to incrementally correct a query.

7 CONCLUSIONS
We present a novel approach for query-based explanations for miss-
ing answers that is the first to (i) support nested data, (ii) consider
changes to the query that affect the schema of intermediate results,
and (iii) scale to big data (100s of GBs). Even for queries over flat
data, which prior work is limited to, it produces explanations that
existing systems miss. One avenue for future research is to define
and efficiently compute tighter bounds for side effects.

Acknowlegements. Partially funded by Deutsche Forschungsgemeinschaft
(DFG) under Germany’s Excellence Strategy - EXC 2075 - 390740016 and by
NSF grants OAC-1640864 and IIS-1956123.

REFERENCES
[1] Y. Amsterdamer, SB. Davidson, D. Deutch, T. Milo, J. Stoyanovich, and V. Tannen.

2011. Putting Lipstick on Pig: Enabling Database-style Workflow Provenance.
Proceedings of the VLDB Endowment (PVLDB) 5, 4 (2011), 346–357.

[2] David Aumueller, Hong-Hai Do, Sabine Massmann, and Erhard Rahm. 2005.
Schema and Ontology Matching with COMA++. In ACM Conference on the Man-

agement of Data (SIGMOD).
[3] Pablo Barceló. 2019. A Theoretical View on Reverse Engineering Problems for

Database Query Languages. In International Workshop on Description Logics,
Mantas Simkus and Grant E. Weddell (Eds.), Vol. 2373.

[4] K. Belhajjame. 2018. On Answering Why-Not Queries Against Scientific Work-
flow Provenance. In Conference on Extending Database Technology (EDBT). 465–
468.

[5] N. Bidoit, M. Herschel, and A. Tzompanaki. 2015. Efficient Computation of
Polynomial Explanations of Why-Not Questions. In Conference on Information

and Knowledge Management (CIKM). 713–722.
[6] N. Bidoit, M. Herschel, and K. Tzompanaki. 2014. Query-Based Why-Not Prove-

nance with NedExplain. In Conference on Extending Database Technology (EDBT).
145–156.

[7] Philip Bille. 2005. A survey on tree edit distance and related problems. Theoretical
computer science 337, 1-3 (2005), 217–239.

[8] Jesús Camacho-Rodríguez, Dario Colazzo, Melanie Herschel, Ioana Manolescu,
and Soudip Roy Chowdhury. 2016. Reuse-based Optimization for Pig Latin. In
Conference on Information and Knowledge Management (CIKM).

[9] A. Chapman and H. V. Jagadish. 2009. Why not?. In ACM Conference on the

Management of Data (SIGMOD). 523–534.
[10] Daniel Deutch, Nave Frost, Amir Gilad, and Tomer Haimovich. 2018. NLProve-

NAns: Natural Language Provenance for Non-Answers. Proceedings of the VLDB
Endowment (PVLDB) 11, 12 (2018), 1986–1989.

[11] Daniel Deutch, Nave Frost, Amir Gilad, and Tomer Haimovich. 2020. Explaining
Missing Query Results in Natural Language. In Conference on Extending Database

Technology (EDBT). OpenProceedings.org, 427–430.
[12] Daniel Deutch and Amir Gilad. 2019. Reverse-Engineering Conjunctive Queries

from Provenance Examples. In Conference on Extending Database Technology

(EDBT). 277–288.
[13] Gonzalo Diaz, Marcelo Arenas, and Michael Benedikt. 2016. Sparqlbye: Querying

RDF data by example. Proceedings of the VLDB Endowment (PVLDB) 9, 13 (2016),
1533–1536.

[14] Ralf Diestelkämper, Boris Glavic, Melanie Herschel, and Seokki Lee. 2019. Query-
based Why-not Explanations for Nested Data. In International Workshop on

Theory and Practice of Provenance (TaPP).
[15] Ralf Diestelkämper and Melanie Herschel. 2020. Tracing nested data with struc-

tural provenance for big data analytics. In Conference on Extending Database

Technology (EDBT). 253–264.
[16] Ralf Diestelkämper, Seokki Lee, Melanie Herschel, and Boris Glavic. 2021. To not

miss the forest for the trees - A holistic approach for explaining missing answer
over nested data (supplementary material). (2021). arXiv:2103.07561 [cs.DB]

[17] Hong Do and Erhard Rahm. 2002. COMA - A System for Flexible Combination of
Schema Matching Approaches.. In Conference on Very Large Data Bases (VLDB).
906 – 908.

[18] J. Nathan Foster, TJ. Green, and V. Tannen. 2008. Annotated XML: queries and
provenance. In Symposium on Principles of Database Systems (PODS). 271–280.

[19] S. Grumbach and T. Milo. 1996. Towards Tractable Algebras for Bags. Journal of
Computer and System Sciences (JCSS) 52, 3 (1996), 570 – 588.

[20] M. Herschel. 2015. A Hybrid Approach to Answering Why-Not Questions on
Relational Query Results. ACM Journal on Data and Information Quality (JDIQ)

5, 3 (2015), 10.
[21] M. Herschel, R. Diestelkämper, and H. Ben Lahmar. 2017. A survey on provenance:

What for? What form? What from? The VLDB Journal 26, 6 (2017), 881–906.
[22] R. Ikeda, H. Park, and J. Widom. 2011. Provenance for Generalized Map and

Reduce Workflows. In Conference on Innovative Data Systems Research (CIDR).
273–283.

[23] M. Interlandi, A. Ekmekji, K. Shah, M. Ali Gulzar, S. Deep Tetali, M. Kim, TD.
Millstein, and T. Condie. 2018. Adding data provenance support to Apache Spark.
The VLDB Journal 27, 5 (2018), 595–615.

[24] Dmitri V Kalashnikov, Laks VS Lakshmanan, and Divesh Srivastava. 2018.
FastQRE: Fast Query Reverse Engineering. InACMConference on the Management

of Data (SIGMOD). 337–350.
[25] Yunyao Li, Cong Yu, and H. V. Jagadish. 2004. Schema-Free XQuery. In Conference

on Very Large Data Bases (VLDB). 72–83.
[26] Yunyao Li, Cong Yu, and H. V. Jagadish. 2008. Enabling Schema-Free XQuery

with meaningful query focus. The VLDB Journal 17, 3 (2008), 355–377.
[27] Leonid Libkin and LimsoonWong. 1997. Query Languages for Bags andAggregate

Functions. Journal of Computer and System Sciences (JCSS) 55, 2 (Oct. 1997),
241–272.

[28] D. Logothetis, S. De, and K. Yocum. 2013. Scalable lineage capture for debugging
DISC analytics. In Symposium on Cloud Computing (SOCC). 17.

[29] J Lu, TW Ling, Z Bao, and C Wang. 2011. Extended XML Tree Pattern Matching:
Theories and Algorithms. IEEE Transactions on Knowledge and Data Engineering

(TKDE) 23, 3 (2011).
[30] Chaitanya Mishra and Nick Koudas. 2009. Interactive Query Refinement. In

Conference on Extending Database Technology (EDBT). 862–873.
[31] Chaitanya Mishra, Nick Koudas, and Calisto Zuzarte. 2008. Generating Targeted

Queries for Database Testing. In ACM Conference on the Management of Data

(SIGMOD). New York, NY, USA, 499–510.
[32] Davide Mottin, Alice Marascu, Senjuti Basu Roy, Gautam Das, Themis Palpanas,

and Yannis Velegrakis. 2016. A Holistic and Principled Approach for the Empty-
answer Problem. The VLDB Journal 25, 4 (2016), 597–622.

[33] Tobias Müller, Benjamin Dietrich, and Torsten Grust. 2018. You Say ’What’, I Hear
’Where’ and ’Why’? (Mis-)Interpreting SQL to Derive Fine-Grained Provenance.
Proceedings of the VLDB Endowment (PVLDB) 11, 11 (2018), 1536–1549.

[34] Mateusz Pawlik and Nikolaus Augsten. 2011. RTED: a robust algorithm for
the tree edit distance. Proceedings of the VLDB Endowment (PVLDB) 5, 4 (2011),
334–345.

[35] P. Pirzadeh, M. Carey, and T. Westmann. 2017. A performance study of big data
analytics platforms. In Conference on Big Data. 2911–2920.

[36] William Spoth, Bahareh Sadat Arab, Eric S. Chan, Dieter Gawlick, Adel Ghoneimy,
Boris Glavic, Beda Christoph Hammerschmidt, Oliver Kennedy, Seokki Lee,
Zhen Hua Liu, Xing Niu, and Ying Yang. 2017. Adaptive Schema Databases. In
Conference on Innovative Data Systems Research (CIDR).

[37] Wei Chit Tan, Meihui Zhang, Hazem Elmeleegy, and Divesh Srivastava. 2017.
Reverse Engineering Aggregation Queries. Proceedings of the VLDB Endowment

(PVLDB) 10, 11 (2017), 1394–1405.
[38] QT. Tran and CY. Chan. 2010. How to ConQueR why-not questions. In ACM

Conference on the Management of Data (SIGMOD). 15–26.
[39] Quoc Trung Tran, Chee Yong Chan, and Srinivasan Parthasarathy. 2014. Query

Reverse Engineering. The VLDB Journal 23, 5 (2014), 721–746.
[40] Zhiyi Wang and Shimin Chen. 2017. Exploiting Common Patterns for Tree-

Structured Data. In ACM Conference on the Management of Data (SIGMOD),
Semih Salihoglu, Wenchao Zhou, Rada Chirkova, Jun Yang, and Dan Suciu (Eds.).
ACM, 883–896.

[41] Kaizhong Zhang, Rick Statman, and Dennis Shasha. 1992. On the editing distance
between unordered labeled trees. Information processing letters 42, 3 (1992),
133–139.

[42] N. Zheng, A. Alawini, and Z. G. Ives. 2019. Fine-Grained Provenance for Matching
ETL. In IEEE International Conference on Data Engineering (ICDE). 184–195.

[43] M.M. Zloof. 1977. Query-by-Example: A Data Base Language. IBM Systems

Journal 16, 4 (1977), 324–343.

https://arxiv.org/abs/2103.07561

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries and Notation
	3.1 Nested Relational Types and Instances
	3.2 Nested Relational Algebra

	4 Why-Not Explanations
	4.1 Why-Not Questions
	4.2 Reparameterizations and Explanations
	4.3 Discussion

	5 Computing Explanations
	5.1 Step 1: Schema backtracing
	5.2 Step 2: Schema alternatives
	5.3 Step 3: Data tracing
	5.4 Step 4: Computing Explanations
	5.5 Discussion

	6 Implementation and Evaluation
	6.1 Implementation
	6.2 Test Setup
	6.3 Performance Evaluation
	6.4 Explanation Quality

	7 Conclusions
	References

