To Not Miss the Forest for the Trees - A Holistic Approach for
Explaining Missing Answers over Nested Data

Ralf Diestelkamper
University of Stuttgart - IPVS, Germany
ralf.diestelkaemper@ipvs.uni-stuttgart.de

Melanie Herschel
University of Stuttgart - IPVS, Germany
National University of Singapore, Singapore
melanie.herschel@ipvs.uni-stuttgart.de

ABSTRACT

Query-based explanations for missing answers identify which op-
erators of a query are responsible for the failure to return a missing
answer of interest. This type of explanations has proven useful,
e.g., to debug complex analytical queries. Such queries are frequent
in big data systems such as Apache Spark. We present a novel ap-
proach to produce query-based explanations. It is the first to support
nested data and to consider operators that modify the schema and
structure of the data (e.g., nesting, projections) as potential causes of
missing answers. To efficiently compute explanations, we propose a
heuristic algorithm that applies two novel techniques: (i) reasoning
about multiple schema alternatives for a query and (ii) re-validating
at each step whether an intermediate result can contribute to the
missing answer. Using an implementation on Spark, we demon-
strate that our approach is the first to scale to large datasets while
often finding explanations that existing techniques fail to identify.

CCS CONCEPTS

« Information systems — Data provenance; MapReduce-
based systems; MapReduce languages; Semi-structured data.

KEYWORDS
query-based explanations; why-not provenance; nested data

ACM Reference Format:

Ralf Diestelkamper, Seokki Lee, Melanie Herschel, and Boris Glavic. 2021.
To Not Miss the Forest for the Trees - A Holistic Approach for Explaining
Missing Answers over Nested Data. In Proceedings of the 2021 International
Conference on Management of Data (SIGMOD °21), June 20-25, 2021, Virtual
Event, China. ACM, , 13 pages. https://doi.org/10.1145/3448016.3457249

1 INTRODUCTION

Debugging analytical queries in data-intensive scalable comput-
ing (DISC) systems such as Apache Spark is a tedious process.
Query-based explanations for missing answers can aid users in this
process by narrowing down the debugging task to parts of the query

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGMOD °21, June 20-25, 2021, Virtual Event, China

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8343-1/21/06.

https://doi.org/10.1145/3448016.3457249

Seokki Lee

University of Cincinnati, USA
lee5sk@ucmail.uc.edu

Boris Glavic
Ilinois Institute of Technology, USA
bglavic@iit.edu

address2

Peter | [city [year | | [city [year
NY |2010 LA |2010
LA |2019 SF [2018
LV |2017

name |addressl

city [nList

LA name

Sue

Sue city |year | | [city |year
LA |2019|||LA |2019
NY |2018 NY |2018

(b) Sample output

(a) Sample input data

Flatten Selection Projection Nesting
address2 year = 2019 name, city name — nList
Faddress? Fyear=2019 Tlname city Y e = v

(c) Operator pipeline for sample program
Figure 1: Given person input data (a), we obtain a list of cities
with associated persons (b) when running a Spark program
that corresponds to the operator pipeline shown in (c).

that are responsible for the failure to compute an expected answer.
In this work, we present an approach for producing query-based
explanations and implement this approach on Spark. Our approach
is defined for a nested relational algebra for bags [19]. This allows
us to cover a large variety of practical queries expressible in big
data systems, like in [1].

In general, missing answers approaches have three inputs: a
why-not question specifying which missing results are of interest, a
query, and the input data. Three categories of explanations have
been considered [21]: (i) instance-based explanations attribute miss-
ing answers to missing input data; (ii) query-based explanations
pinpoint which parts of the query, typically at the granularity of
individual operators, cause the derivation of the expected results
to fail; and (iii) refinement-based explanations produce a rewrit-
ten query that returns the missing answer. Our approach returns
query-based explanations that consist of a set of operators. Each
explanation indicates a set of operators that should be fixed for the
missing answers to be returned.

ExAMPLE 1. Each person tuple in Figure la contains two nested
address relations (cities with associated years). These may correspond
to work and home addresses. Figure 1c shows a query that returns
cities that are the workplace of at least one person since 2019. For
each such city, the query returns the list of persons that work in
this city. The query is composed of four operators (explained further
below). The query’s result over the person table consists of a single
nested tuple (Figure 1b). An analyst may wonder why NY is not in the

https://doi.org/10.1145/3448016.3457249
https://doi.org/10.1145/3448016.3457249

result and pose this concern as a why-not question. Multiple query-
based explanations exist. For instance, the selection year > 2019
prevents the tuple (NY, {(Sue)}) that matches the why-not question to
appear in the result. Thus, one explanation for the missing answer
is that the selection operator needs to be fixed. Another possibility
is that the analyst assumed address2 stores work addresses, while
in fact, address1 does. However, given the data in address1, this is
not satisfactory to explain the missing answer, as no tuple featuring
NY has a sufficiently recent year. Thus, an explanation involving
a “misconfigured” flattening operation also requires adjusting the
selection, which results in an explanation that includes both operators.

The idea of providing operators as query-based explanations
for a missing answer is at the core of lineage-based approaches [6,
9, 11, 20]. They identify compatible tuples in the input data that
contain the values necessary to produce the missing answers and
trace them through the query to determine picky operators. These
operators filter successors of compatible tuples. The rationale is that
it may be possible to change the parameters of a picky operator
such that it no longer filters the successors of compatible tuples.

ExXAMPLE 2. Applying the lineage-based explanation approach to
our example for the why-not question asking for NY, we identify tuple
(NY, 2018) nested in the address?2 attribute of Sue as the only com-
patible tuple. When tracing this tuple through the query’s operators,
we observe that it is in the lineage of the flatten operator’s intermedi-
ate result. In other words, its successor passes this first operator and is
in the input of the subsequent selection. The selection’s result does not
include any successor of this compatible. Thus, we would identify the
selection as a picky operator and return it as an explanation.

Example 2 already makes non-trivial adaptations to state-of-the-
art solutions for relational data. It extends the set of supported
operators with flatten and nesting and assumes tracing support
for nested tuples. Straightforward extensions of existing solutions
would trace top-level tuples only and, thus, return no result at
all. More importantly, a purely lineage-based formulation of the
problem fails to find all query-based explanations from Example 1.

In this paper, we propose a novel formalization of query-based
why-not explanations for both flat and nested data models. We
further present a practical algorithm to compute such explanations,
which is implemented and evaluated in Apache Spark.

Why-not explanations for flat and nested data based on repa-
rametrizations. Alternative approaches to lineage-based why-not
explanations have been investigated recently [5, 10, 14]. However,
their practical use is limited since they only support conjunctive
queries over relational data or lack an efficient or effective algo-
rithm or implementation. Inspired by [14], our formalization is
based on reparameterizations of query operators. These are changes
to the parameters of one or more operators that “repair” the query
such that the missing answer is returned. We define an explanation
to be the set of operators modified by a minimal successful reparam-
eterizations (MSRs), which is a reparameterization that is minimal
wrt. to a partial order based on the number of operators that are
modified (we do not want to modify operators unless needed) and
the side effects of the reparameterization (“repairs” should avoid
changes to the original query result). Our formalization has two
advantages over past work: (i) it guarantees that neither false neg-
atives (operators not returned that have to be changed) nor false

positives are returned (operators part of explanations that do not
have to be changed); and (ii) explanations may include operators
such as projections and nesting (not supported by past work). Such
richer explanations require reasoning about the effect that changes
to the schema and (nesting) structure of intermediate results have on
the final query result. However, this precision and expressiveness
come at a price: computing MSRs is NP-hard and even restricted
cases that are in PTIME require further optimizations to be practical.
A scalable heuristic algorithm leveraging schema alternatives
and revalidation. In light of this result, we explore a heuristic al-
gorithm that approximates explanations. Given the corners we cut
to be efficient, e.g., disregarding reparameterizations of equi-joins
to theta-joins that rely on cross products and are of little practical
interest in DISC systems, our algorithm may miss certain operators
and corresponding MSRs in its returned explanations. Even though
our algorithm is heuristic in nature and, like past approaches, uses
lineage and forward tracing of compatibles, it often finds expla-
nations they cannot produce. This is due to two novel technical
contributions: (i) Our algorithm reasons about multiple schema
alternatives. It traces changes of the schema and (nesting) struc-
ture of intermediate results caused by possible reparameterizations
of operators, e.g., flattening address1 instead of address2 in our
example. (ii) Like previous approaches, it uses compatibles to find
missing answers. In contrast to them, it revalidates compatibility
of successors of compatible tuples to avoid false positives (tuples
are incorrectly identified as compatible). All past lineage-based
approaches are subject to this issue that is exacerbated by consider-
ing nested data. For instance, in our example, the complete second
input tuple is initially flagged as compatible. After flattening, only
one of its two successors is compatible.

Implementation and evaluation. We implement our algorithm
in Apache Spark. We highlight design choices that, as experiments
validate, make our approach the first to scale to large datasets
(we evaluate on datasets several orders of magnitude larger than
previous work) and to offer the most expressive query-based expla-
nations to date for both relational and nested data models.

We review related work in Section 2 and introduce preliminaries
in Section 3. Our why-not explanations are covered in Section 4. We
present our heuristic algorithm in Section 5, our implementation
and evaluation in Section 6, and conclude in Section 7.

2 RELATED WORK

Why-not explanations. Most closely related to our work are
query-based (e.g., [5, 6, 9-11]) and refinement-based (e.g., [38])
approaches for explaining missing answers. All these approaches
target flat relational data and, except for [4, 9], which target work-
flows, support queries limited to subclasses of relational algebra
plus aggregation. As we have seen in the introduction, these ap-
proaches do not trivially extend to handling nested data with a
richer set of operators and would return fewer explanations than
one may expect. This work is an extension of [14].

Query-by-example (QBE) and query reverse engineering
(QRE). Query-based explanations for missing answers are also
closely related to QBE [12, 13, 43] and QRE techniques [3, 24, 37, 39],
which generate a query from a set of input-output examples pro-
vided by the user. In contrast to QBE, our explanations start from a
given database, query, and output. Opposed to some approaches for

QRE, which return a query equivalent to an unknown query Q, our
explanations apply on a given input query that is assumed to be
erroneous. Furthermore, in contrast to QBE, QRE, and refinement-
based approaches, our approach points out which operators need
to be modified rather than returning a complete query.

Query refinement (QR) and the empty answer problem (EAP).
QR is also related to our approach [30-32]. QR comes in two forms:
relax queries to return more results or contract queries to return
fewer results. The former addresses the EAP where a query fails
to produce any result, and the latter deals with queries that return
too many answers. QR is concerned with quantitative constraints,
i.e., how many answer are returned by the query result. In contrast,
our work addresses qualitative constraints: the query should return
answers with a certain structure and/or content.

Provenance in DISC systems. DISC systems natively support
nested data formats such as JSON, XML, Parquet, or Protocol Buffers.
Provenance capture for DISC systems has been studied in, e.g.,
[1, 15, 22, 23, 28, 42]. Why-not explanations are practically relevant
in these systems. However, we are not aware of any scalable solution
that computes why-not explanations.

Provenance for nested data. Since why-not explanations typi-
cally build on the provenance of existing results, our work also re-
lates to work on provenance models for nested data. Like [1, 15, 18],
we use a nested data model and query language (a nested relational
algebra for bags inspired by [19] in our case).

3 PRELIMINARIES AND NOTATION
3.1 Nested Relational Types and Instances

As in existing work on nested relations [19, 27], we define nested
relations as bags (denoted as {{-}}) of tuples. The attributes of a
nested relation are either of a primitive type (e.g., booleans or
integers), tuples type, or are themselves nested relations.

DEFINITION 1 (NESTED RELATION SCHEMA). Let L be an infinite
set of names. A nested type 7 is an element conforming to the grammar
shown below, where each A; € L. A type R is called a nested relation
schema. A nested database schema D is a set of R types.

P :=INT|StR|BOOL|... R :={T}H
T =(AA,... A AY A =P|T|R

DEFINITION 2 (NESTED RELATION INSTANCE). Let P denote the
domain of primitive type P. We assume the existence of a special value
L (null) which is a valid value for any nested type. We use type(I)
to denote the type of an instance I. The instances I of type T are de-

fined recursively based on the following rules for primitive types,
. IeP type(l1)=r,....type(I,)=t
homogeneous bags, and tuples: type(D=P* type(({hdaD=TT]]’
type(h)=1y,....type(I,,) =7,
type((Ai:L,...An:Dy)= (AT, ,AniTy)

ExampLE 3. All tuples of the nested relation shown in Figure 1a
are of type (name : STR, addressl : 7, address2 : 7,), where 7, is a
nested relation of type {{{city : STR, year : DATE)}}.

3.2 Nested Relational Algebra

Let R and S denote nested relations, which are manipulated through
a nested relational algebra for bags (NRAB). We define NRAB
based on the algebra from [19, 27], which we denote as NRABC.
NRABC includes operators with bag semantics for selection o (R),

restructuring map (R), cartesian product RXS, additive union RUS,
difference R — S, duplicate elimination €(R), and bag-destroy §(R).
We further define SPC as the subset of NRABY sufficient to ex-
press select-project-join queries, and SPC™ the algebra that addi-
tionally includes additive union to express select-project-join-union
queries. These less expressive fragments of NRABC represent the
operators commonly supported by lineage-based missing-answers
approaches. We use them later for a comparative discussion.

Similarly to [1, 8], we introduce additional operators to ensure a
close correspondence between big data programs and the algebra.
This is crucial to provide explanations that aid users in debugging
their programs. Similarly to [8], we can derive the additional op-
erators from NRABC operators. They include attribute renaming
PB,—A,,...By—A, (R) that renames each attribute A; of R into B;,
the projection 74, ... 4, (R) and join variants (i.e., R >y S, R34 S,
Ry S, and Ry S), as well as aggregation and variants of nesting
and flattening. Together with the operators of NRABY, they form
our algebra NRAB. Before discussing selected operators of our
algebra in more detail, we introduce some notational conventions.
Notation. We denote tuples as £, 1/, .. ., nested relations as R, S, . . .,
and nested databases as D, D’,. ... R and D denote the type of a
nested relation R and database D, respectively. t.A denotes the pro-
jection of tuple ¢ on a set of attributes or single attribute A. scH(R)
is the list of attribute names of R. Operator o concatenates tuples
(types). We also apply o to relation types, e.g., {{{(A : 71)}} o {{(B:
)} = {{A: 11,B: 12) }}. Weuse t" € Rto denote that t appears in
R with multiplicity n and use arithmetic operations on multiplicities,
e.g., "3 means that t appears 5 times. MULT(R, t) denotes the multi-
plicity of ¢ in R. [Q]p denotes the result of evaluating Q over D. We
omit D if clear from the context. Finally, type(Q) denotes the result
type of [Q]. We define some of these operators below. Assume that
R is an n-ary input relation of type R = {{(A1 : 74,,...,An : T4,) }}.
See [16] for the remaining definitions.

Flatten. The flatten operator unnests the values of an attribute
A € scH(R) which must be of a tuple or relation type. If A is of
a tuple type 7 = (...), then the tuple flatten operator returns a
tuple (¢ o t.A)K for each t¥ in R: [[Fg B®]={(o t.A)K|tk € R} Its
result type is the concatenation of R and 7: type(Fg (R)) = Ro{{r}}.

If A is of a nested relation type 7 = {{{B1 : 7{,...,Bm : 7,0 }},
then inner relation flatten returns each tuple %! in the nested
relation concatenated with the tuple ¢* it was initially nested in:
[FL(R)] = {(t o w)*!|tk € Rau! € t. A} and type(FL (R)) = Ror.
We require that none of the attribute names B; already exist in R.

An outer relation flatten behaves similarly to inner relation
flatten but additionally returns tuples of R padded with null values
if their value of the flattened attribute is the empty relation. That is,
usingu; = (B : L,...,Bm : L), we define [[Fg(R)]] = FI{‘(R) U
{tou)k |tk eRALA=0}.

Nesting. Analogously to the flatten operators, we define two nest-
ing operators: tuple nesting and relation nesting.

Given an attribute set A C scH(R), tuple nesting removes at-
tribute(s) A from each tuple ¢ € R and adds new attribute C of type
74 (the tuple type in relation type type (4 (R))) storing t.A. Using
M = scH(R) — A and 7y to denote the tuple type of type(mp(R)),
we define [NT | .(R)] = {{(t.M o (C: t.A) | t¥ € R}. Accord-

ingly, type(N{_,(R) = {{zasr o (C: 7a) }}.

Relation nesting N g_}c (R) groups R on M. For each group
in gr(R,M) = {t.M | t" € R}, the operator returns a tuple
with the group-by values (1.M) and a fresh attribute C of rela-
tion type 74 = type(ma(R)) that stores the projection of all tu-
ples from the group on A as a nested relation ns(R, M, A, C,t) =
(C : [ma(om=¢.m(R))]). Overall, the result of relation nesting is
[[Nf_}C(R)]] = {(t.Mons(R,M,A,C,t)) |t € gr(R, M)}} with as-
sociated type type(N_, ~(R)) = {{zm o (C: {{za}}))}.
Aggregation. Let 7;, = {{(C : 7)}}. Consider an aggregation func-
tion f of type 7in — 7ous. The aggregation operator applies f to
the set of values of unary tuples in the results of 74 (R) and stores
the result in a new attribute B that is of type 7oy Attribute A has to
be of type tin. Thus, [y (4)—5 (R)] = {(t o (B: f(t.A))*|tF € RY}
and its output type is type(yr(4)—5 (R)) =R o {(B: tout)}}

ExAMPLE 4. The operator pipeline of Figure Ic corresponds to the
following expression in NRAB:

R I
Nuame—snList | Fname.city (O'year22019 (Faddressz (person))))

4 WHY-NOT EXPLANATIONS

We are now ready to formalize the problem of computing why-not
explanations for nested (and flat) data.

4.1 Why-Not Questions

A why-not question describes a (set of) expected (nested) tuple(s)
that are missing from a query’s result [Q] p. We let users specify
why-not questions as nested instances with placeholders (NIPs) that
encode a set of missing answers, any of which is acceptable to the
user. A NIP is a nested instance that in addition to constant values
may also contain the instance placeholder ? that can stand in for any
value and the multiplicity placeholder *, which can only be used as
an element of a nested relation type and represents 0 or more tuples
of the nested relation’s tuple type. Note that for finite domains,
the expressive power of why-not questions with placeholders is not
larger than why-not questions based on fully specified tuples. But
efficiently supporting the former avoids the exponential blow-up
incurred when naively translating them to the latter representation.

DEFINITION 3 (INSTANCES WITH PLACEHOLDERS). Let r be a nested
type. The rules to construct nested instances with placeholders (NIPs)
of type T are: If type(I) = © orI =?, then I is a NIP of type .
Furthermore, if t = (A1 : 11,...,An : Tn), then (Iy, ..., In) is a NIP
of type 7 if each I; is a NIP of type t;. Finally, ift = {{tyup}}, then
{11, ..., In}} is a NIP of type 7 if (i) V I; either I; is a NIP of type T1p
orl=xand (i) Ai# je{l,...,n} suchthatl; = Ij = .

ExAMPLE 5. A NIP that conforms to the output schema of our
running example is tex = (city : NY,nList : {{?, *}}). It stands for
all tuples with city equal to NY and at least one name in nList.

Next, we define the set of nested instances that match a NIP.

DEFINITION 4 (MATCHING NIPs). An instance I of type T matches
aNIPI’ of type , written as I = I’ if one of these conditions holds:
(DI =2
@2 I1=r
(3) type(I) = (A1 : 11,...,Ap : Tn) and Vi € [L,n], LA; = I' A;
(4) type(I) = {{t1up}} and there exists an assignment M C I X
I’ — N such that all conditions below hold:

(a) forallt € I andt’ € I, if M(t,t") > O then eithert = ¢/,
t'=2o0rt =%

(b) forallt € I, Y4y M(t,t") = murt(I, t)

(c) forallt’ € I, either Y,;c; M(t,t") = muLT(I’,t’) ort’ =

Condition (4) ensures that multiplicies are taken into account.

ExampLE 6. Consider NIP tox from Example 5 as well as NIPt}, =
(city : NY,nList : {{?,?}}). Only the former matches the tuple
t = (city : NY,nList : {{name : Sue)?, (name : Peter)}}). Since
t is of a tuple type, condition (3) in Definition 4 must hold. While
both tex.city = t.city and t},.city =~ t.city hold (condition (2)), we
only have tey.nList = t.nList (condition (4)). For t,,., the definition
enforces that M({name : Sue),?) > 0 and M({name : Peter),?) >
0 (condition (4a)) and M ({name : Sue),?) = 2 (4b). Then, (4c) cannot
hold, since the sum is 3 and MULT(t},, ?) = 2. Alternatively assigning
each occurrence of (name : Sue) to ? causes (4b) to be violated.

Using NIPs, we now define why-not questions. To ensure that a
why-not question asks for a tuple absent from the result, we require
that none of the result tuples matches the why-not question’s NIP.

DEFINITION 5 (WHY-NOT QUESTIONS). Let Q be a query, D a
database, and type([Q]p) = {{r}}. A why-not question ® is a triple
® = (Q, D, t) where why-not tuple t is a NIP of type t.

ExXAMPLE 7. Given D and Q from Figure 1, and the NIP toy from
Example 5, the example why-not question is ®ex = (Q, D, tex).

4.2 Reparameterizations and Explanations

We define query-based explanations for a given why-not question
® as sets of operators. An explanation is a combination of oper-
ators that conjunctively cause tuples matching the NIP ¢ in ® to
be missing from the query result, i.e., it is possible to “repair” the
query to return a tuple matching the NIP ¢ (the missing answer)
by changing the parameters of these operators. We refer to such
repairs as successful reparameterizations. The set of explanations
produced for a why-not question should consist of sets of operators
changed by successful reparameterizations. However, we do not
want to return explanations that require more changes than strictly
necessary. That is, we want explanations to be minimal in terms of
the set of operators they include and in terms of their “side effects”
(changes to the original query result beyond appearance of missing
answers) a reparametrization of an explanation’s operators would
have. Existing lineage-based definitions, which generally support
queries in SPC*, do not fulfill our desiderata: (i) They suffer from
possibly incomplete explanations (false negatives) [6, 9, 20], i.e.,
changing the operator they return as an explanation may not be suf-
ficient for returning the missing answer. This motivated alternative
definitions [5, 10, 14], albeit limited to conjunctive queries in SPC.
(ii) They only reason about operators that prune data (explanations
only contain selections and joins) and miss causes at the schema
level (e.g., projecting the wrong attribute). (iii) They disregard side
effects (which have been considered for instance-based and refine-
ment based explanations [21]). Our formalization addresses all these
drawbacks for queries in the rich algebra NRAB.

Our formalization is based on reparameterizations (RPs). A
RP for an input query Q is a query Q’ that is derived from Q by
altering the parameters of operators while preserving the query

Operator op

Admissible parameter changes

ison operators (=, >, >, <, <, #
}), and constant values

Selection og (R), with 0 includ-
ing attribute references, compar-

param(Q, op)
{0}

Replacing (i) an attribute reference
with another attribute from R of the
same type; (ii) a comparison operator
with another; and (iii) a constant with
another constant of the same type.

Restructuring map r (R) {r} Change f

Projection 7y, (R) {AjlA; €L} Any substitution of an attribute A;
with an attribute A ; from R

Renaming {(Bi « A..., Changing the output attributes based

PBj—Aj,..Bn—An (R) Bn «— Ap)} on a permutation of (By, ..., Bn)

Joinvariants Rog S, where o € | {6, type(op)}, where | (i) Changing the type of join; (ii) re-

{pd, 24, b, >C} type(op) = o placing a reference to an attribute A

with a different attribute B in 0; (ii)
replacing a comparison operator with
one of {=,>, >, <, <, #}.

Flatten variants Fj, (R), where
o € {T,1,0}

{A, type(op) }, where

type(op) = o distin-
guishes tuple flatten, re-

lation inner flatten, and
relation outer flatten

(i) Replacing A by an attribute B in
R of tuple type for o = T or relation
type otherwise, (ii) changing the flat-
tening type from inner flatten to outer
flatten or vice versa

Nesting variants Nﬁﬁc (R) or
T
Nase®

{A.C}

(i) Changing the attributes to be
nested / grouped-on (A) or (ii) the
name of the attribute storing the re-
sult of nesting (C)

Aggregation ¥ £(4) 5 (R)

{A,B,f}

(i) Changing the aggregation function
£ (ii) the attribute that we are aggre-
gating over (A), or (iii) the name of
the attribute storing the aggregation

result (B)

Further parameter-free NR A B operators are: additive union R U S, difference R — S,
deduplication €(R), cartesian product R X S, bag-destroy 8 (R), and table access R

Table 1: Admissible parameter changes of NRASB operators.

structure (no operators are added or removed). For instance, chang-
ing oyear>2019 t0 Oyear>2018 in our running example is a RP, but
substituting the selection with a projection is not. We made the
choice to preserve query structure to avoid explanations that do not
provide meaningful information about errors in the input query.

Table 1 summarizes all admissible parameter changes for all
NRAB operators. They are motivated by what we consider errors
commonly arising in practice. Nonetheless, our formalism also ap-
plies to alternative definitions of valid parameter changes. However,
the choice of allowed parameter changes affects the compuational
complexity of the problem (see Section 4.3).

DEFINITION 6 (VALID PARAMETER CHANGES). Given an operator
op € Q with parameters param(Q, op) and a set of predefined ad-
missible parameter changes for this operator type (Table 1), a valid
parameter change applies one admissible change to param(Q, op).

Based on the parameter changes, we define reparameterizations.

DEFINITION 7 (REPARAMETERIZATIONS). Given a query Q, a query
Q’ is a reparameterization of Q if it can be derived from Q using a
sequence of valid parameter changes.

For the ease of presentation, we assign each operator op € Q
a unique identifier. Since Q and Q’ have same structure, we fur-
ther assume that an operator op € Q retains its identifier in Q’.
Next, we relate RPs to a why-not question. RPs are Successful
reparameterizations (SRs) if they produce the missing answer.

DEFINITION 8 (SUCCESSFUL REPARAMETERIZATIONS). Let & =
(Q, D, t) be a why-not question and RE(Q) denote the set of RPs for a
query Q, we define SR(®), the set of successful RPs for Q and D, as

SR(®) ={Q" | 3t" € [Q']p,t" =t A Q" € RE(Q)}

ExAMPLE 8. Figure 2 shows a tree representation of nested relations
(introduced here as these will become relevant later). The tree Ty in
Figure 2a corresponds to the result [Q]p in our example (Figure 1b).

The example why-not question asks why city NY with associated
names is missing from [Q]p. One possible SR (SRy) changes the
selection predicate (e.g., toyear > 2018). This SR produces the result T
in Figure 2b. Another SR (SRr) modifies the selection and changes the
flattened attribute to address1. It yields tree Tz (Figure 2c). Additional
SRs exist, e.g., changing the year to anything lower than 2018. However,
they result in additional changes to [Q] p.

The example above illustrates our rationale to not consider
all SR(®) as explanations:. (i) some SRs may apply unnecessary
changes to Q (e.g., why change both the selection and flatten op-
erator when one is enough?) and (ii) some SRs may cause more
changes to the query result than others (e.g., the side effects caused
by a less restrictive selection). Figure 2 shows that these two goals
(minimizing changes to operators and minimizing side effects) may
conflict. Green nodes indicate data matching the why-not tuple,
orange nodes mark data not machting the why-not tuple. While T,
has an entirely orange tuple (city : SF, nList : {{{name : Peter)}}),
T3 only has an additional name Peter in attribute nList for LA.
Thus, SR changes only a subset of SRp,’s operators, but SR, en-
tails “more significant” changes to the data (T3) than SRr, (T3). To
strike a balance between changes to the query and to the data, we
define a partial order < over SRs and define minimal successful
reparameterizations (MSRs) as SRs that are minimal wrt. to <g.

DEFINITION 9 (MSRSs). Let ® = (Q, D, t) be a why-not question
and Q’, Q" be two SRs. Let A(Q,Q’) denote the set of identifiers
of operators whose parameters differ between Q and Q’, ie,
AQ,Q’) = {op | param(Q,op) # param(Q’,op)}. Let d be a
distance function quantifying the distance between two nested
relations. We define a partial order Q' <g Q"' as follows:

(D)AQ.Q) € AQ.Q7) (2)d([Q]p. [Q]p) < d([Q]b. [Q"]p)
We call Q' € SR(®) minimal if -3Q”" € SR(®) : Q" <¢ Q’.
We consider operators corresponding to MSRs as explanations.

DEFINITION 10 (EXPLANATIONS). Let ® be a why-not question and
MSR(®) be the set of MSRs for ®. We define the set of explanations
E(®) with respect to ® as E(®) = {A(Q,Q’) | Q' € MSR(®)}.

EXAMPLE 9. SR; and SRp, from Example 8 are both MSRs, be-
cause, even though A(Q,Q;) S A(Q,Qp,), we established that
d([Q]. [Qs]) > d([Q], [QF 1), s0 Q5 4o Qf,, (and vice versa). We
now highlight why we define query-based explanations even though
refinement-based explanations are not far fetched given reparame-
terizations. Assuming we had n address attributes (not just 2), there
would be equally many refinement-based explanations involving the
flatten operator, some also modifying the selection, others not. A de-
veloper would need to understand similarities and differences of all of
these before settling on how to fix the query. In contrast, query-based
explanations identify sets of operators that need to be fixed.

The MSR definition leaves the choice of distance function d open.
To equally support nested and flat data, a good fit is the tree edit
distance for unsorted trees [7, 34]. However, it is NP-hard [41]. Con-
sidering an alternative PTIME distance metric d will not necessarily
result in an efficient algorithm for computing explanations, because,
as discussed next, computing explanations is NP-hard in general.

{0} {3 {0}
I T
O : . _
P PN P P P P Algorithm 1: Why-Not(®)
city: nList {{}} city: nList {{}} city: nList {{}} 1 (Msbt,f> « schemaBacktracing (®)
LA <‘) LA ‘ LA — T ! 2 S « schemaAlternatives(Mgpy, T, @)
‘ O \ | \ 3 RA — dataTracing (S, @)
name: Sue name: Sue name: Sue 4 &% — computeExplanations(RA, S, ®)
5 return &~
@T (b) T3, result for SR, (c) T3, result for SRF,

Figure 2: Tree representations of the result from Figure 1b (71) and the results of SRs

»<g, 3¢9, F4 (R)

Algebra Lineage-based Reparameterization-based
SPC op*, Mg og', mapy’, Mg, m,
SPCt 0p*, Mg og", mapy*, Mg, .
NRAB | op” *, Mg, Mg, | op, mapg, ™, Mg, g, , g

PByAy,..Bnern FL(R), FL(R), FQ(R),
NT_(RNE (R yr(a) B (R)

Table 2: Which operators can be part of explanations for
which approach? NRABC operators are marked with *.

4.3 Discussion

First, we demonstrate that computing explanations for why-not
questions is generally NP-hard in terms of data complexity for
queries in NRABO (see [16]). We observe that the problem is
sensitive to the choice of admissible parameter changes. While it is
intractable for the parameter changes shown in Table 1, we identify
restrictions of Table 1 for which the problem is in PTIME.

THEOREM 1. Given a why-not question ® = (Q, D, t) and a set e
of operators from the query Q, testing the membership of e in E(P) is
NP-hard in the size of D for queries that only consist of the operators
aggregation, map, projection, renaming, and join. The problem is in
PTIME if the map operator is restricted to being a projection and if
aggregation functions are restricted to the default ones in SQL.

PRrooF SKETCH. We prove the hardness claim for queries with
aggregation through a reduction from set cover and sketch a brute
force algorithm for the PTIME result. See [16] for the full proof. O

The algorithm we present in Section 5 restricts aggregation and
does not consider map. Thus, according to Theorem 1, the prob-
lem is in PTIME. However, the search space is still much too large,
requiring additional heuristic optimizations to scale.

Next, we discuss differences between reparameterization-based
explanations and lineage-based explanations (e.g., [9]). Table 2
shows which operators of SPC, SPCT, and NRAB can be iden-
tified as causes by these two approaches. Lineage-based solutions
generally support SPC*. They only return operators that re-
move compatible input data. Thus, for operators overlapping with
NRAB, only selections become part of explanations. Given that
the join operator can be expressed using cross product and selec-
tion, lineage-based approaches may return joins as explanations. In
our reparameterization-based formalism, the set of operators that
can be part of an explanation is already more diverse for the least
expressive query class SPC, e.g, we may return projections. The
benefits are even more pronounced for NRAB (last row).

Finally, note that the operators in an explanation depend on
a query’s algebraic translation and explanations may differ for
equivalent translations. For example, og(R X S) may only yield the
selection while R »g S may only yield the join. Lineage-based and
reparameterization-based solutions share this property.

5 COMPUTING EXPLANATIONS

We now present an algorithm that restricts admissible parameter
changes to achieve PTIME data complexity. Furthermore, we intro-
duce novel heuristics that are necessary for efficiency in practice.
The algorithm takes a why-not question ® = (Q, D, t) as input
and returns a set of explanations &~ that approximates &. We first
present the algorithm and, then, discuss in Section 5.5 how &%
relates to & according to Definition 10. A core concept of our ap-
proach is schema alternatives (SAs). An SA represents a set of RPs
that all change attribute references in the query in the same way.
For instance, one SA for our running example is to replace address1
with address2. The RPs corresponding to this SA differ in how (and
if) they modify the condition of the query’s selection. Our approach
determines for each SA a set of NIPs (one per table accessed by the
query) such that for any SR corresponding to the SA, only tuples
matching these NIPs may contribute to the missing answer. The
purpose of these NIPs is to exclude irrelevant data early-on.

Algorithm 1 shows the four main steps of our algorithm. First,
given the missing tuple ¢ that is defined over the output schema of
Q, the algorithm computes a set of NIP tuples T over the schema
of Q’s input tables in D. It also computes a mapping M,p; which
associates each attribute in t and each attribute referenced in an
operator of Q with a set of attributes from the input. We refer to
these input attributes as source attributes. Mgy, and T represent the
SA which does not change any attributes. In the second step, Algo-
rithm 1 determines alternatives for each source attribute in Mgyp;.
These alternatives account for attributes that may not have been
chosen appropriately when writing Q. The alternative attributes
allow the algorithm to enumerate the set of SAs denoted as S. For
each SA, we also compute the NIPs T for filtering irrelevant input
tuples as described above. In the third step (dataTracing), we con-
struct a single query that computes the results of the input query
under all SAs. Since computing the results for all RPs corresponding
to an SA is infeasible, we settle for a more practical alternative: we
only compute results for one representative RP for an SA, the one
that only changes attribute references in operators according to
the SA and nothing else. However, these RPs may not be successful.
To be able to reason about other RPs corresponding to a SA, we in-
strument the query to propagate annotations that encode sufficient
information for reasoning about other RPs. For example, instead
of filtering tuples that do not match a selection’s condition (under
some SA), we use an annotation attribute to record which tuples are
filtered out by the selection under the representative RP for an SA.
The computeExplanations function leverages these annotations to
compute explanations for ® ranked according to the partial order
of Definition 9 (approximated for performance).

5.1 Step 1: Schema backtracing

Taking the why-not question ® = (Q, D, t) as input, schema back-
tracing analyzes schema dependencies and schema transformations
of the query Q in a data-independent way. It has two goals: (i)
rewrite the missing answer ¢ into a set of NIPs T (Definition 3)
over the schema of D. We refer to the SA that does not change any
attributes as the base SA. T contains one NIP for each input relation
R in D such that all tuples of R that could produce t under some
RPs of the base SA match the NIP; (ii) identify attributes from D’s
schema that serve as alternatives to attributes in Q’s input.

To achieve the first goal, we iterate over the query’s operators
and analyze each operator’s parameters to trace data dependencies
at the schema level. Eventually, schema backtracing returns T =
{tr,.....tR,}, where R; through R, are Q’s input relations. Each
IR, is a NIP. The set of tuples from R; matching 7g, includes all
tuples that may contribute to tuples matching ¢ under the base SA.

ExAMPLE 10. In our running example, one such NIP is fperson =
(name :?,address1 :?,address2 : {{(city : NY,year :?)}}) com-
puted from t = (city : “NY",nList : {{?, «}}). To obtain the NIP, the
algorithm traces back both dependencies for t.city and t.nList. When
it iterates through the operator Nfame_must, it traces the nested tu-
ples in nList back to the name attribute. The algorithm identifies the
name attribute of the person relation as the name attribute’s origin.
Similarly, it traces city back to the source attribute address2.city,
whose value has to match NY.

T is coupled with a mapping My, This mapping associates
each attribute t.A of the why-not tuple ¢ with source attributes to
identify the source attributes that produce the values of ¢.A. To also
identify source attributes potentially relevant for operator repa-
rameterizations (the second goal outlined above), the backtracing
algorithm further adds associations for each attribute reference
op.A at operator op to My, while it iterates through the query
tree. Notationwise, we distinguish the two types of associations: (i)
Associations between a source attribute #.X and a missing-answer

attribute ¢.A are denoted as % (ii) Associations between a source

attribute 7.X and an operator attribute op.A are written as OQA.

In the following, we represent a pair (Z, M,y,;) as a single nested
tuple mirroring the nesting structure of # but using associations
. . . . A

from Mgy, as attribute names instead. For instance, if 3%, % and
%, then we substitute X with A’OP'XM.

ExampLE 11. Continuing with Example 10, Mgy, associates
t.nList to tperson-name and t.city to tpersons-address2.city. It also
associates o.year with ?person.addresﬂ.year. The associations in

Mgps coupled with T = {fperson} are represented as:

— t.nList, m.name, N.nList, N.name
tperson =< :?,address1 :?,
name
F.address2 t.city,w.city . __ . o.year
Ll CNY, 1)
address2 city year

5.2 Step 2: Schema alternatives

Next, the algorithm determines schema alternatives (SAs), which
potentially produce the missing answer based on reparameteri-
zations implementing these SAs. A SA substitutes zero or more

i name. nlList,
ame address‘Lclt N 4»@
names [

name,’ 5871?&7_}7(?- """"""""

ad dress2YeA prmnmnzziniTiil T

22019 name, address2.city ___

addra—
SSLygar> [T, ——

Name,
> addr, N
€SS1.cit, 77 name. nList

Figure 3: Enumerating and pruning schema alternatives

attributes in operator parameters with alternatives. The set of all
SAs covers all such substitutions.

Finding attribute alternatives. The first step of identifying SAs is
to find alternatives for attributes referenced by Q. For each tg, € T,
we identify, for each)A(€ Mgy a set of alternative attributes
X' = {X],.. .X];} such that Xjf € R; and type(XJf) = type(X).
We restrict alternatives to attributes of the same relation, because
replacing an attribute with an attribute from another relation would
require more changes to the query than reparametrizations allow.
We assume that the set of attribute alternatives is provided as input
to our algorithm. For instance, these can be determined by hand,
through schema matching techniques [2, 17], or using schema-free
query processors [25, 26]. These strategies ensure that we only
consider meaningful alternatives.

Enumerating and pruning SAs. The attribute alternatives are
used to enumerate all possible SAs, which requires considering
alternatives for attributes of intermediate results that appear as

OI)EA € Mgp,;. Formally, a schema alternative $ = (T, M) is a set of

NIPs T (as in schema backtracing, one tuple per table accessed by
Q) and a mapping M (like Mgp;, M records which input attributes
are referenced by which operator and are used to derive which
attribute in Q’s output). As mentioned above, T over-approximates
the set of tuples that contribute to the derivation of the missing
answer under the SRs for the SA.

ExAMPLE 12. Consider the following attribute alternatives:
name’={name}, city’={address2.city, address1.city}, year’={add
ress2.year, addressl.year}, and address2’={address2, address1}.
Figure 3 shows how the algorithm incrementally derives all SAs (ig-
nore the dashed parts for now). Based on the set of alternatives for
address2’ and year’, it starts evaluating options for the flatten opera-
tor’s parameters. We can either use the original attribute address2, or
the alternative address1. For each alternative for flatten, we can then
choose address2.year or addressl.year for the selection operator.

SAs replace attributes of one operator independently from at-
tributes of another operator. Thus, some SAs may lead to an invalid
query that references non-existing attributes in some operators
or alter Q’s output schema (not allowed). The algorithm prunes
these alternatives. For instance, after flattening address2, the only
“accessible” alternative for year is address2.year in the selection.
Further assuming the source data included address1.cityl instead
of address1.city, flattening address1 changes Q’s output schema to
{{{city1, nList)}}, which is not allowed.

EXAMPLE 13. In our example, all dashed subtrees in Figure 3 are
pruned. Only two SAs remain, denoted as S; and Sa. The SA S1 =
({t1}, M1), with Ty being equal to tperson shown in Example 11, and

Sy = {{t2}, M2) with ty “swapping” the address attribute, i.e.,

_ t.nList, wr.name, N.nList, N.name

ty =(:?, address2 :?,
name
F.address1 t.city,w.city . __, o.year
: - : “NY?, M)
address1 city year

5.3 Step 3: Data tracing

At this point, the algorithm has identified the source attributes
to consider for reparameterizations (“blue numerators” identified
during schema backtracing) and has determined the reparameteriza-
tions to consider for attributes (through SAs). Next, it identifies and
traces data that may yield the missing answer through reparameter-
izations of query operators. It instruments operators to compactly
keep track of possible reparameterizations and their results.

We define individual tracing procedures for each operator. The
procedures commonly take the operator op, an annotated relation
R4, and schema alternatives S as input. Their output consists of
an annotated relation R4" and updated schema alternatives S”. The
algorithm extends operator semantics to collect result tuples under
all SAs and record information about all RPs corresponding to these
SAs in annotation attributes added to the operator’s result schema.

We distinguish four annotation types each stored in additional
attributes added to each tuple ¢’ in the instrumented operator’s
output RY.

o id: Each top-level tuple is assigned a unique identifier. Our
algorithm leverages the ids to trace fine-grained provenance
as in [15]. It utilizes the provenance to correctly maintain
tuples throughout tracing and during &~ computation.

e palidS;: For each SA S;, this boolean annotation describes
whether t’ is part of the operator output under SA S;. Our
algorithm leverages this annotation to determine which ¢’ €
RY correspond to which SA.

e consistentS;: For each SA S;, this boolean annotation identi-
fies if a tuple ¢’ is consistent with the why-not question. ¢’ is
consistent if it potentially contributes to the missing answer
under some SR for the SA. This annotation stores the result
of re-validating compatibles as hinted at in the introduction.
retainedS; indicates if ¢’ is an output tuple of the original
query except for attribute changes given by S; (true) or if it
requires additional operator reparameterizations, e.g., chang-
ing constants in a selection condition, to exist (false).

In the following, we describe the tracing algorithms for the
operators used in our running example, omitting projection since
it simply propagates consistent and valid annotations of its input.
Table access. The tracing procedure for the table access operator
iterates over each tuple ¢ in the input relation R and extends ¢ with
annotation attributes. It adds the id attribute and a consistentS;
attribute for each SA S;. The value v of this attribute is only true if
t matches the tuple 7 in the set of tuples T; of S;. To add correctly
named annotations in function of S;, we use the annotate function
(Algorithm 2), e.g., we call annotate(t’, [(consistent,v)], Si, op).
The table access operator does not change the structure of its input,
so input SAs are simply propagated to its output.

ExAMPLE 14. Applying the procedure for table access to our run-
ning example yields the annotated relation shown in Figure 4. Schema

name |address1 address2 id_1 |consistent |consistent
Algorithm 2: annotate sL1 |s21
Peter | TGy [year || [city[year ||} |0 1
1 Function annotate(t, NY [2010]| [LA [2010
avMap, S;, op): LA [2019]|[SF [2018
2 foreach LV [2017
(a,0) € avMap do Sue | [Gity [year || [city [year | |2 1 1
3 label — LA [2019]|[LA [2019
a+“S™+i+" "+op.getID() NY [2018]|[NY [2018
4 t « to{label : v)

Figure 4: Example of annota-
tions after table access

5 return ¢

Algorithm 3: Flatten(op, RAS)

Function Flatten(op, RA, S):
VS; € S, let O; be the result of executing 0p wrt S; and generalized to an outer flatten
VS;i €8, let S; = <T;, M) be the schema alternative reflecting the flattening wrt S;

1

2

3

4 Omerged < 0
5 foreach t € O; do
6

7

8

9

r « t is in the result of original flatten wrt Sq

ce— 1t~ ?;g, where?/R € 7/1

avMap « [(valid, 1), (retained, r), (consistent,c)]
Omerged < Omergea U {annotate(t,avMap, S;, op) }

10 foreach O;,1 < i < |S| do

11 Tt eT;
12 Omerged < merge(Omerged: Oi. Si,op. t)
B return (Omerged> US,-ES S;>

alternative Sy is associated to t; shown in Example 13 and consid-
ers address2.city, while Sy comprises t, using address1.city. The
first tuple in Figure 4 has consistentS1_1 = 0 because it has no
value in address2.city that matches t1’s constraint city = “NY”, while
consistentS2_1 = 1 because address1.city nests (city : “NY”,2010).

Flatten. The tracing procedure for the flatten operator (Algo-
rithm 3) computes the results of the operator under all schema
alternatives. It obtains the result O; of the outer flatten for each
SA S;. It uses an outer flatten for two reasons. First, changing an
inner flatten to an outer flatten is a valid parameter change. Sec-
ond it has to track tuples that the inner flatten filters because the
flattened attribute is null or the empty set. Next, the algorithm
updates the SAs to reflect the restructuring of the tuples. It then
combines all O; as follows. Lines 5-9 process Oy, i.e., the result
of the outer flatten parameterized as given by S;. For each tuple
t in Oq, it evaluates boolean conditions to determine the values ¢
and r for the consistent and retained flags. The algorithm sets the
valid annotation to 1. To process the remaining SAs (lines 10-12),
it uses the merge function. Intuitively, merge concatenates tuples
with the same id across the outer flatten results of all SAs, ensur-
ing not to replicate columns that remain the same across all SAs.
Since the number of tuples with a given id may vary across the
different results (due to nested relations of varying cardinality), it
pads missing “concatenation partners” with null values (L). The
algorithm creates annotations for each SA. Thus, it sets annotations
corresponding to null-padded (non-existent) alternatives to 0. The
annotations of tuples in each O; are set analog to the ones for Sj.
Each tuple produced in the output also receives a fresh unique id.

ExAMPLE 15. Given the annotated relation in Figure 4 and the
SAs in Example 13, the inner flatten produces the annotated re-

lation shown in Figure 5 and updates S; with T; = {(%
?, % : ‘NY”, yearS1 :?)} and Sy analogously. It combines both

SAs, as both address1 and address2 are flattened. The column marked
with ... summarizes all annotation columns of the input. They are
treated as “regular” input columns when executing the outer flatten.

name city |year |city |year |... |consistent retained |valid |consistent |retained |valid |id_2
S2 |S2 [S1 |S1 S1.2 S1.2 S1.2 (S22 S22 S22
Peter [NY |2010 |[LA [2010 |... |0 1 1 1 1 1 3
Peter |[LA |2019 |SF |2018 |... |0 1 1 0 1 1 4
Peter |[LV 2017 | L L ... |0 0 0 0 1 1 5
Sue |[LA |2019 |[LA [2019 |... |0 1 1 0 1 1 6
Sue |NY |2018 INY [2018 |... |1 1 1 1 1 1 7

Figure 5: Example of annotations after flatten

Focusing on the new annotations, we see in the column consistentS1_2
that only the last tuple is consistent with T; because it is the only
tuple that features “NY” in cityS1. Further, the 1 values in validS1_2
indicate that the flatten produces 4 tuples under Sy. The third tuple is
not valid under S1, being an artifact of unnesting address1 for SA S,.
The other tuples all have the retainedS1_2 = 1. Thus, no tuple is lost
due to the more restrictive inner flatten type.

Selection. The tracing procedure for the selection operator returns
all input tuples with additional annotation columns. It propagates
the consistent, valid and id attributes of the previous operator, since
it neither manipulates the schema nor the identity of top-level
tuples. However, the procedure adds a new retained attribute for
each S;. The value of the retained attributes is 1 if a tuple from the
input under S; satisfies the selection condition 6, and 0 otherwise.

EXAMPLE 16. Ignoring the red highlighting for now, Figure 6 shows
the tracing output after the selection checking if year > 2019. For in-
stance, the last tuple hasyear = 2018 under Sy, soretainedS1_3 = 0.

Relation nesting. Due to space constraints, we explain the al-
gorithm for relation nesting only based on our running example.
Since the nesting changes the structure of the input relation, our
algorithm first updates the set of SAs. For each S;, it derives an
alternative S; from S; that reflects nesting. This, for instance, yields

U Li cit « »

S with Ty = {<an11s1:§1 : {{name :?), *}}), cityg‘l : “NY”} . Then,
the algorithm computes the result of relation nesting considering
the schema alternatives and annotates the result tuples as shown in
Figure 7. First, for each S;, it computes R; by “isolating” all columns

involved in schema alternative S; and retaining valid tuples only.

Similarly, S; yields Rf "% by projecting on all annotation columns
related to S; and selecting valid tuples. Figure 7 (D) shows the result
of tracing the preceding projection operator. It highlights data of
R; in yellow and Ry in cyan, while data of Rf %% and R‘g %% are
highlighted in orange and dark blue, respectively. In step 2), the
algorithm nests R; and Rf "% Processing S; results in the top row
of tables for step (2), while Sy yields the two bottom relations. An-
notations are added to tuples of R; in step), resulting in R‘iA. For
all tuples, the valid annotation is set to 1, whereas the consistent
annotation is set to 1 only if ¢ € R; matches g € T: For instance,
in Figure 7@3), the third tuple of Ry (left) is flagged as consistent,
because it matches the constraints defined by T; Finally, in step (@,
all relations R;‘ and Rf "% of all schema alternatives are combined
using a function similar to a full outer join. Instead of padding
values with nulls when no join partner exists, the algorithm pads
the nested relations with () and the annotations with 0. That allows

name |city |year |city |year |... |consistent |retained |valid |consistent |retained |valid
S2 |82 [S1 |Ss1 S1_3 S1_3 S1.3 [S2. 3 S2. 3 S2 3
Peter [NY |2010 |[LA [2010 |... [0 0 1 1 0 1
Peter |LA |2019 |SF |2018 |...
Peter |[LV [2017 |L L
Sue |LA [2019 |[LA [2019 |...
Sue [NY |2018 |[NY |2018 |..

1
0
1

EBEE
of~[ole

1
0
1
1

= BEBR

1
1
1
0 1

Figure 6: Example of annotations after selection

@ For each schema alternative S;, create R; and Rp™" @ apply the nesting operator to each R; and R

Clr [Jr []re [] e nListS1 _ |cityS1] [citySI [NestedProvS1_5
{Peter, Sue} |LA LA |{<..0.> <. 01>}

name |city |city |... |consistent | valid | consistent | valid {Peter} SF SF 0.1}

S2 |s1 S1.4 S1.4(S2 4 S2. 4 {Suct NY NY (LD
Peter [NY |LA |... |0 1 " 1
Peter [LA [SF [... |0 1 0 1 nListS2 cityS2 cityS2 |NestedProvS2_5
Peter [LV [L [...|0 0 0 1 {Peter, Sue} INY NY <..lI><..lI>}
Sue [CA [LA]...[0 1 0 1 {Peter, Sue} |LA LA <...01><..01>}
Sue [NY [NY][... |1 1 1 1 {Peter} Lv v <..0,1>}

@ For each R;, create R with valid and consistent annotations

nListS1 cityS1 | validS1_5 i S1_5 nListS2 cityS2 | validS2_5 | consistentS2_5
{Peter, Sue} |LA 1 0 {Peter, Sue} |[NY 1 1
{Peter} SF |1 0 {Peter, Sue} [LA |1 0
{Sue} NY |1 1 {Peter} IAE 0

@ Apply full-outer-join-like operation over all annotated R and add new id annotations

nListS1 nListS2 cityS1S2 |... |validS1 5 |consistentS1 5 |validS2 5 |consistentS2 5 |id_5
{Sue} {Peter, Sue} [NY o U 1 1 1 8
{Peter, Sue} |{Peter, Sue} [LA a1 0 1 0 9
{ {Peter} NV " 0 0 1 0 10
{Peter} {} F 1 0 0 0 11

Figure 7: Example of annotations after relation nesting

the algorithm to compose operators extended with our tracing pro-
cedure. It also collapses joined columns (the non-nested attributes)
from the different schema alternatives (e.g., cityS1 and cityS2), by
coalescing their values. The final result of step @ is shown at the
bottom of Figure 7 (ignore red highlighted boxes for now).

5.4 Step 4: Computing Explanations

The result of the data tracing step is a nested relation that extends
the original query result with (i) data that could belong to the
result under some reparameterization and (ii) annotations needed
to identify the operators that require a reparameterization to obtain
the missing data. Algorithm 4 approximates the set of explanations
formally defined in Section 4.2. It first initializes partial explanations
E; based on attribute substitutions imposed by schema alternatives
S; € 8. For instance, in Figure 3, S; does not involve any change
in the attributes referenced by query operators (and thus, E1 = 0),
whereas Sy involves changing the attribute referenced by the flatten
operator (and thus E; = {F}). Then Algorithm 4 initializes a queue
with pairs of the last operator in Q and the partial explanations E;
for each S;. Next, it retrieves each operator op; of the query (top-
down) and their associated partial explanations E; from queue to
check if op; needs to be added to an E;. More precisely, op; extends
E; when the annotations relative to op; and the schema alternative
Si contain at least one valid tuple that is consistent with the why-
not question, is not retained, and in the lineage of a consistent tuple
of the final result. The algorithm further adds op;’s predecessor
opj-1 with unchanged E; to the queue when it is possible that
explanations without op; but with some of its predecessors can be
found (i.e., all annotations are set to 1 for op;). When no further
operators can be added, it adds E; to £%.

ExAMPLE 17. EF
example

Ey={F,0} computed from the annotations in red boxes in Figures 6
and 7. These explanations are based on the MSRs SRy and SRy de-
scribed in Example 9.

contains two explanations: E; ={c} and

Currently, we only compute loose upper and lower bounds (UB
and LB) for side effects. Obtaining the exact number of side effects
would require comparing the original query result to the result
of any possible actual reparameterization for each operator. For
example, year > 2018 and year # 2019 are both possible actual

Algorithm 4: computeExplanations(R4, S, ®)

1 Let E; be the explanation prefix determined for each S; € S

2 Let opjgss be the final operator in ®.Q

3 queue < add all pairs (0pjqss, Ei)s; in the context of S;

4 E¥ 0

5 while queue # 0 do

6 (opj, Ei)s; < queue.removeFirst()

7 R{} « annotations relative to opj and S;

8 extendWithOp « false

9 if R‘;} contains a valid tuple t where retainedSi_j = 0 and consistentSi_j =1
and t is in the lineage of a consistent output tuple then

10 | extendWithOp « true

11 if j > 1 then

12 if extendwithOp then

13 | queue.append(opj-1,E; U {op;})

14 if R‘;} contains a valid tuple with all its annotations being set to 1 then

15 | queue.append(opj-1,E;)

16 else

17 if extendwithOp then

18 L &% — EYU{E; U{opj}}

19 if R‘?. contains a valid tuple with all its annotations being set to 1then

20 | &%« EXU{ELIfE #0

21 Prune ¥ based on upper and lower bounds of side effects for each explanation in &~
and sort them according to the partial order defined in Definition 9.
22 return &%

reparameterizations of the selection operator in E1 and Ez, but may
yield a different number of side effects.

We compute LB = LB(A+)+LB(A™) and UB=UB(A*)+UB(A™)
based on estimates on the maximum (for UB) and minimum (for
LB) number of top-level tuples any operator reparameterization
in an explanation adds (A*) or removes (A~) from the original
query result [Q] p. For explanations within the original schema
alternative, which we will consistently denote as S1, UB(A*) equals
the number of valid top-level tuples in the result that have at least
one retained flag set to 0 for one of the explanation’s operators.
For instance, in Figure 7, tuples 9 and 11 satisfy this condition for
explanation E;. For explanations linked to a SA S;, i # 1 that does
not represent the original query Q, the upper bound is the number
of valid top-level tuples with values under S; different from tuples
under S; having all their retained and valid flags set to 1, e.g.,
tuple 9 and tuple 10. UB(A™) equals |[Q] p| minus the number
of valid top-level tuples under the considered SA that match an
original tuple (with only true valid and retained flags) under S;. In
our example, all result tuples not matching the why-not question
have at least one nested value with a false retained flag, so we get
UB(A™) = 1 for both explanations. For explanations involving a
selection or join, the lower bound is always set to 0, because we do
not know if a reparametrization different from the “full relaxation”
of the operator that our tracing algorithms model may avoid
the side effects. In all other cases, we estimate LB(A*) =
max(number of valid and retained tuples — |[Q]pl.0) and
LB(A™) = max(|[Q]p| — number of valid and retained tuples,0).
We leave algorithms that compute tighter bounds to future work.
Finally, the explanations are ordered following the partial order
defined in Definition 9, ranking E; higher than Es.

5.5 Discussion

We observe that our algorithm guarantees that any returned expla-
nation is a correct explanation. However, given our loose bounds

on side effects, we cannot guarantee that they all yield MSRs. Fur-
thermore, we may miss some operators / explanations due to the
algorithm’s heuristic nature. Essentially, the proposed algorithm
cuts the following corners for efficiency, causing certain cases not
to be accurately covered: (i) It considers only equi-joins and does
not model a reparameterization to theta-joins. This avoids cross
products that enumerate all possible outputs of join reparameteri-
zations. If such a reparameterization was an explanation, our algo-
rithm misses it. (ii) The tracing procedures for selection, join, and
flatten faithfully cover reparameterizations yielding more tuples,
compared to the original query operator. So we miss explanations
where a more restrictive selection condition, join type, or flatten
type would yield a missing answer. (iii) Finally, for aggregations, we
generally do not trace the result for different subsets of their input
data, which is particularly problematic when selections precede it
(for changing equi-join types and flatten types, this is manageable).
Also, we do not consider changing the aggregation function.

6 IMPLEMENTATION AND EVALUATION

We implement the algorithm of Section 5 as summarized in Sec-
tion 6.1. We describe the test setup in Section 6.2. Section 6.3 covers
our quantitative evaluation on scalability, while Section 6.4 dis-
cusses the quality of returned explanations.

6.1 Implementation

While the concepts apply to DISC systems in general, we implement
them in Spark’s DataFrame APIL DataFrames are tuple collections
matching our data model from Section 3. The transformations sup-
ported by Spark’s DataFrame API can be expressed in our algebra
(Section 3.2). To express and process why-not questions (Defini-
tion 5), we leverage the tree-patterns implementation from [29].

Our prototype integrates into Spark’s query planning and exe-
cution phases. The schema backtracing (Section 5.1) and schema
alternatives computation (Section 5.2) integrate into the query plan-
ning phase. Data tracing (Section 5.3) and computing explanations
(Section 5.4) span across both phases. Similar to [33], our prototype
rewrites the query plan to directly obtain the explanations from
provenance annotations added for data tracing.

A straightforward implementation of data tracing does not result
in efficient query plans. We incorporate multiple optimizations
to avoid blow-up in query size and avoid cross products. These
careful design choices make our algorithm scale to dataset sizes
several orders of magnitude larger than those any other state-of-
the-art solution can handle. At the same time, we produce many
explanations that lineage-based approaches do miss.

6.2 Test Setup

We test on a Spark 2.4 cluster with 50 executors of 16GB RAM
each. We define 16 scenarios on three nested datasets: T1 to T4
and T4sp (the latter adapted from [36]) on Twitter data, D1 to
D5 on DBLP data, and 6 scenarios on a nested version of TPCH
that nests lineitems into orders [35] with queries corresponding
mostly (as explained later) to the benchmark queries Q1, Q3, Q4,
Q6, Q10, and Q13 without the unsupported sorting and top-k se-
lection. The Twitter dataset consists of tweets with roughly 1000
mostly nested attributes [40]. DBLP contains records of different

4 4
10% 10068 M2006B M300GB 40068 m50068 10" EI100GB W200GB M300GB

—Spark —Spark
—~103

=
o
w

=
o
A
=
o
9

Runtime (sec)
=
o
R
Runtime (sec
=
o
o

0 0
10" b1 D2 D3 D4 D5 10°7 T2 T3
Figure 8: Runtime for DBLP

types, such as article, author, etc. Table 3 summarizes our sce-
narios. For each scenario, it provides a short description and high-
lights its query operators (ignore the rest for now). By default, each
Twitter and DBLP scenario has 2 schema alternatives (SAs), i.e.,
the basic SA plus one SA using an attribute alternative. For the
TPCH scenarios, we identify three sets of attribute alternatives: (i)
{I_discount,l_tax}, (ii) {I_shipdate,|_commitdate,l_receiptdate},
and (iii) {o_orderpriority, o_shippriority}. This can result in up to
12 SAs, depending on the attributes used by a query. Additional
details including the queries in NRAB and why-not questions are
provided in [16].

When not mentioned otherwise, we apply a scale factor of 10 for
TPCH and consider 100GB of DBLP or Twitter data. To evaluate
runtime and scalability, we vary the DBLP and Twitter dataset size
between 100GB and 500GB. To assess explanation quality, we delib-
erately modified operators in the T 4sp and TPCH queries. The un-
modified queries serve as a gold standard, such that the explanations
precisely containing the modified operators are the correct ones.
We study the explanations returned by our reparameterization-
based algorithm with (RP) and without (RPnoSA) multiple schema
alternatives. We further compare these to the explanations of a
lineage-based approach WN++. To this end, we extended Why-Not
[9] to scale to big data and to support nested data.

6.3 Performance Evaluation

Varying dataset size. The bars in Figures 8 and 9 report RP’s run-
time for DBLP and Twitter scenarios for varying dataset sizes given
a 2 hours time-out. The line reports the original query runtime.
First, we note linear scalability with the input size. Second, our
implementation exceeds the runtime of the original query by a
factor between 2.4 and 78.2, depending on the scenario. This over-
head is in line with the overhead of state-of-the art solutions on
relational data. This overhead is particularly low for queries with a
low number of operators, such as D3, T2, and T 4sp. The overhead
increases when the queries become more complex (D4, D5, T3, T4).
For such queries, our annotations grow in size, causing additional
runtime overhead and even exceeding our time-out limit for larger
input sizes of T3. Furthermore, joins are expensive. Spark rewrites
the joins in D4 and T3 from Hash-Joins to much slower Sort-Merge-
Joins, since it does not support outer Hash-Joins. However, we
require the outer joins to accurately trace tuples without a join
partner. Moreover, high runtime overhead occurs when the output
is based on a small subset of the input tuples. For example, in D5,
two inner flatten operators on nested relations that are empty for
most tuples yield much fewer output tuples than input tuples. In
contrast, our tracing algorithm retains at least one output tuple for
each input tuple. Finally, for T4, we only show results for 100GB
input data, because we did hit a Spark limitation for larger sizes. It
is related to a reported bug in Spark’s grouping set implementation,

Figure 9: Runtime for Twitter

400GB m500GB

I RPNOSA W RP — Spark

108 60 op1 w13
— _50*D4 *Q3
3 < Taso
& - £40
€]
= £ 30
210! R EE B €20
=3
10 /‘/
10° 91 Q3 Q4 Q6 Q10Q13
07 2 3 4
Taso 6 12 12 6 2 1
of SAs # of SA

Figure 10: TPC-H Figure 11: Varying SAs
which we use in the aggregation tracing procedure, and Spark’s
current item limit in nested collections (231).

For the TPCH scenarios (Figure 10) the overhead was between
a factor of 3.9 and 10.1 for RPnoSA, and up to 105.2 for RP. It is
higher for two reasons. First, all TPCH queries use aggregations.
Thus, their result size is insignificant compared to the number of
traced tuples (analogous to D5). Second, the higher numbers of
SAs cause higher overhead (up to 12 compared to 2 for DBLP and
Twitter).
Varying the number of SAs. To study the runtime impact of SAs,
we consider between 1 and 4 SAs. We report results for a simple
scenario with only a few operators and insignificant changes in
intermediate result sizes (Tasp), two scenarios of intermediate
difficulty with relation flatten and join operators (D1, T3), and two
difficult scenarios featuring flatten, join, nesting, and aggregation
(D4, Q3). Figure 11 shows the results. For all but the most difficult
scenarios, the runtime increases by a constant factor of 0.15 (T 4sp),
0.5 (D1), or 0.8 (T3) per added SA. Since the factor is below 1, adding
an SA to the rewritten query is faster than executing seperate
queries for each SA. In D4, adding SAs causes some slow down.
While the factor is 0.96 for adding the first alternative, it is 1.47 for
adding the last alternative. Similarly, for Q3, going up to 12 SAs
has an overhead of 4.76x compared to 4 SAs and 17.92 compared
to one SA. The reason is twofold. First, with each added SA, each
tuple’s size increases. Second, the grouping set implementation
in Spark used for our aggregations duplicate each input tuple for
each alternative. Thus, both the tuple width and the tuple number
increase with each SA, explaining observed runtimes.

6.4 Explanation Quality

We summarize the explanations returned by WN++, RPnoSA, and
RP for all scenarios in Table 3. Flag () denotes that all algorithms did
find an explanation involving this operators. The flag (P indicates
that WN++ misses an explanation involving an operator of this
type, which both RPnoSA and RP find. Operators appearing only
in RP’s explanations are marked @) . @ denotes that WN++ did
produce incomplete explanations, i.e., explanations that involve
the marked operator, but require modifying another operator that
WN++ misses. @ denotes incorrect explanations only found by
WN++. Note that some cells have multiple flags, because a query
may contain multiple operators (with different id) of the same type.
As shown in the three rightmost columns in Table 3, WN++ finds
12, RPnoSA detects 21, and RP yields 48 explanations. The numbers
in brackets behind the number of explanations indicate the position
of the correct explanations for the scenarios with a gold standard.
Next, we describe scenarios Q3, Q10, and T45p. We use opid
to distinguish multiple operators of the same type (see [16] for
the queries in NRAB). Scenario Q3 computes unshipped orders.
We have introduced a typo in the constant commitdate in 627 and

Scen. | Query Operators ‘ # explanations
o | x| F N |y | WN++ | RPnoSA | RP

D1 All authors and titles of papers that are published at SIGMOD O o 1 1 2
D2 Number of articles for authors who do not have "Dey" in their name (] 0 0 1
D3 Lists all author-paper-pairs per booktitle and year o 0 0 1
D4 Papers per author that have published through ACM after 2010 OO () 1 2 4
D5 List of (hompage) urls for each author o O 1 1 2
T1 List of tweets providing media urls about a basketball player () X X] 1 1 2
T2 All users who tweeted about BTS in the US OO0 () 1 2 4
T3 Hashtags and medias for users that are mentioned in other tweets oKX) 1 1 2
T4 Nested list of countries for each hashtag of tweets containing “UEFA” ® 0 () 1 1 3

Tasp | ASD example [36]: flatten, filter, project quoted tweets (2 modifications) | @ (] 0(-) 0() 2(2)
Q1 TPCH query 1 with one modified aggregation O ® 10 1(-) 3(2)
Q3 TPCH query 3 with two modified selections X X] ® 10 1(1) 2(1)
Q4 TPCH query 4 with a modified selection and aggregation () ® 0() 0() 4(3)
Q6 TPCH query 6 with one modified selection X X) 1() 7(2) 11(2)
Q10 | TPCH query 10 with two modified selections and a modified projection | () @ ® o 1(-) 2(-) 4(4)
Q13 | TPCH query 13 with one modified join O 1(1) 1(1) 1(1)

(O : Found by all algorithms, (P : found only by RPnoSA and RP, @ : found only by RP, @ : WN++ is incomplete @ WN++ is incorrect
Table 3: Summary of explanations returned for the lineage-based approach WN++, our reparameterization-based approach
without SAs (RPnoSA) and our fully fledged approach RP. Shaded fields indicate that a scenario’s query uses one or more
operators of this type, and the shaded circles indicate operators found by the different approaches (see legend).

26 a5 errors and miss a certain

replaced the marketsegment in o
order in the output. WN++ finds only ¢%7 as an explanation, because
it removes the order entirely from its output. Unlike our solution,
WN++ misses that 62° on the marketsegment would also remove the
missing order. Thus, RPnoSA, and RP return {620, 627} as their first
and correct explanation. RP also returns explanation {52, 6?7, y?>}.
It is based on schema alternatives reflecting the tax as alternative
to the discount. The last explanation yields the missing order since
the order appears in the result regardless of the SA. This scenario
shows that our solution already outperforms WN++ without SAs.
Scenario Q10 reports returned items and the associated revenue
loss. We introduce three errors in the query. We replace the con-

35 on the returnflag and o3¢ on the order-

stants in the selections o
date. Additionally, we substitute the discount with the tax in the
projection 7737 that computes the discount on the correct, non-zero
revenue. We expect a missing customer in the result who generates
noticable revenue. WN++ returns the join 3% on customer and
order as an explanation because it removes the expected customer
from the result. While the explanation makes the customer appear
in the result, it cannot yield a non-zero revenue, which we did ask
for. Thus, this explanation is incorrect. RPnoSA and RP first point
to 03 since it removes all potential join partners for the expected
customer. Next, RPnoSA and RP return both selections {035, 036}
because o3¢ also removes tuples that join with the expected cus-
tomer. RP further returns {o>°, 737} and {63°, 53¢, #37} , which add
737 to the discussed explanations. The last explanation is based on
SAs and precisely points at all our modifications. It is ranked last,
since it modifies the most operators. However, note that one would
have obtained the correct solution iteratively when observing the
provided selections before the projection. Our solution does not
return 38 since it cannot yield a non-zero revenue.

We finally describe the adaptive schema database (ASD) scenario
Tasp from [36]. An ASD extracts and refines relational schemata
from semi- or unstructured data. T4sp extracts one relation each
for the nested retweeted tweets, and the nested quoted tweets. To

extract the retweeted tweets the ASD (i) flattens them with F%!,
(ii) filters a non-null retweet count in 6?2, and (iii) projects only
the attributes from the retweet. To reflect the ambiguity between
retweets and quotes, we add two errors to T4sp. We flatten the
quoted tweets and filter on the quote count. The missing answer is a
certain retweet. As finding these errors requires SAs, only RP finds
explanations, i.e., {F?'} and {F?!,6%%}. T4sp shows that RP adds
two key features to ASDs. It helps resolving schema ambiguities
through SAs and finding missing data in the output relations.

In general, even RPnoSA finds explanations that WN++ misses
(T1, T4, Q3, Q6, Q10) because RPnoSA traces through the entire
query. While these results are for nested data, WN++ exhibits the
same problem for flat relational data. as described in [16]. Further-
more, RP may find explanations based on SAs that both RPnoSA and
WN++ miss (as in all scenarios except Q13). In fact, the SAs may be
the only means to obtain an explanation at all (D2, D3, Tasp, Q4).
When multiple operators need reparameterizations, our solution
provides the correct explanation, but possibly not ranked at the top,
like in Q10 and T4sp. However, the operators of higher ranked
explanations typically intersect with the operators in the correct
explanation. Thus, starting investigations with the higher-ranked
explanations seems a viable option to incrementally correct a query.

7 CONCLUSIONS

We present a novel approach for query-based explanations for miss-
ing answers that is the first to (i) support nested data, (ii) consider
changes to the query that affect the schema of intermediate results,
and (iii) scale to big data (100s of GBs). Even for queries over flat
data, which prior work is limited to, it produces explanations that
existing systems miss. One avenue for future research is to define
and efficiently compute tighter bounds for side effects.

Acknowlegements. Partially funded by Deutsche Forschungsgemeinschaft
(DFG) under Germany’s Excellence Strategy - EXC 2075 - 390740016 and by
NSF grants OAC-1640864 and IIS-1956123.

REFERENCES

(1]

(2]

[7

[

(8]

(9]

[10]

[11

[12]

[13

[14]

[17]

[18]
[19]

[20]

[21]

[22]

[23]

[24

[25

[26

[27

[28]

Y. Amsterdamer, SB. Davidson, D. Deutch, T. Milo, J. Stoyanovich, and V. Tannen.
2011. Putting Lipstick on Pig: Enabling Database-style Workflow Provenance.
Proceedings of the VLDB Endowment (PVLDB) 5, 4 (2011), 346—-357.

David Aumueller, Hong-Hai Do, Sabine Massmann, and Erhard Rahm. 2005.
Schema and Ontology Matching with COMA++. In ACM Conference on the Man-
agement of Data (SIGMOD).

Pablo Barcel6. 2019. A Theoretical View on Reverse Engineering Problems for
Database Query Languages. In International Workshop on Description Logics,
Mantas Simkus and Grant E. Weddell (Eds.), Vol. 2373.

K. Belhajjame. 2018. On Answering Why-Not Queries Against Scientific Work-
flow Provenance. In Conference on Extending Database Technology (EDBT). 465—
468.

N. Bidoit, M. Herschel, and A. Tzompanaki. 2015. Efficient Computation of
Polynomial Explanations of Why-Not Questions. In Conference on Information
and Knowledge Management (CIKM). 713-722.

N. Bidoit, M. Herschel, and K. Tzompanaki. 2014. Query-Based Why-Not Prove-
nance with NedExplain. In Conference on Extending Database Technology (EDBT).
145-156.

Philip Bille. 2005. A survey on tree edit distance and related problems. Theoretical
computer science 337, 1-3 (2005), 217-239.

Jesuis Camacho-Rodriguez, Dario Colazzo, Melanie Herschel, Ioana Manolescu,
and Soudip Roy Chowdhury. 2016. Reuse-based Optimization for Pig Latin. In
Conference on Information and Knowledge Management (CIKM).

A. Chapman and H. V. Jagadish. 2009. Why not?. In ACM Conference on the
Management of Data (SIGMOD). 523-534.

Daniel Deutch, Nave Frost, Amir Gilad, and Tomer Haimovich. 2018. NLProve-
NAns: Natural Language Provenance for Non-Answers. Proceedings of the VLDB
Endowment (PVLDB) 11, 12 (2018), 1986-1989.

Daniel Deutch, Nave Frost, Amir Gilad, and Tomer Haimovich. 2020. Explaining
Missing Query Results in Natural Language. In Conference on Extending Database
Technology (EDBT). OpenProceedings.org, 427-430.

Daniel Deutch and Amir Gilad. 2019. Reverse-Engineering Conjunctive Queries
from Provenance Examples. In Conference on Extending Database Technology
(EDBT). 277-288.

Gonzalo Diaz, Marcelo Arenas, and Michael Benedikt. 2016. Sparqlbye: Querying
RDF data by example. Proceedings of the VLDB Endowment (PVLDB) 9, 13 (2016),
1533-1536.

Ralf Diestelkamper, Boris Glavic, Melanie Herschel, and Seokki Lee. 2019. Query-
based Why-not Explanations for Nested Data. In International Workshop on
Theory and Practice of Provenance (TaPP).

Ralf Diestelkdmper and Melanie Herschel. 2020. Tracing nested data with struc-
tural provenance for big data analytics. In Conference on Extending Database
Technology (EDBT). 253-264.

Ralf Diestelkédmper, Seokki Lee, Melanie Herschel, and Boris Glavic. 2021. To not
miss the forest for the trees - A holistic approach for explaining missing answer
over nested data (supplementary material). (2021). arXiv:2103.07561 [cs.DB]
Hong Do and Erhard Rahm. 2002. COMA - A System for Flexible Combination of
Schema Matching Approaches.. In Conference on Very Large Data Bases (VLDB).
906 - 908.

J. Nathan Foster, TJ. Green, and V. Tannen. 2008. Annotated XML: queries and
provenance. In Symposium on Principles of Database Systems (PODS). 271-280.
S. Grumbach and T. Milo. 1996. Towards Tractable Algebras for Bags. Journal of
Computer and System Sciences (JCSS) 52, 3 (1996), 570 — 588.

M. Herschel. 2015. A Hybrid Approach to Answering Why-Not Questions on
Relational Query Results. ACM Journal on Data and Information Quality (JDIQ)
5,3 (2015), 10.

M. Herschel, R. Diestelkamper, and H. Ben Lahmar. 2017. A survey on provenance:
What for? What form? What from? The VLDB Journal 26, 6 (2017), 881-906.

R. Ikeda, H. Park, and J. Widom. 2011. Provenance for Generalized Map and
Reduce Workflows. In Conference on Innovative Data Systems Research (CIDR).
273-283.

M. Interlandi, A. Ekmekji, K. Shah, M. Ali Gulzar, S. Deep Tetali, M. Kim, TD.
Millstein, and T. Condie. 2018. Adding data provenance support to Apache Spark.
The VLDB Journal 27, 5 (2018), 595-615.

Dmitri V Kalashnikov, Laks VS Lakshmanan, and Divesh Srivastava. 2018.
FastQRE: Fast Query Reverse Engineering. In ACM Conference on the Management
of Data (SIGMOD). 337-350.

Yunyao Li, Cong Yu, and H. V. Jagadish. 2004. Schema-Free XQuery. In Conference
on Very Large Data Bases (VLDB). 72-83.

Yunyao Li, Cong Yu, and H. V. Jagadish. 2008. Enabling Schema-Free XQuery
with meaningful query focus. The VLDB Journal 17, 3 (2008), 355-377.

Leonid Libkin and Limsoon Wong. 1997. Query Languages for Bags and Aggregate
Functions. Journal of Computer and System Sciences (JCSS) 55, 2 (Oct. 1997),
241-272.

D. Logothetis, S. De, and K. Yocum. 2013. Scalable lineage capture for debugging
DISC analytics. In Symposium on Cloud Computing (SOCC). 17.

[29]

[30

(31

[32

@
&

[34

[35

(36

'S
=

N
g

JLu, TW Ling, Z Bao, and C Wang. 2011. Extended XML Tree Pattern Matching:
Theories and Algorithms. IEEE Transactions on Knowledge and Data Engineering
(TKDE) 23, 3 (2011).

Chaitanya Mishra and Nick Koudas. 2009. Interactive Query Refinement. In
Conference on Extending Database Technology (EDBT). 862-873.

Chaitanya Mishra, Nick Koudas, and Calisto Zuzarte. 2008. Generating Targeted
Queries for Database Testing. In ACM Conference on the Management of Data
(SIGMOD). New York, NY, USA, 499-510.

Davide Mottin, Alice Marascu, Senjuti Basu Roy, Gautam Das, Themis Palpanas,
and Yannis Velegrakis. 2016. A Holistic and Principled Approach for the Empty-
answer Problem. The VLDB Journal 25, 4 (2016), 597-622.

Tobias Miiller, Benjamin Dietrich, and Torsten Grust. 2018. You Say "What’, | Hear
"Where’ and "Why’? (Mis-)Interpreting SQL to Derive Fine-Grained Provenance.
Proceedings of the VLDB Endowment (PVLDB) 11, 11 (2018), 1536—1549.

Mateusz Pawlik and Nikolaus Augsten. 2011. RTED: a robust algorithm for
the tree edit distance. Proceedings of the VLDB Endowment (PVLDB) 5, 4 (2011),
334-345.

P. Pirzadeh, M. Carey, and T. Westmann. 2017. A performance study of big data
analytics platforms. In Conference on Big Data. 2911-2920.

William Spoth, Bahareh Sadat Arab, Eric S. Chan, Dieter Gawlick, Adel Ghoneimy,
Boris Glavic, Beda Christoph Hammerschmidt, Oliver Kennedy, Seokki Lee,
Zhen Hua Liu, Xing Niu, and Ying Yang. 2017. Adaptive Schema Databases. In
Conference on Innovative Data Systems Research (CIDR).

Wei Chit Tan, Meihui Zhang, Hazem Elmeleegy, and Divesh Srivastava. 2017.
Reverse Engineering Aggregation Queries. Proceedings of the VLDB Endowment
(PVLDB) 10, 11 (2017), 1394—1405.

QT. Tran and CY. Chan. 2010. How to ConQueR why-not questions. In ACM
Conference on the Management of Data (SIGMOD). 15-26.

Quoc Trung Tran, Chee Yong Chan, and Srinivasan Parthasarathy. 2014. Query
Reverse Engineering. The VLDB Journal 23, 5 (2014), 721-746.

Zhiyi Wang and Shimin Chen. 2017. Exploiting Common Patterns for Tree-
Structured Data. In ACM Conference on the Management of Data (SIGMOD),
Semih Salihoglu, Wenchao Zhou, Rada Chirkova, Jun Yang, and Dan Suciu (Eds.).
ACM, 883-896.

Kaizhong Zhang, Rick Statman, and Dennis Shasha. 1992. On the editing distance
between unordered labeled trees. Information processing letters 42, 3 (1992),
133-139.

N. Zheng, A. Alawini, and Z. G. Ives. 2019. Fine-Grained Provenance for Matching
ETL. In IEEE International Conference on Data Engineering (ICDE). 184-195.
MM. Zloof. 1977. Query-by-Example: A Data Base Language. IBM Systems
Journal 16, 4 (1977), 324-343.

https://arxiv.org/abs/2103.07561

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries and Notation
	3.1 Nested Relational Types and Instances
	3.2 Nested Relational Algebra

	4 Why-Not Explanations
	4.1 Why-Not Questions
	4.2 Reparameterizations and Explanations
	4.3 Discussion

	5 Computing Explanations
	5.1 Step 1: Schema backtracing
	5.2 Step 2: Schema alternatives
	5.3 Step 3: Data tracing
	5.4 Step 4: Computing Explanations
	5.5 Discussion

	6 Implementation and Evaluation
	6.1 Implementation
	6.2 Test Setup
	6.3 Performance Evaluation
	6.4 Explanation Quality

	7 Conclusions
	References

