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ABSTRACT
In many data analysis applications there is a need to explain why a
surprising or interesting result was produced by a query. Previous
approaches to explaining results have directly or indirectly relied
on data provenance, i.e., input tuples contributing to the result(s) of
interest. However, some information that is relevant for explaining
an answer may not be contained in the provenance. We propose a
new approach for explaining query results by augmenting prove-
nance with information from other related tables in the database.
Using a suite of optimization techniques, we demonstrate exper-
imentally using real datasets and through a user study that our
approach produces meaningful results and is e�cient.
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1 INTRODUCTION
Today's world is dominated by data. Recent advances in complex
analytics enable businesses, governments, and scientists to extract
value from their data. However, results of such operations are of-
ten hard to interpret and debugging such applications is challeng-
ing, motivating the need to develop approaches that can automati-
cally interpret and explain results to data analysts in a meaningful
way. Data provenance [15, 22], which has been studied for several
decades, is an immediate form of explanation that describes how an
answer is derived from input data. However, provenance is often
insu�cient for unearthing interesting insights from the data that
led to a surprising result, especially for aggregate query answers.
In the last few years, several�explanation� methods have been pro-
posed by the database community [8, 20, 32, 35, 41, 42, 48, 51, 53].
However, real world data often exhibits complex correlations and
inter-relationships that connect the provenance of a query with
data that has not been accessed by the query. Current approaches
do not take these crucial inter-relationships into account. Thus, the
explanations they produce may lack important contextual informa-
tion. We illustrate how to use context to explain a user's question
using data extracted from the o�cial website of the NBA [7].
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Example 1.Consider a simpli�edNBA databasewith the fol-
lowing relations (the keys areunderlined, the full schema has 11
relations). Some tuples from each relation are shown in Figure 1. Each
team playing in a game can use multiplelineupsconsisting of �ve
players.Homerefers to the home team in a game.

� Game(year, month, day, home, away, home_pts, away_pts,
winner, season) : participating teams and the winning team.

� PlayerGameScoring(player, year, month, day, home,
pts) : the points each player scored in each game he played in.

� LineupPerGameStats(lineupid, year, month, day, home ,
mp): the minutes each lineup played in a game.

� LineupPlayer(lineupid, player ) : the players in a lineup.

Query&1 shown below returns the number of wins of teamGSW
(Golden State Warriors)per season.

SELECTwinner as team , season , count (*) as win
FROMGame g WHEREwinner = ' GSW' GROUP BYwinner , season

Figure 1e shows the result of&1. GSW made history in the 2015-16
season by being the team that won the most games in a single season.
Observe that team GSW improved its performance signi�cantly from
season 2012-13 (C1) to season 2015-16 (C2). Such a drastic increase in a
relatively short period of time naturally raises the question of what
changed between these 2 seasons (expressed as theuser question*& 1
in Figure 1f). Note that&1 only accesses theGametable (shown in
Figure 1a). This table provides the user with information about each
game including the name of the opponent team and whether GSW was
the home team or not. However, such information is not enough for
understanding why GSW won more games in the 2015-16 season than
in the other seasons, because in each season a team plays the same
number of games and home games, and roughly the same number of
times against each opponent.

In this paper, we present an approach that answers questions like
*& 1 (Figure 1f). Our approach produces insightful explanations
that are based on contextual information mined from tables that are
related to the tables accessed by a user's query. To give a �avor of
the explanations produced by our approach, we present two of the
top explanations for*& 1 in Figures 2a and 2c (the formal de�ni-
tions and scoring function are presented in the next section). Each
explanation consists of three elements: (1) Ajoin graphconsisting
of a node labeled PT representing the table(s) accessed by the user's
query (referred to as the provenance table, or PT for short), and
nodes representing other tables that were joined with the prove-
nance table to provide context. Edges in a join graph represent
joins between two tables and are labeled with join conditions. (2)
A pattern, which is a conjunction of predicates over attributes from
the provenance or any table from the context. (3) Thesupportof
the pattern, i.e., the number of tuples from the provenance of each



year mon day home away home_pts away_pts winner season
61 ! 2013 01 02 MIA DAL 119 109 MIA 2012-13
62 ! 2012 12 05 DET GSW 97 104 GSW 2012-13
63 ! 2015 10 27 GSW NOP 111 95 GSW 2015-16
64 ! 2014 01 05 WAS GSW 96 112 GSW 2013-14
65 ! 2016 01 22 GSW IND 122 110 GSW 2015-16

(a) Game Table

lineupid player
58420 K. Thompson
58420 D. Green
13507 S. Battier
13507 L. James
67949 D. Green

(b) LineupPlayer Table

player year mon day home pts
?1 ! S” Curry 2012 12 05 DET 22
?2 ! S” Curry 2015 10 27 GSW 40
?3 ! S” Curry 2016 01 22 GSW 39
?4 ! K” Thompson 2012 12 05 DET 27
?5 ! K” Thompson 2016 01 22 DET 18
?6 ! D” Green 2012 12 05 DET 2

(c) PlayerGameScoring table
lineupid year mon day home mp

13507 2013 11 09 MIA 4.30
77727 2012 12 12 MIA 14.70
58420 2015 11 07 SAC 10.30
58482 2015 11 07 SAC 11.10
58420 2014 12 08 MIN 11.70

(d) LineupPerGameStats Table

team season win
C1 ! �(, 2012-13 47

�(, 2013-14 51
�(, 2014-15 67

C2 ! �(, 2015-16 73
�(, 2016-17 67

(e) Result of &1

*& 1: Why did �(, win 73 games in2015-16(C2) compared to 47 games in2012-13(C1).

(f) User question *& 1

Figure 1: Input/output tables, and the user question for Example 1.

; � 4364 ¹41º = (PT.year=P.year̂ PT.month=P.montĥ
PT.day=P.daŷ PT.home=P.home)

(a) Join graph 
 1 with pattern � 1 for *& 1: Star
Player

(b) Legend

; � 4364 ¹41º = (PT.year=LS.year̂ PT.month=LS.month^ PT.day=LS.daŷ
PT.home=LS.home)
; � 4364 ¹42º = (LS.lineupid =! 1.lineupid) ; � 4364 ¹43º = (! 1.lineupid =! 2.lineupid)

(c) Join graph 
 2 with pattern � 2 for *& 1: Pair of players

Figure 2: Explanations for *& 1

of the two result tuples from the user question that are covered by
the pattern (underlined in the explanations shown below).

Intuitively, the explanation from Figure 2a can be interpreted as:

GSW won more games in season2015-16 because Player
S. Curry scored� 23points in58out of 73 games in 2015-16
compared to21out of 47 games in 2012-13.

Given this explanation, the user can infer thatS. Curry was
one of the key contributors for the improvement of GSW's winning
record since his points signi�cantly improved in the2015-16season.
Similarly, the explanation in Figure 2c can be interpreted as:

�(, won more games in season2015-16 because Player
D. Greenand PlayerK. Thompson's on-court minutes together
were� 19minutes in70out of 73 games in the2015-16season
compared to only2 out of 47 games in the 2012-13season.

This implies that Green and Thompson's increase of playing
time together might have helped improveGSW's record. We dis-
cuss additional example queries, user questions, and explanations
produced by our approach in Section 4.
Our Contributions. In this paper, we developCaJaDE(Context-
Aware Join-Augmented Deep Explanations), the �rst system that
automatically augments provenance data with related contextual
information from other tables. Our system produces informative
summaries of the di�erence between the values of two tuples in
the answer of an aggregate query, or, the high/low value of a single
outlier tuple. We make the following contributions.

(1) Join-augmented provenance summaries as explanations.
We propose the notion of join-augmented provenance and use
summaries of augmented provenance as explanations. Thejoin-
augmented provenanceis generated based on ajoin graphthat en-
codes how the provenance is joined with tables that provide context.
We use patterns, i.e., conjunctions of equality and inequality pred-
icates, to summarize the di�erence between thejoin-augmented
provenanceof two tuplesC1• C2 from a query's output selected by the
user's question. We adapt the notion ofF-scoreto evaluate the qual-
ity of patterns. That is, to explain the di�erence betweenC1 andC2,
we search for patterns with (i) highrecall(the pattern covers many
tuples fromC1's provenance) and (ii) highprecision(the pattern
does not cover many tuples fromC2's provenance)(Section 2).

(2) Mining patterns over augmented provenance. We present
algorithms for mining patterns for a given join graph and discuss
a number of optimizations. Even if we �x a single join graph to
compute the augmented provenance, the large number of possible
patterns makes it challenging to e�ciently mine patterns with high
F-score values. Our optimizations include clustering and �ltering
attributes using machine learning methods, using a monotonicity
property for the recall of patterns to prunere�nementsof patterns
(patterns are re�ned by adding additional predicates), and �nding
useful patterns on categorical attributes before considering numeric
attributes to reduce the search space(Section 3.1).

(3) Mining join graphs giving useful patterns. We also address
the challenge of mining patterns over join graphs that are based
on aschema graphwhich encodes which joins are permissible in a
schema. We prune the search space by estimating the cost of pattern
mining and determining based on the available join options if a join
graph is unlikely to generate high quality patterns(Section 3.2).

(4) Qualitative and quantitative evaluation. We quantitatively
evaluated the explanations produced by our approach through
a case study on two real-world datasets: NBA and MIMIC. Fur-
thermore, we conducted a user study to evaluate how useful the
explanations generated by our approach are and how they compare
with explanations generated based on the provenance alone(Sec-
tion 4) . We also evaluated the scalability of our algorithms and the
e�ectiveness of our optimizations(Section 5).

2 JOIN-AUGMENTED PROVENANCE
A database� consists of a set of relationsrels¹� º = f ' 1• ” ” ” • ': g.
Abusing notation, we will use� and' 1• ” ” ” • ': to both denote a
schema and an instance when clear from the context. For a relation
' , attrs¹' º denotes the set of attributes in' ; Similarly, for a set of
relationsS, attrs¹Sº = [ ' 2Sattrs¹' º denotes the set of attributes in



PlayerGameScoring (P) LineupPerGameStats (LS)

Game (G) LineupPlayer (L)

D1 D2 D3

D4

;(4364 ¹D1º = f¹ %”~40A= �”~40A ^ %”<>=C�= �”<>=C� ^ %”30~= �”30~
^ %”�><4 = �”�><4 º, ¹%”~40A= �”~40A ^ %”<>=C�= �”<>=C�
^ %”30~= �”30~ ^ %”�><4 = �”�><4 ^ %”�><4 = �”F8==4Aº g

;(4364 ¹D2º = f¹ � ”~40A = !(”~40A ^ �”<>=C� = !(”<>=C� ^ � ”30~ =
!(”30~ ^ �”�><4 = !(”�><4 º g
;(4364 ¹D3º = f¹ !( ”;8=4D?83= !”;8=4D?83º g
;(4364 ¹D4º = f¹ !”;84=D?83= !”;8=4D?83º g

Figure 3: Schema Graph for Example 1.

relations inS. Without loss of generality, we typically will assume
that attribute names are distinct and use'”� for disambiguation if
an attribute� appears in multiple relations. In this work we focus
on simple single-block SQL queries with a single aggregate function
(select-from-where-group by), or, equivalently extended relational
algebra queries with the same restriction.1. Given a query&, & ¹� º
denotes the result of evaluating the query over a database� . We
userelsQ¹� º � rels¹� º to denote the relations accessed by&.

2.1 Provenance Table
A large body of work has studied provenance semantics for var-
ious classes of queries (e.g., [15, 22]). Here we resort to a simple
why-provenance[15] model su�cient for our purpose. We de�ne
the provenance of an output tupleC 2 &¹� º of a query& as a
subset of the cross product (� ) of all relations inrelsQ¹� º. For in-
stance, Perm [21] can produce this type of provenance for queries
in relational algebra plus aggregation and nested subqueries. In our
implementation we use the GProM system [5].

Definition 1 (Provenance Table). Given a query& having
rels& ¹� º = f ' 91•� � � • ' 9? g, we de�ne the provenance tablePT ¹&• � º
for � and& to be a subset of' 91 � � � � � ' 9? . We assume the existence
of a provenance model that determines which tuples from the cross
product belong toPT ¹&• � º. For a tupleC2 &¹� º, we de�ne the
provenance tablePT ¹&• �• Cº to be the subset of the provenance that
contributes toC(decided by the provenance model).

Example 2. In Example 1,PT ¹&1• � º contains all the tuples from
Figure 1a which has�(, as the winner, i.e.,62•63•64 and65. For
C1• C2 2 &1¹� º as shown in Table 1e,PT ¹&1• �• C1º includes all the tu-
ples where GSW won in the2012-13season, i.e.,62, andPT ¹&1• �• C2º
contains63 and65 (GSW's wins in the2015-16season).

2.2 Schema Graph and Join Graph
Schema graphs. As mentioned in the introduction, we create ex-
planations by summarizing provenance augmented with additional
information produced by joining the provenance with related tables.
We assume that aschema graphis given as input that models which
joins are allowed. The vertices of a schema graph correspond to
the relations in the database. Each edge in this graph encodes a
possible join between the connected relations, and is labeled with a
set of possible join conditions between the two connected relations.
We useCond to denote the set of all predicates involving Boolean
conjunctions (̂ ) and equality (=) of two attributes or an attribute
1Extensions are discussed in Section 7.

with a constant that can be used for joining relations in� (i.e., only
equi-joinsare allowed).

Definition 2 (Schema Graph). Given a database schema� , a
schema graph� = ¹+( • � ( • ;(4364º for � is an undirected edge-labeled
graph with nodes+( = rels¹� º, edges� ( , and a labeling function
;(4364 : � ( ! 2Cond that associates a set of conditions with every
edge from� ( . We require that for each edgeD 2 � ( , each condition
in ;(4364¹Dº only references attributes from relations incident toD.

Note that� is an input for our method. To create schema graphs,
our system can extract join conditions from the foreign key con-
straints of a database and also allows the user to provide additional
join conditions. Furthermore,;(4364 could also be determined using
join discovery techniques such as [19, 46, 54]. Figure 3 shows the
simpli�ed schema graph for the NBA dataset discussed in Exam-
ple 1. We only show relations that are used in the examples above.
In the schema graph, relations are represented by nodes and are
connected through edges (D1•D2• ” ” ” •D4) with conditions as labels.
For example,;(4364¹D1º in Figure 3 implies that we are allowed to
join PlayerGameScoring(P)with Game(G)in two di�erent ways:
(1) through an equi-join onyear, month, day, andhome(i.e., the
home-team of a game), which returns a player's stats for all the
games they played, and (2) with an additional condition onhome
= winner, which returns a player's stats for games for which the
home team won. Note that there is an edgeD4 which suggests node
LineupPlayer(L) can be joined with itself on conditionL.lineupid
= L.lineupid(renaming of! is needed in the actual join) to �nd
players in the same lineup.
Join graphs. A join graph
 encodesone possible wayof augment-
ing PT ¹&• � º with related tables. It contains a distinguished node
%) representing the relations inrelsQ¹� º. The other nodes of
 are
labeled with relations. Edges in
 are labeled with join conditions
allowed by the schema graph� . There can be multiple parallel
edges between two nodes, i.e.,
 is a multi-graph.

Definition 3 (join graph). Given a database� , schema graph
� = ¹+( • � ( • ;(4364º and query&, a join graph
 for � is a node- and
edge-labeled undirected multigraph¹+� • � � • ;� =>34• ;� 4364º with nodes
+� , edges� � , a node labeling function; � =>34 : +� ! rels¹� º [ f %)g,
and edge labeling function; � 4364 : � � ! Cond. For any join graph
we require that it contains exactly one node labeled with%) and there
are no edges with%) as both end-points. For every edge4 = ¹=1•=2º 2
� � we require that there exists a corresponding edgeD= ¹' 1• ' 2º 2 � (
such that all of the following conditions hold:

� ; � 4364¹4º 2 ;(4364¹Dº (modulo renaming relations using their
aliases for disambiguation as discussed below)

� If ; � =>34¹=1º = %), then' 1 2 relsQ¹� º, else,; � =>34¹=1º = ' 1
� If ; � =>34¹=2º = %), then' 2 2 relsQ¹� º, else,; � =>34¹=2º = ' 2

The �rst condition above says that the join condition between
two relations in the join graph
 should be one of the allowed con-
ditions from the schema graph� . The second and third conditions
state that edges adjacent to node%) should correspond to an edge
adjacent to a relation accessed by query&. Note that multiple nodes
in +� may be labeled with the same relation and also relations from
relsQ¹� º may appear in node labels.
Disambiguation of relation and attribute names in join graphs.
In join graphs corresponding to a schema graph, we may need to



address some ambiguity in attribute names and relation names.
(1) Unlike the schema graph� , the join graph
 may contain the
same relation' 8 multiple times with node label< %). We assign
each such occurrence of' 8 a fresh label' 81• ' 82•� � � in 
 . For edges
incident on' 81• ' 82• ” ” ”in 
 we use these labels (' 81”�• ' 82”� , . . . )
instead of the original attribute name' 8”� . (2) In addition to the
join graph 
 , even in the original query& and therefore in the
provenance tablePT ¹&• � º, the same relation' 8 2 relsQ¹� º can
appear multiple times using di�erent aliases, say,' 81 and' 82. Sup-
pose in the schema graph� there is an edge between' 8 and' 9.
Then in a join graph
 , there can be two parallel edges between
node%) and' 9, one corresponding to a join between' 81 and' 9,
and the second one corresponding to the join between' 82 and' 9.
The labels of these edges will use the corresponding aliases (' 81”�
on one edge and' 82”� on the other) for disambiguation. Note that
both (1) and (2) may occur in the same join graph.

Example 3.Consider the join graph
 2 from Figure 2c. Since
relsQ1 ¹� º = {Game}, %) represents the one relation accessed by&.
Nodes from this join graph are connected through edges (41• 42• 43),
where each edge has a corresponding condition in the schema graph
shown in Figure 3. For example, the join condition on41 from 
 2
is the �rst condition in the label ofD2 from the schema graph, i.e.,
; � 4364¹41º 2 ;(4364¹D2º. Similarly,; � 4364¹42º 2 ;(4364¹D3º. As dis-
cussed above,LineupPlayer appears more than once in the join
graph renamed asLineupPlayer 1 (! 1) andLineupPlayer 2 (! 2).

2.3 Augmented Provenance Table
We now describe the process of generating the relation correspond-
ing to a given join graph
 � the result of joining the relations in
the graph
 based on the encoded join conditions (after renaming
relations and attributes as described in the previous section).

Definition 4 (Augmented Provenance Table). Consider a
database� , a query&, and a join graph
 = ¹+� • � � • ;� =>34• ;� 4364º.
Let ( 91•� � � • (9? = +� � f %)g, i.e., all the relations that appear in

 with labels< %). Furthermore, letC 2 &¹� º and tupleC0 2
PT ¹&• �• Cº. We de�ne theaugmented provenance table(APT) for
� , &, and
 (andC, C0) as

APT ¹ &• �• 
 º = f \ 
 ¹PT ¹&• � º � ( 91 � � � � � ( 9? º

APT ¹ &• �• 
 • Cº = f \ 
 ¹PT ¹&• �• Cº � ( 91 � � � � � ( 9? º

APT ¹ &• �• 
 • C• C0º = f \ 
 ¹fC0g � ( 91 � � � � � ( 9? º

Here\ 
 =
Ó

¹( 0 •(1 º 2� � ; � 4364¹¹( 0• (1ºº is the conjunction of join
conditions in the join graph
 . The join conditions only use equal-
ity comparisons between two attributes. We assume that duplicate
(renamed) columns are removed fromAPT ¹ &• �• 
 º.

Example 4. Consider
 1 from Figure 2a that combines the prove-
nance table PT withPlayerGameScoringthrough an equi-join on
year, month, day, andhome. Figure 4 shows the join resultAPT ¹ &1•
�• 
 1º using the tuples from Figures 1a and 1c.

2.4 Explanations with Augmented Provenance
CaJaDE's approach for generating explanations is based on summa-
rizing augmented provenance tables. In particular, given a database
and a query, the user identi�es interesting or surprising tuples in
the query's result (e.g., the aggregate value is high/low, or the value

year mon day home away home_pts away_pts winner season player pts
2012 12 05 DET GSW 97 104 GSW 2012-13S. Curry 22
2012 12 05 DET GSW 97 104 GSW 2012-13K. Thompson 27
2012 12 05 DET GSW 97 104 GSW 2012-13D. Green 2
2015 10 27 GSW NOP 111 95 GSW 2015-16S. Curry 40
2016 01 22 GSW IND 122 110 GSW 2015-16S. Curry 39
2016 01 22 GSW IND 122 110 GSW 2015-16K. Thompson 18

Figure 4: APT ¹ &1• �• 
 1º result using example tuples

of a tuple is higher/lower than that of another tuple). To explain
such interesting results,CaJaDEreturnspatterns(i.e., predicates)
that each summarize the di�erence between the augmented prove-
nance for the two query result tuples (or the provenance of one
result tuple and all other result tuples).

User questions. Given a database� and a query&, CaJaDEsup-
ports two-point questions or comparisons, which we will discuss
by default:GivenC1• C2 2 &¹� º, summarize input tuples in� that
di�erentiateC1 fromC2. However,CaJaDEalso works forsingle-
point questions: Given a single tupleC2 &¹� º, summarize input
tuples in� that di�erentiateCfrom the rest of the tuples.Here the
intuitive idea is to treatCasC1, and all tuplesC0 < C2 &¹� º asC2.

Explaining aggregates vs. summarizing provenance vs. non-
provenance. Instead of directly explaining why an aggregate value
C”val is high/low or C1”val higher/lower than another valueC2”val
[35,42,53], the goal ofCaJaDEis to use �patterns� (discussed below)
to summarize the input tuples that contributed the most to an output
tuple as well as distinguish it from the other outputs. Therefore,
unlike the approaches in [35, 42, 53], in CaJaDE, the aggregate
valuesC1”val • C2”val • C”val do not play a role in the explanations2.

Summarization patterns and explanations. In the CaJaDE
framework, explanations arepatterns(conjunctive predicates) that
compactly encode sets of tuples from the augmented provenance
tables based on a join graph. This type of patterns has been used
widely for explanations [20, 31, 35, 42, 53].

Definition 5 (Summarization Pattern and Matching Tu-
ples). Let ' be a relation with attributes¹� 1• ” ” ” • �< º, and letD8
denote theactive domainof attribute� 8 in ' . A summarization
pattern (or simply apattern) � is an< � ary tuple such that for
every� 8 2 ' , (i) if � 8 is a numerical or ordinal attribute:� ”� 8 2Ð

- 2D8f¹ -• �º •¹-• �º •¹-• =ºg [ f�g , (ii) if � 8 is a categorical at-
tribute: � ”� 8 2

Ð
- 2D8f¹ -• =ºg [ f�g . Here� denotes that the at-

tribute is not being used in the pattern and- 2 D8denotes a threshold
for numeric attributes. If� ”� 8 < � , then� ”� 8»0¼denotes the threshold
- and� ”� 8»1¼denotes the comparison operator� •� , or=.

A tupleC2 ' matchesa pattern� , written asC� � , if Cand�
agree on all conditions, i.e.,882 f 1• ” ” ” •<g, one of the following must
hold: (i)� ”� 8 = � , or (ii) (C”�8 � � ”� 8»0¼º ^ ¹� ”� 8»1¼= ` � 'º, or
(iii) (C”�8 � � ”� 8»0¼º ^ ¹� ”� 8»1¼= ` � 'º, or (iv) (C”�8 = � ”� 8»0¼º ^
¹� ”� 8»1¼= ` = 'º. We usematch ¹� • ' º to denotefC2 ' j C� � g.

When presenting textual descriptions of summarization patterns,
we omit attributes which are set to� , and instead include the at-
tribute name as¹� 8 : � ”� 8»0¼•� ”� 8»1¼ºto avoid ambiguity. Also,
since the group-by attributes exactly capture the answer tuples
C1• C2, and do not provide any additional information, patterns are
not allowed to include attributes used in grouping in the query&.

2Taking the amount of contribution (responsibility/sensitivity) of input tuples into
account as in [35, 42, 53] is an interesting direction for future work.



As discussed in the introduction, the explanations computed by
CaJaDEconsist of a join graph
 , a pattern� over APT ¹ 
 • � º,
and thesupportof � to di�erentiate one tuple from the others
by augmentingthe provenance using
 , and thereby providing
additional contextual information from other tables in� .

Definition 6 (Explanations from Augmented Provenance).
Given a database� , schema graph� , query&, and a two-point
question withC1• C2 2 &¹� º, an explanation is a tuple� = ¹
 , � ,
¹E1• 01º, ¹E2• 02ºº, where
 is a join graph for� ; � is a pattern over
the augmented provenance tableAPT ¹ &• �• 
 º; and¹E1• 01º and
¹E2• 02º denote the relative support of� for C1 andC2, respectively.3

For simplicity, we will often drop¹E1• 01º and ¹E2• 02º.

Example 5. Consider the explanation from Figure 2a. The pattern
� 1 = f¹ player : (”�DAA~•=º•¹pts : 23•�ºg is based on
 1. Here
player is a categorical attribute and pts is a numeric attribute (the
other attributes are� ), both coming from thePlayerGameScoringta-
ble. Any tuple fromAPT ¹ &1• �• 
 1º which ful�lls player = 'S.Curry'
and?CB� 23is in match ¹� 1•APT ¹ &1• �• 
 1ºº. One possible ex-
planation for*& 1 from Figure 1f is:¹� 1•
 1•¹58•73º•¹21•47ºº.

Note that explanations for two-point questions are asymmetric,
as one of the tuples is chosen as theprimary tuplewhose relative
support is given by¹E1• 01º, and the second one is chosen as thesec-
ondary tuple, whose relative support is given by¹E2• 02º. Switching
these two tuples may result in a di�erent set of top explanations
using the quality measure that we discuss next.

2.5 Quality Measure of Explanations
First, we discuss the quality measure for explanations within the
context of one join graph, and then discuss how to �nd top expla-
nations across all join graphs mined by our algorithms.

2.5.1 �ality Measures Given a Join Graph.For a two-point user
question focusing on the di�erence betweenC1• C2 2 &¹� º, we
would like an explanation's pattern to match as many tuples from
the provenance ofC1 as possible, and the least amount of tuples from
the provenance ofC2 as possible. For this purpose, we adapt the
notion of F-score. Recall thatmatch ¹� • ' º denotesfC2 ' j C� � g.

Definition 7 (�ality Metrics of a Pattern). Consider a
database� , a query&, a join graph
 , two output tuples in the user
questionC1• C2 2 &¹� º, and an explanation pattern� = ¹
 •� º.

(a) A tupleC0 2 PT ¹&• �• C1º (similarly forC2) is said to becov-
ered by � if there existsC002 APT ¹ &• �• 
 • C1• C0º (ref. De�nition 4)
such thatC00� � . Thecoverageof � onC1• C0 in APT ¹ &•
 • � º is:

Cov¹�• 
 • C1• C0º = 1 »match
�
� • A P T ¹ &• 
 • �• C1• C0º

�
< ;¼

where1»¼is the indicator function.
(b) Thecoverage(or,true positives ) of � for C1 is de�ned as the

sum of its coverage on all tuples in the provenance table:

TP¹�• 
 • C1º =
Õ

C02PT ¹&•�•C 1º

Cov¹�• 
 • C1• C0º

(c) Thefalse positives of � for C1 in comparison toC2 is the sum
of its coverage on all tuples inPT ¹&• � º that are in the provenance
of C2 (C1 does not appear on the right-hand side here):

FP¹�• 
 • C1• C2º =
Õ

C02PT ¹&•�•C 2º

Cov¹�• 
 • C2• C0º

3We will discuss the relative support in the next section.

(d) Thefalse negatives of � for C1 is de�ned as the sum of the
uncovered tuples in the provenance ofC1:

FN¹�• 
 • C1º =
Õ

C02PT ¹&•�•C 1º

1 � Cov¹�• 
 • C1• C0º

(e) Using (b)-(d), we de�neprecision, recall , andF-score for C1
in comparison toC2 as usual:

Prec¹�• 
 • C1• C2º =
TP¹�• 
 • C1º

TP¹�• 
 • C1º ¸ FP¹�• 
 • C1• C2º

Rec¹�• 
 • C1º =
TP¹�• 
 • C1º

TP¹�• 
 • C1º ¸ FN¹�• 
 • C1º

Fscore¹�• 
 • C1• C2º =
2

1
Prec¹�• 
 •C1•C2º ¸ 1

Rec¹�• 
 •C1º

A pattern � with high recall provides a good description of the
tuples contributing toC1. A high precision implies that� covers few
tuples in the provenance ofC2. A high F-score indicates both. This
de�nition can be easily adapted to single-point questions involving
a single output tupleC2 &¹� º by summing overC0 2 PT ¹&• � º n
PT ¹&• �• Cº instead of summing overC0 2 PT ¹&• �• C2º in the false
positives de�nition above. The other de�nitions remain the same.

Support of explanation patterns. As described in the running ex-
ample and in De�nition 6, an explanation� = ¹
 •� •¹E1• 01º•¹E2• 02ºº
includes the relative support of the pattern� for C1• C2 2 &¹� º
to record how this pattern di�erentiates the output tuplesC1 and
C2. HereE1 = TP¹� •
 • C1º and01 = TP¹� •
 • C1º ¸ FN¹� •
 • C1º =
jPT ¹&• �• C1º j as de�ned in De�nition 7, denoting the set of tuples
in the provenance ofC1 covered by the pattern� , and the set of
all tuples in the provenance ofC1 respectively. Similarly, we de�ne
E2• 02 for the output tupleC2 to demonstrate the di�erence withC1.

Finding Top- : Patterns with Highest F-scores. Given a join
graph
 , our goal is to �nd the top-: patterns� in terms of their
individual F-scores according to De�nition 7. However, in practice
there are additional considerations that we should take into account,
e.g., the maximum number of attributes appearing in a pattern.

Complexity. Finding top-: patterns given a join graph
 has
polynomial data complexity[49] (�xed size schema and query).
The provenance table and APTs can be computed in PTIME in the
size of the data. Given a pattern, its matches can be determined in
PTIME and therefore, all metrics in De�nition 7 can be computed
in PTIME. If there are? attributes in the augmented provenance
table, the number of possible patterns is in$ ¹=?º (the number of
distinct attribute values is bound by= = total number of tuples in
the database, and each attribute can appear as don't-care� and
with one of the three comparison operators). Thus, even a naive
approach for computing the top-: patterns with the highest F-score
values is polynomial in data size. However, this naive approach does
not scale in practice and therefore we adopt a number of heuristic
optimizations to solve this problem as described in Section 3.1.

Explanations over All Join Graphs. When mining multiple join
graphs
 , there are several options for �nding top patterns across
all join graphs, e.g., penalizing patterns from complex join graphs.
However, for simplicity, and for an interactive user experience, we
�nd top- : patterns for each individual join graph and present a
global ranking of all patterns. Thus, the user can explore explana-
tions generated from more than one join graph (see Section 3.2).



3 ALGORITHMS FOR MINING PATTERNS
In this section we discuss our algorithms for mining patterns for a
given join graph (Section 3.1), and for enumerating all join graphs
over which patterns should be mined (Section 3.2). Pseudocode for
these algorithms and additional details are presented in [34].

3.1 Mining Patterns given a Join Graph
We �rst give an overview of our algorithm for mining patterns
from an augmented provenance table (APT) generated based on
a given join graph
 . Recall that we are dealing with patterns
that may contain equality comparisons (for categorical attributes)
and/or inequality comparisons (for numeric attributes). We mine
patterns in multiple phases. (i) In the �rstpreprocessing step, we
cluster attributesthat are highly correlated to reduce redundancy
in the patterns. The output of this step are clusters each with one
selected representative. (ii) In the second preprocessing step, we
use random forests to remove clusters that have low relevance for
predicting membership of input tuples in the provenance of only
one of the two output tuples from the user question. Such attributes
are unlikely to yield patterns of high quality. (iii) Next we only
consider categorical attributes and mine pattern candidates using a
variation of theLCA (Least Common Ancestor)method from [20]
that can only handle categorical attributes. (iv) From the set of
patterns returned by the LCA method, we then select the top-: 20C
patterns with the highest recall and frequency for the next step. (v)
These patterns are thenre�ned (see below) by adding conditions
on numerical attributes that can improve precision at the potential
cost of reducing recall. (vi) Finally, the top-k patterns based on score
according to De�nition 7 are returned.

A pattern � 0 is are�nement of a pattern� if � 0can be derived
from � by replacing one or more� with comparisons, e.g., pattern
� 2 = ¹¹-• =º•¹.• �ºº is a re�nement of � 1 = ¹¹-• =º•�º . We use
the following observation that is implied by De�nition 7 (a), (b), (d),
and (e) to prune patterns if their recall is below a threshold.

Proposition 3.1. Given a tupleC2 &¹� º and a join graph
 ,
Rec¹� 2•
 • Cº � Rec¹� 1•
 • Cº, where� 1 = ¹
 •� 1º, � 2 = ¹
 •� 2º,
and� 2 is a re�nement of� 1.

Next we discuss the above six steps in more detail.

3.1.1 Clustering A�ributes based on Correlations.Redundancy in
patterns can be caused by attributes that are highly correlated. As
an extreme example, consider an APT containing both the birth
date and age of a person. For any pattern containing a predicate
on birth date there will be an (almost) equivalent pattern using age
instead, and also a pattern using both age and birth date. To reduce
the prevalence of such redundant patterns, we cluster attributes
based on their mutual correlation and pick a single representative
for each cluster. We use VARCLUS [45], a clustering algorithm
closely related to principal component analysis and other dimen-
sionality reduction techniques [40]. However, any other technique
for clustering correlated attributes can be used instead.

3.1.2 Filtering A�ributes based on Relevance.Random forests have
been successfully used in machine learning applications to deter-
mine the relevance of a feature (attribute) to the outcome of a
classi�cation task. We train a random forest classi�er that predicts

whether a row belongs to the augmented provenance of only one of
the two outputs from the user's question [11]. We then �nd the frac-
tion _#B4;� 0CCAof attributes with the highest relevance (_#B4;� 0CCAis
an input parameter, a summary of all parameters discussed in this
section is shown in Table 4). The rationale for this step is to prune
patterns involving attributes that are irrelevant for distinguishing
the tuplesC1 andC2 from the user question. Such attributes can be
added to any pattern with minimal e�ect on the recall and precision
of patterns, but could mislead users into thinking that the value of
this attribute is a distinguishing factor forC1• C2.

3.1.3 Pa�erns over Categorical A�ributes.We then generate a sam-
ple of size_?0C� B0<? (an input parameter) fromAPT ¹ &• �• 
 º
and a set of candidate patterns over only categorical attributes us-
ing the LCA method from [20]. We ignore all numerical attributes
at this stage by using� . Our implementation of the LCA method
generates pattern candidates from the cross product of two samples
of the same size. A candidate pattern is generated for each pair
¹C• C0º of tuples from the sample by replacing values of attributes
� whereC”� < C0”� with a placeholder� and by keeping constants
that CandC0 agree upon (C”� = C0”� ). Note that in our case each
element of a pattern is a predicate, therefore, using a constant as
done in the LCA method corresponds to using an equality predicate
(i.e.,� = 2 for C”� = C0”� = 2). By keeping constants that frequently
co-occur, the LCA method generates patterns that re�ect common
combinations of constants in the data. Focusing on categorical at-
tributes �rst enables us to (i) use the established heuristic of the LCA
method to generate categorical-only pattern candidates, and (ii) to
signi�cantly reduce the search space by pruning all re�nements of
patterns without a su�ciently high recall.

3.1.4 Filtering Categorical Pa�ern Candidates.Next, we calculate
the recall for each pattern �nding the matches for the pattern in
the APT. In order to quickly �nd the most common patterns, we
reduce the number of queries needed to be run to check recall by
choosing the most frequent patterns in the LCA results. We then
�lter out patterns whose recall is below a threshold_A420;;, and
pick at most: 20Cpatterns, which we denote byP20C.

3.1.5 Refinement and Numeric A�ributes.We then generate re-
�ned patterns fromP20Cby replacing placeholders� on numerical
attributes with predicates. Even though such re�nements can at
best have the same recall as the original pattern, their precision
may be higher. Recall that for numerical attributes we allow for
both equality as well as inequality predicates, for which there is
a large number of possible constants to choose from, because nu-
merical attributes tend to have large domains. To reduce the size of
the search space, we split the domain of each numerical attribute
into a �xed number of fragments (e.g., quartiles) and only use the
boundaries of these fragments when generating re�nements. We
systematically enumerate all re�nements of a pattern by extending
it with one predicate at a time. We usePA45 8=43to denote the union
of P20Cwith the set of patterns generated in this step.

3.1.6 Computing Top-k Pa�erns.Finally, we calculate the F-score
for each pattern inPA45 8=43and return: patterns by taking into
account both F-scores and a measure for diversity to give the user
di�erent types of interesting explanations (more details are pre-
sented in [34]). As an optimization, we calculate the F-score over a



sample of the data (with sample size_� 1� B0<?). Note that_� 1� B0<?
can be di�erent from the sample size_?0C� B0<? in the previous
step since we found that a small sample is su�cient for generating a
meaningful set of patterns, but may not be su�cient for estimating
recall with high enough accuracy. We iteratively build the �nal
pattern set of size: starting with the pattern with the highest F-
score. When deciding what pattern to add next to the result, we
penalize patterns that share attributes and values with a pattern
that is already in the result.

3.2 Join Graph Enumeration
In this section, we describe an algorithm that enumerates join
graphs of increasing size iteratively. The maximum size of join
graphs considered by the algorithm is determined by a parameter
_#4364B. We employ several heuristic tests to determine whether
a join graph generated by the algorithm should be considered for
pattern mining. The rationale for not considering all join graphs
for pattern mining is that for some join graphs, pattern mining
may not yield patterns of good quality, or it may be much more
computationally expensive than generating the join graph. Hence
we skip pattern mining for join graphs that are unlikely to be worth
the cost. For join graphs that pass these tests we materialize the
corresponding APT and apply the pattern mining algorithm from
Section 3.1 to compute the top-k patterns for the APT.

Generating join graphs. We enumerate join graphs in iteration8
by extending every join graph produced in iteration8� 1 with all
possible edges. For each join graph
 produced in iteration8� 1,
we consider two types of extensions: (i) we add an additional edge
between two existing nodes of the graph and (ii) we add a new
node and connect it via a new edge to an existing node.

Checking join graph connectivity and skipping expensive
APT computations. We �lter out join graphs based onlack of
connectivityand onhigh estimated costs. Note that schema graphs
may contain tables with multiple primary key attributes incident
to edges which join on part of the key. This is typical in �map-
ping� tables that represent relationships. For instance, consider the
PlayerGameScoringtable from our running example that stores
the number of points a player scored per game. Assume that there
exists another tablePlayer that is not part of the running example.
The primary key ofPlayerGameScoringconsists of a foreign key
to the Gametable and a foreign key to thePlayer for which we
are recording stats. Consider a query that joins theGametable with
LineupPerGameStats, LineupPlayer and selects games played by
team GSW. A valid join graph for this query would be to join the
node%) with PlayerGameScoringon game's primary key.

Note that while the result of this query contains rows that pair a
player of GSW with lineups they played in during a particular game,
the APT would pair each row with any player that played in that
game irrespective of their team. Join graphs like this can lead to
redundancy and large APT tables. One reason for this redundancy
is that not all primary key attributes of thePlayerGameScoring
table are joined with another table. To prevent such join graphs
with redundancy, our algorithm checks that for every node in the
join graph, the primary key attributes of that node are joined with
at least one other node from the join graph. For instance, in the

example above the join graph could be modi�ed to pass this check by
also joining thePlayerGameScoringtable with thePlayer table.

Even though we only consider fully connected join graphs, some
generated join graphs will result in APTs of signi�cant size, which
are expensive to materialize and mine patterns from. We use the
DBMS to estimate the cost of the materialization query upfront. We
skip pattern mining for join graphs where the estimated cost of this
query is above a threshold_@�>BC. While we may lose explanations
by skipping join graphs, experimental results demonstrate that this
check is necessary for achieving reasonable performance. Further-
more, smaller join graphs result in less complex explanations.

Ranking results. After enumerating join graphs and computing
top-: patterns for each join graph, we rank the union of all pattern
sets on their F-scores. Ranking all patterns (instead of �ltering
out some patterns) reduces the load on the user by increasing the
likelihood that good patterns are shown early on without having
the risk of not showing patterns that have lower scores.

4 QUALITATIVE EVALUATION
We now evaluate the quality of explanations produced byCaJaDE
using case studies on two real datasets (NBA and MIMIC). We also
report results of a user study with the NBA dataset. Due to the space
limit, we simpli�ed some of these descriptions. Note that the same
pattern may be returned for several join graphs (same attributes,
but di�erent join path). In the interest of diversity, we removed
duplicates and explanations that only di�er slightly in terms of
constants. We show the top-3 explanations after this step. we use
�[ C1]" or �[ C2]" in explanations as identi�er of theprimary tuplefor
the explanation. For the sets of top-20 explanations (including join
graphs), SQL code of the queries, and detailed descriptions of the
datasets, please see [34].

4.1 Case Study: NBA

Dataset.NBAis a dataset we extracted from the NBA website (https:
//www.nba.com/) and PBP stats website (https://www.pbpstats.
com/). It includes 10 seasons' worth of data (seasons2009-10to
2018-19). The dataset contains11relations and is� 170MB large.

Setup.For the NBA dataset, we use �ve queries calculating player's
and team's stats and generated user questions based on interest-
ing results. Figure 5 shows the queries, user questions, and top-3
explanations produced by our method for these user questions.

Explanations and Analysis. &=101: Draymond Greenhad a big
average points di�erence between2 consecutive seasons. All3
explanations contain salary change information. In reality, from
2015-16season to2016-17season,Green's salary increased, which
could result in losing incentive to play as hard as when he earns a
lower salary. The2=3 and3A3explanation identify factors a�ecting
the player's points such as minutes played and shooting percentage
per game, e.g.,Greenhad more games where he played more than
31minutes and had more than0”4 shooting percentage in2015� 16
season (2=3 explanation).&=102: TheGSWteam had a sudden in-
crease in average assists. All explanations containassistpoints
which has a cause-and-e�ect relationship with assists (more assists
result in more assistpoints).&=103 and&=105: Both players had
some signi�cant average point changes. For&=103, Lebron James



Query User question Top explanations F-score
&=10 1 Draymond Green's

average points per year :
14 points in season
2015-16(C1) VS10points
in season2016-17(C2)

player_salaryŸ 15330000[C1] 1
prov.tspctŸ 0”69^ prov.usageŸ 20”5^
salary¡ 14260000[C2]

0”71

prov.minutes¡ 31^ prov.tspct¡ 0”4 ^
salaryŸ 15330000[C1]

0”66

&=10 2 GSW's average assists
per year: 23in season
2013-14(C1) VS27in
season2014-15(C2)

prov.assistpointsŸ 68^
player=Draymond Green [C1] 0”74

prov.assistpoints¡ 57^
prov.nonputbackast_2_pct¡ 0”55
^ player.player=Harrison Barnes [C2]

0”73

prov.assistpointsŸ 68^
o�reboundpct¡ 0”25[C1] 0”72

&=10 3 LeBron James's average
points per year : 29”7 in
season2009-10(C1) VS
26”7 in season2010-11(C2)

player_salary¡ 14500000[C1] 1
team=MIA [C2] 0”98
team=CLE [C1] 0”93

&=10 4 GSW's number of wins
per year: 47in 2012-13
(C1) season VS67in
2016� 17season (C2)

player_name=Pau Gasol^
player_salaryŸ 19285850[C2] 1

player_name=Andre Iguodala [C2] 0”97
fg_3_apctŸ 0”31̂
team_pointsŸ 121[C1] 0”92

&=10 5 Jimmy Butler 's average
points per year : 13points
in season2013-14(C1) VS
20points in season
2014-15(C2)

player_salary¡ 1112880[C2] 1
prov.away_points¡ 87^
prov.efgpct¡ 0”38[C2] 0”84

prov.usageŸ 23^ team=CHÎ
team_assisted_2_spct¡ 0”5 [C1] 0”77

Figure 5: Queries, user questions and explanations (NBA)

Query User question Top-3 explanations F-score
&<8<82 1 Patient death rate

grouped by diagnoses:
0”19for chapter= 2 (C1) VS
0”09for chapter= 13(C2)

expire_�ag=1 [C1] 0”68
hospital_stay_lengthŸ
23̂ expire_�ag= 1 [C1]

0”65

hospital_stay_lengthŸ
16,expire_�ag= 1 [C1]

0”63

&<8<82 2 Death rate by insurance :
Medicare=0”138(C1) VS
Medicaid=0”066(C2)

prov.admission_type=emergency [C1] 0”85
expire_�ag= 1 [C1] 0”70
gender=Male [C1] 0”65

&<8<82 3 Number of patients
grouped by ICU stays
length : less than1 day (C1)
VS more than8 days (C2)

hospital_stay_length¡ 9 ^
procedure.chapter=16 [C2]

0”86

hospital_stay_lengthŸ 6 ^
los_group=0-1 [C1]

0”86

prov.dbsource=carevuê
hospital_stay_length¡ 8 [C2]

0”78

&<8<82 4 Death rate by insurance :
Medicare=0”14(C1) VS
Private=0”06(C2)

expire_�ag=0̂ ageŸ 71[C2] 0”77
prov.admission_type=emergency[C1] 0”73
prov.hospital_stay_lengthŸ 22”0 ^
expire_�ag=1 [C1]

0”61

&<8<82 5 Number of patients that
did a procedure grouped
by ethnicity : 7821
Hispanic patients [C1] VS
6247Asian patients [C2]

hospital_stay_lengthŸ 19^ ethnic-
ity=Asian [C2]

0”90

admission_type=emergencŷ
hospital_stay_length¡ 5 ^ ageŸ 66
^ ethnicity=Hispanic [C1]

0”80

prov.religion=Catholic [C1] 0”63

Figure 6: Queries, user questions and explanations (MIMIC)

had an average points decrease. This occurred when he switched
to a new team (fromCLEin 2009-10season toMIA in 2010-11sea-
son). InMIA he had less pressure o�ensively.CaJaDEsuccessfully
identi�ed this fact as a potential cause (2=3 and3A3 explanation).
&=105: Jimmy Butlerhad a big improvement in average points. Our
top explanations for this improvement include an increase of usage
and minutes played.&=104: This query is similar to our running
example&1 but with a question asking for di�erent2 seasons. The
2=3 explanation identi�es a player change:Andre Iguodalaonly
played forGSWin 2015� 17season. The3A3 explanation is about
the team's points di�erence and 3-point percentage. While the �rst
explanation has a high F-score, the join graph details reveal that the
salary and player constants can have no relation with GSW. This
highlights the importance of including join graphs in explanations.

4.2 Case Study: MIMIC

Dataset. MIMIC (https://mimic.physionet.org/) is a deidenti�ed
dataset of intensive care unit hospital admissions. The dataset con-
sists of 6 relations and is� 120MB large. We constructed5 queries
over this dataset accessing di�erent tables. The simpli�ed descrip-
tions of the queries, user questions, and explanations are shown in
Figure 6. We �rst brie�y introduce the MIMIC dataset to help the
reader understand the queries and explanations. The main table
of the dataset is theAdmissions table that records hospital admis-
sions. TheDiagnosis table records diagnosis for patients for each
admission (a patient may be admitted more than once during their
lifetime).PatientsAdmissionInfo contains information like age
and religion for individual admissions of patients (e.g., age may
change over time).ICUStaysrecords intensive care unit stays of
patients. There may be multiple ICU stays per admission.

Explanations and Analysis. Figure 6 shows the top-3 explana-
tions returned byCaJaDEfor each user question.&<8<821: This
question asks for the di�erence in death rates between two diagno-
sis categories (chapter 2: neoplasms vs chapter 13: musculoskeletal
system and connective tissue). The death rate is the fraction of
patients that died during their hospital stay. The1BCexplanation

usesexpire_�ag= 1 from the patient table suggesting that this pa-
tient has passed away. This �ag only indicates that the patient
died, but not whether during their hospital stay or not, subsuming
all hospital deaths. The2=3 and3A3 explanations add additional
information about the lengths of hospital stays, which indicates
a di�erence between the severity of these two categories which
explains the di�erent death rates.&<8<822: This query asks about
the di�erence between the death rates of two groups of patients
based on their insurance types. The1BCexplanation states that there
are moreemergencyadmissions withMedicarethan with Medicaid,
which may explain the higher death rate. The2=3 explanation re-
lates death rate toexpire_flag . The3A3explanation suggests that
Medicarehas moreMalepatients thanMedicaid. &<8<823: The1BC

explanation shows that most of the patients staying over8 days in
the ICU will stay in hospital for more than9 days and also have
procedures from chapter16(Miscellaneous Diagnostic and Thera-
peutic Procedures). The2=3 explanation suggests that most patients
will be released from hospital in less than6 days when their ICU
stay is less than1 day. The3A3 explanation states the same fact
that patients will stay more than8 days in hospital when they stay
more than8 days in the ICU. These explanations regarding hospital
stay length can help users identify that ICU stay length may be a
good indicator for hospital stay length.&<8<824: This question uses
the same query as&<8<822, but comparesPrivateinsurance with
Medicare. The1BCexplanation states that for patients who have
Privateinsurance, more patients are alive and less than71years old.
This is aligned with the fact thatMedicareis mostly for patients
over65years old (this is a fact extracted from online resources). The
2=3 and3A3 explanations are stating that patients usingMedicare
are more likely to be admitted because of anemergencyand also the
facts about length of hospital stays.&<8<825: The1BCexplanation
states thatAsianpatients who had a procedure are more likely to
stay less than 19 days in the hospital. The2=3 explanation says
that compared toAsianpatients there were moreHispanicpatients
younger than66years old and that stayed more than5 days in the
hospital. The3A3explanation points out that moreHispanicpatients
areCatholic. Note that the ethnicity information in the explanations



are not from PT, but from a di�erentpatient_admit_info table.
Because we do not consider functional dependencies, results like
this cannot be avoided. We plan to address this in future work.

4.3 User Study
We conducted a user study for the NBA dataset to evaluate: (S1)
whetherCaJaDEprovides meaningful explanations in addition to
explanations that only come from the provenance, and (S2) whether
the CaJaDE's quality metric is consistent with user preference.

Participants. We recruited 20 participants � all of them are grad-
uate students studying computer science, 13 of them have some
prior experience with SQL, and 5 were NBA fans.

Tasks. We �rst presented background knowledge of the NBA to
each participant, and explained the schema of the dataset. Each
participant was shown the SQL query&1

0 (shown below) and the
results of this query, and then was asked to �nd and evaluate expla-
nations for the user question*& 1 from Example 1: �Why did�(,
win 73 games in season2015-16compared to 47 games in2012-13?�.
&1

0 = SELECTs.season_name , count (*) AS win
FROMteam t , game g, season s WHEREt. team_id=g. winner_id

ANDg. season_id =s. season_id ANDt. team= ' GSW'
GROUP BYs. season_name

We gave each participant familiar with SQL 20 minutes to explore
the dataset and manually �nd explanations. Participants then were
asked to rate each of the top-5 explanations with the highest F-
scores in two groups using a scale from 1 to 5. The �rst group
(CaJaDE-PT-only ) of explanations is produced byCaJaDEusing
only the provenance table, while for the second group (CaJaDE)
we usejoin graphs to extend the provenance table(see Table 1).
We also asked participants which group of explanations makes
more sense and whether they provided new insights. Because the
top explanations in theCaJaDEgroup have higher F-scores, we
added one with a low F-score (�G?;10) as a control. By covering a
wider range of F-score values, we can test S2: (1) can participants
distinguish between low and high score explanations, and (2) do
participants agree with the ranking based on our quality measure.

Results and Analysis. Overall, the responses were positive: 16 out
of 20 participants agreed that the explanations byCaJaDEmake
more sense to them and seeing these explanations in advance will
help them �nd explanations that they did not think about before.

Table 2 shows the average user ratings and quality measures
for each explanation. Regarding (S1), the average ratings of the
top-1 explanation are the same for both groups (�G?;9 : 3”95vs
�G?;3 : 3”95, both explanations summarize the team statistics of
GSW while�G?;9 refers to the tableC40<_60<4_BC0CBnot in the
provenance). Explanations�G?;7 and�G?;6 (CaJaDE) summarize
the statistics of two GSW's key players and have higher average
ratings (�G?;7 : 3”8 vs �G?;5 : 3”6, �G?;6 : 3”6 vs �G?;1 : 3”15). The
margin is larger for participants who are familiar with the NBA
(4.2 vs 3.8, 3.8 vs 3.6, 3.8 vs 3.4).

Regarding (S2), we �nd that explanations with high user ratings
(Expl 3, 4, and Expl 6, 7, 9) have a positive correlation with high
F-score and precision. The only exception,�G?;8 in the CaJaDE
group, is also the most controversial one, indicated by the largest
standard deviation. Evaluating these explanations is subjective and
requires domain knowledge: the player Jack in�G?;8 left GSW

CaJaDE-PT-Only

�G?;1 In season 2015-16, among the games GSW won, they were the visiting team and
had points¡ 104in 28 games (10 games in 2012-13, resp.)

�G?;2 In 2015-16 season, 73 games (47 games in 2012-13, resp.) GSW won are regular
season games.

�G?;3 In 2015-16 season, among the games GSW won, they were the visiting team, had
points ¡ 98and possessions¡ 101in 17 games (0 games in 2012-13, resp.)

�G?;4 In 2015-16 season, GSW scored more than 104 points in each of 64 games (24
games in 2012-13, resp.) GSW won.

�G?;5 In 2015-16 season, the home teams had pointsŸ 106and possessionsŸ 101in
each of 29 games (40 games in 2012-13, resp.) GSW won.

CaJaDE

�G?;6 In 2015-16 season, the number of games with GSW player Stephen Curry's
minutesŸ 38and usage¡ 25 is 59 games (12 games in 2012-13, resp.) GSW
won.

�G?;7 In 2015-16 season, the number of games with GSW player Draymond Green's
minutes>15 is 73 games (15 games in 2012-13, resp.) GSW won.

�G?;8 In 2015-16 season, Jarrett Jack played in 0 games (47 games in 2012-13, resp.)
GSW won.

�G?;9 In 2015-16 season, GSW had three_pct¡ 35%and points¡ 112in each of 39
games (9 games in 2012-13, resp.) GSW won.

�G?;10 In 2015-16 season, GSW had fg_three_pct¡ 48%and points¡ 112and rebounds
¡ 51in 5 games (2 games in 2012-13, resp.) GSW won.

Table 1: Explanations for *& 1 used in the user study
CaJaDE-PT-only CaJaDE

Expl1 Expl2 Expl3 Expl4 Expl5 Expl6 Expl7 Expl8 Expl9 Expl10

All users 3.150 1.450 3.950 3.600 2.7503.600 3.800 2.350 3.950 2.300
Stdev 1.040 0.999 0.759 1.095 1.4100.883 1.196 1.424 0.999 1.174

NBA: Yes 3.400 1.800 3.800 3.600 2.8003.800 3.800 2.800 4.200 2.600
NBA: No 3.067 1.333 4.000 3.600 2.7333.533 3.800 2.200 3.867 2.200

F-score 0.69 0.56 0.38 0.8 0.4 0.82 0.91 1 0.64 0.13
recall 0.38 1 0.23 0.87 0.4 0.81 1 0.99 0.53 0.07

precision 0.74 0.61 1 0.73 0.4 0.83 0.83 0.99 0.81 0.7

Table 2: Average ratings for each explanation by users with di�erent
expertise and the measures for each explanation by CaJaDE

CaJaDE-PT-only (All / -1) CaJaDE (All / -1)

Avg.
Kendall
tau rank
distance

All users
F-score 3.95 / 2.2 3.9 / 1.4
recall 5.9 / 3.85 3.3 / 1.4

precision 2.2 / 0.95 3.9 / 1.4
Users with
domain
knowledge

F-score 3.6 / 2.0 3.2 / 1.8
recall 5.2 / 3.2 3.8 / 1.8

precision 2.2 / 1.2 4.2 / 1.8

Avg.
# ��� =

All users
F-score 0.875 / 0.882 0.901 / 0.955
recall 0.844 / 0.852 0.901 / 0.955

precision 0.933 / 0.965 0.901 / 0.955
Users with
domain
knowledge

F-score 0.897 / 0.901 0.903 / 0.954
recall 0.862 / 0.878 0.903 / 0.954

precision 0.953 / 0.977 0.903 / 0.954

Table 3: Ranking quality: all 5 explanations ( All ), dropping the
explanation with the largest standard deviation ( -1).

in 2013, and participants may or may not regard this as a signal
that the team had begun relying more on other players who play
a similar position. Next, we evaluate the ranking results of our
quality measures by regarding each participant's ratings as the
ground truth. We use Kendall-Tau rank distance [28] for measuring
pairwise ranking error and normalized discounted cumulative gain
(NDCG) [26] for the entire ranked list. As shown in Table 3, ranking
by precision gives the lowest pairwise ranking error forCaJaDE-
PT-only, while forCaJaDEit is ranking by F-score. If we drop the
most controversial explanation, the pairwise error is reduced by
more than half. The# ��� = for CaJaDEreaches 0.9 for all cases
and even 0.95 after dropping the most controversial explanation.

Takeaways. The main �ndings are: (1) the majority (16/20) of
participants preferredCaJaDE, thanks to the new information pro-
vided by tables not used in the query, which complements the



Parameter Description Default
_31 � B8I4 the size of the database (scale factor) 1.0
_#4364B maximum number of edges per join graph (Section 3.2) 3
_#B4;� 0CCA #attributes returned by feature selection (Section 3.1.2) 3
_0CCA#D< max number of numerical attributes allowed in a pattern 3
_?0C� B0<? sample rate for LCA pattern candidate generation (Section 3.1.3) 0.05
_� 1� B0<? sample rate for calculating F-scores of patterns (Section 3.1.6) 0.3

Table 4: Parameters of our approach and default values

explanations only based on provenance; (2) our quality measures
are consistent with participants' preferences; (3) for both groups,
there can be top explanations rated low by participants, which is
expected because we did not do causal analysis, and validating such
explanations may be subjective and depend on domain expertise;
and (4) participants with domain knowledge had a stronger prefer-
ence forCaJaDEthan participants without domain knowledge.

Other �ndings and discussion. Finally, it is also worth noting
that the participants' feedback support the motivation ofCaJaDE.
For example, participants found that�The usage of Stephen Curry
increases in 2015-16.�, �`Players play both season (12-13 and 15-16)
have higher point per game and assist per game�before they saw the
explanations byCaJaDE. One suggested to use health information
of the players in explanations. Another participant remarked that
�the use of other tables in the database to explore how the contributions
of individual players can have an outcome on the team's performance
produced explanations that were more novel or interesting�.

5 EXPERIMENTAL EVALUATION
In this section, we evaluate the implementation of our algorithms
and optimizations inCaJaDE. We evaluate both the performance in
terms of runtime and the quality of results with respect to di�erent
parameters and compare against systems from related work.

Datasets.We use theNBAandMIMIC datasets described in Sec-
tion 4. We created several scaled versions of these two datasets
preserving the relative sizes of most tables and join results.

Experimental setup. CaJaDEis implemented in Python (version
3.6) and runs on top of PostgreSQL (version 10.14). All experiments
were run on a machine with 2 x AMD Opteron 4238 CPUs, 128GB
RAM, and 4 x 1 TB 7.2K RPM HDDs in hardware RAID 5.

Parameters and Optimizations. Table 4 shows the parameters
used in our experiments and their default values. We vary the fol-
lowing: (1) the size of the database; (2) the maximum number of join
graph edges_#4364B; (3) the sample rate for F-score_� 1� B0<? ; and
(4) the sample rate for pattern candidate generation (_?0C� B0<?).
In [34] we also compare our approach with and without feature
selection and evaluate how the maximum allowed number of edges
in join graphs (_#4364B) a�ects performance. Based on these results
we activated feature selection and set_#4364B= 3 for all experi-
ments. Unless stated otherwise we use queries&1 from Section 1
(for NBA experiments) and&<8<824 from Section 4.2 (for MIMIC ex-
periments) with their respective user questions and use the default
values for all other parameters.

5.1 Scalability
To evaluate the scalability of our approach, we used scaled versions
of the NBA and MIMIC datasets ranging from� 10%to � 800%. We
varied the F-score sample rate (_� 1� B0<?) from 0”1 to 0”7. The re-
sults are shown in Figure 7 comparing against linear scaling (black

(a) NBA, varying _� 1� B0<? (b) MIMIC, varying _� 1� B0<?

Figure 7: Scalability in database size

join graph join graph structure APT (#rows) # attributes

 1 PT 2621 2

 2 PT - player_salary - player 66282 2

 3 PT 50797 10

 4 PT - patient_admt_info - patients 50797 19

(a) Join graph APTs size (LCA sampling)

(b) LCA sampling for 
 1 (c) LCA sampling for 
 2

(d) LCA sampling for 
 3 (e) LCA sampling for 
 4

(f) Left: NBA and right: MIMIC, varying _� 1� B0<?

Figure 8: E�ect of sampling on runtime and pattern quality

line). The e�ect of database size on runtime is similar for both
datasets. Our approach shows sublinear scaling for both datasets
(note the log-scale x-axis). The bene�ts of sampling are more pro-
nounced for larger database sizes:_� 1� B0<? = 0”1 is more than
55% faster than_� 1� B0<? = 0”7 for scale factor8 on both datasets.
We present a detailed breakdown on where time is spent in [34].
F-score calculation turned out to be the most signi�cant factor.

5.2 Sample Size
We now study the impact of sampling for F-score calculation
(_� 1� B0<?) and for pattern candidate generation (_?0C� B0<?) on
performance and pattern quality. We treat the result produced with-
out sampling as ground truth and measure the di�erence between
this result and the result produced by sampling.





not explore related tables, we constructed2 join graphs as input
to CAPE, which arePT(*& 20?41) and PT - team_game_stats
(*& 20?42). Figure 11 shows the top-3 explanations produced by
CAPE. The system identi�es a trend in the data (using regression)
according to which the user question is an outlier in the user-
provided direction and then returns a similar outlier in the other
direction. For our experiment, this means that CAPE returns sea-
sons with low wins for GSW and high averages points for LeBron
James. This experiment demonstrates that CAPE is orthogonal to
our technique. The system identi�es counter-balances while we
�nd features that are related to the di�erence between two query
results. Nonetheless, our techniques for exploring schema graphs
may be of use for �nding counterbalances too.

5.5 Varying Queries
To evaluate how the runtime of our approach is a�ected by the
choice of query, we measured the runtime for 10 di�erent queries
(5 for NBA and5 for MIMIC) shown in Table 5. We designed these
queries to access di�erent relations and use di�erent group-by
attributes. The SQL code for these queries is shown in [34]. All
queries were run with_� 1� B0<? = 0”3 and_#4364B= 3. The results
are shown in Figure 10. We observe that the runtime is relatively
stable for di�erent queries and is to some degree correlated to the
number of join graphs for the query (shown on top of Figure 10).

6 RELATED WORK
Provenance and summarization. Provenance [15] for relational
queries identi�es inputs that contribute to the results of a query. For
non-aggregate queries, why-provenance [12] returns a set of input
tuples responsible for a given output tuple; how-provenance [23]
encodes how the query combined input tuples to generate the
answers. For aggregate queries, symbolic expressions based on an
extension of semirings [4] are used to express how aggregate results
are computed. Given the signi�cant cost of managing provenance
information in practical DBMS, several provenance-management
frameworks that store and retrieve relevant provenance information
have been proposed in the literature [6,14,21,31,38]. Some of these
support provenance for aggregate queries using simpli�ed models
and query plan optimizations [27,36,38]. A number of recent papers
have proposedsummarizationtechniques to represent provenance
approximately [2, 31� 33, 44], or to use summarization rules for
better usability [3]. Recent work has also studied natural language
representations of factorized and summarized provenance [17, 18].

Data summarization. Another line of work has focused on pro-
ducing summaries of relational data that are relevant, diverse, and
comprehensive [25, 29, 39, 52]. For a relation augmented with a
binary outcome attribute, Gebaly et al. [20] developed solutions
to �nd informative summaries of categorical attributes a�ecting
the outcome attribute only considering the provenance (and not
other relevant relations like our work). An extension of this idea for
numerical data was presented in [50]. We adopt thelowest common
ancestor(LCA) optimization from [20] in our algorithms to prune
the search space of candidate patterns. Note that we have discussed
the potential problems of adapting the approach from [20] using a
materialized augmented provenance table in Section 5.

Explanations for query answers. This line of work aims at ex-
plaining unexpected outcomes of a query, including outlier values,
missing tuples, or existing tuples that should not exist. Provenance
and provenance summaries provide a straightforward form of ex-
planations [1, 41, 42, 53] by characterizing a set of tuples whose
removal or modi�cation would a�ect the query answer of inter-
est. Query-based explanations, i.e., changes to queries, have been
investigated for both �why� and �why-not� questions [10, 13]. Ex-
planations for outliers have been studied in [9, 35]. We share with
[35] the motivation of considering explanations that are not (solely)
based on provenance. The di�erence is that in [35], only the table
accessed by the query is considered for �nding explanations that
�counterbalance� an outlier by learning patterns that can balance
a low (high) outlier with a high (low) outlier, whereas we �nd ex-
planations in �augmented provenance� stemming from tables not
used in the query. Therefore, [35] is orthogonal to our work.
Join path discovery. Join path discovery approaches �nd data
related to a table of interest based on inclusion dependencies or
string similarity [19, 24, 46, 54, 55]. Recently, [16, 30, 47] studied
the performance of machine learning models trained on join results.
CaJaDEcan utilize join graph discovery techniques to �nd more
augmentation opportunities.

7 DISCUSSIONS AND FUTURE WORK
Explanations for database query answers is a relatively new re-
search topic with many interesting future directions. For instance,
currently our approach only considers correlations. In the future,
we plan to integrate it with the existingobservational causal analysis
framework from AI and Statistics [37, 43] to �nd causal explana-
tions. Another interesting direction for future work is to integrate
context-based explanations with join discovery techniques (e.g.,
[19, 54]) to automatically �nd datasets to be used as context. Fi-
nally, our approach is not suited well for textual and sparse data
because such data cannot be summarized well using the type of
patterns we support since values are rarely repeated. Di�erent sum-
marization techniques (e.g., using taxonomies) or preprocessing
techniques (e.g., information extraction techniques) would have to
be incorporated with our approach. While we discussed simple
SQL aggregate queries, extensions of our model can be studied for
more general queries (e.g., nested sub-queries or negation) if we
have access to a provenance system that can compute the prove-
nance of such queries. Beyond having an intuitive scoring function
for ranking explanations that may not always produce meaningful
explanations, a challenging direction for future work is to evaluate
the correctness of the generated explanations without much human
intervention, to evaluate whether the returned explanations match
the user's intent, and to have a con�dence score for explanations to
decide whether the data contains su�cient information to explain a
user question. We plan to explore other types of user questions, e.g,
explaining an increasing/decreasing trend or explaining why two
results are similar. Furthermore, we will investigate the applicability
of context/provenance in ML applications.
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