Putting Things into Context: Rich Explanations for Query
Answers using Join Graphs

Chenjie Li!, Zhengjie Miao?, Qitian Zeng!, Boris Glavic!, Sudeepa Roy?

IT, Chicago, IL, USA

2Duke University, Durham, NC, USA

{cli112,qzeng3}@hawk.iit.edu,{zjmiao,sudeepa}@cs.duke.edu,bglavic@iit.edu

ABSTRACT

In many data analysis applications there is a need to explain why a
surprising or interesting result was produced by a query. Previous
approaches to explaining results have directly or indirectly relied
on data provenance, i.e., input tuples contributing to the result(s) of
interest. However, some information that is relevant for explaining
an answer may not be contained in the provenance. We propose a
new approach for explaining query results by augmenting prove-
nance with information from other related tables in the database.
Using a suite of optimization techniques, we demonstrate exper-
imentally using real datasets and through a user study that our
approach produces meaningful results and is efficient.

ACM Reference Format:

Chenjie Li, Zhengjie Miao, Qitian Zeng, Boris Glavic, and Sudeepa Roy.
2021. Putting Things into Context: Rich Explanations for Query Answers
using Join Graphs. In Proceedings of the 2021 International Conference on
Management of Data (SIGMOD °21), June 20-25, 2021, Virtual Event, China.
ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3448016.3459246

1 INTRODUCTION

Today’s world is dominated by data. Recent advances in complex
analytics enable businesses, governments, and scientists to extract
value from their data. However, results of such operations are of-
ten hard to interpret and debugging such applications is challeng-
ing, motivating the need to develop approaches that can automati-
cally interpret and explain results to data analysts in a meaningful
way. Data provenance [15, 22], which has been studied for several
decades, is an immediate form of explanation that describes how an
answer is derived from input data. However, provenance is often
insufficient for unearthing interesting insights from the data that
led to a surprising result, especially for aggregate query answers.
In the last few years, several “explanation” methods have been pro-
posed by the database community [8, 20, 32, 35, 41, 42, 48, 51, 53].
However, real world data often exhibits complex correlations and
inter-relationships that connect the provenance of a query with
data that has not been accessed by the query. Current approaches
do not take these crucial inter-relationships into account. Thus, the
explanations they produce may lack important contextual informa-
tion. We illustrate how to use context to explain a user’s question
using data extracted from the official website of the NBA [7].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGMOD °21, June 20-25, 2021, Virtual Event, China

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8343-1/21/06.

https://doi.org/10.1145/3448016.3459246

ExaMmpLE 1. Consider a simplified NBA database with the fol-
lowing relations (the keys are underlined, the full schema has 11
relations). Some tuples from each relation are shown in Figure 1. Each
team playing in a game can use multiple lineups consisting of five
players. Home refers to the home team in a game.

e Game(year, month, day, home, away, home_pts, away_pts,
winner, season): participating teams and the winning team.

e PlayerGameScoring(player, year, month, day, home,
pts): the points each player scored in each game he played in.

e LineupPerGameStats(lineupid, year, month, day, home,
mp): the minutes each lineup played in a game.

e LineupPlayer(lineupid, player): the players in a lineup.

Query Q1 shown below returns the number of wins of team GSW
(Golden State Warriors) per season.

SELECT winner as team, season, count(*) as win
FROM Game g WHERE winner = 'GSW' GROUP BY winner, season

Figure 1e shows the result of Q1. GSW made history in the 2015-16
season by being the team that won the most games in a single season.
Observe that team GSW improved its performance significantly from
season 2012-13 (t1) to season 2015-16 (t2). Such a drastic increase in a
relatively short period of time naturally raises the question of what
changed between these 2 seasons (expressed as the user question UQ
in Figure 1f). Note that Q1 only accesses the Game table (shown in
Figure 1a). This table provides the user with information about each
game including the name of the opponent team and whether GSW was
the home team or not. However, such information is not enough for
understanding why GSW won more games in the 2015-16 season than
in the other seasons, because in each season a team plays the same
number of games and home games, and roughly the same number of
times against each opponent.

In this paper, we present an approach that answers questions like
UQs (Figure 1f). Our approach produces insightful explanations
that are based on contextual information mined from tables that are
related to the tables accessed by a user’s query. To give a flavor of
the explanations produced by our approach, we present two of the
top explanations for UQ; in Figures 2a and 2c (the formal defini-
tions and scoring function are presented in the next section). Each
explanation consists of three elements: (1) A join graph consisting
of a node labeled PT representing the table(s) accessed by the user’s
query (referred to as the provenance table, or PT for short), and
nodes representing other tables that were joined with the prove-
nance table to provide context. Edges in a join graph represent
joins between two tables and are labeled with join conditions. (2)
A pattern, which is a conjunction of predicates over attributes from
the provenance or any table from the context. (3) The support of
the pattern, i.e., the number of tuples from the provenance of each

| year mon day home away home_pts away pts winner season |

g1 — | 2013 01 02 MIA DAL 119 109 MIA 2012-13
g2 — | 2012 12 05 DET GSW 97 104 GSW 2012-13
g3 — | 2015 10 27 GSW NoP 111 95 GSW 2015-16
g4 — | 2014 01 05 WAS GSW 96 112 GSW 2013-14
gs — | 2016 01 22 GSW IND 122 110 GSW 2015-16
(a) Game Table
\ player year mon day home pits
lineupid player - S.Curry 2012 12 05 DET 22
58420 K. Thompson P2 — S. Curry 2015 10 27 GSW 40
58420 D. Green p3 — S. Curry 2016 01 22 GSW 39
13507 S. Battier P4 — | K. Thompson 2012 12 05 DET 27
13507 L. James ps — | K. Thompson 2016 01 22 DET 18
67949 D. Green P6 — D. Green 2012 12 05 DET 2

(b) LineupPlayer Table (c) PlayerGameScoring table

lineupid year mon day home mp
13507 2013 11 09 MIA 430 t —
77727 2012 12 12 MIA 14.70
58420 2015 11 07 SAC 10.30
58482 2015 11 07 SAC 11.10 tr —
58420 2014 12 08 MIN 11.70

season

2013-14
GSW 2014-15 67
GSW 2015-16 73
2016-17

(d) LineupPerGameStats Table (e) Result of Oy

[UQj: Why did GSW win 73 games in 2015-16 (¢2) compared to 47 games in 2012-13 (¢1).]

(f) User question UQ;
Figure 1: Input/output tables, and the user question for Example 1.

/\:ptszﬂ 2u/en relations
. 58/73 o
€ at - predicates

12-13 season

‘ PlayerGameScoring (P) |'---[player=S. Curry] ‘
15-16 season

jedge (€1) = (PT.year=P.year A PT.month=P.month A

PT.day=P.day A PT.home=P.home) (b) Legend
(a) Join graph Q; with pattern ®; for UQ;: Star
Player
,
L mp>19] ‘ LineupPlayer, (L,))‘---[player,=D. Green |

H €

e 1 e
. LineupPerGameStats (LS) }—2{ LineupPlayer, (L) }-——-[player;= K. Thompson]
ljedge(€1) = (PTyear=LS.year A PT.month=LS.month A PT.day=LS.day A

PT.home=LS.home)
Ljedge (€2) = (LSlineupid = Ly lineupid) Ijeqge (€3) = (L1.lineupid = Ly lineupid)

(c) Join graph Q, with pattern ®, for UQ;: Pair of players

Figure 2: Explanations for UQ,

of the two result tuples from the user question that are covered by
the pattern (underlined in the explanations shown below).
Intuitively, the explanation from Figure 2a can be interpreted as:

GSW won more games in season 2015-16 because Player
S. Curry scored > 23 points in 58 out of 73 games in 2015-16

compared to 21 out of 47 games in 2012-13.

Given this explanation, the user can infer that S. Curry was
one of the key contributors for the improvement of GSW’s winning
record since his points significantly improved in the 2015-16 season.
Similarly, the explanation in Figure 2c can be interpreted as:

GSW won more games in season 2015-16 because Player
D. Greenand Player K. Thompson’s on-court minutes together
were > 19 minutes in 70 out of 73 games in the 2015-16 season

compared to only 2 out of 47 games in the 2012-13 season.

This implies that Green and Thompson’s increase of playing

time together might have helped improve GSW’s record. We dis-
cuss additional example queries, user questions, and explanations
produced by our approach in Section 4.
Our Contributions. In this paper, we develop CAJADE (Context-
Aware Join-Augmented Deep Explanations), the first system that
automatically augments provenance data with related contextual
information from other tables. Our system produces informative
summaries of the difference between the values of two tuples in
the answer of an aggregate query, or, the high/low value of a single
outlier tuple. We make the following contributions.

(1) Join-augmented provenance summaries as explanations.
We propose the notion of join-augmented provenance and use
summaries of augmented provenance as explanations. The join-
augmented provenance is generated based on a join graph that en-
codes how the provenance is joined with tables that provide context.
We use patterns, i.e., conjunctions of equality and inequality pred-
icates, to summarize the difference between the join-augmented
provenance of two tuples t1, t from a query’s output selected by the
user’s question. We adapt the notion of F-score to evaluate the qual-
ity of patterns. That is, to explain the difference between t; and ¢,
we search for patterns with (i) high recall (the pattern covers many
tuples from t1’s provenance) and (ii) high precision (the pattern
does not cover many tuples from #;’s provenance) (Section 2).

(2) Mining patterns over augmented provenance. We present
algorithms for mining patterns for a given join graph and discuss
a number of optimizations. Even if we fix a single join graph to
compute the augmented provenance, the large number of possible
patterns makes it challenging to efficiently mine patterns with high
F-score values. Our optimizations include clustering and filtering
attributes using machine learning methods, using a monotonicity
property for the recall of patterns to prune refinements of patterns
(patterns are refined by adding additional predicates), and finding
useful patterns on categorical attributes before considering numeric
attributes to reduce the search space (Section 3.1).

(3) Mining join graphs giving useful patterns. We also address
the challenge of mining patterns over join graphs that are based
on a schema graph which encodes which joins are permissible in a
schema. We prune the search space by estimating the cost of pattern
mining and determining based on the available join options if a join
graph is unlikely to generate high quality patterns (Section 3.2).

(4) Qualitative and quantitative evaluation. We quantitatively
evaluated the explanations produced by our approach through
a case study on two real-world datasets: NBA and MIMIC. Fur-
thermore, we conducted a user study to evaluate how useful the
explanations generated by our approach are and how they compare
with explanations generated based on the provenance alone (Sec-
tion 4). We also evaluated the scalability of our algorithms and the
effectiveness of our optimizations (Section 5).

2 JOIN-AUGMENTED PROVENANCE

A database D consists of a set of relations rels(D) = {Ry, ..., Ry}
Abusing notation, we will use D and Ry, ..., R to both denote a
schema and an instance when clear from the context. For a relation
R, attrs(R) denotes the set of attributes in R; Similarly, for a set of
relations S, attrs(S) = Ugcg attrs(R) denotes the set of attributes in

| PlayerGameScoring (P) | | LineupPerGameStats (LS) |

up

Isedge (1) = {(P.year = G.year A P.month = G.month A P.day = G.day
AP.home = G.home), (P.year = G.year A P.month = G.month
AP.day = G.day A P.home = G.home A P.home = G.winner) }

Isedge (u2) = {(G.year = LS.year A G.month = LS.month A G.day =

LS.day A G.home = LS.home) }

Isedge (u3) = {(LS.lineupid = L.lineupid) }

Isedge (ua) = {(L.lienupid = L.lineupid) }

Figure 3: Schema Graph for Example 1.

relations in S. Without loss of generality, we typically will assume
that attribute names are distinct and use R.A for disambiguation if
an attribute A appears in multiple relations. In this work we focus
on simple single-block SQL queries with a single aggregate function
(select-from-where-group by), or, equivalently extended relational
algebra queries with the same restriction.!. Given a query Q, Q(D)
denotes the result of evaluating the query over a database D. We
use relsg(D) C rels(D) to denote the relations accessed by Q.

2.1 Provenance Table

A large body of work has studied provenance semantics for var-
ious classes of queries (e.g., [15, 22]). Here we resort to a simple
why-provenance [15] model sufficient for our purpose. We define
the provenance of an output tuple ¢t € Q(D) of a query Q as a
subset of the cross product (x) of all relations in relsq(D). For in-
stance, Perm [21] can produce this type of provenance for queries
in relational algebra plus aggregation and nested subqueries. In our
implementation we use the GProM system [5].

DEFINITION 1 (PROVENANCE TABLE). Given a query Q having
reISQ (D) ={Rj,,- -~ ,ij }, we define the provenance table PT (Q, D)
for D and Q to be a subset of Rj, X - - - X R;,,. We assume the existence
of a provenance model that determines which tuples from the cross
product belong to PT (Q, D). For a tuple t € Q(D), we define the
provenance table PT (Q, D, t) to be the subset of the provenance that
contributes to t (decided by the provenance model).

EXAMPLE 2. In Example 1, PT (Q1, D) contains all the tuples from
Figure 1a which has GSW as the winner, i.e., g2, g3, g4 and gs. For
t1,tp € Q1(D) as shown in Table 1e, PT (Q1, D, t1) includes all the tu-
ples where GSW won in the 2012-13 season, i.e., g2, and PT (Q1, D, t3)
contains g3 and g5 (GSW’s wins in the 2015-16 season).

2.2 Schema Graph and Join Graph

Schema graphs. As mentioned in the introduction, we create ex-
planations by summarizing provenance augmented with additional
information produced by joining the provenance with related tables.
We assume that a schema graph is given as input that models which
joins are allowed. The vertices of a schema graph correspond to
the relations in the database. Each edge in this graph encodes a
possible join between the connected relations, and is labeled with a
set of possible join conditions between the two connected relations.
We use CoND to denote the set of all predicates involving Boolean
conjunctions (A) and equality (=) of two attributes or an attribute

IExtensions are discussed in Section 7.

with a constant that can be used for joining relations in D (i.e., only
equi-joins are allowed).

DEFINITION 2 (SCHEMA GRAPH). Given a database schema D, a
schema graph G = (Vs, Es, Iseage) for D is an undirected edge-labeled
graph with nodes Vs = rels(D), edges Es, and a labeling function
Isedge + Es — 2COND that associates a set of conditions with every
edge from Eg. We require that for each edge u € Eg, each condition
in Iseqge (u) only references attributes from relations incident to u.

Note that G is an input for our method. To create schema graphs,

our system can extract join conditions from the foreign key con-
straints of a database and also allows the user to provide additional
join conditions. Furthermore, Is,qge could also be determined using
join discovery techniques such as [19, 46, 54]. Figure 3 shows the
simplified schema graph for the NBA dataset discussed in Exam-
ple 1. We only show relations that are used in the examples above.
In the schema graph, relations are represented by nodes and are
connected through edges (u1, uy, . . ., u4) with conditions as labels.
For example, Is.qge (11) in Figure 3 implies that we are allowed to
join PlayerGameScoring(P) with Game (G) in two different ways:
(1) through an equi-join on year, month, day, and home (i.e., the
home-team of a game), which returns a player’s stats for all the
games they played, and (2) with an additional condition on home
= winner, which returns a player’s stats for games for which the
home team won. Note that there is an edge u4 which suggests node
LineupPlayer(L) can be joined with itself on condition L.lineupid
= L.lineupid (renaming of L is needed in the actual join) to find
players in the same lineup.
Join graphs. A join graph Q encodes one possible way of augment-
ing P7 (Q, D) with related tables. It contains a distinguished node
PT representing the relations in relsq(D). The other nodes of Q are
labeled with relations. Edges in Q are labeled with join conditions
allowed by the schema graph G. There can be multiple parallel
edges between two nodes, i.e., Q is a multi-graph.

DEFINITION 3 (JOIN GRAPH). Given a database D, schema graph

G = (Vs, Es, Isedge) and query Q, a join graph Q for G is a node- and

edge-labeled undirected multigraph (Vy, EJ, jnodes Ljedge) With nodes

Vj, edges Ej, a node labeling function o4, : V; — rels(D) U {PT},

and edge labeling function ljeq4. : Ey — COND. For any join graph

we require that it contains exactly one node labeled with PT and there

are no edges with PT as both end-points. For every edge e = (nq,nz) €

Ej we require that there exists a corresponding edgeu = (Ry, Rz) € Eg
such that all of the following conditions hold:

® ljedge(e) € Isedge(u) (modulo renaming relations using their

aliases for disambiguation as discussed below)
® Ifljnode(n1) = PT, then Ry € relsq(D), else, [jpoge(n1) = Ry
¢ Iflipoge(n2) = PT, then Ry € relsq(D), else, [jpoqe(n2) = Ro

The first condition above says that the join condition between
two relations in the join graph Q should be one of the allowed con-
ditions from the schema graph G. The second and third conditions
state that edges adjacent to node PT should correspond to an edge
adjacent to a relation accessed by query Q. Note that multiple nodes
in V; may be labeled with the same relation and also relations from
relsg(D) may appear in node labels.

Disambiguation of relation and attribute names in join graphs.
In join graphs corresponding to a schema graph, we may need to

address some ambiguity in attribute names and relation names.
(1) Unlike the schema graph G, the join graph Q may contain the
same relation R; multiple times with node label # PT. We assign
each such occurrence of R; a fresh label Rj1, Rj2, - - - in Q. For edges
incident on Rj1, Rj2, ... in Q we use these labels (Rj1.A, Ri2.A, ...)
instead of the original attribute name R;.A. (2) In addition to the
join graph Q, even in the original query Q and therefore in the
provenance table 7 (Q, D), the same relation R; € relsq(D) can
appear multiple times using different aliases, say, R;; and Rjz. Sup-
pose in the schema graph G there is an edge between R; and R;.
Then in a join graph Q, there can be two parallel edges between
node PT and R}, one corresponding to a join between R;; and R,
and the second one corresponding to the join between Rz and R;.
The labels of these edges will use the corresponding aliases (R;;. 4
on one edge and R;3 4 on the other) for disambiguation. Note that
both (1) and (2) may occur in the same join graph.

ExaMPLE 3. Consider the join graph Qy from Figure 2c. Since
relsg, (D) = {Game}, PT represents the one relation accessed by Q.
Nodes from this join graph are connected through edges (e1, 2, €3),
where each edge has a corresponding condition in the schema graph
shown in Figure 3. For example, the join condition on e; from Qj
is the first condition in the label of up from the schema graph, i.e.,
ljedge(€1) € lsedge(uz). Similarly, ljeqge(€2) € Isedge(us). As dis-
cussed above, LineupPlayer appears more than once in the join
graph renamed as LineupPlayer; (L1) and LineupPlayersy (Ly).

2.3 Augmented Provenance Table

We now describe the process of generating the relation correspond-
ing to a given join graph Q — the result of joining the relations in
the graph Q based on the encoded join conditions (after renaming
relations and attributes as described in the previous section).

DEFINITION 4 (AUGMENTED PROVENANCE TABLE). Consider a
database D, a query Q, and a join graph Q = (V}, Ey, ljnodes ledge)-
Let Sj,- - ,Sjp = Vj — {PT}, i.e., all the relations that appear in
Q with labels # PT. Furthermore, let t € Q(D) and tuplet’ €
PT(Q,D,t). We define the augmented provenance table (APT) for
D,Q, and Q (andt, t’') as

APT (Q,D, Q) = 09, (PT (Q,D) X Sjy X -+ XS,
APT(Q,D, Q,t) = 0, (PT(Q, D, 1) X Sj; X---%Sj,)
APT (Q,D,Q,t,t) = ag, ({t'} x Sj, x -+ xSj,)

Here O = /\(Sa,Sb)eE] ljedge ((Sas Sp)) is the conjunction of join
conditions in the join graph Q. The join conditions only use equal-
ity comparisons between two attributes. We assume that duplicate
(renamed) columns are removed from APT (Q, D, Q).

ExaMmPLE 4. Consider Q1 from Figure 2a that combines the prove-
nance table PT with PlayerGameScoring through an equi-join on
year, month, day, and home. Figure 4 shows the join result AP T (Q1,
D, Q1) using the tuples from Figures 1a and Ic.

2.4 Explanations with Augmented Provenance

CaJADE’s approach for generating explanations is based on summa-
rizing augmented provenance tables. In particular, given a database
and a query, the user identifies interesting or surprising tuples in
the query’s result (e.g., the aggregate value is high/low, or the value

year mon day home away home pts away pts winner season player pts
2012 12 05 DET GSW 97 104 GSW 2012-13 S. Curry 22
2012 12 05 DET GSW 97 104 GSW 2012-13 K. Thompson 27
2012 12 05 DET GSW 97 104 GSW 2012-13 D. Green 2
2015 10 27 GSW NOP 111 95 GSW 2015-16 S. Curry 40
2016 01 22 GSW IND 122 110 GSW 2015-16 S. Curry 39
2016 01 22 GSW IND 122 110 GSW 2015-16 K. Thompson 18

Figure 4: APT (Q1, D, Q1) result using example tuples

of a tuple is higher/lower than that of another tuple). To explain
such interesting results, CAJADE returns patterns (i.e., predicates)
that each summarize the difference between the augmented prove-
nance for the two query result tuples (or the provenance of one
result tuple and all other result tuples).

User questions. Given a database D and a query Q, CAJADE sup-
ports two-point questions or comparisons, which we will discuss
by default: Given t1,tz € Q(D), summarize input tuples in D that
differentiate t; from t,. However, CAJADE also works for single-
point questions: Given a single tuple t € Q(D), summarize input
tuples in D that differentiate t from the rest of the tuples. Here the
intuitive idea is to treat ¢ as ¢, and all tuples ¢’ # ¢t € Q(D) as t2.

Explaining aggregates vs. summarizing provenance vs. non-
provenance. Instead of directly explaining why an aggregate value
t.val is high/low or t;.val higher/lower than another value t;.val
(35,42, 53], the goal of CAJADE is to use “patterns” (discussed below)
to summarize the input tuples that contributed the most to an output
tuple as well as distinguish it from the other outputs. Therefore,
unlike the approaches in [35, 42, 53], in CAJADE, the aggregate

values t1.val, t;.val, t.val do not play a role in the explanations?.

Summarization patterns and explanations. In the CAJaADE
framework, explanations are patterns (conjunctive predicates) that
compactly encode sets of tuples from the augmented provenance
tables based on a join graph. This type of patterns has been used
widely for explanations [20, 31, 35, 42, 53].

DEFINITION 5 (SUMMARIZATION PATTERN AND MATCHING TU-
PLES). Let R be a relation with attributes (A1, ...,Am), and let D;
denote the active domain of attribute A; in R. A summarization
pattern (or simply a pattern) ® is an m—ary tuple such that for
every A; € R, (i) if A; is a numerical or ordinal attribute: ®.A; €
Uxen, {(X, <), (X, 2), (X,=)} U {}, (ii) if A; is a categorical at-
tribute: ®.A; € Uxep,{(X,=)} U {}. Here x denotes that the at-
tribute is not being used in the pattern and X € D; denotes a threshold
for numeric attributes. If®.A; # =, then ®.A;[0] denotes the threshold
X and ®.A;[1] denotes the comparison operator <, >, or =.

A tuple t € R matches a pattern O, written ast £ ®, if t and ®
agree on all conditions, i.e., Vi € {1,..., m}, one of the following must
hold: (i) ®.A; = x, or (ii) (t.A; = ®.A;[0]) A (D.A;[1] = =), or
(iii) (t.A; < ®.A;[0]) A (@.A;[1] = <), or (iv) (t.A; = ©.A;[0]) A
(®.A;[1] = ="). We use MaTCH(D, R) to denote {t € R | t £ ®}.

When presenting textual descriptions of summarization patterns,
we omit attributes which are set to *, and instead include the at-
tribute name as (A; : ®.A;[0], ®.A;[1]) to avoid ambiguity. Also,
since the group-by attributes exactly capture the answer tuples
t1, tz, and do not provide any additional information, patterns are
not allowed to include attributes used in grouping in the query Q.

2Taking the amount of contribution (responsibility/sensitivity) of input tuples into
account as in [35, 42, 53] is an interesting direction for future work.

As discussed in the introduction, the explanations computed by
CAJADE consist of a join graph Q, a pattern ® over APT (Q, D),
and the support of ® to differentiate one tuple from the others
by augmenting the provenance using Q, and thereby providing
additional contextual information from other tables in D.

DEFINITION 6 (EXPLANATIONS FROM AUGMENTED PROVENANCE).
Given a database D, schema graph G, query Q, and a two-point
question with t1,t2 € Q(D), an explanation is a tuple E = (Q, ®,
(v1,a1), (v2, a2)), where Q is a join graph for G; ® is a pattern over
the augmented provenance table APT (Q, D, Q); and (v1,a1) and
(v2, az) denote the relative support of ® for t; and ta, respectively.

For simplicity, we will often drop (v1, a1) and (vg, az).

ExAMPLE 5. Consider the explanation from Figure 2a. The pattern
®; = {(player : S.Curry,=), (pts : 23,>)} is based on Q1. Here
player is a categorical attribute and pts is a numeric attribute (the
other attributes are), both coming from the PlayerGameScoring ta-
ble. Any tuple from APT (Q1, D, Q1) which fulfills player = °S.Curry’
and pts < 23 is in MATCH(®1, APT (Q1, D, Q1)). One possible ex-
planation for UQ1 from Figure 1f is: (®1, Q1, (58,73), (21,47)).

Note that explanations for two-point questions are asymmetric,
as one of the tuples is chosen as the primary tuple whose relative
support is given by (v1, a1), and the second one is chosen as the sec-
ondary tuple, whose relative support is given by (v, az). Switching
these two tuples may result in a different set of top explanations
using the quality measure that we discuss next.

2.5 Quality Measure of Explanations

First, we discuss the quality measure for explanations within the
context of one join graph, and then discuss how to find top expla-
nations across all join graphs mined by our algorithms.

2.5.1 Quality Measures Given a Join Graph. For a two-point user
question focusing on the difference between t1,t; € Q(D), we
would like an explanation’s pattern to match as many tuples from
the provenance of t; as possible, and the least amount of tuples from
the provenance of t; as possible. For this purpose, we adapt the
notion of F-score. Recall that MATCH(®, R) denotes {t € R | t ®}.

DEFINITION 7 (QUALITY METRICS OF A PATTERN). Consider a
database D, a query Q, a join graph Q, two output tuples in the user
question ty, t; € Q(D), and an explanation pattern E = (Q,).

(a) A tuplet’ € PT (Q,D,t1) (similarly for t3) is said to be cov-
ered by E if there exists t"" € APT (Q, D, Q, t1,t") (ref. Definition 4)
such that t"”’ £ ®. The coverage of E on t1,t" in APT (Q, Q, D) is:

Cov(E, Q,11,t') = L[marcu(®, APT(Q,Q,D, t1,t')) # 0]
where 1[] is the indicator function.

(b) The coverage (or, true positives) of E for t1 is defined as the
sum of its coverage on all tuples in the provenance table:

TP(E, Q, 1) = Z

t'ePT(Q.D,ty)

Cov(E, Q, t1,t)

(c) The false positives of E for t; in comparison to ty is the sum
of its coverage on all tuples in PT (Q, D) that are in the provenance
of ta (t1 does not appear on the right-hand side here):

FP(E,Q, t1, 1) = Cov(E, Q, t5,t")
t'ePT(Q.D,ty)

3We will discuss the relative support in the next section.

(d) The false negatives of E for t; is defined as the sum of the
uncovered tuples in the provenance of ti:

FN(E,Q, 1) = Z

t'ePT(Q.D,ty)

1-Cov(E, Q,t,t")

(e) Using (b)-(d), we define precision, recall, and F-score for t;
in comparison to ty as usual:

TP(E, Q, 1)
Prec(E, Q, t1, 1) =
TP(E, Q, t1) + FP(E, Q, 1y, t2)
TP(E, Q, t
Rec(E,Q, 1) = (1)
TP(E, Q,t1) + FN(E, Q, t1)
2

Fscore(E,Q,t1,t2) =

1 + 1
Prec(E,Q,t1,tp) Rec(E,Q,t1)

A pattern ® with high recall provides a good description of the
tuples contributing to t;. A high precision implies that ® covers few
tuples in the provenance of tz. A high F-score indicates both. This
definition can be easily adapted to single-point questions involving
a single output tuple ¢ € Q(D) by summing over ¢’ € P7(Q,D) \
PT(Q,D,t) instead of summing over t’ € PT (Q, D, t;) in the false
positives definition above. The other definitions remain the same.

Support of explanation patterns. As described in the running ex-
ample and in Definition 6, an explanation E = (Q, ®, (v1, a1), (v2, a2))
includes the relative support of the pattern ® for t1,t; € Q(D)
to record how this pattern differentiates the output tuples ¢; and
ty. Here v1 = TP(®,Q,t1) and a3 = TP(®, Q, t1) + FN(®, Q, t1) =
|PT (Q, D, t1)| as defined in Definition 7, denoting the set of tuples
in the provenance of t; covered by the pattern &, and the set of
all tuples in the provenance of t; respectively. Similarly, we define
vy, ap for the output tuple #; to demonstrate the difference with #;.

Finding Top-k Patterns with Highest F-scores. Given a join
graph Q, our goal is to find the top-k patterns ® in terms of their
individual F-scores according to Definition 7. However, in practice
there are additional considerations that we should take into account,
e.g., the maximum number of attributes appearing in a pattern.

Complexity. Finding top-k patterns given a join graph Q has
polynomial data complexity [49] (fixed size schema and query).
The provenance table and APTs can be computed in PTIME in the
size of the data. Given a pattern, its matches can be determined in
PTIME and therefore, all metrics in Definition 7 can be computed
in PTIME. If there are p attributes in the augmented provenance
table, the number of possible patterns is in O(n?) (the number of
distinct attribute values is bound by n = total number of tuples in
the database, and each attribute can appear as don’t-care * and
with one of the three comparison operators). Thus, even a naive
approach for computing the top-k patterns with the highest F-score
values is polynomial in data size. However, this naive approach does
not scale in practice and therefore we adopt a number of heuristic
optimizations to solve this problem as described in Section 3.1.

Explanations over All Join Graphs. When mining multiple join
graphs Q, there are several options for finding top patterns across
all join graphs, e.g., penalizing patterns from complex join graphs.
However, for simplicity, and for an interactive user experience, we
find top-k patterns for each individual join graph and present a
global ranking of all patterns. Thus, the user can explore explana-
tions generated from more than one join graph (see Section 3.2).

3 ALGORITHMS FOR MINING PATTERNS

In this section we discuss our algorithms for mining patterns for a
given join graph (Section 3.1), and for enumerating all join graphs
over which patterns should be mined (Section 3.2). Pseudocode for
these algorithms and additional details are presented in [34].

3.1 Mining Patterns given a Join Graph

We first give an overview of our algorithm for mining patterns
from an augmented provenance table (APT) generated based on
a given join graph Q. Recall that we are dealing with patterns
that may contain equality comparisons (for categorical attributes)
and/or inequality comparisons (for numeric attributes). We mine
patterns in multiple phases. (i) In the first preprocessing step, we
cluster attributes that are highly correlated to reduce redundancy
in the patterns. The output of this step are clusters each with one
selected representative. (ii) In the second preprocessing step, we
use random forests to remove clusters that have low relevance for
predicting membership of input tuples in the provenance of only
one of the two output tuples from the user question. Such attributes
are unlikely to yield patterns of high quality. (iii) Next we only
consider categorical attributes and mine pattern candidates using a
variation of the LCA (Least Common Ancestor) method from [20]
that can only handle categorical attributes. (iv) From the set of
patterns returned by the LCA method, we then select the top-k¢qr
patterns with the highest recall and frequency for the next step. (v)
These patterns are then refined (see below) by adding conditions
on numerical attributes that can improve precision at the potential
cost of reducing recall. (vi) Finally, the top-k patterns based on score
according to Definition 7 are returned.

A pattern @’ is a refinement of a pattern @ if ®’ can be derived
from @ by replacing one or more * with comparisons, e.g., pattern
Dy = ((X,=), (Y, <)) is a refinement of ®; = ((X, =), *). We use
the following observation that is implied by Definition 7 (a), (b), (d),
and (e) to prune patterns if their recall is below a threshold.

PROPOSITION 3.1. Given a tuplet € Q(D) and a join graph Q,
Rec(Ez, Q, t) < Rec(El, Q, t), where E; = (Q,fbl), Ey = (Q, CDz),
and @, is a refinement of ®.

Next we discuss the above six steps in more detail.

3.1.1 Clustering Attributes based on Correlations. Redundancy in
patterns can be caused by attributes that are highly correlated. As
an extreme example, consider an APT containing both the birth
date and age of a person. For any pattern containing a predicate
on birth date there will be an (almost) equivalent pattern using age
instead, and also a pattern using both age and birth date. To reduce
the prevalence of such redundant patterns, we cluster attributes
based on their mutual correlation and pick a single representative
for each cluster. We use VARCLUS [45], a clustering algorithm
closely related to principal component analysis and other dimen-
sionality reduction techniques [40]. However, any other technique
for clustering correlated attributes can be used instead.

3.1.2 Filtering Attributes based on Relevance. Random forests have
been successfully used in machine learning applications to deter-
mine the relevance of a feature (attribute) to the outcome of a
classification task. We train a random forest classifier that predicts

whether a row belongs to the augmented provenance of only one of
the two outputs from the user’s question [11]. We then find the frac-
tion Aygep_qssr of attributes with the highest relevance (Aggoi_gs4r 1S
an input parameter, a summary of all parameters discussed in this
section is shown in Table 4). The rationale for this step is to prune
patterns involving attributes that are irrelevant for distinguishing
the tuples t; and t; from the user question. Such attributes can be
added to any pattern with minimal effect on the recall and precision
of patterns, but could mislead users into thinking that the value of
this attribute is a distinguishing factor for #1, t5.

3.1.3 Patterns over Categorical Attributes. We then generate a sam-
ple of size Apat—samp (an input parameter) from APT (Q, D, Q)
and a set of candidate patterns over only categorical attributes us-
ing the LCA method from [20]. We ignore all numerical attributes
at this stage by using *. Our implementation of the LCA method
generates pattern candidates from the cross product of two samples
of the same size. A candidate pattern is generated for each pair
(t,t”) of tuples from the sample by replacing values of attributes
A where t.A # t’.A with a placeholder * and by keeping constants
that t and ¢’ agree upon (t.A = t’.A). Note that in our case each
element of a pattern is a predicate, therefore, using a constant as
done in the LCA method corresponds to using an equality predicate
(ie., A=cfort.A=1t"A=c). By keeping constants that frequently
co-occur, the LCA method generates patterns that reflect common
combinations of constants in the data. Focusing on categorical at-
tributes first enables us to (i) use the established heuristic of the LCA
method to generate categorical-only pattern candidates, and (ii) to
significantly reduce the search space by pruning all refinements of
patterns without a sufficiently high recall.

3.1.4 Filtering Categorical Pattern Candidates. Next, we calculate
the recall for each pattern finding the matches for the pattern in
the APT. In order to quickly find the most common patterns, we
reduce the number of queries needed to be run to check recall by
choosing the most frequent patterns in the LCA results. We then
filter out patterns whose recall is below a threshold A,.,;;, and
pick at most k¢4 patterns, which we denote by Peqr.

3.1.5 Refinement and Numeric Attributes. We then generate re-
fined patterns from P¢4; by replacing placeholders * on numerical
attributes with predicates. Even though such refinements can at
best have the same recall as the original pattern, their precision
may be higher. Recall that for numerical attributes we allow for
both equality as well as inequality predicates, for which there is
a large number of possible constants to choose from, because nu-
merical attributes tend to have large domains. To reduce the size of
the search space, we split the domain of each numerical attribute
into a fixed number of fragments (e.g., quartiles) and only use the
boundaries of these fragments when generating refinements. We
systematically enumerate all refinements of a pattern by extending
it with one predicate at a time. We use #y¢ fineq to denote the union
of Pcqr with the set of patterns generated in this step.

3.1.6 Computing Top-k Patterns. Finally, we calculate the F-score
for each pattern in Py fineq and return k patterns by taking into
account both F-scores and a measure for diversity to give the user
different types of interesting explanations (more details are pre-
sented in [34]). As an optimization, we calculate the F-score over a

sample of the data (with sample size Ar1—samp)- Note that Ap1—samp
can be different from the sample size Apgs—samp in the previous
step since we found that a small sample is sufficient for generating a
meaningful set of patterns, but may not be sufficient for estimating
recall with high enough accuracy. We iteratively build the final
pattern set of size k starting with the pattern with the highest F-
score. When deciding what pattern to add next to the result, we
penalize patterns that share attributes and values with a pattern
that is already in the result.

3.2 Join Graph Enumeration

In this section, we describe an algorithm that enumerates join
graphs of increasing size iteratively. The maximum size of join
graphs considered by the algorithm is determined by a parameter
Asedges- We employ several heuristic tests to determine whether
a join graph generated by the algorithm should be considered for
pattern mining. The rationale for not considering all join graphs
for pattern mining is that for some join graphs, pattern mining
may not yield patterns of good quality, or it may be much more
computationally expensive than generating the join graph. Hence
we skip pattern mining for join graphs that are unlikely to be worth
the cost. For join graphs that pass these tests we materialize the
corresponding APT and apply the pattern mining algorithm from
Section 3.1 to compute the top-k patterns for the APT.

Generating join graphs. We enumerate join graphs in iteration i
by extending every join graph produced in iteration i — 1 with all
possible edges. For each join graph Q produced in iteration i — 1,
we consider two types of extensions: (i) we add an additional edge
between two existing nodes of the graph and (ii) we add a new
node and connect it via a new edge to an existing node.

Checking join graph connectivity and skipping expensive
APT computations. We filter out join graphs based on lack of
connectivity and on high estimated costs. Note that schema graphs
may contain tables with multiple primary key attributes incident
to edges which join on part of the key. This is typical in “map-
ping” tables that represent relationships. For instance, consider the
PlayerGameScoring table from our running example that stores
the number of points a player scored per game. Assume that there
exists another table Player that is not part of the running example.
The primary key of PlayerGameScoring consists of a foreign key
to the Game table and a foreign key to the Player for which we
are recording stats. Consider a query that joins the Game table with
LineupPerGameStats, LineupPlayer and selects games played by
team GSW. A valid join graph for this query would be to join the
node PT with PlayerGameScoring on game’s primary key.

Note that while the result of this query contains rows that pair a
player of GSW with lineups they played in during a particular game,
the APT would pair each row with any player that played in that
game irrespective of their team. Join graphs like this can lead to
redundancy and large APT tables. One reason for this redundancy
is that not all primary key attributes of the PlayerGameScoring
table are joined with another table. To prevent such join graphs
with redundancy, our algorithm checks that for every node in the
join graph, the primary key attributes of that node are joined with
at least one other node from the join graph. For instance, in the

example above the join graph could be modified to pass this check by
also joining the PlayerGameScoring table with the Player table.
Even though we only consider fully connected join graphs, some
generated join graphs will result in APTs of significant size, which
are expensive to materialize and mine patterns from. We use the
DBMS to estimate the cost of the materialization query upfront. We
skip pattern mining for join graphs where the estimated cost of this
query is above a threshold A4cos:- While we may lose explanations
by skipping join graphs, experimental results demonstrate that this
check is necessary for achieving reasonable performance. Further-
more, smaller join graphs result in less complex explanations.

Ranking results. After enumerating join graphs and computing
top-k patterns for each join graph, we rank the union of all pattern
sets on their F-scores. Ranking all patterns (instead of filtering
out some patterns) reduces the load on the user by increasing the
likelihood that good patterns are shown early on without having
the risk of not showing patterns that have lower scores.

4 QUALITATIVE EVALUATION

We now evaluate the quality of explanations produced by CAJADE
using case studies on two real datasets (NBA and MIMIC). We also
report results of a user study with the NBA dataset. Due to the space
limit, we simplified some of these descriptions. Note that the same
pattern may be returned for several join graphs (same attributes,
but different join path). In the interest of diversity, we removed
duplicates and explanations that only differ slightly in terms of
constants. We show the top-3 explanations after this step. we use
“[t1]" or “[#2]" in explanations as identifier of the primary tuple for
the explanation. For the sets of top-20 explanations (including join
graphs), SQL code of the queries, and detailed descriptions of the
datasets, please see [34].

4.1 Case Study: NBA

Dataset. NBA is a dataset we extracted from the NBA website (https:
//www.nba.com/) and PBP stats website (https://www.pbpstats.
com/). It includes 10 seasons’ worth of data (seasons 2009-10 to
2018-19). The dataset contains 11 relations and is ~ 170MB large.

Setup. For the NBA dataset, we use five queries calculating player’s
and team’s stats and generated user questions based on interest-
ing results. Figure 5 shows the queries, user questions, and top-3
explanations produced by our method for these user questions.

Explanations and Analysis. Q,,;41: Draymond Green had a big
average points difference between 2 consecutive seasons. All 3
explanations contain salary change information. In reality, from
2015-16 season to 2016-17 season, Green’s salary increased, which
could result in losing incentive to play as hard as when he earns a
lower salary. The 2" and 37¢ explanation identify factors affecting
the player’s points such as minutes played and shooting percentage
per game, e.g., Green had more games where he played more than
31 minutes and had more than 0.4 shooting percentage in 2015 — 16
season (29 explanation). Q42 The GSW team had a sudden in-
crease in average assists. All explanations contain assistpoints
which has a cause-and-effect relationship with assists (more assists
result in more assistpoints). Qpp43 and Q,p45: Both players had
some significant average point changes. For Q,,;,43, Lebron James

Query User question Top explanations F-score
Onbal Draymond Green’s player_salary< 15330000 [#;] 1 Query User question Top-3 explanations F-score
average points per year: prov.tspct< 0.69 A prov.usage< 20.5 A 0.71 Omimicl Patient death rate expire_flag=1[#1] 0.68
14 points in season salary> 14260000 [#7] grouped by diagnoses: hospital_stay_Jength< 0.65
2015-16 (¢1) VS 10 points prov.minutes> 31 A prov.tspct> 0.4 A | 0.66 0.19 for chapter= 2 (#1) VS | 23Aexpire_flag= 1 [#1] i
in season 2016-17 (2) salary< 15330000 [#1] 0.09 for chapter= 13 (t;) hospital_stay_length< 0.63
, . prov.assistpoints< 68 A 16,expire_flag= 1 [t1] i
Qnbaz | GSW's average assists player=Draymond Green [#1] 0.74 Omimic2 | Deathrate by insurance: | prov.admission_type=emergency [£1] | 0.85
per year: 23 in season - - . - —
2015-14 (1) VS 27 1 prov.assistpoints> 57 A Medicare=0.138 (¢1) VS expire_flag=1[#;] 0.70
14 (t1) mn prov.nonputbackast_2_pct> 0.55 0.73 Medicaid=0.066 (t2) gender=Male [#1] 0.65
season 2014-15 (t2) - . .
A player.player=Harrison Barnes [3] Omimics Number of patients hospital_stay_length> 9 A 0.86
prov.assistpoints< 68 A 0.72 ; grouped by ICU stays procedure.chapterzlﬁ [t2]
-] offrebounldpct> ;)4?(5)0[&1)2) - - length: less than 1 day (¢1) ?ospltalisiaoyile:lgth< 6 A 0.86
Onbas ek ron James’s average player_salary> [t1] VS more than 8 days (2) os_group=0-1 [#1]
points per year: 29.7 in team=MIA [7] 0.98 prov.dbsource=carevue A 0.78
season 2009-10 (¢1) VS team=CLE [#1] 0.93 hospital_stay length> 8 [#2]
26.7 in season 2010-11(¢7) Omimica Death rate by insurance: | expire_flag=0Aage< 71 [#2] 0.77
s . player_name=Pau Gasol A Medicare=0.14 (1) VS prov.admission_type=emergency [t1] 0.73
Qnbas | GSW’s numberof wins | o 00" 10 19285850 [12] 1 Private=0.06 (2) provhospital stay length< 22.0 A | o 61
per year: 47 in 2012-13 — . _ 3
5 player_name=Andre Iguodala [#2] 0.97 expire_flag=1 [#1]
(Ztél)ése_aslc); Vs 67 “; fg_3_apct< 0.31A 0.92 Omimi Number of patients that hospital_stay_length< 19 A ethnic- 0.90
season (¢2) team_points< 121 [#1] . mimics did : d ity=Asian [#2] .
Onbas | Jimmy Butler’s average player_salary> 1112880 [#2] 1 ida procedure groupe admission_type=emergency A
. : ; - by ethnicity: 7821 . 0.80
points per year: 13 points | prov.away_points> 87 A 0.84 Hi ic patients [£1] VS hospital_stay_length> 5 A age< 66
in season 2013-14 (1) VS prov.efgpet> 0.38 [#2] i 6212133‘:&' patients (] o A ethnicity=Hispanic [#1]
20 points in season prov.usage< 23 A team=CHIA 0.77 7 Asian patients [£2] prov.religion=Catholic [#1] 0.63
2014-15 (t2) team_assisted_2_spct> 0.5 [#1] .

Figure 5: Queries, user questions and explanations (NBA)

had an average points decrease. This occurred when he switched
to a new team (from CLE in 2009-10 season to MIA in 2010-11 sea-
son). In MIA he had less pressure offensively. CAJADE successfully
identified this fact as a potential cause (2"? and 3"¢ explanation).
Qnbas: Jimmy Butler had a big improvement in average points. Our
top explanations for this improvement include an increase of usage
and minutes played. Q,,544: This query is similar to our running
example Q1 but with a question asking for different 2 seasons. The
ond explanation identifies a player change: Andre Iguodala only
played for GSW in 2015 — 17 season. The 3" d explanation is about
the team’s points difference and 3-point percentage. While the first
explanation has a high F-score, the join graph details reveal that the
salary and player constants can have no relation with GSW. This
highlights the importance of including join graphs in explanations.

4.2 Case Study: MIMIC

Dataset. MIMIC (https://mimic.physionet.org/) is a deidentified
dataset of intensive care unit hospital admissions. The dataset con-
sists of 6 relations and is ~ 120MB large. We constructed 5 queries
over this dataset accessing different tables. The simplified descrip-
tions of the queries, user questions, and explanations are shown in
Figure 6. We first briefly introduce the MIMIC dataset to help the
reader understand the queries and explanations. The main table
of the dataset is the Admissions table that records hospital admis-
sions. The Diagnosis table records diagnosis for patients for each
admission (a patient may be admitted more than once during their
lifetime). PatientsAdmissionInfo contains information like age
and religion for individual admissions of patients (e.g., age may
change over time). ICUStays records intensive care unit stays of
patients. There may be multiple ICU stays per admission.

Explanations and Analysis. Figure 6 shows the top-3 explana-
tions returned by CAJADE for each user question. Qmimic1: This
question asks for the difference in death rates between two diagno-
sis categories (chapter 2: neoplasms vs chapter 13: musculoskeletal
system and connective tissue). The death rate is the fraction of
patients that died during their hospital stay. The 1°? explanation

Figure 6: Queries, user questions and explanations (MIMIC)

uses expire_flag= 1 from the patient table suggesting that this pa-
tient has passed away. This flag only indicates that the patient
died, but not whether during their hospital stay or not, subsuming
all hospital deaths. The 2"¢ and 3"¢ explanations add additional
information about the lengths of hospital stays, which indicates
a difference between the severity of these two categories which
explains the different death rates. Qpmimic2: This query asks about
the difference between the death rates of two groups of patients
based on their insurance types. The 15? explanation states that there
are more emergency admissions with Medicare than with Medicaid,
which may explain the higher death rate. The 2"¢ explanation re-
lates death rate to expire_flag. The 3" explanation suggests that
Medicare has more Male patients than Medicaid. Qmimics: The 157
explanation shows that most of the patients staying over 8 days in
the ICU will stay in hospital for more than 9 days and also have
procedures from chapter 16 (Miscellaneous Diagnostic and Thera-
peutic Procedures). The and explanation suggests that most patients
will be released from hospital in less than 6 days when their ICU
stay is less than 1 day. The 3"? explanation states the same fact
that patients will stay more than 8 days in hospital when they stay
more than 8 days in the ICU. These explanations regarding hospital
stay length can help users identify that ICU stay length may be a
good indicator for hospital stay length. Qumimica: This question uses
the same query as Qmimic2, but compares Private insurance with
Medicare. The 15! explanation states that for patients who have
Private insurance, more patients are alive and less than 71 years old.
This is aligned with the fact that Medicare is mostly for patients
over 65 years old (this is a fact extracted from online resources). The
2nd and 374 explanations are stating that patients using Medicare
are more likely to be admitted because of an emergency and also the
facts about length of hospital stays. Qmimics: The 157 explanation
states that Asian patients who had a procedure are more likely to
stay less than 19 days in the hospital. The ond explanation says
that compared to Asian patients there were more Hispanic patients
younger than 66 years old and that stayed more than 5 days in the
hospital. The 3" d explanation points out that more Hispanic patients
are Catholic. Note that the ethnicity information in the explanations

are not from PT, but from a different patient_admit_info table.
Because we do not consider functional dependencies, results like
this cannot be avoided. We plan to address this in future work.

4.3 User Study

We conducted a user study for the NBA dataset to evaluate: (S1)
whether CAJADE provides meaningful explanations in addition to
explanations that only come from the provenance, and (S2) whether
the CAJADE'’s quality metric is consistent with user preference.

Participants. We recruited 20 participants — all of them are grad-
uate students studying computer science, 13 of them have some
prior experience with SQL, and 5 were NBA fans.

Tasks. We first presented background knowledge of the NBA to
each participant, and explained the schema of the dataset. Each
participant was shown the SQL query Q1’ (shown below) and the
results of this query, and then was asked to find and evaluate expla-
nations for the user question UQ; from Example 1: “Why did GSW
win 73 games in season 2015-16 compared to 47 games in 2012-137”.
Q1 = SELECT s.season_name, count(*) AS win
FROM team t, game g, season s WHERE t.team_id=g.winner_id
AND g.season_id=s.season_id AND t.team='GSW'

GROUP BY s.season_name

We gave each participant familiar with SQL 20 minutes to explore
the dataset and manually find explanations. Participants then were
asked to rate each of the top-5 explanations with the highest F-
scores in two groups using a scale from 1 to 5. The first group
(CAJADE-PT-only) of explanations is produced by CAJADE using
only the provenance table, while for the second group (CAJADE)
we use join graphs to extend the provenance table (see Table 1).
We also asked participants which group of explanations makes
more sense and whether they provided new insights. Because the
top explanations in the CAJADE group have higher F-scores, we
added one with a low F-score (Explyo) as a control. By covering a
wider range of F-score values, we can test S2: (1) can participants
distinguish between low and high score explanations, and (2) do
participants agree with the ranking based on our quality measure.

Results and Analysis. Overall, the responses were positive: 16 out
of 20 participants agreed that the explanations by CAJADE make
more sense to them and seeing these explanations in advance will
help them find explanations that they did not think about before.

Table 2 shows the average user ratings and quality measures
for each explanation. Regarding (S1), the average ratings of the
top-1 explanation are the same for both groups (Exply : 3.95 vs
Expls : 3.95, both explanations summarize the team statistics of
GSW while Exply refers to the table team_game_stats not in the
provenance). Explanations Expl; and Expls (CAJADE) summarize
the statistics of two GSW’s key players and have higher average
ratings (Exply : 3.8 vs Expls : 3.6, Explg : 3.6 vs Expl; : 3.15). The
margin is larger for participants who are familiar with the NBA
(4.2 vs 3.8, 3.8 vs 3.6, 3.8 vs 3.4).

Regarding (S2), we find that explanations with high user ratings
(Expl 3, 4, and Expl 6, 7, 9) have a positive correlation with high
F-score and precision. The only exception, Explg in the CAJADE
group, is also the most controversial one, indicated by the largest
standard deviation. Evaluating these explanations is subjective and
requires domain knowledge: the player Jack in Explg left GSW

CaJADE-PT-Only

Exply In season 2015-16, among the games GSW won, they were the visiting team and
had points > 104 in 28 games (10 games in 2012-13, resp.)

Exply In 2015-16 season, 73 games (47 games in 2012-13, resp.) GSW won are regular
season games.

Expls In 2015-16 season, among the games GSW won, they were the visiting team, had
points > 98 and possessions > 101 in 17 games (0 games in 2012-13, resp.)

Exply In 2015-16 season, GSW scored more than 104 points in each of 64 games (24
games in 2012-13, resp.) GSW won.

Expls In 2015-16 season, the home teams had points < 106 and possessions < 101 in
each of 29 games (40 games in 2012-13, resp.) GSW won.

CaJaDE

Expls In 2015-16 season, the number of games with GSW player Stephen Curry’s
minutes < 38 and usage > 25 is 59 games (12 games in 2012-13, resp.) GSW
won.

Expl; In 2015-16 season, the number of games with GSW player Draymond Green’s
minutes>15 is 73 games (15 games in 2012-13, resp.) GSW won.

Explg In 2015-16 season, Jarrett Jack played in 0 games (47 games in 2012-13, resp.)
GSW won.

Exply ‘ In 2015-16 season, GSW had three_pct > 35% and points > 112 in each of 39

games (9 games in 2012-13, resp.) GSW won.

Explip | In2015-16 season, GSW had fg_three_pct > 48% and points > 112 and rebounds
> 51in 5 games (2 games in 2012-13, resp.) GSW won.

Table 1: Explanations for UQ; used in the user study
CAJADE-PT-only CaJaDE
Expll Expl2 Expl3 Expl4 Expl5 | Expl6 Expl7 Expl8 Expl9 Expl10

Allusers | 3.150 1.450 3.950 3.600 2.750 | 3.600 3.800 2.350 3.950 2.300

Stdev 1.040 0999 0.759 1.095 1410 | 0.883 1.196 1.424 0.999 1.174
NBA:Yes | 3.400 1.800 3.800 3.600 2.800 | 3.800 3.800 2.800 4.200 2.600
NBA:No | 3.067 1.333 4.000 3.600 2733 | 3.533 3.800 2.200 3.867 2.200

F-score 0.69 0.56 0.38 0.8 0.4 0.82 0.91 1 0.64 0.13
recall 0.38 1 0.23 0.87 0.4 0.81 1 0.99 0.53 0.07
precision 0.74 0.61 1 0.73 0.4 0.83 0.83 0.99 0.81 0.7

Table 2: Average ratings for each explanation by users with different
expertise and the measures for each explanation by CAJADE

CAJADE-PT-only (All/-1) CaJaDE (All/-1)

F-score 3.95/2.2 39/14
Avg. All users recall 5.9/3.85 33/14
Kendall precision 2.2/0.95 39/14
taurank | Users with F-score 3.6/2.0 32/18
distance | domain recall 52/32 38/18
knowledge precision 22/12 4.2/18
F-score 0.875/0.882 0.901/0.955
All users recall 0.844 / 0.852 0.901/0.955
Avg. precision 0.933/0.965 0.901/0.955
NDCG,, | Users with F-score 0.897 / 0.901 0.903/0.954
domain recall 0.862/0.878 0.903/0.954
knowledge precision 0.953/0.977 0.903 / 0.954

Table 3: Ranking quality: all 5 explanations (All), dropping the
explanation with the largest standard deviation (-1).

in 2013, and participants may or may not regard this as a signal
that the team had begun relying more on other players who play
a similar position. Next, we evaluate the ranking results of our
quality measures by regarding each participant’s ratings as the
ground truth. We use Kendall-Tau rank distance [28] for measuring
pairwise ranking error and normalized discounted cumulative gain
(NDCG) [26] for the entire ranked list. As shown in Table 3, ranking
by precision gives the lowest pairwise ranking error for CAJADE-
PT-only, while for CAJADE it is ranking by F-score. If we drop the
most controversial explanation, the pairwise error is reduced by
more than half. The NDCG,, for CAJADE reaches 0.9 for all cases
and even 0.95 after dropping the most controversial explanation.

Takeaways. The main findings are: (1) the majority (16/20) of

participants preferred CAJADE, thanks to the new information pro-
vided by tables not used in the query, which complements the

Parameter Description Default
Adb-size the size of the database (scale factor) 1.0
sedges maximum number of edges per join graph (Section 3.2) 3
ssel—attr #attributes returned by feature selection (Section 3.1.2) 3
attrNum max number of numerical attributes allowed in a pattern 3
)Lpat—samp sample rate for LCA pattern candidate generation (Section 3.1.3) 0.05
AFlfsamp sample rate for calculating F-scores of patterns (Section 3.1.6) 0.3

Table 4: Parameters of our approach and default values

explanations only based on provenance; (2) our quality measures
are consistent with participants’ preferences; (3) for both groups,
there can be top explanations rated low by participants, which is
expected because we did not do causal analysis, and validating such
explanations may be subjective and depend on domain expertise;
and (4) participants with domain knowledge had a stronger prefer-
ence for CAJADE than participants without domain knowledge.

Other findings and discussion. Finally, it is also worth noting
that the participants’ feedback support the motivation of CAJADE.
For example, participants found that “The usage of Stephen Curry
increases in 2015-16.”, “Players play both season (12-13 and 15-16)
have higher point per game and assist per game” before they saw the
explanations by CAJADE. One suggested to use health information
of the players in explanations. Another participant remarked that
“the use of other tables in the database to explore how the contributions
of individual players can have an outcome on the team’s performance
produced explanations that were more novel or interesting”.

5 EXPERIMENTAL EVALUATION

In this section, we evaluate the implementation of our algorithms
and optimizations in CAJADE. We evaluate both the performance in
terms of runtime and the quality of results with respect to different
parameters and compare against systems from related work.

Datasets. We use the NBA and MIMIC datasets described in Sec-
tion 4. We created several scaled versions of these two datasets
preserving the relative sizes of most tables and join results.

Experimental setup. CAJADE is implemented in Python (version
3.6) and runs on top of PostgreSQL (version 10.14). All experiments
were run on a machine with 2 x AMD Opteron 4238 CPUs, 128GB
RAM, and 4 x 1 TB 7.2K RPM HDDs in hardware RAID 5.

Parameters and Optimizations. Table 4 shows the parameters
used in our experiments and their default values. We vary the fol-
lowing: (1) the size of the database; (2) the maximum number of join
graph edges Agedges; (3) the sample rate for F-score Ap1—samp; and
(4) the sample rate for pattern candidate generation (Apas—samp)-
In [34] we also compare our approach with and without feature
selection and evaluate how the maximum allowed number of edges
in join graphs (Ageqges) affects performance. Based on these results
we activated feature selection and set Agegges = 3 for all experi-
ments. Unless stated otherwise we use queries Q7 from Section 1
(for NBA experiments) and Qmimic4 from Section 4.2 (for MIMIC ex-
periments) with their respective user questions and use the default
values for all other parameters.

5.1 Scalability

To evaluate the scalability of our approach, we used scaled versions
of the NBA and MIMIC datasets ranging from ~ 10% to ~ 800%. We
varied the F-score sample rate (Ar1-samp) from 0.1 to 0.7. The re-
sults are shown in Figure 7 comparing against linear scaling (black

3500
3000 linear scaling
0.1 f1 sample|
2500 — 0.3 f1 sample]
o 9 0.5 f1 sample
& 2000 & 0.7 f1 sample
2 1500 g
~ 1000 -

500

0707 05 10 20 40 80
MIMIC DB (#row 1.0=1.1 Million)

(b) MIMIC, varying Ari-samp
Figure 7: Scalability in database size

07T 05 1.0 20 40 80
NBA DB (#row 1.0=1.4 Million)

(a) NBA, varying Ari—samp

join graph join graph structure APT (#rows) | # attributes
[oX PT 2621 2
Qy PT - player_salary - player 66282 2
Q3 PT 50797 10
Q4 PT - patient_admt_info - patients 50797 19
(a) Join graph APTs size (LCA sampling)
6 1t 200 11
fi10 =—runtime(s) 10
g = ref time 9
. lg 150 == #match
o c w = ref match 8 -
9] 79 9 79
E 6 © E100 6 ©
b= s £ 5 5 £
c2 ta c 4
E ==runtime(s) | 3 * 3 s 3 *
= reftime | 2
==#match 2 1
0 = ref match |1 0
00 02 04 06 08 0 000 005 010 015 020 028
sample rate sample rate
(b) LCA sampling for Q, () LCA sampling for Q;
11 11
200 /_-—. 10 750 10
- S 600 :
Zsen g 3 ' g
€00 os g% o8
‘; AL ie
=} ==runtime(s) | 3 #* =} ==runtime(s) | 3 *
=100 = ref time > =150 = ref time >
==#match ==#match
0 = ref match 1 0 = ref match 1
0.00 0.05 0.10 0.15 0.20 0.25 0 0.00 0.05 0.10 0.15 0.20 0.25 0
sample rate sample rate
(d) LCA sampling for Q3 (e) LCA sampling for Q4
“® Runtime #edges=1 % Runtime #edges=2 Runtime #edges=3
>¢ NDCG #edges=1 i- NDCG #edges=2 NDCG #edges=3
. S g——===k 1.0 < 1.0
400 P A
/ // 0.9 400
=300 / 0
8 / 0.8§ $300 0.9§
[} [}
820 o o 0.7Z £ 200 z
. 100 i
100
.l%l%llifffl 0.6 0.8
T T ° o5 0

0.0502 04 06 08 1.0 00502 04 06 08 1.0
Sample rate Sample rate

(f) Left: NBA and right: MIMIC, varying Ari-samp

Figure 8: Effect of sampling on runtime and pattern quality

line). The effect of database size on runtime is similar for both
datasets. Our approach shows sublinear scaling for both datasets
(note the log-scale x-axis). The benefits of sampling are more pro-
nounced for larger database sizes: Api—samp = 0.1 is more than
55% faster than Ap;—sqmp = 0.7 for scale factor 8 on both datasets.
We present a detailed breakdown on where time is spent in [34].
F-score calculation turned out to be the most significant factor.

5.2 Sample Size

We now study the impact of sampling for F-score calculation
(AF1-samp) and for pattern candidate generation (Apar—samp) on
performance and pattern quality. We treat the result produced with-
out sampling as ground truth and measure the difference between
this result and the result produced by sampling.

Sampling for Pattern Generation. Recall that we use the LCA ap-
proach to generate candidate patterns over the categorical attributes
of an augmented provenance table. This approach computes a cross
product between two samples of a fixed size. Our implementation
of LCA ranks the pattern candidates generated by LCA by their
recall, and then selects the top-k ranked patterns as input for the
next step. In this experiment, we want to determine a robust choice
for the LCA sample size parameter and, thus, compare the results
produced by this step. We selected 4 join graphs and their APTs:
Qq and Q3 for Q1, and Q3 and Q4 for Qmimics. Figure 8a shows
the number of rows and attributes for the APTs, and join graph
structure for each of these join graphs. The pattern quality and the
runtime of generating top-10 patterns for these four join graphs
are shown in Figure 8b to Figure 8e. We measure pattern quality as
the number of patterns from the top-10 patterns computed over a
significant portion of the full dataset (ground truth) that occur in
the top-10 computed based on a sample (see the blue lines labeled
match). As expected because of the cross product computed over
the samples, runtime increases quadratically in the sample size. For
Figure 8d and Figure 8e, all ground truth top-10 patterns are found
even for just 3% sample rate. Whereas as shown in Figure 8c, even
for 20% sample rate (13000 rows), we only find one matching pat-
tern. The reason behind the different result observed in Figure 8d
is that one of the columns in Q3 has over 800 distinct values that
are roughly evenly distributed and, thus, the ranking is sensitive to
small variations in frequency caused by sampling. For Figure 8b,
even though this join graph also contains this attribute (over 500
distinct values), for this APT, the column’s distribution in the APT
is skewed leading to a more stable set of high frequency values
that are used in the top-10 patterns. Based on these observations
we determine the sample size Apqt—samp =0.05 for the rest of the
experiments and cap the number of rows in the sample at 1000.

Sampling for F-score Calculation. We also use sampling to
reduce the cost of the quality measure calculation (parameter
AF1-samp)- Instead of scanning all tuples in the augmented prove-
nance table (APT), we compute the number of matching tuples
over a sample of the APT for a given pattern. Figure 8f shows the
running time and the quality of patterns when varying the sam-
ple rate and maximum number of edges in join graphs (Aseqges)
for queries Q1 and Qmimica. We use the normalized discounted
cumulative gain (NDCG) [26] as the sample quality metric. A high
NDCG score (between 0 and 1) indicates that the ranking of the top
patterns returned by the sampled result is close to the top patterns
produced without sampling. Figure 8f shows that for both datasets
for Adgeqges = 1, the similarity between the sampled result and result
over the full dataset is high, even for aggressive sampling (we take
the average of five runs). For larger join graphs (A4edges = 2.3),
the NDCG score fluctuates around 0.7 for the NBA dataset. For the
MIMIC dataset, the NDCG converges to ~ 0.95 or even 1.0 at a
sampling rate of 0.5. Overall, even for low sample rates, the NDCG
score is at least ~ 0.67 (~ 0.8) for the NBA (MIMIC) dataset.

5.3 Comparison with Explanation Tables

We also compared our approach against the approach from [20]
(referred to as ET from now on). We compared on one join graph
with structure PT - player_game_stats - player for the NBA

= Runtime (sec)
Sample Runtime (sec)
Size | CAJADE| ET
16 12.77 3.21
64 24.21 11.65 20
o == # Join Graph
256 23.85 176.76 Q
512 24.51 855.13 £15
<10
. . S
Figure 9: Compari- . 5
0

son with Explana- Qi Que Ous Ows Qus Qus Qur Qus Qus Quio

tion Tables Figure 10: Varying Queries
Query
Rank UQcapel UQcapez
1 (LeBron James,2009-10,29.7) | _(GSW,2013-14,51)
2 (TeBron James,2011-12,27.1) | (GSW,2014-2015,67)
3 (TeBron James,2013-14,27.1) | (GSW2015-16,73)

Figure 11: CAPE’s explanations for the NBA questions

Query | Description Tables used

Ow1 Average points for player Draymond Green | player, game, season,
over the years player_game_stats
Ow2 Team GSW average assists over the years | team_game_stats,
game, team, season
Ows Average points for player Lebron james | player, game, season ,
over the years player_game_stats
Qs Team GSW wins over the years team, game, season
Ows Average points for player jimmy Butler | player, game, season,
over the years player_game_stats

Owe Return the number of diagnosis group by | diagnoses
chapter(group of procedure type)
Ow7 Returns the death rate of patients grouped | admissions

by their insurance.
QOuws Number of ICU stays grouped by the length | icustays
of stays (los_group).
Qwo Number of procedures for a particular | procedures
chapter (group of diagnosis types).
QOwio Number admissions of different ethnicities. | patients_admit_info

Table 5: NBA and MIMIC Queries

dataset using query Q; and the corresponding user question from
the introduction. The corresponding APT has ~ 2600 rows and 84
columns. To be fair, we did apply our feature selection technique
to filter columns for ET too, reducing the number of columns to 20.
Without that step, ET took 30 seconds even for the smallest sample
size (16 tuples). Figure 9 lists the runtime of CAJADE and ET after
applying feature selection. While slower for a sample size of 16,
our approach scales much better when increasing the sample size
(~ 35x faster for sample size 512). That being said, we would like
to point out that the major contribution of our work is the efficient
exploration of a schema graph for finding explanations. However,
as this experiment demonstrates this would not be possible without
our optimizations for mining patterns over a single APT.

5.4 Comparison with CAPE

We also compared our approach against CAPE [35]. The questions
we used are from NBA running example query Q1 (number of wins
for GSW over the years) and Q5,3 from the case study (player
LeBron James’s average points over the seasons). CAPE expects
as input one data point plus a direction high or low. We select the
following question UQcape, for Q1: “Why was GSW number of wins
high in 2015-16 season?” and UQcape, for Qppq3: “Why was LeBron
James’ average points low in 2010-11 season?”. Since CAPE does

not explore related tables, we constructed 2 join graphs as input
to CAPE, which are PT (UQcgpe,) and PT - team_game_stats
(UQcape,)- Figure 11 shows the top-3 explanations produced by
CAPE. The system identifies a trend in the data (using regression)
according to which the user question is an outlier in the user-
provided direction and then returns a similar outlier in the other
direction. For our experiment, this means that CAPE returns sea-
sons with low wins for GSW and high averages points for LeBron
James. This experiment demonstrates that CAPE is orthogonal to
our technique. The system identifies counter-balances while we
find features that are related to the difference between two query
results. Nonetheless, our techniques for exploring schema graphs
may be of use for finding counterbalances too.

5.5 Varying Queries

To evaluate how the runtime of our approach is affected by the
choice of query, we measured the runtime for 10 different queries
(5 for NBA and 5 for MIMIC) shown in Table 5. We designed these
queries to access different relations and use different group-by
attributes. The SQL code for these queries is shown in [34]. All
queries were run with Ap1_samp = 0.3 and Ayegges = 3. The results
are shown in Figure 10. We observe that the runtime is relatively
stable for different queries and is to some degree correlated to the
number of join graphs for the query (shown on top of Figure 10).

6 RELATED WORK

Provenance and summarization. Provenance [15] for relational
queries identifies inputs that contribute to the results of a query. For
non-aggregate queries, why-provenance [12] returns a set of input
tuples responsible for a given output tuple; how-provenance [23]
encodes how the query combined input tuples to generate the
answers. For aggregate queries, symbolic expressions based on an
extension of semirings [4] are used to express how aggregate results
are computed. Given the significant cost of managing provenance
information in practical DBMS, several provenance-management
frameworks that store and retrieve relevant provenance information
have been proposed in the literature [6, 14, 21, 31, 38]. Some of these
support provenance for aggregate queries using simplified models
and query plan optimizations [27, 36, 38]. A number of recent papers
have proposed summarization techniques to represent provenance
approximately [2, 31-33, 44], or to use summarization rules for
better usability [3]. Recent work has also studied natural language
representations of factorized and summarized provenance [17, 18].

Data summarization. Another line of work has focused on pro-
ducing summaries of relational data that are relevant, diverse, and
comprehensive [25, 29, 39, 52]. For a relation augmented with a
binary outcome attribute, Gebaly et al. [20] developed solutions
to find informative summaries of categorical attributes affecting
the outcome attribute only considering the provenance (and not
other relevant relations like our work). An extension of this idea for
numerical data was presented in [50]. We adopt the lowest common
ancestor (LCA) optimization from [20] in our algorithms to prune
the search space of candidate patterns. Note that we have discussed
the potential problems of adapting the approach from [20] using a
materialized augmented provenance table in Section 5.

Explanations for query answers. This line of work aims at ex-
plaining unexpected outcomes of a query, including outlier values,
missing tuples, or existing tuples that should not exist. Provenance
and provenance summaries provide a straightforward form of ex-
planations [1, 41, 42, 53] by characterizing a set of tuples whose
removal or modification would affect the query answer of inter-
est. Query-based explanations, i.e., changes to queries, have been
investigated for both “why” and “why-not” questions [10, 13]. Ex-
planations for outliers have been studied in [9, 35]. We share with
[35] the motivation of considering explanations that are not (solely)
based on provenance. The difference is that in [35], only the table
accessed by the query is considered for finding explanations that
“counterbalance” an outlier by learning patterns that can balance
a low (high) outlier with a high (low) outlier, whereas we find ex-
planations in “augmented provenance” stemming from tables not
used in the query. Therefore, [35] is orthogonal to our work.

Join path discovery. Join path discovery approaches find data
related to a table of interest based on inclusion dependencies or
string similarity [19, 24, 46, 54, 55]. Recently, [16, 30, 47] studied
the performance of machine learning models trained on join results.
CaJADE can utilize join graph discovery techniques to find more
augmentation opportunities.

7 DISCUSSIONS AND FUTURE WORK

Explanations for database query answers is a relatively new re-
search topic with many interesting future directions. For instance,
currently our approach only considers correlations. In the future,
we plan to integrate it with the existing observational causal analysis
framework from Al and Statistics [37, 43] to find causal explana-
tions. Another interesting direction for future work is to integrate
context-based explanations with join discovery techniques (e.g.,
[19, 54]) to automatically find datasets to be used as context. Fi-
nally, our approach is not suited well for textual and sparse data
because such data cannot be summarized well using the type of
patterns we support since values are rarely repeated. Different sum-
marization techniques (e.g., using taxonomies) or preprocessing
techniques (e.g., information extraction techniques) would have to
be incorporated with our approach. While we discussed simple
SQL aggregate queries, extensions of our model can be studied for
more general queries (e.g., nested sub-queries or negation) if we
have access to a provenance system that can compute the prove-
nance of such queries. Beyond having an intuitive scoring function
for ranking explanations that may not always produce meaningful
explanations, a challenging direction for future work is to evaluate
the correctness of the generated explanations without much human
intervention, to evaluate whether the returned explanations match
the user’s intent, and to have a confidence score for explanations to
decide whether the data contains sufficient information to explain a
user question. We plan to explore other types of user questions, e.g,
explaining an increasing/decreasing trend or explaining why two
results are similar. Furthermore, we will investigate the applicability
of context/provenance in ML applications.

Acknowledgments. This work is supported in part by NSF awards
11S-1552538, 11S-1703431, 11S-1956123, 11S-2008107, OAC-1541450,
and OAC-1640864, and by NIH award R0O1EB025021.

REFERENCES

(1]

(2]
(3]

[9

=

[10

[1
[12

[13]
[14]

Firas Abuzaid, Peter Kraft, Sahaana Suri, Edward Gan, Eric Xu, Atul Shenoy, Asvin
Ananthanarayan, John Sheu, Erik Meijer, Xi Wu, et al. 2018. DIFF: a relational
interface for large-scale data explanation. PVLDB 12, 4 (2018), 419-432.
Eleanor Ainy, Pierre Bourhis, Susan B Davidson, Daniel Deutch, and Tova Milo.
2015. Approximated summarization of data provenance. In CIKM. 483-492.
Omar AlOmeir, Eugenie Yujing Lai, Mostafa Milani, and Rachel Pottinger. 2021.
Summarizing Provenance of Aggregation Query Results in Relational Databases.
In ICDE.

Yael Amsterdamer, Daniel Deutch, and Val Tannen. 2011. Provenance for aggre-
gate queries. In PODS. 153-164.

Bahareh Arab, Su Feng, Boris Glavic, Seokki Lee, Xing Niu, and Qitian Zeng.
2018. GProM - A Swiss Army Knife for Your Provenance Needs. IEEE Data Eng.
Bull. 41, 1 (2018), 51-62.

Bahareh Arab, Dieter Gawlick, Venkatesh Radhakrishnan, Hao Guo, and Boris
Glavic. 2014. A generic provenance middleware for database queries, updates,
and transactions. In TaPP.

National Basketball Association. 2020. The official site of the NBA.
//www.nba.com/ [Online; accessed 10-September-2020].

Dhiman Barman, Flip Korn, Divesh Srivastava, Dimitrios Gunopulos, Neal E.
Young, and Deepak Agarwal. 2007. Parsimonious Explanations of Change in
Hierarchical Data. In ICDE, Rada Chirkova, Asuman Dogac, M. Tamer Ozsu, and
Timos K. Sellis (Eds.). 1273-1275.

Aline Bessa, Juliana Freire, Tamraparni Dasu, and Divesh Srivastava. 2020. Effec-
tive Discovery of Meaningful Outlier Relationships. ACM Transactions on Data
Science 1, 2 (2020), 1-33.

Nicole Bidoit, Melanie Herschel, and Katerina Tzompanaki. 2014. Query-Based
Why-Not Provenance with NedExplain. In EDBT, Sihem Amer-Yahia, Vassilis
Christophides, Anastasios Kementsietsidis, Minos N. Garofalakis, Stratos Idreos,
and Vincent Leroy (Eds.). 145-156.

Leo Breiman. 2001. Random forests. Machine learning 45, 1 (2001), 5-32.

Peter Buneman, Sanjeev Khanna, and Tan Wang-Chiew. 2001. Why and where:
A characterization of data provenance. In ICDT. 316-330.

Adriane Chapman and HV Jagadish. 2009. Why not?. In SIGMOD. 523-534.
Adriane P Chapman, Hosagrahar V Jagadish, and Prakash Ramanan. 2008. Effi-
cient provenance storage. In SIGMOD. 993-1006.

https:

[15] James Cheney, Laura Chiticariu, and Wang Chiew Tan. 2009. Provenance in

[16]

[17]
(18]

[19]

[20]

[21]
[22]
[23]
[24]

[25

[26]

[27

Databases: Why, How, and Where. Found. Trends Databases 1, 4 (2009), 379-474.
Nadiia Chepurko, Ryan Marcus, Emanuel Zgraggen, Raul Castro Fernandez, Tim
Kraska, and David Karger. 2020. ARDA: Automatic Relational Data Augmentation
for Machine Learning. PVLDB 13, 9 (2020), 1373-1387.

Daniel Deutch, Nave Frost, and Amir Gilad. 2016. Nlprov: Natural language
provenance. PVLDB 9, 13 (2016), 1537-1540.

Daniel Deutch, Nave Frost, and Amir Gilad. 2017. Provenance for natural language
queries. PVLDB 10, 5 (2017), 577-588.

Raul Castro Fernandez, Ziawasch Abedjan, Famien Koko, Gina Yuan, Samuel
Madden, and Michael Stonebraker. 2018. Aurum: A Data Discovery System. In
ICDE. 1001-1012.

Kareem El Gebaly, Parag Agrawal, Lukasz Golab, Flip Korn, and Divesh Srivastava.
2014. Interpretable and Informative Explanations of Outcomes. PVLDB 8, 1 (2014),
61-72.

Boris Glavic and Gustavo Alonso. 2009. Perm: Processing provenance and data
on the same data model through query rewriting. In ICDE. 174-185.

Todd J. Green, Grigoris Karvounarakis, and Val Tannen. 2007. Provenance semir-
ings. In PODS. 31-40.

Todd] Green, Grigoris Karvounarakis, and Val Tannen. 2007. Provenance semir-
ings. In PODS. 31-40.

Yeye He, Kris Ganjam, and Xu Chu. 2015. SEMA-JOIN: Joining Semantically-
Related Tables Using Big Table Corpora. PVLDB 8, 12 (2015), 1358-1369.

Manas Joglekar, Hector Garcia-Molina, and Aditya Parameswaran. 2017. Interac-
tive data exploration with smart drill-down. TKDE 31, 1 (2017), 46-60.

Kalervo Jarvelin and Jaana Kekéldinen. 2002. Cumulated gain-based evaluation
of IR techniques. ACM Transactions on Information Systems (TOIS) 20, 4 (2002),
422-446.

Grigoris Karvounarakis, Zachary G Ives, and Val Tannen. 2010. Querying data
provenance. In SIGMOD. 951-962.

[28

[29

(30]

= s R wm W
o T

S
&

o
=

a
=

o
=

5
o

Maurice G Kendall. 1938. A new measure of rank correlation. Biometrika 30, 1/2
(1938), 81-93.

Alexandra Kim, Laks VS Lakshmanan, and Divesh Srivastava. 2020. Summarizing
Hierarchical Multidimensional Data. In ICDE. 877-888.

Arun Kumar, Jeffrey F. Naughton, Jignesh M. Patel, and Xiaojin Zhu. 2016. To
Join or Not to Join?: Thinking Twice about Joins before Feature Selection. In
SIGMOD, Fatma Ozcan, Georgia Koutrika, and Sam Madden (Eds.). 19-34.
Seokki Lee, Bertram Ludischer, and Boris Glavic. 2019. PUG: a framework and
practical implementation for why and why-not provenance. VLDBJ 28, 1 (2019),
47-71.

Seokki Lee, Bertram Ludéscher, and Boris Glavic. 2020. Approximate Summaries
for Why and Why-not Provenance. PVLDB 13, 6 (2020), 912-924.

Seokki Lee, Xing Niu, Bertram Ludéscher, and Boris Glavic. 2017. Integrating
approximate summarization with provenance capture. In TaPP.

Chenjie Li, Zhengjie Miao, Qitian Zeng, Boris Glavic, and Sudeepa Roy. 2021.
Putting Things into Context: Rich Explanations for Query Answers using Join
Graphs - supplementary document. (2021). arXiv:2103.15797 [cs.DB]

Zhengjie Miao, Qitian Zeng, Boris Glavic, and Sudeepa Roy. 2019. Going Beyond
Provenance: Explaining Query Answers with Pattern-based Counterbalances. In
SIGMOD, Peter A. Boncz, Stefan Manegold, Anastasia Ailamaki, Amol Deshpande,
and Tim Kraska (Eds.). 485-502.

Xing Niu, Raghav Kapoor, Boris Glavic, Dieter Gawlick, Zhen Hua Liu, Vasudha
Krishnaswamy, and Venkatesh Radhakrishnan. 2018. Heuristic and Cost-based
Optimization for Diverse Provenance Tasks. TKDE (2018).

Judea Pearl. 2000. Causality: models, reasoning, and inference. Cambridge Univer-
sity Press.

Fotis Psallidas and Eugene Wu. 2018. Smoke: Fine-grained lineage at interactive
speed. PVLDB 11, 6 (2018), 719-732.

Lu Qin, Jeffrey Xu Yu, and Lijun Chang. 2012. Diversifying Top-K Results. PVLDB
5,11 (2012), 1124-1135.

Sam T Roweis and Lawrence K Saul. 2000. Nonlinear dimensionality reduction
by locally linear embedding. Science 290, 5500 (2000), 2323-2326.

Sudeepa Roy, Laurel Orr, and Dan Suciu. 2015. Explaining query answers with
explanation-ready databases. PVLDB 9, 4 (2015), 348-359.

Sudeepa Roy and Dan Suciu. 2014. A formal approach to finding explanations
for database queries.

Donald B Rubin. 2005. Causal inference using potential outcomes: Design, mod-
eling, decisions. J. Amer. Statist. Assoc. 100, 469 (2005), 322-331.

Christopher Ré and Dan Suciu. 2008. Approximate lineage for probabilistic
databases. PVLDB 1, 1 (2008), 797-808.

WS Sarle. 1990. SAS/STAT User’s Guide: The VARCLUS Procedure. SAS Institute,
Inc., Cary, NC, USA, (1990), 134.

Anish Das Sarma, Lujun Fang, Nitin Gupta, Alon Y. Halevy, Hongrae Lee, Fei Wu,
Reynold Xin, and Cong Yu. 2012. Finding related tables. In SIGMOD. 817-828.
Vraj Shah, Arun Kumar, and Xiaojin Zhu. 2017. Are Key-Foreign Key Joins Safe
to Avoid when Learning High-Capacity Classifiers? PVLDB 11, 3 (2017), 366-379.
Balder ten Cate, Cristina Civili, Evgeny Sherkhonov, and Wang-Chiew Tan. 2015.
High-Level Why-Not Explanations using Ontologies. In PODS, Tova Milo and
Diego Calvanese (Eds.). 31-43.

Moshe Y. Vardi. 1982. The Complexity of Relational Query Languages (Extended
Abstract). In STOC. 137-146.

Michael Vollmer, Lukasz Golab, Klemens Béhm, and Divesh Srivastava. 2019.
Informative Summarization of Numeric Data. In SSDBM. 97-108.

Xiaolan Wang and Alexandra Meliou. 2019. Explain3D: Explaining Disagreements
in Disjoint Datasets. PVLDB 12, 7 (2019), 779-792.

Yuhao Wen, Xiaodan Zhu, Sudeepa Roy, and Jun Yang. 2018. Interactive sum-
marization and exploration of top aggregate query answers. In PVLDB, Vol. 11.
2196.

Eugene Wu and Samuel Madden. 2013. Scorpion: Explaining Away Outliers in
Aggregate Queries. PVLDB 6, 8 (2013), 553-564.

Erkang Zhu, Dong Deng, Fatemeh Nargesian, and Renée J. Miller. 2019. JOSIE:
Overlap Set Similarity Search for Finding Joinable Tables in Data Lakes. In
SIGMOD. 847-864.

Erkang Zhu, Yeye He, and Surajit Chaudhuri. 2017. Auto-Join: Joining Tables by
Leveraging Transformations. PVLDB 10, 10 (2017), 1034-1045.

	Abstract
	1 Introduction
	2 Join-Augmented Provenance
	2.1 Provenance Table
	2.2 Schema Graph and Join Graph
	2.3 Augmented Provenance Table
	2.4 Explanations with Augmented Provenance
	2.5 Quality Measure of Explanations

	3 Algorithms for Mining Patterns
	3.1 Mining Patterns given a Join Graph
	3.2 Join Graph Enumeration

	4 Qualitative Evaluation
	4.1 Case Study: NBA
	4.2 Case Study: MIMIC
	4.3 User Study

	5 Experimental Evaluation
	5.1 Scalability
	5.2 Sample Size
	5.3 Comparison with Explanation Tables
	5.4 Comparison with CAPE
	5.5 Varying Queries

	6 Related Work
	7 Discussions and Future Work
	References

