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ABSTRACT

In many data analysis applications there is a need to explain why a
surprising or interesting result was produced by a query. Previous
approaches to explaining results have directly or indirectly relied
on data provenance, i.e., input tuples contributing to the result(s) of
interest. However, some information that is relevant for explaining
an answer may not be contained in the provenance. We propose a
new approach for explaining query results by augmenting prove-
nance with information from other related tables in the database.
Using a suite of optimization techniques, we demonstrate exper-
imentally using real datasets and through a user study that our
approach produces meaningful results and is efficient.
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1 INTRODUCTION

Today’s world is dominated by data. Recent advances in complex
analytics enable businesses, governments, and scientists to extract
value from their data. However, results of such operations are of-
ten hard to interpret and debugging such applications is challeng-
ing, motivating the need to develop approaches that can automati-
cally interpret and explain results to data analysts in a meaningful
way. Data provenance [15, 22], which has been studied for several
decades, is an immediate form of explanation that describes how an
answer is derived from input data. However, provenance is often
insufficient for unearthing interesting insights from the data that
led to a surprising result, especially for aggregate query answers.
In the last few years, several łexplanationž methods have been pro-
posed by the database community [8, 20, 32, 35, 41, 42, 48, 51, 53].
However, real world data often exhibits complex correlations and
inter-relationships that connect the provenance of a query with
data that has not been accessed by the query. Current approaches
do not take these crucial inter-relationships into account. Thus, the
explanations they produce may lack important contextual informa-
tion. We illustrate how to use context to explain a user’s question
using data extracted from the official website of the NBA [7].
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Example 1. Consider a simplified NBA database with the fol-

lowing relations (the keys are underlined, the full schema has 11

relations). Some tuples from each relation are shown in Figure 1. Each

team playing in a game can use multiple lineups consisting of five
players. Home refers to the home team in a game.

• Game(year, month, day, home, away, home_pts, away_pts,

winner, season): participating teams and the winning team.

• PlayerGameScoring(player, year, month, day, home,

pts): the points each player scored in each game he played in.

• LineupPerGameStats(lineupid, year, month, day, home,

mp): the minutes each lineup played in a game.

• LineupPlayer(lineupid, player): the players in a lineup.

Query 𝑄1 shown below returns the number of wins of team GSW
(Golden State Warriors) per season.

SELECT winner as team , season , count (*) as win

FROM Game g WHERE winner = 'GSW' GROUP BY winner , season

Figure 1e shows the result of 𝑄1. GSW made history in the 2015-16

season by being the team that won the most games in a single season.

Observe that team GSW improved its performance significantly from

season 2012-13 (𝑡1) to season 2015-16 (𝑡2). Such a drastic increase in a

relatively short period of time naturally raises the question of what

changed between these 2 seasons (expressed as the user question𝑈𝑄1

in Figure 1f). Note that 𝑄1 only accesses the Game table (shown in

Figure 1a). This table provides the user with information about each

game including the name of the opponent team and whether GSWwas

the home team or not. However, such information is not enough for

understanding why GSW won more games in the 2015-16 season than

in the other seasons, because in each season a team plays the same

number of games and home games, and roughly the same number of

times against each opponent.

In this paper, we present an approach that answers questions like
𝑈𝑄1 (Figure 1f). Our approach produces insightful explanations
that are based on contextual information mined from tables that are
related to the tables accessed by a user’s query. To give a flavor of
the explanations produced by our approach, we present two of the
top explanations for 𝑈𝑄1 in Figures 2a and 2c (the formal defini-
tions and scoring function are presented in the next section). Each
explanation consists of three elements: (1) A join graph consisting
of a node labeled PT representing the table(s) accessed by the user’s
query (referred to as the provenance table, or PT for short), and
nodes representing other tables that were joined with the prove-
nance table to provide context. Edges in a join graph represent
joins between two tables and are labeled with join conditions. (2)
A pattern, which is a conjunction of predicates over attributes from
the provenance or any table from the context. (3) The support of
the pattern, i.e., the number of tuples from the provenance of each



year mon day home away home_pts away_pts winner season
𝑔1 → 2013 01 02 MIA DAL 119 109 MIA 2012-13
𝑔2 → 2012 12 05 DET GSW 97 104 GSW 2012-13
𝑔3 → 2015 10 27 GSW NOP 111 95 GSW 2015-16
𝑔4 → 2014 01 05 WAS GSW 96 112 GSW 2013-14
𝑔5 → 2016 01 22 GSW IND 122 110 GSW 2015-16

(a) Game Table

lineupid player

58420 K. Thompson

58420 D. Green

13507 S. Battier

13507 L. James

67949 D. Green

(b) LineupPlayer Table

player year mon day home pts
𝑝1 → S. Curry 2012 12 05 DET 22
𝑝2 → S. Curry 2015 10 27 GSW 40
𝑝3 → S. Curry 2016 01 22 GSW 39
𝑝4 → K. Thompson 2012 12 05 DET 27
𝑝5 → K. Thompson 2016 01 22 DET 18
𝑝6 → D. Green 2012 12 05 DET 2

(c) PlayerGameScoring table
lineupid year mon day home mp

13507 2013 11 09 MIA 4.30
77727 2012 12 12 MIA 14.70
58420 2015 11 07 SAC 10.30
58482 2015 11 07 SAC 11.10
58420 2014 12 08 MIN 11.70

(d) LineupPerGameStats Table

team season win
𝑡1 → 𝐺𝑆𝑊 2012-13 47

𝐺𝑆𝑊 2013-14 51
𝐺𝑆𝑊 2014-15 67

𝑡2 → 𝐺𝑆𝑊 2015-16 73
𝐺𝑆𝑊 2016-17 67

(e) Result of𝑄1

𝑈𝑄1 : Why did𝐺𝑆𝑊 win 73 games in 2015-16 (𝑡2) compared to 47 games in 2012-13 (𝑡1).

(f) User question𝑈𝑄1

Figure 1: Input/output tables, and the user question for Example 1.

𝑙 𝐽 𝑒𝑑𝑔𝑒 (𝑒1) = (PT.year=P.year ∧ PT.month=P.month ∧

PT.day=P.day ∧ PT.home=P.home)

(a) Join graph Ω1 with pattern Φ1 for 𝑈𝑄1: Star

Player

(b) Legend

𝑙 𝐽 𝑒𝑑𝑔𝑒 (𝑒1) = (PT.year=LS.year ∧ PT.month=LS.month ∧ PT.day=LS.day ∧

PT.home=LS.home)
𝑙 𝐽 𝑒𝑑𝑔𝑒 (𝑒2) = (LS.lineupid = 𝐿1 .lineupid) 𝑙 𝐽 𝑒𝑑𝑔𝑒 (𝑒3) = (𝐿1 .lineupid = 𝐿2 .lineupid)

(c) Join graph Ω2 with pattern Φ2 for𝑈𝑄1: Pair of players

Figure 2: Explanations for𝑈𝑄1

of the two result tuples from the user question that are covered by
the pattern (underlined in the explanations shown below).

Intuitively, the explanation from Figure 2a can be interpreted as:

GSW won more games in season 2015-16 because Player
S. Curry scored ≥ 23 points in 58 out of 73 games in 2015-16

compared to 21 out of 47 games in 2012-13.

Given this explanation, the user can infer that S. Curry was
one of the key contributors for the improvement of GSW’s winning
record since his points significantly improved in the 2015-16 season.
Similarly, the explanation in Figure 2c can be interpreted as:

𝐺𝑆𝑊 won more games in season 2015-16 because Player
D. Green and Player K. Thompson’s on-court minutes together
were ≥ 19minutes in 70 out of 73 games in the 2015-16 season

compared to only 2 out of 47 games in the 2012-13 season.

This implies that Green and Thompson’s increase of playing
time together might have helped improve GSW ’s record. We dis-
cuss additional example queries, user questions, and explanations
produced by our approach in Section 4.
Our Contributions. In this paper, we develop CaJaDE (Context-
Aware Join-Augmented Deep Explanations), the first system that
automatically augments provenance data with related contextual
information from other tables. Our system produces informative
summaries of the difference between the values of two tuples in
the answer of an aggregate query, or, the high/low value of a single
outlier tuple. We make the following contributions.

(1) Join-augmented provenance summaries as explanations.

We propose the notion of join-augmented provenance and use
summaries of augmented provenance as explanations. The join-

augmented provenance is generated based on a join graph that en-
codes how the provenance is joined with tables that provide context.
We use patterns, i.e., conjunctions of equality and inequality pred-
icates, to summarize the difference between the join-augmented

provenance of two tuples 𝑡1, 𝑡2 from a query’s output selected by the
user’s question. We adapt the notion of F-score to evaluate the qual-
ity of patterns. That is, to explain the difference between 𝑡1 and 𝑡2,
we search for patterns with (i) high recall (the pattern covers many
tuples from 𝑡1’s provenance) and (ii) high precision (the pattern
does not cover many tuples from 𝑡2’s provenance) (Section 2).

(2) Mining patterns over augmented provenance.We present
algorithms for mining patterns for a given join graph and discuss
a number of optimizations. Even if we fix a single join graph to
compute the augmented provenance, the large number of possible
patterns makes it challenging to efficiently mine patterns with high
F-score values. Our optimizations include clustering and filtering
attributes using machine learning methods, using a monotonicity
property for the recall of patterns to prune refinements of patterns
(patterns are refined by adding additional predicates), and finding
useful patterns on categorical attributes before considering numeric
attributes to reduce the search space (Section 3.1).

(3) Mining join graphs giving useful patterns. We also address
the challenge of mining patterns over join graphs that are based
on a schema graph which encodes which joins are permissible in a
schema.We prune the search space by estimating the cost of pattern
mining and determining based on the available join options if a join
graph is unlikely to generate high quality patterns (Section 3.2).

(4) Qualitative and quantitative evaluation.We quantitatively
evaluated the explanations produced by our approach through
a case study on two real-world datasets: NBA and MIMIC. Fur-
thermore, we conducted a user study to evaluate how useful the
explanations generated by our approach are and how they compare
with explanations generated based on the provenance alone (Sec-
tion 4). We also evaluated the scalability of our algorithms and the
effectiveness of our optimizations (Section 5).

2 JOIN-AUGMENTED PROVENANCE

A database 𝐷 consists of a set of relations rels(𝐷) = {𝑅1, . . . , 𝑅𝑘 }.
Abusing notation, we will use 𝐷 and 𝑅1, . . . , 𝑅𝑘 to both denote a
schema and an instance when clear from the context. For a relation
𝑅, attrs(𝑅) denotes the set of attributes in 𝑅; Similarly, for a set of
relations S, attrs(S) = ∪𝑅∈S attrs(𝑅) denotes the set of attributes in



PlayerGameScoring (P) LineupPerGameStats (LS)

Game (G) LineupPlayer (L)

𝑢1 𝑢2 𝑢3

𝑢4

𝑙𝑆𝑒𝑑𝑔𝑒 (𝑢1) = {(𝑃.𝑦𝑒𝑎𝑟 = 𝐺.𝑦𝑒𝑎𝑟 ∧ 𝑃.𝑚𝑜𝑛𝑡ℎ = 𝐺.𝑚𝑜𝑛𝑡ℎ ∧ 𝑃.𝑑𝑎𝑦 = 𝐺.𝑑𝑎𝑦

∧𝑃.ℎ𝑜𝑚𝑒 = 𝐺.ℎ𝑜𝑚𝑒) , (𝑃.𝑦𝑒𝑎𝑟 = 𝐺.𝑦𝑒𝑎𝑟 ∧ 𝑃.𝑚𝑜𝑛𝑡ℎ = 𝐺.𝑚𝑜𝑛𝑡ℎ
∧𝑃.𝑑𝑎𝑦 = 𝐺.𝑑𝑎𝑦 ∧ 𝑃.ℎ𝑜𝑚𝑒 = 𝐺.ℎ𝑜𝑚𝑒 ∧ 𝑃.ℎ𝑜𝑚𝑒 = 𝐺.𝑤𝑖𝑛𝑛𝑒𝑟 ) }

𝑙𝑆𝑒𝑑𝑔𝑒 (𝑢2) = {(𝐺.𝑦𝑒𝑎𝑟 = 𝐿𝑆.𝑦𝑒𝑎𝑟 ∧𝐺.𝑚𝑜𝑛𝑡ℎ = 𝐿𝑆.𝑚𝑜𝑛𝑡ℎ ∧𝐺.𝑑𝑎𝑦 =

𝐿𝑆.𝑑𝑎𝑦 ∧𝐺.ℎ𝑜𝑚𝑒 = 𝐿𝑆.ℎ𝑜𝑚𝑒) }
𝑙𝑆𝑒𝑑𝑔𝑒 (𝑢3) = {(𝐿𝑆.𝑙𝑖𝑛𝑒𝑢𝑝𝑖𝑑 = 𝐿.𝑙𝑖𝑛𝑒𝑢𝑝𝑖𝑑) }

𝑙𝑆𝑒𝑑𝑔𝑒 (𝑢4) = {(𝐿.𝑙𝑖𝑒𝑛𝑢𝑝𝑖𝑑 = 𝐿.𝑙𝑖𝑛𝑒𝑢𝑝𝑖𝑑) }

Figure 3: Schema Graph for Example 1.

relations in S. Without loss of generality, we typically will assume
that attribute names are distinct and use 𝑅.𝐴 for disambiguation if
an attribute 𝐴 appears in multiple relations. In this work we focus
on simple single-block SQL queries with a single aggregate function
(select-from-where-group by), or, equivalently extended relational
algebra queries with the same restriction.1. Given a query 𝑄 , 𝑄 (𝐷)

denotes the result of evaluating the query over a database 𝐷 . We
use relsQ (𝐷) ⊆ rels(𝐷) to denote the relations accessed by 𝑄 .

2.1 Provenance Table

A large body of work has studied provenance semantics for var-
ious classes of queries (e.g., [15, 22]). Here we resort to a simple
why-provenance [15] model sufficient for our purpose. We define
the provenance of an output tuple 𝑡 ∈ 𝑄 (𝐷) of a query 𝑄 as a
subset of the cross product (×) of all relations in relsQ (𝐷). For in-
stance, Perm [21] can produce this type of provenance for queries
in relational algebra plus aggregation and nested subqueries. In our
implementation we use the GProM system [5].

Definition 1 (Provenance Table). Given a query 𝑄 having

rels𝑄 (𝐷) = {𝑅 𝑗1 , · · · , 𝑅 𝑗𝑝 }, we define the provenance tablePT (𝑄,𝐷)

for 𝐷 and𝑄 to be a subset of 𝑅 𝑗1 × · · · × 𝑅 𝑗𝑝 . We assume the existence

of a provenance model that determines which tuples from the cross

product belong to PT (𝑄, 𝐷). For a tuple 𝑡 ∈ 𝑄 (𝐷), we define the

provenance table PT (𝑄, 𝐷, 𝑡) to be the subset of the provenance that

contributes to 𝑡 (decided by the provenance model).

Example 2. In Example 1, PT (𝑄1, 𝐷) contains all the tuples from

Figure 1a which has 𝐺𝑆𝑊 as the winner, i.e., 𝑔2, 𝑔3, 𝑔4 and 𝑔5. For

𝑡1, 𝑡2 ∈ 𝑄1 (𝐷) as shown in Table 1e,PT (𝑄1, 𝐷, 𝑡1) includes all the tu-

ples where GSWwon in the 2012-13 season, i.e.,𝑔2, andPT (𝑄1, 𝐷, 𝑡2)

contains 𝑔3 and 𝑔5 (GSW’s wins in the 2015-16 season).

2.2 Schema Graph and Join Graph

Schema graphs. As mentioned in the introduction, we create ex-
planations by summarizing provenance augmented with additional
information produced by joining the provenance with related tables.
We assume that a schema graph is given as input that models which
joins are allowed. The vertices of a schema graph correspond to
the relations in the database. Each edge in this graph encodes a
possible join between the connected relations, and is labeled with a
set of possible join conditions between the two connected relations.
We use Cond to denote the set of all predicates involving Boolean
conjunctions (∧) and equality (=) of two attributes or an attribute

1Extensions are discussed in Section 7.

with a constant that can be used for joining relations in 𝐷 (i.e., only
equi-joins are allowed).

Definition 2 (Schema Graph). Given a database schema 𝐷 , a

schema graph𝐺 = (𝑉𝑆 , 𝐸𝑆 , 𝑙𝑆𝑒𝑑𝑔𝑒 ) for𝐷 is an undirected edge-labeled

graph with nodes 𝑉𝑆 = rels(𝐷), edges 𝐸𝑆 , and a labeling function

𝑙𝑆𝑒𝑑𝑔𝑒 : 𝐸𝑆 → 2Cond that associates a set of conditions with every

edge from 𝐸𝑆 . We require that for each edge 𝑢 ∈ 𝐸𝑆 , each condition

in 𝑙𝑆𝑒𝑑𝑔𝑒 (𝑢) only references attributes from relations incident to 𝑢.

Note that𝐺 is an input for our method. To create schema graphs,
our system can extract join conditions from the foreign key con-
straints of a database and also allows the user to provide additional
join conditions. Furthermore, 𝑙𝑆𝑒𝑑𝑔𝑒 could also be determined using
join discovery techniques such as [19, 46, 54]. Figure 3 shows the
simplified schema graph for the NBA dataset discussed in Exam-
ple 1. We only show relations that are used in the examples above.
In the schema graph, relations are represented by nodes and are
connected through edges (𝑢1, 𝑢2, . . . , 𝑢4) with conditions as labels.
For example, 𝑙𝑆𝑒𝑑𝑔𝑒 (𝑢1) in Figure 3 implies that we are allowed to
join PlayerGameScoring(P) with Game(G) in two different ways:
(1) through an equi-join on year, month, day, and home (i.e., the
home-team of a game), which returns a player’s stats for all the
games they played, and (2) with an additional condition on home

= winner, which returns a player’s stats for games for which the
home team won. Note that there is an edge 𝑢4 which suggests node
LineupPlayer(L) can be joined with itself on condition L.lineupid

= L.lineupid (renaming of 𝐿 is needed in the actual join) to find
players in the same lineup.

Join graphs. A join graph Ω encodes one possible way of augment-
ing PT (𝑄,𝐷) with related tables. It contains a distinguished node
𝑃𝑇 representing the relations in relsQ (𝐷). The other nodes of Ω are
labeled with relations. Edges in Ω are labeled with join conditions
allowed by the schema graph 𝐺 . There can be multiple parallel
edges between two nodes, i.e., Ω is a multi-graph.

Definition 3 (join graph). Given a database 𝐷 , schema graph

𝐺 = (𝑉𝑆 , 𝐸𝑆 , 𝑙𝑆𝑒𝑑𝑔𝑒 ) and query𝑄 , a join graph Ω for𝐺 is a node- and

edge-labeled undirectedmultigraph (𝑉𝐽 , 𝐸 𝐽 , 𝑙 𝐽 𝑛𝑜𝑑𝑒 , 𝑙 𝐽 𝑒𝑑𝑔𝑒 ) with nodes

𝑉𝐽 , edges 𝐸 𝐽 , a node labeling function 𝑙 𝐽 𝑛𝑜𝑑𝑒 : 𝑉𝐽 → rels(𝐷) ∪ {𝑃𝑇 },

and edge labeling function 𝑙 𝐽 𝑒𝑑𝑔𝑒 : 𝐸 𝐽 → Cond. For any join graph

we require that it contains exactly one node labeled with 𝑃𝑇 and there

are no edges with 𝑃𝑇 as both end-points. For every edge 𝑒 = (𝑛1, 𝑛2) ∈

𝐸 𝐽 we require that there exists a corresponding edge𝑢 = (𝑅1, 𝑅2) ∈ 𝐸𝑆
such that all of the following conditions hold:

• 𝑙 𝐽 𝑒𝑑𝑔𝑒 (𝑒) ∈ 𝑙𝑆𝑒𝑑𝑔𝑒 (𝑢) (modulo renaming relations using their

aliases for disambiguation as discussed below)

• If 𝑙 𝐽 𝑛𝑜𝑑𝑒 (𝑛1) = 𝑃𝑇 , then 𝑅1 ∈ relsQ (𝐷), else, 𝑙 𝐽 𝑛𝑜𝑑𝑒 (𝑛1) = 𝑅1
• If 𝑙 𝐽 𝑛𝑜𝑑𝑒 (𝑛2) = 𝑃𝑇 , then 𝑅2 ∈ relsQ (𝐷), else, 𝑙 𝐽 𝑛𝑜𝑑𝑒 (𝑛2) = 𝑅2

The first condition above says that the join condition between
two relations in the join graph Ω should be one of the allowed con-
ditions from the schema graph 𝐺 . The second and third conditions
state that edges adjacent to node 𝑃𝑇 should correspond to an edge
adjacent to a relation accessed by query𝑄 . Note that multiple nodes
in𝑉𝐽 may be labeled with the same relation and also relations from
relsQ (𝐷) may appear in node labels.

Disambiguation of relation and attribute names in join graphs.

In join graphs corresponding to a schema graph, we may need to



address some ambiguity in attribute names and relation names.
(1) Unlike the schema graph 𝐺 , the join graph Ω may contain the
same relation 𝑅𝑖 multiple times with node label ≠ 𝑃𝑇 . We assign
each such occurrence of 𝑅𝑖 a fresh label 𝑅𝑖1, 𝑅𝑖2, · · · in Ω. For edges
incident on 𝑅𝑖1, 𝑅𝑖2, . . . in Ω we use these labels (𝑅𝑖1 .𝐴, 𝑅𝑖2 .𝐴, . . . )
instead of the original attribute name 𝑅𝑖 .𝐴. (2) In addition to the
join graph Ω, even in the original query 𝑄 and therefore in the
provenance table PT (𝑄, 𝐷), the same relation 𝑅𝑖 ∈ relsQ (𝐷) can
appear multiple times using different aliases, say, 𝑅𝑖1 and 𝑅𝑖2. Sup-
pose in the schema graph 𝐺 there is an edge between 𝑅𝑖 and 𝑅 𝑗 .
Then in a join graph Ω, there can be two parallel edges between
node 𝑃𝑇 and 𝑅 𝑗 , one corresponding to a join between 𝑅𝑖1 and 𝑅 𝑗 ,
and the second one corresponding to the join between 𝑅𝑖2 and 𝑅 𝑗 .
The labels of these edges will use the corresponding aliases (𝑅𝑖1.𝐴
on one edge and 𝑅𝑖2.𝐴 on the other) for disambiguation. Note that
both (1) and (2) may occur in the same join graph.

Example 3. Consider the join graph Ω2 from Figure 2c. Since

relsQ1 (𝐷) = {Game}, 𝑃𝑇 represents the one relation accessed by 𝑄 .

Nodes from this join graph are connected through edges (𝑒1, 𝑒2, 𝑒3),

where each edge has a corresponding condition in the schema graph

shown in Figure 3. For example, the join condition on 𝑒1 from Ω2

is the first condition in the label of 𝑢2 from the schema graph, i.e.,

𝑙 𝐽 𝑒𝑑𝑔𝑒 (𝑒1) ∈ 𝑙𝑆𝑒𝑑𝑔𝑒 (𝑢2). Similarly, 𝑙 𝐽 𝑒𝑑𝑔𝑒 (𝑒2) ∈ 𝑙𝑆𝑒𝑑𝑔𝑒 (𝑢3). As dis-

cussed above, LineupPlayer appears more than once in the join

graph renamed as LineupPlayer1 (𝐿1) and LineupPlayer2 (𝐿2).

2.3 Augmented Provenance Table

We now describe the process of generating the relation correspond-
ing to a given join graph Ω Ð the result of joining the relations in
the graph Ω based on the encoded join conditions (after renaming
relations and attributes as described in the previous section).

Definition 4 (Augmented Provenance Table). Consider a

database 𝐷 , a query 𝑄 , and a join graph Ω = (𝑉𝐽 , 𝐸 𝐽 , 𝑙 𝐽 𝑛𝑜𝑑𝑒 , 𝑙 𝐽 𝑒𝑑𝑔𝑒 ).

Let 𝑆 𝑗1 , · · · , 𝑆 𝑗𝑝 = 𝑉𝐽 − {𝑃𝑇 }, i.e., all the relations that appear in

Ω with labels ≠ 𝑃𝑇 . Furthermore, let 𝑡 ∈ 𝑄 (𝐷) and tuple 𝑡 ′ ∈

PT (𝑄,𝐷, 𝑡). We define the augmented provenance table (APT) for
𝐷 , 𝑄 , and Ω (and 𝑡 , 𝑡 ′) as

APT (𝑄,𝐷,Ω) = 𝜎𝜃Ω (PT (𝑄, 𝐷) × 𝑆 𝑗1 × · · · × 𝑆 𝑗𝑝 )

APT (𝑄, 𝐷,Ω, 𝑡) = 𝜎𝜃Ω (PT (𝑄, 𝐷, 𝑡) × 𝑆 𝑗1 × · · · × 𝑆 𝑗𝑝 )

APT (𝑄,𝐷,Ω, 𝑡, 𝑡 ′) = 𝜎𝜃Ω ({𝑡
′} × 𝑆 𝑗1 × · · · × 𝑆 𝑗𝑝 )

Here 𝜃Ω =
⋀︁

(𝑆𝑎,𝑆𝑏 ) ∈𝐸 𝐽
𝑙 𝐽 𝑒𝑑𝑔𝑒 ((𝑆𝑎, 𝑆𝑏 )) is the conjunction of join

conditions in the join graph Ω. The join conditions only use equal-

ity comparisons between two attributes. We assume that duplicate

(renamed) columns are removed from APT (𝑄, 𝐷,Ω).

Example 4. Consider Ω1 from Figure 2a that combines the prove-

nance table PT with PlayerGameScoring through an equi-join on

year, month, day, and home. Figure 4 shows the join resultAPT (𝑄1,

𝐷,Ω1) using the tuples from Figures 1a and 1c.

2.4 Explanations with Augmented Provenance

CaJaDE’s approach for generating explanations is based on summa-
rizing augmented provenance tables. In particular, given a database
and a query, the user identifies interesting or surprising tuples in
the query’s result (e.g., the aggregate value is high/low, or the value

year mon day home away home_pts away_pts winner season player pts
2012 12 05 DET GSW 97 104 GSW 2012-13 S. Curry 22
2012 12 05 DET GSW 97 104 GSW 2012-13 K. Thompson 27
2012 12 05 DET GSW 97 104 GSW 2012-13 D. Green 2
2015 10 27 GSW NOP 111 95 GSW 2015-16 S. Curry 40
2016 01 22 GSW IND 122 110 GSW 2015-16 S. Curry 39
2016 01 22 GSW IND 122 110 GSW 2015-16 K. Thompson 18

Figure 4: APT (𝑄1, 𝐷,Ω1) result using example tuples

of a tuple is higher/lower than that of another tuple). To explain
such interesting results, CaJaDE returns patterns (i.e., predicates)
that each summarize the difference between the augmented prove-
nance for the two query result tuples (or the provenance of one
result tuple and all other result tuples).

User questions. Given a database 𝐷 and a query 𝑄 , CaJaDE sup-
ports two-point questions or comparisons, which we will discuss
by default: Given 𝑡1, 𝑡2 ∈ 𝑄 (𝐷), summarize input tuples in 𝐷 that

differentiate 𝑡1 from 𝑡2. However, CaJaDE also works for single-
point questions: Given a single tuple 𝑡 ∈ 𝑄 (𝐷), summarize input

tuples in 𝐷 that differentiate 𝑡 from the rest of the tuples. Here the
intuitive idea is to treat 𝑡 as 𝑡1, and all tuples 𝑡 ′ ≠ 𝑡 ∈ 𝑄 (𝐷) as 𝑡2.

Explaining aggregates vs. summarizing provenance vs. non-

provenance. Instead of directly explaining why an aggregate value
𝑡 .val is high/low or 𝑡1 .val higher/lower than another value 𝑡2 .val
[35, 42, 53], the goal of CaJaDE is to use łpatternsž (discussed below)
to summarize the input tuples that contributed themost to an output
tuple as well as distinguish it from the other outputs. Therefore,
unlike the approaches in [35, 42, 53], in CaJaDE, the aggregate
values 𝑡1 .val, 𝑡2 .val, 𝑡 .val do not play a role in the explanations2.

Summarization patterns and explanations. In the CaJaDE

framework, explanations are patterns (conjunctive predicates) that
compactly encode sets of tuples from the augmented provenance
tables based on a join graph. This type of patterns has been used
widely for explanations [20, 31, 35, 42, 53].

Definition 5 (Summarization Pattern and Matching Tu-

ples). Let 𝑅 be a relation with attributes (𝐴1, . . . , 𝐴𝑚), and let D𝑖

denote the active domain of attribute 𝐴𝑖 in 𝑅. A summarization
pattern (or simply a pattern) Φ is an 𝑚−ary tuple such that for

every 𝐴𝑖 ∈ 𝑅, (i) if 𝐴𝑖 is a numerical or ordinal attribute: Φ.𝐴𝑖 ∈
⋃︁

𝑋 ∈D𝑖
{(𝑋, ≤), (𝑋, ≥), (𝑋,=)} ∪ {∗}, (ii) if 𝐴𝑖 is a categorical at-

tribute: Φ.𝐴𝑖 ∈
⋃︁

𝑋 ∈D𝑖
{(𝑋,=)} ∪ {∗}. Here ∗ denotes that the at-

tribute is not being used in the pattern and𝑋 ∈ D𝑖 denotes a threshold

for numeric attributes. If Φ.𝐴𝑖 ≠ ∗, then Φ.𝐴𝑖 [0] denotes the threshold

𝑋 and Φ.𝐴𝑖 [1] denotes the comparison operator ≤, ≥, or =.

A tuple 𝑡 ∈ 𝑅 matches a pattern Φ, written as 𝑡 ⊨ Φ, if 𝑡 and Φ

agree on all conditions, i.e., ∀𝑖 ∈ {1, . . . ,𝑚}, one of the following must

hold: (i) Φ.𝐴𝑖 = ∗, or (ii) (𝑡 .𝐴𝑖 ≥ Φ.𝐴𝑖 [0]) ∧ (Φ.𝐴𝑖 [1] = ‘ ≥ ’), or

(iii) (𝑡 .𝐴𝑖 ≤ Φ.𝐴𝑖 [0]) ∧ (Φ.𝐴𝑖 [1] = ‘ ≤ ’), or (iv) (𝑡 .𝐴𝑖 = Φ.𝐴𝑖 [0]) ∧

(Φ.𝐴𝑖 [1] = ‘ = ’). We use match(Φ, 𝑅) to denote {𝑡 ∈ 𝑅 | 𝑡 ⊨ Φ}.

When presenting textual descriptions of summarization patterns,
we omit attributes which are set to ∗, and instead include the at-
tribute name as (𝐴𝑖 : Φ.𝐴𝑖 [0],Φ.𝐴𝑖 [1]) to avoid ambiguity. Also,
since the group-by attributes exactly capture the answer tuples
𝑡1, 𝑡2, and do not provide any additional information, patterns are
not allowed to include attributes used in grouping in the query 𝑄 .

2Taking the amount of contribution (responsibility/sensitivity) of input tuples into
account as in [35, 42, 53] is an interesting direction for future work.



As discussed in the introduction, the explanations computed by
CaJaDE consist of a join graph Ω, a pattern Φ over APT (Ω, 𝐷),
and the support of Φ to differentiate one tuple from the others
by augmenting the provenance using Ω, and thereby providing
additional contextual information from other tables in 𝐷 .

Definition 6 (Explanations from Augmented Provenance).

Given a database 𝐷 , schema graph 𝐺 , query 𝑄 , and a two-point

question with 𝑡1, 𝑡2 ∈ 𝑄 (𝐷), an explanation is a tuple 𝐸 = (Ω, Φ,

(𝑣1, 𝑎1), (𝑣2, 𝑎2)), where Ω is a join graph for 𝐺 ; Φ is a pattern over

the augmented provenance table APT (𝑄, 𝐷,Ω); and (𝑣1, 𝑎1) and

(𝑣2, 𝑎2) denote the relative support of Φ for 𝑡1 and 𝑡2, respectively.
3

For simplicity, we will often drop (𝑣1, 𝑎1) and (𝑣2, 𝑎2).

Example 5. Consider the explanation from Figure 2a. The pattern

Φ1 = {(player : 𝑆.𝐶𝑢𝑟𝑟𝑦,=), (pts : 23, ≥)} is based on Ω1. Here

player is a categorical attribute and pts is a numeric attribute (the

other attributes are ∗), both coming from the PlayerGameScoring ta-

ble. Any tuple fromAPT (𝑄1, 𝐷,Ω1) which fulfills player = ’S.Curry’
and 𝑝𝑡𝑠 ≤ 23 is in match(Φ1,APT (𝑄1, 𝐷,Ω1)). One possible ex-

planation for𝑈𝑄1 from Figure 1f is: (Φ1,Ω1, (58, 73), (21, 47)).

Note that explanations for two-point questions are asymmetric,
as one of the tuples is chosen as the primary tuple whose relative
support is given by (𝑣1, 𝑎1), and the second one is chosen as the sec-
ondary tuple, whose relative support is given by (𝑣2, 𝑎2). Switching
these two tuples may result in a different set of top explanations
using the quality measure that we discuss next.

2.5 Quality Measure of Explanations

First, we discuss the quality measure for explanations within the
context of one join graph, and then discuss how to find top expla-
nations across all join graphs mined by our algorithms.

2.5.1 Quality Measures Given a Join Graph. For a two-point user
question focusing on the difference between 𝑡1, 𝑡2 ∈ 𝑄 (𝐷), we
would like an explanation’s pattern to match as many tuples from
the provenance of 𝑡1 as possible, and the least amount of tuples from
the provenance of 𝑡2 as possible. For this purpose, we adapt the
notion of F-score. Recall that match(Φ, 𝑅) denotes {𝑡 ∈ 𝑅 | 𝑡 ⊨ Φ}.

Definition 7 (Quality Metrics of a Pattern). Consider a

database 𝐷 , a query 𝑄 , a join graph Ω, two output tuples in the user

question 𝑡1, 𝑡2 ∈ 𝑄 (𝐷), and an explanation pattern 𝐸 = (Ω,Φ).
(a) A tuple 𝑡 ′ ∈ PT (𝑄, 𝐷, 𝑡1) (similarly for 𝑡2) is said to be cov-

ered by 𝐸 if there exists 𝑡 ′′ ∈ APT (𝑄,𝐷,Ω, 𝑡1, 𝑡
′) (ref. Definition 4)

such that 𝑡 ′′ ⊨ Φ. The coverage of 𝐸 on 𝑡1, 𝑡
′ in APT (𝑄,Ω, 𝐷) is:

Cov(𝐸,Ω, 𝑡1, 𝑡
′) = 1[match

(︁

Φ, APT(𝑄,Ω, 𝐷, 𝑡1, 𝑡
′)
)︁

≠ ∅]

where 1[] is the indicator function.
(b) The coverage (or, true positives) of 𝐸 for 𝑡1 is defined as the

sum of its coverage on all tuples in the provenance table:

TP(𝐸,Ω, 𝑡1) =
∑︂

𝑡′∈PT (𝑄,𝐷,𝑡1 )

Cov(𝐸,Ω, 𝑡1, 𝑡
′)

(c) The false positives of 𝐸 for 𝑡1 in comparison to 𝑡2 is the sum
of its coverage on all tuples in PT (𝑄, 𝐷) that are in the provenance
of 𝑡2 (𝑡1 does not appear on the right-hand side here):

FP(𝐸,Ω, 𝑡1, 𝑡2) =
∑︂

𝑡′∈PT (𝑄,𝐷,𝑡2 )

Cov(𝐸,Ω, 𝑡2, 𝑡
′)

3We will discuss the relative support in the next section.

(d) The false negatives of 𝐸 for 𝑡1 is defined as the sum of the
uncovered tuples in the provenance of 𝑡1:

FN(𝐸,Ω, 𝑡1) =
∑︂

𝑡′∈PT (𝑄,𝐷,𝑡1 )

1 − Cov(𝐸,Ω, 𝑡1, 𝑡
′)

(e) Using (b)-(d), we define precision, recall, and F-score for 𝑡1
in comparison to 𝑡2 as usual:

Prec(𝐸,Ω, 𝑡1, 𝑡2) =
TP(𝐸,Ω, 𝑡1)

TP(𝐸,Ω, 𝑡1) + FP(𝐸,Ω, 𝑡1, 𝑡2)

Rec(𝐸,Ω, 𝑡1) =
TP(𝐸,Ω, 𝑡1)

TP(𝐸,Ω, 𝑡1) + FN(𝐸,Ω, 𝑡1)

Fscore(𝐸,Ω, 𝑡1, 𝑡2) =
2

1

Prec(𝐸,Ω,𝑡1,𝑡2 )
+ 1

Rec(𝐸,Ω,𝑡1 )

A pattern Φ with high recall provides a good description of the
tuples contributing to 𝑡1. A high precision implies that Φ covers few
tuples in the provenance of 𝑡2. A high F-score indicates both. This
definition can be easily adapted to single-point questions involving
a single output tuple 𝑡 ∈ 𝑄 (𝐷) by summing over 𝑡 ′ ∈ PT (𝑄, 𝐷) \

PT (𝑄,𝐷, 𝑡) instead of summing over 𝑡 ′ ∈ PT (𝑄,𝐷, 𝑡2) in the false
positives definition above. The other definitions remain the same.

Support of explanation patterns. As described in the running ex-
ample and inDefinition 6, an explanation𝐸 = (Ω,Φ, (𝑣1, 𝑎1), (𝑣2, 𝑎2))

includes the relative support of the pattern Φ for 𝑡1, 𝑡2 ∈ 𝑄 (𝐷)

to record how this pattern differentiates the output tuples 𝑡1 and
𝑡2. Here 𝑣1 = TP(Φ,Ω, 𝑡1) and 𝑎1 = TP(Φ,Ω, 𝑡1) + FN(Φ,Ω, 𝑡1) =

|PT (𝑄, 𝐷, 𝑡1) | as defined in Definition 7, denoting the set of tuples
in the provenance of 𝑡1 covered by the pattern Φ, and the set of
all tuples in the provenance of 𝑡1 respectively. Similarly, we define
𝑣2, 𝑎2 for the output tuple 𝑡2 to demonstrate the difference with 𝑡1.

Finding Top-𝑘 Patterns with Highest F-scores. Given a join
graph Ω, our goal is to find the top-𝑘 patterns Φ in terms of their
individual F-scores according to Definition 7. However, in practice
there are additional considerations that we should take into account,
e.g., the maximum number of attributes appearing in a pattern.

Complexity. Finding top-𝑘 patterns given a join graph Ω has
polynomial data complexity [49] (fixed size schema and query).
The provenance table and APTs can be computed in PTIME in the
size of the data. Given a pattern, its matches can be determined in
PTIME and therefore, all metrics in Definition 7 can be computed
in PTIME. If there are 𝑝 attributes in the augmented provenance
table, the number of possible patterns is in 𝑂 (𝑛𝑝 ) (the number of
distinct attribute values is bound by 𝑛 = total number of tuples in
the database, and each attribute can appear as don’t-care ∗ and
with one of the three comparison operators). Thus, even a naive
approach for computing the top-𝑘 patterns with the highest F-score
values is polynomial in data size. However, this naive approach does
not scale in practice and therefore we adopt a number of heuristic
optimizations to solve this problem as described in Section 3.1.

Explanations over All Join Graphs. When mining multiple join
graphs Ω, there are several options for finding top patterns across
all join graphs, e.g., penalizing patterns from complex join graphs.
However, for simplicity, and for an interactive user experience, we
find top-𝑘 patterns for each individual join graph and present a
global ranking of all patterns. Thus, the user can explore explana-
tions generated from more than one join graph (see Section 3.2).



3 ALGORITHMS FOR MINING PATTERNS

In this section we discuss our algorithms for mining patterns for a
given join graph (Section 3.1), and for enumerating all join graphs
over which patterns should be mined (Section 3.2). Pseudocode for
these algorithms and additional details are presented in [34].

3.1 Mining Patterns given a Join Graph

We first give an overview of our algorithm for mining patterns
from an augmented provenance table (APT) generated based on
a given join graph Ω. Recall that we are dealing with patterns
that may contain equality comparisons (for categorical attributes)
and/or inequality comparisons (for numeric attributes). We mine
patterns in multiple phases. (i) In the first preprocessing step, we
cluster attributes that are highly correlated to reduce redundancy
in the patterns. The output of this step are clusters each with one
selected representative. (ii) In the second preprocessing step, we
use random forests to remove clusters that have low relevance for
predicting membership of input tuples in the provenance of only
one of the two output tuples from the user question. Such attributes
are unlikely to yield patterns of high quality. (iii) Next we only
consider categorical attributes and mine pattern candidates using a
variation of the LCA (Least Common Ancestor) method from [20]
that can only handle categorical attributes. (iv) From the set of
patterns returned by the LCA method, we then select the top-𝑘𝑐𝑎𝑡
patterns with the highest recall and frequency for the next step. (v)
These patterns are then refined (see below) by adding conditions
on numerical attributes that can improve precision at the potential
cost of reducing recall. (vi) Finally, the top-k patterns based on score
according to Definition 7 are returned.

A pattern Φ
′ is a refinement of a pattern Φ if Φ′ can be derived

from Φ by replacing one or more ∗ with comparisons, e.g., pattern
Φ2 = ((𝑋,=), (𝑌, ≤)) is a refinement of Φ1 = ((𝑋,=), ∗). We use
the following observation that is implied by Definition 7 (a), (b), (d),
and (e) to prune patterns if their recall is below a threshold.

Proposition 3.1. Given a tuple 𝑡 ∈ 𝑄 (𝐷) and a join graph Ω,

Rec(𝐸2,Ω, 𝑡) ≤ Rec(𝐸1,Ω, 𝑡), where 𝐸1 = (Ω,Φ1), 𝐸2 = (Ω,Φ2),

and Φ2 is a refinement of Φ1.

Next we discuss the above six steps in more detail.

3.1.1 Clustering Attributes based on Correlations. Redundancy in
patterns can be caused by attributes that are highly correlated. As
an extreme example, consider an APT containing both the birth
date and age of a person. For any pattern containing a predicate
on birth date there will be an (almost) equivalent pattern using age
instead, and also a pattern using both age and birth date. To reduce
the prevalence of such redundant patterns, we cluster attributes
based on their mutual correlation and pick a single representative
for each cluster. We use VARCLUS [45], a clustering algorithm
closely related to principal component analysis and other dimen-
sionality reduction techniques [40]. However, any other technique
for clustering correlated attributes can be used instead.

3.1.2 Filtering Attributes based on Relevance. Random forests have
been successfully used in machine learning applications to deter-
mine the relevance of a feature (attribute) to the outcome of a
classification task. We train a random forest classifier that predicts

whether a row belongs to the augmented provenance of only one of
the two outputs from the user’s question [11]. We then find the frac-
tion 𝜆#𝑠𝑒𝑙−𝑎𝑡𝑡𝑟 of attributes with the highest relevance (𝜆#𝑠𝑒𝑙−𝑎𝑡𝑡𝑟 is
an input parameter, a summary of all parameters discussed in this
section is shown in Table 4). The rationale for this step is to prune
patterns involving attributes that are irrelevant for distinguishing
the tuples 𝑡1 and 𝑡2 from the user question. Such attributes can be
added to any pattern with minimal effect on the recall and precision
of patterns, but could mislead users into thinking that the value of
this attribute is a distinguishing factor for 𝑡1, 𝑡2.

3.1.3 Patterns over Categorical Attributes. We then generate a sam-
ple of size 𝜆𝑝𝑎𝑡−𝑠𝑎𝑚𝑝 (an input parameter) from APT (𝑄, 𝐷,Ω)

and a set of candidate patterns over only categorical attributes us-
ing the LCA method from [20]. We ignore all numerical attributes
at this stage by using ∗. Our implementation of the LCA method
generates pattern candidates from the cross product of two samples
of the same size. A candidate pattern is generated for each pair
(𝑡, 𝑡 ′) of tuples from the sample by replacing values of attributes
𝐴 where 𝑡 .𝐴 ≠ 𝑡 ′.𝐴 with a placeholder ∗ and by keeping constants
that 𝑡 and 𝑡 ′ agree upon (𝑡 .𝐴 = 𝑡 ′.𝐴). Note that in our case each
element of a pattern is a predicate, therefore, using a constant as
done in the LCA method corresponds to using an equality predicate
(i.e., 𝐴 = 𝑐 for 𝑡 .𝐴 = 𝑡 ′.𝐴 = 𝑐). By keeping constants that frequently
co-occur, the LCA method generates patterns that reflect common
combinations of constants in the data. Focusing on categorical at-
tributes first enables us to (i) use the established heuristic of the LCA
method to generate categorical-only pattern candidates, and (ii) to
significantly reduce the search space by pruning all refinements of
patterns without a sufficiently high recall.

3.1.4 Filtering Categorical Pattern Candidates. Next, we calculate
the recall for each pattern finding the matches for the pattern in
the APT. In order to quickly find the most common patterns, we
reduce the number of queries needed to be run to check recall by
choosing the most frequent patterns in the LCA results. We then
filter out patterns whose recall is below a threshold 𝜆𝑟𝑒𝑐𝑎𝑙𝑙 , and
pick at most 𝑘𝑐𝑎𝑡 patterns, which we denote by P𝑐𝑎𝑡 .

3.1.5 Refinement and Numeric Attributes. We then generate re-
fined patterns from P𝑐𝑎𝑡 by replacing placeholders ∗ on numerical
attributes with predicates. Even though such refinements can at
best have the same recall as the original pattern, their precision
may be higher. Recall that for numerical attributes we allow for
both equality as well as inequality predicates, for which there is
a large number of possible constants to choose from, because nu-
merical attributes tend to have large domains. To reduce the size of
the search space, we split the domain of each numerical attribute
into a fixed number of fragments (e.g., quartiles) and only use the
boundaries of these fragments when generating refinements. We
systematically enumerate all refinements of a pattern by extending
it with one predicate at a time. We use P𝑟𝑒 𝑓 𝑖𝑛𝑒𝑑 to denote the union
of P𝑐𝑎𝑡 with the set of patterns generated in this step.

3.1.6 Computing Top-k Patterns. Finally, we calculate the F-score
for each pattern in P𝑟𝑒 𝑓 𝑖𝑛𝑒𝑑 and return 𝑘 patterns by taking into
account both F-scores and a measure for diversity to give the user
different types of interesting explanations (more details are pre-
sented in [34]). As an optimization, we calculate the F-score over a



sample of the data (with sample size 𝜆𝐹1−𝑠𝑎𝑚𝑝 ). Note that 𝜆𝐹1−𝑠𝑎𝑚𝑝

can be different from the sample size 𝜆𝑝𝑎𝑡−𝑠𝑎𝑚𝑝 in the previous
step since we found that a small sample is sufficient for generating a
meaningful set of patterns, but may not be sufficient for estimating
recall with high enough accuracy. We iteratively build the final
pattern set of size 𝑘 starting with the pattern with the highest F-
score. When deciding what pattern to add next to the result, we
penalize patterns that share attributes and values with a pattern
that is already in the result.

3.2 Join Graph Enumeration

In this section, we describe an algorithm that enumerates join
graphs of increasing size iteratively. The maximum size of join
graphs considered by the algorithm is determined by a parameter
𝜆#𝑒𝑑𝑔𝑒𝑠 . We employ several heuristic tests to determine whether
a join graph generated by the algorithm should be considered for
pattern mining. The rationale for not considering all join graphs
for pattern mining is that for some join graphs, pattern mining
may not yield patterns of good quality, or it may be much more
computationally expensive than generating the join graph. Hence
we skip pattern mining for join graphs that are unlikely to be worth
the cost. For join graphs that pass these tests we materialize the
corresponding APT and apply the pattern mining algorithm from
Section 3.1 to compute the top-k patterns for the APT.

Generating join graphs. We enumerate join graphs in iteration 𝑖
by extending every join graph produced in iteration 𝑖 − 1 with all
possible edges. For each join graph Ω produced in iteration 𝑖 − 1,
we consider two types of extensions: (i) we add an additional edge
between two existing nodes of the graph and (ii) we add a new
node and connect it via a new edge to an existing node.

Checking join graph connectivity and skipping expensive

APT computations. We filter out join graphs based on lack of

connectivity and on high estimated costs. Note that schema graphs
may contain tables with multiple primary key attributes incident
to edges which join on part of the key. This is typical in łmap-
pingž tables that represent relationships. For instance, consider the
PlayerGameScoring table from our running example that stores
the number of points a player scored per game. Assume that there
exists another table Player that is not part of the running example.
The primary key of PlayerGameScoring consists of a foreign key
to the Game table and a foreign key to the Player for which we
are recording stats. Consider a query that joins the Game table with
LineupPerGameStats, LineupPlayer and selects games played by
team GSW. A valid join graph for this query would be to join the
node 𝑃𝑇 with PlayerGameScoring on game’s primary key.

Note that while the result of this query contains rows that pair a
player of GSWwith lineups they played in during a particular game,
the APT would pair each row with any player that played in that
game irrespective of their team. Join graphs like this can lead to
redundancy and large APT tables. One reason for this redundancy
is that not all primary key attributes of the PlayerGameScoring
table are joined with another table. To prevent such join graphs
with redundancy, our algorithm checks that for every node in the
join graph, the primary key attributes of that node are joined with
at least one other node from the join graph. For instance, in the

example above the join graph could bemodified to pass this check by
also joining the PlayerGameScoring table with the Player table.

Even though we only consider fully connected join graphs, some
generated join graphs will result in APTs of significant size, which
are expensive to materialize and mine patterns from. We use the
DBMS to estimate the cost of the materialization query upfront. We
skip pattern mining for join graphs where the estimated cost of this
query is above a threshold 𝜆𝑞𝐶𝑜𝑠𝑡 . While we may lose explanations
by skipping join graphs, experimental results demonstrate that this
check is necessary for achieving reasonable performance. Further-
more, smaller join graphs result in less complex explanations.

Ranking results. After enumerating join graphs and computing
top-𝑘 patterns for each join graph, we rank the union of all pattern
sets on their F-scores. Ranking all patterns (instead of filtering
out some patterns) reduces the load on the user by increasing the
likelihood that good patterns are shown early on without having
the risk of not showing patterns that have lower scores.

4 QUALITATIVE EVALUATION

We now evaluate the quality of explanations produced by CaJaDE

using case studies on two real datasets (NBA and MIMIC). We also
report results of a user study with the NBA dataset. Due to the space
limit, we simplified some of these descriptions. Note that the same
pattern may be returned for several join graphs (same attributes,
but different join path). In the interest of diversity, we removed
duplicates and explanations that only differ slightly in terms of
constants. We show the top-3 explanations after this step. we use
ł[𝑡1]" or ł[𝑡2]" in explanations as identifier of the primary tuple for
the explanation. For the sets of top-20 explanations (including join
graphs), SQL code of the queries, and detailed descriptions of the
datasets, please see [34].

4.1 Case Study: NBA

Dataset.NBA is a dataset we extracted from the NBAwebsite (https:
//www.nba.com/) and PBP stats website (https://www.pbpstats.
com/). It includes 10 seasons’ worth of data (seasons 2009-10 to
2018-19). The dataset contains 11 relations and is ∼ 170MB large.

Setup. For the NBA dataset, we use five queries calculating player’s
and team’s stats and generated user questions based on interest-
ing results. Figure 5 shows the queries, user questions, and top-3
explanations produced by our method for these user questions.

Explanations and Analysis. 𝑄𝑛𝑏𝑎1: Draymond Green had a big
average points difference between 2 consecutive seasons. All 3
explanations contain salary change information. In reality, from
2015-16 season to 2016-17 season, Green’s salary increased, which
could result in losing incentive to play as hard as when he earns a

lower salary. The 2𝑛𝑑 and 3𝑟𝑑 explanation identify factors affecting
the player’s points such as minutes played and shooting percentage
per game, e.g., Green had more games where he played more than
31minutes and had more than 0.4 shooting percentage in 2015− 16

season (2𝑛𝑑 explanation). 𝑄𝑛𝑏𝑎2: The GSW team had a sudden in-
crease in average assists. All explanations contain assistpoints

which has a cause-and-effect relationship with assists (more assists
result in more assistpoints). 𝑄𝑛𝑏𝑎3 and 𝑄𝑛𝑏𝑎5: Both players had
some significant average point changes. For 𝑄𝑛𝑏𝑎3, Lebron James



Query User question Top explanations F-score

𝑄𝑛𝑏𝑎1 Draymond Green’s
average points per year:
14 points in season
2015-16 (𝑡1) VS 10 points
in season 2016-17 (𝑡2)

player_salary< 15330000 [𝑡1] 1

prov.tspct< 0.69 ∧ prov.usage< 20.5 ∧
salary> 14260000 [𝑡2]

0.71

prov.minutes> 31 ∧ prov.tspct> 0.4 ∧
salary< 15330000 [𝑡1]

0.66

𝑄𝑛𝑏𝑎2 GSW ’s average assists
per year: 23 in season
2013-14 (𝑡1) VS 27 in
season 2014-15 (𝑡2)

prov.assistpoints< 68 ∧
player=Draymond Green [𝑡1]

0.74

prov.assistpoints> 57 ∧
prov.nonputbackast_2_pct> 0.55
∧ player.player=Harrison Barnes [𝑡2]

0.73

prov.assistpoints< 68 ∧
offreboundpct> 0.25 [𝑡1]

0.72

𝑄𝑛𝑏𝑎3 LeBron James’s average
points per year: 29.7 in
season 2009-10 (𝑡1) VS
26.7 in season 2010-11(𝑡2)

player_salary> 14500000 [𝑡1] 1

team=MIA [𝑡2] 0.98
team=CLE [𝑡1] 0.93

𝑄𝑛𝑏𝑎4 GSW ’s number of wins
per year: 47 in 2012-13
(𝑡1) season VS 67 in
2016 − 17 season (𝑡2)

player_name=Pau Gasol ∧
player_salary< 19285850 [𝑡2]

1

player_name=Andre Iguodala [𝑡2] 0.97
fg_3_apct< 0.31∧
team_points< 121 [𝑡1]

0.92

𝑄𝑛𝑏𝑎5 Jimmy Butler’s average
points per year: 13 points
in season 2013-14 (𝑡1) VS
20 points in season
2014-15 (𝑡2)

player_salary> 1112880 [𝑡2] 1

prov.away_points> 87 ∧
prov.efgpct> 0.38 [𝑡2]

0.84

prov.usage< 23 ∧ team=CHI∧
team_assisted_2_spct> 0.5 [𝑡1]

0.77

Figure 5: Queries, user questions and explanations (NBA)

Query User question Top-3 explanations F-score

𝑄𝑚𝑖𝑚𝑖𝑐1 Patient death rate

grouped by diagnoses:
0.19 for chapter= 2 (𝑡1) VS
0.09 for chapter= 13 (𝑡2)

expire_flag=1 [𝑡1] 0.68
hospital_stay_length<
23∧expire_flag= 1 [𝑡1]

0.65

hospital_stay_length<
16,expire_flag= 1 [𝑡1]

0.63

𝑄𝑚𝑖𝑚𝑖𝑐2 Death rate by insurance:
Medicare=0.138 (𝑡1) VS
Medicaid=0.066 (𝑡2)

prov.admission_type=emergency [𝑡1] 0.85
expire_flag= 1 [𝑡1] 0.70
gender=Male [𝑡1] 0.65

𝑄𝑚𝑖𝑚𝑖𝑐3 Number of patients

grouped by ICU stays
length: less than 1 day (𝑡1)
VS more than 8 days (𝑡2)

hospital_stay_length> 9 ∧
procedure.chapter=16 [𝑡2]

0.86

hospital_stay_length< 6 ∧
los_group=0-1 [𝑡1]

0.86

prov.dbsource=carevue ∧
hospital_stay_length> 8 [𝑡2]

0.78

𝑄𝑚𝑖𝑚𝑖𝑐4 Death rate by insurance:
Medicare=0.14 (𝑡1) VS
Private=0.06 (𝑡2)

expire_flag=0∧age< 71 [𝑡2] 0.77
prov.admission_type=emergency [𝑡1] 0.73
prov.hospital_stay_length< 22.0 ∧
expire_flag=1 [𝑡1]

0.61

𝑄𝑚𝑖𝑚𝑖𝑐5 Number of patients that

did a procedure grouped
by ethnicity: 7821
Hispanic patients [𝑡1] VS
6247 Asian patients [𝑡2]

hospital_stay_length< 19 ∧ ethnic-
ity=Asian [𝑡2]

0.90

admission_type=emergency ∧
hospital_stay_length> 5 ∧ age< 66

∧ ethnicity=Hispanic [𝑡1]

0.80

prov.religion=Catholic [𝑡1] 0.63

Figure 6: Queries, user questions and explanations (MIMIC)

had an average points decrease. This occurred when he switched
to a new team (from CLE in 2009-10 season to MIA in 2010-11 sea-
son). In MIA he had less pressure offensively. CaJaDE successfully

identified this fact as a potential cause (2𝑛𝑑 and 3𝑟𝑑 explanation).
𝑄𝑛𝑏𝑎5: Jimmy Butler had a big improvement in average points. Our
top explanations for this improvement include an increase of usage
and minutes played. 𝑄𝑛𝑏𝑎4: This query is similar to our running
example 𝑄1 but with a question asking for different 2 seasons. The

2𝑛𝑑 explanation identifies a player change: Andre Iguodala only

played for GSW in 2015 − 17 season. The 3𝑟𝑑 explanation is about
the team’s points difference and 3-point percentage. While the first
explanation has a high F-score, the join graph details reveal that the
salary and player constants can have no relation with GSW. This
highlights the importance of including join graphs in explanations.

4.2 Case Study: MIMIC

Dataset. MIMIC (https://mimic.physionet.org/) is a deidentified
dataset of intensive care unit hospital admissions. The dataset con-
sists of 6 relations and is ∼ 120MB large. We constructed 5 queries
over this dataset accessing different tables. The simplified descrip-
tions of the queries, user questions, and explanations are shown in
Figure 6. We first briefly introduce the MIMIC dataset to help the
reader understand the queries and explanations. The main table
of the dataset is the Admissions table that records hospital admis-
sions. The Diagnosis table records diagnosis for patients for each
admission (a patient may be admitted more than once during their
lifetime). PatientsAdmissionInfo contains information like age
and religion for individual admissions of patients (e.g., age may
change over time). ICUStays records intensive care unit stays of
patients. There may be multiple ICU stays per admission.

Explanations and Analysis. Figure 6 shows the top-3 explana-
tions returned by CaJaDE for each user question. 𝑄𝑚𝑖𝑚𝑖𝑐1: This
question asks for the difference in death rates between two diagno-
sis categories (chapter 2: neoplasms vs chapter 13: musculoskeletal
system and connective tissue). The death rate is the fraction of
patients that died during their hospital stay. The 1𝑠𝑡 explanation

uses expire_flag= 1 from the patient table suggesting that this pa-
tient has passed away. This flag only indicates that the patient
died, but not whether during their hospital stay or not, subsuming

all hospital deaths. The 2𝑛𝑑 and 3𝑟𝑑 explanations add additional
information about the lengths of hospital stays, which indicates
a difference between the severity of these two categories which
explains the different death rates. 𝑄𝑚𝑖𝑚𝑖𝑐2: This query asks about
the difference between the death rates of two groups of patients
based on their insurance types. The 1𝑠𝑡 explanation states that there
are more emergency admissions with Medicare than with Medicaid,

which may explain the higher death rate. The 2𝑛𝑑 explanation re-

lates death rate to expire_flag. The 3𝑟𝑑 explanation suggests that
Medicare has more Male patients than Medicaid. 𝑄𝑚𝑖𝑚𝑖𝑐3: The 1

𝑠𝑡

explanation shows that most of the patients staying over 8 days in
the ICU will stay in hospital for more than 9 days and also have
procedures from chapter 16 (Miscellaneous Diagnostic and Thera-

peutic Procedures). The 2𝑛𝑑 explanation suggests that most patients
will be released from hospital in less than 6 days when their ICU

stay is less than 1 day. The 3𝑟𝑑 explanation states the same fact
that patients will stay more than 8 days in hospital when they stay
more than 8 days in the ICU. These explanations regarding hospital
stay length can help users identify that ICU stay length may be a
good indicator for hospital stay length.𝑄𝑚𝑖𝑚𝑖𝑐4: This question uses
the same query as 𝑄𝑚𝑖𝑚𝑖𝑐2, but compares Private insurance with
Medicare. The 1𝑠𝑡 explanation states that for patients who have
Private insurance, more patients are alive and less than 71 years old.
This is aligned with the fact that Medicare is mostly for patients
over 65 years old (this is a fact extracted from online resources). The

2𝑛𝑑 and 3𝑟𝑑 explanations are stating that patients using Medicare

are more likely to be admitted because of an emergency and also the
facts about length of hospital stays. 𝑄𝑚𝑖𝑚𝑖𝑐5: The 1

𝑠𝑡 explanation
states that Asian patients who had a procedure are more likely to

stay less than 19 days in the hospital. The 2𝑛𝑑 explanation says
that compared to Asian patients there were more Hispanic patients
younger than 66 years old and that stayed more than 5 days in the

hospital. The 3𝑟𝑑 explanation points out that moreHispanic patients
are Catholic. Note that the ethnicity information in the explanations



are not from PT, but from a different patient_admit_info table.
Because we do not consider functional dependencies, results like
this cannot be avoided. We plan to address this in future work.

4.3 User Study

We conducted a user study for the NBA dataset to evaluate: (S1)
whether CaJaDE provides meaningful explanations in addition to
explanations that only come from the provenance, and (S2) whether
the CaJaDE’s quality metric is consistent with user preference.

Participants. We recruited 20 participants Ð all of them are grad-
uate students studying computer science, 13 of them have some
prior experience with SQL, and 5 were NBA fans.

Tasks. We first presented background knowledge of the NBA to
each participant, and explained the schema of the dataset. Each
participant was shown the SQL query 𝑄1

′ (shown below) and the
results of this query, and then was asked to find and evaluate expla-
nations for the user question𝑈𝑄1 from Example 1: łWhy did𝐺𝑆𝑊

win 73 games in season 2015-16 compared to 47 games in 2012-13?ž.

𝑄1
′
= SELECT s.season_name , count (*) AS win

FROM team t, game g, season s WHERE t.team_id=g.winner_id

AND g.season_id=s.season_id AND t.team='GSW'

GROUP BY s.season_name

We gave each participant familiar with SQL 20minutes to explore
the dataset and manually find explanations. Participants then were
asked to rate each of the top-5 explanations with the highest F-
scores in two groups using a scale from 1 to 5. The first group
(CaJaDE-PT-only) of explanations is produced by CaJaDE using
only the provenance table, while for the second group (CaJaDE)
we use join graphs to extend the provenance table (see Table 1).
We also asked participants which group of explanations makes
more sense and whether they provided new insights. Because the
top explanations in the CaJaDE group have higher F-scores, we
added one with a low F-score (𝐸𝑥𝑝𝑙10) as a control. By covering a
wider range of F-score values, we can test S2: (1) can participants
distinguish between low and high score explanations, and (2) do
participants agree with the ranking based on our quality measure.

Results and Analysis. Overall, the responses were positive: 16 out
of 20 participants agreed that the explanations by CaJaDE make
more sense to them and seeing these explanations in advance will
help them find explanations that they did not think about before.

Table 2 shows the average user ratings and quality measures
for each explanation. Regarding (S1), the average ratings of the
top-1 explanation are the same for both groups (𝐸𝑥𝑝𝑙9 : 3.95 vs
𝐸𝑥𝑝𝑙3 : 3.95, both explanations summarize the team statistics of
GSW while 𝐸𝑥𝑝𝑙9 refers to the table 𝑡𝑒𝑎𝑚_𝑔𝑎𝑚𝑒_𝑠𝑡𝑎𝑡𝑠 not in the
provenance). Explanations 𝐸𝑥𝑝𝑙7 and 𝐸𝑥𝑝𝑙6 (CaJaDE) summarize
the statistics of two GSW’s key players and have higher average
ratings (𝐸𝑥𝑝𝑙7 : 3.8 vs 𝐸𝑥𝑝𝑙5 : 3.6, 𝐸𝑥𝑝𝑙6 : 3.6 vs 𝐸𝑥𝑝𝑙1 : 3.15). The
margin is larger for participants who are familiar with the NBA
(4.2 vs 3.8, 3.8 vs 3.6, 3.8 vs 3.4).

Regarding (S2), we find that explanations with high user ratings
(Expl 3, 4, and Expl 6, 7, 9) have a positive correlation with high
F-score and precision. The only exception, 𝐸𝑥𝑝𝑙8 in the CaJaDE
group, is also the most controversial one, indicated by the largest
standard deviation. Evaluating these explanations is subjective and
requires domain knowledge: the player Jack in 𝐸𝑥𝑝𝑙8 left GSW

CaJaDE-PT-Only

𝐸𝑥𝑝𝑙1 In season 2015-16, among the games GSW won, they were the visiting team and
had points > 104 in 28 games (10 games in 2012-13, resp.)

𝐸𝑥𝑝𝑙2 In 2015-16 season, 73 games (47 games in 2012-13, resp.) GSW won are regular
season games.

𝐸𝑥𝑝𝑙3 In 2015-16 season, among the games GSW won, they were the visiting team, had
points > 98 and possessions > 101 in 17 games (0 games in 2012-13, resp.)

𝐸𝑥𝑝𝑙4 In 2015-16 season, GSW scored more than 104 points in each of 64 games (24
games in 2012-13, resp.) GSW won.

𝐸𝑥𝑝𝑙5 In 2015-16 season, the home teams had points < 106 and possessions < 101 in
each of 29 games (40 games in 2012-13, resp.) GSW won.

CaJaDE

𝐸𝑥𝑝𝑙6 In 2015-16 season, the number of games with GSW player Stephen Curry’s
minutes < 38 and usage > 25 is 59 games (12 games in 2012-13, resp.) GSW
won.

𝐸𝑥𝑝𝑙7 In 2015-16 season, the number of games with GSW player Draymond Green’s
minutes>15 is 73 games (15 games in 2012-13, resp.) GSW won.

𝐸𝑥𝑝𝑙8 In 2015-16 season, Jarrett Jack played in 0 games (47 games in 2012-13, resp.)
GSW won.

𝐸𝑥𝑝𝑙9 In 2015-16 season, GSW had three_pct > 35% and points > 112 in each of 39
games (9 games in 2012-13, resp.) GSW won.

𝐸𝑥𝑝𝑙10 In 2015-16 season, GSW had fg_three_pct> 48% and points> 112 and rebounds
> 51 in 5 games (2 games in 2012-13, resp.) GSW won.

Table 1: Explanations for𝑈𝑄1 used in the user study
CaJaDE-PT-only CaJaDE

Expl1 Expl2 Expl3 Expl4 Expl5 Expl6 Expl7 Expl8 Expl9 Expl10

All users 3.150 1.450 3.950 3.600 2.750 3.600 3.800 2.350 3.950 2.300

Stdev 1.040 0.999 0.759 1.095 1.410 0.883 1.196 1.424 0.999 1.174

NBA: Yes 3.400 1.800 3.800 3.600 2.800 3.800 3.800 2.800 4.200 2.600

NBA: No 3.067 1.333 4.000 3.600 2.733 3.533 3.800 2.200 3.867 2.200

F-score 0.69 0.56 0.38 0.8 0.4 0.82 0.91 1 0.64 0.13

recall 0.38 1 0.23 0.87 0.4 0.81 1 0.99 0.53 0.07

precision 0.74 0.61 1 0.73 0.4 0.83 0.83 0.99 0.81 0.7

Table 2:Average ratings for each explanation by users with different

expertise and the measures for each explanation by CaJaDE

CaJaDE-PT-only (All / -1) CaJaDE (All / -1)

Avg.
Kendall
tau rank
distance

All users
F-score 3.95 / 2.2 3.9 / 1.4
recall 5.9 / 3.85 3.3 / 1.4

precision 2.2 / 0.95 3.9 / 1.4
Users with
domain
knowledge

F-score 3.6 / 2.0 3.2 / 1.8
recall 5.2 / 3.2 3.8 / 1.8

precision 2.2 / 1.2 4.2 / 1.8

Avg.

𝑁𝐷𝐶𝐺𝑛

All users
F-score 0.875 / 0.882 0.901 / 0.955
recall 0.844 / 0.852 0.901 / 0.955

precision 0.933 / 0.965 0.901 / 0.955
Users with
domain
knowledge

F-score 0.897 / 0.901 0.903 / 0.954
recall 0.862 / 0.878 0.903 / 0.954

precision 0.953 / 0.977 0.903 / 0.954

Table 3: Ranking quality: all 5 explanations (All), dropping the

explanation with the largest standard deviation (-1).

in 2013, and participants may or may not regard this as a signal
that the team had begun relying more on other players who play
a similar position. Next, we evaluate the ranking results of our
quality measures by regarding each participant’s ratings as the
ground truth. We use Kendall-Tau rank distance [28] for measuring
pairwise ranking error and normalized discounted cumulative gain
(NDCG) [26] for the entire ranked list. As shown in Table 3, ranking
by precision gives the lowest pairwise ranking error for CaJaDE-
PT-only, while for CaJaDE it is ranking by F-score. If we drop the
most controversial explanation, the pairwise error is reduced by
more than half. The 𝑁𝐷𝐶𝐺𝑛 for CaJaDE reaches 0.9 for all cases
and even 0.95 after dropping the most controversial explanation.

Takeaways. The main findings are: (1) the majority (16/20) of
participants preferred CaJaDE, thanks to the new information pro-
vided by tables not used in the query, which complements the



Parameter Description Default

𝜆𝑑𝑏−𝑠𝑖𝑧𝑒 the size of the database (scale factor) 1.0
𝜆#𝑒𝑑𝑔𝑒𝑠 maximum number of edges per join graph (Section 3.2) 3

𝜆#𝑠𝑒𝑙−𝑎𝑡𝑡𝑟 #attributes returned by feature selection (Section 3.1.2) 3
𝜆𝑎𝑡𝑡𝑟𝑁𝑢𝑚 max number of numerical attributes allowed in a pattern 3
𝜆𝑝𝑎𝑡−𝑠𝑎𝑚𝑝 sample rate for LCA pattern candidate generation (Section 3.1.3) 0.05
𝜆𝐹 1−𝑠𝑎𝑚𝑝 sample rate for calculating F-scores of patterns (Section 3.1.6) 0.3

Table 4: Parameters of our approach and default values

explanations only based on provenance; (2) our quality measures
are consistent with participants’ preferences; (3) for both groups,
there can be top explanations rated low by participants, which is
expected because we did not do causal analysis, and validating such
explanations may be subjective and depend on domain expertise;
and (4) participants with domain knowledge had a stronger prefer-
ence for CaJaDE than participants without domain knowledge.

Other findings and discussion. Finally, it is also worth noting
that the participants’ feedback support the motivation of CaJaDE.
For example, participants found that łThe usage of Stephen Curry

increases in 2015-16.ž, ł‘Players play both season (12-13 and 15-16)

have higher point per game and assist per gamež before they saw the
explanations by CaJaDE. One suggested to use health information
of the players in explanations. Another participant remarked that
łthe use of other tables in the database to explore how the contributions

of individual players can have an outcome on the team’s performance

produced explanations that were more novel or interestingž.

5 EXPERIMENTAL EVALUATION

In this section, we evaluate the implementation of our algorithms
and optimizations in CaJaDE. We evaluate both the performance in
terms of runtime and the quality of results with respect to different
parameters and compare against systems from related work.

Datasets.We use the NBA and MIMIC datasets described in Sec-
tion 4. We created several scaled versions of these two datasets
preserving the relative sizes of most tables and join results.

Experimental setup. CaJaDE is implemented in Python (version
3.6) and runs on top of PostgreSQL (version 10.14). All experiments
were run on a machine with 2 x AMD Opteron 4238 CPUs, 128GB
RAM, and 4 x 1 TB 7.2K RPM HDDs in hardware RAID 5.

Parameters and Optimizations. Table 4 shows the parameters
used in our experiments and their default values. We vary the fol-
lowing: (1) the size of the database; (2) the maximum number of join
graph edges 𝜆#𝑒𝑑𝑔𝑒𝑠 ; (3) the sample rate for F-score 𝜆𝐹1−𝑠𝑎𝑚𝑝 ; and
(4) the sample rate for pattern candidate generation (𝜆𝑝𝑎𝑡−𝑠𝑎𝑚𝑝 ).
In [34] we also compare our approach with and without feature
selection and evaluate how the maximum allowed number of edges
in join graphs (𝜆#𝑒𝑑𝑔𝑒𝑠 ) affects performance. Based on these results
we activated feature selection and set 𝜆#𝑒𝑑𝑔𝑒𝑠 = 3 for all experi-
ments. Unless stated otherwise we use queries 𝑄1 from Section 1
(for NBA experiments) and𝑄𝑚𝑖𝑚𝑖𝑐4 from Section 4.2 (for MIMIC ex-
periments) with their respective user questions and use the default
values for all other parameters.

5.1 Scalability

To evaluate the scalability of our approach, we used scaled versions
of the NBA and MIMIC datasets ranging from ∼ 10% to ∼ 800%. We
varied the F-score sample rate (𝜆𝐹1−𝑠𝑎𝑚𝑝 ) from 0.1 to 0.7. The re-
sults are shown in Figure 7 comparing against linear scaling (black

(a) NBA, varying 𝜆𝐹 1−𝑠𝑎𝑚𝑝 (b) MIMIC, varying 𝜆𝐹 1−𝑠𝑎𝑚𝑝

Figure 7: Scalability in database size

join graph join graph structure APT (#rows) # attributes

Ω1 PT 2621 2

Ω2 PT - player_salary - player 66282 2

Ω3 PT 50797 10

Ω4 PT - patient_admt_info - patients 50797 19

(a) Join graph APTs size (LCA sampling)

(b) LCA sampling for Ω1
(c) LCA sampling for Ω2

(d) LCA sampling for Ω3 (e) LCA sampling for Ω4

(f) Left: NBA and right: MIMIC, varying 𝜆𝐹 1−𝑠𝑎𝑚𝑝

Figure 8: Effect of sampling on runtime and pattern quality

line). The effect of database size on runtime is similar for both
datasets. Our approach shows sublinear scaling for both datasets
(note the log-scale x-axis). The benefits of sampling are more pro-
nounced for larger database sizes: 𝜆𝐹1−𝑠𝑎𝑚𝑝 = 0.1 is more than
55% faster than 𝜆𝐹1−𝑠𝑎𝑚𝑝 = 0.7 for scale factor 8 on both datasets.
We present a detailed breakdown on where time is spent in [34].
F-score calculation turned out to be the most significant factor.

5.2 Sample Size

We now study the impact of sampling for F-score calculation
(𝜆𝐹1−𝑠𝑎𝑚𝑝 ) and for pattern candidate generation (𝜆𝑝𝑎𝑡−𝑠𝑎𝑚𝑝 ) on
performance and pattern quality. We treat the result produced with-
out sampling as ground truth and measure the difference between
this result and the result produced by sampling.





not explore related tables, we constructed 2 join graphs as input
to CAPE, which are PT (𝑈𝑄𝑐𝑎𝑝𝑒1 ) and PT - team_game_stats

(𝑈𝑄𝑐𝑎𝑝𝑒2 ). Figure 11 shows the top-3 explanations produced by
CAPE. The system identifies a trend in the data (using regression)
according to which the user question is an outlier in the user-
provided direction and then returns a similar outlier in the other
direction. For our experiment, this means that CAPE returns sea-
sons with low wins for GSW and high averages points for LeBron
James. This experiment demonstrates that CAPE is orthogonal to
our technique. The system identifies counter-balances while we
find features that are related to the difference between two query
results. Nonetheless, our techniques for exploring schema graphs
may be of use for finding counterbalances too.

5.5 Varying Queries

To evaluate how the runtime of our approach is affected by the
choice of query, we measured the runtime for 10 different queries
(5 for NBA and 5 for MIMIC) shown in Table 5. We designed these
queries to access different relations and use different group-by
attributes. The SQL code for these queries is shown in [34]. All
queries were run with 𝜆𝐹1−𝑠𝑎𝑚𝑝 = 0.3 and 𝜆#𝑒𝑑𝑔𝑒𝑠 = 3. The results
are shown in Figure 10. We observe that the runtime is relatively
stable for different queries and is to some degree correlated to the
number of join graphs for the query (shown on top of Figure 10).

6 RELATED WORK

Provenance and summarization. Provenance [15] for relational
queries identifies inputs that contribute to the results of a query. For
non-aggregate queries, why-provenance [12] returns a set of input
tuples responsible for a given output tuple; how-provenance [23]
encodes how the query combined input tuples to generate the
answers. For aggregate queries, symbolic expressions based on an
extension of semirings [4] are used to express how aggregate results
are computed. Given the significant cost of managing provenance
information in practical DBMS, several provenance-management
frameworks that store and retrieve relevant provenance information
have been proposed in the literature [6, 14, 21, 31, 38]. Some of these
support provenance for aggregate queries using simplified models
and query plan optimizations [27, 36, 38]. A number of recent papers
have proposed summarization techniques to represent provenance
approximately [2, 31ś33, 44], or to use summarization rules for
better usability [3]. Recent work has also studied natural language
representations of factorized and summarized provenance [17, 18].

Data summarization. Another line of work has focused on pro-
ducing summaries of relational data that are relevant, diverse, and
comprehensive [25, 29, 39, 52]. For a relation augmented with a
binary outcome attribute, Gebaly et al. [20] developed solutions
to find informative summaries of categorical attributes affecting
the outcome attribute only considering the provenance (and not
other relevant relations like our work). An extension of this idea for
numerical data was presented in [50]. We adopt the lowest common

ancestor (LCA) optimization from [20] in our algorithms to prune
the search space of candidate patterns. Note that we have discussed
the potential problems of adapting the approach from [20] using a
materialized augmented provenance table in Section 5.

Explanations for query answers. This line of work aims at ex-
plaining unexpected outcomes of a query, including outlier values,
missing tuples, or existing tuples that should not exist. Provenance
and provenance summaries provide a straightforward form of ex-
planations [1, 41, 42, 53] by characterizing a set of tuples whose
removal or modification would affect the query answer of inter-
est. Query-based explanations, i.e., changes to queries, have been
investigated for both łwhyž and łwhy-notž questions [10, 13]. Ex-
planations for outliers have been studied in [9, 35]. We share with
[35] the motivation of considering explanations that are not (solely)
based on provenance. The difference is that in [35], only the table
accessed by the query is considered for finding explanations that
łcounterbalancež an outlier by learning patterns that can balance
a low (high) outlier with a high (low) outlier, whereas we find ex-
planations in łaugmented provenancež stemming from tables not
used in the query. Therefore, [35] is orthogonal to our work.

Join path discovery. Join path discovery approaches find data
related to a table of interest based on inclusion dependencies or
string similarity [19, 24, 46, 54, 55]. Recently, [16, 30, 47] studied
the performance of machine learning models trained on join results.
CaJaDE can utilize join graph discovery techniques to find more
augmentation opportunities.

7 DISCUSSIONS AND FUTUREWORK

Explanations for database query answers is a relatively new re-
search topic with many interesting future directions. For instance,
currently our approach only considers correlations. In the future,
we plan to integrate it with the existing observational causal analysis
framework from AI and Statistics [37, 43] to find causal explana-
tions. Another interesting direction for future work is to integrate
context-based explanations with join discovery techniques (e.g.,
[19, 54]) to automatically find datasets to be used as context. Fi-
nally, our approach is not suited well for textual and sparse data
because such data cannot be summarized well using the type of
patterns we support since values are rarely repeated. Different sum-
marization techniques (e.g., using taxonomies) or preprocessing
techniques (e.g., information extraction techniques) would have to
be incorporated with our approach. While we discussed simple
SQL aggregate queries, extensions of our model can be studied for
more general queries (e.g., nested sub-queries or negation) if we
have access to a provenance system that can compute the prove-
nance of such queries. Beyond having an intuitive scoring function
for ranking explanations that may not always produce meaningful
explanations, a challenging direction for future work is to evaluate
the correctness of the generated explanations without much human
intervention, to evaluate whether the returned explanations match
the user’s intent, and to have a confidence score for explanations to
decide whether the data contains sufficient information to explain a
user question. We plan to explore other types of user questions, e.g,
explaining an increasing/decreasing trend or explaining why two
results are similar. Furthermore, we will investigate the applicability
of context/provenance in ML applications.
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