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ABSTRACT2

Gated recurrent units (GRUs) are specialized memory elements for building recurrent neural3

networks. Despite their incredible success on various tasks, including extracting dynamics4

underlying neural data, little is understood about the specific dynamics representable in a GRU5

network. As a result, it is both difficult to know a priori how successful a GRU network will perform6

on a given task, and also their capacity to mimic the underlying behavior of their biological7

counterparts. Using a continuous time analysis, we gain intuition on the inner workings of8

GRU networks. We restrict our presentation to low dimensions, allowing for a comprehensive9

visualization. We found a surprisingly rich repertoire of dynamical features that includes stable10

limit cycles (nonlinear oscillations), multi-stable dynamics with various topologies, and homoclinic11

bifurcations. At the same time we were unable to train GRU networks to produce continuous12

attractors, which are hypothesized to exist in biological neural networks. We contextualize the13

usefulness of different kinds of observed dynamics and support our claims experimentally.14
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1 INTRODUCTION

Recurrent neural networks (RNNs) can capture and utilize sequential structure in natural and artificial16

languages, speech, video, and various other forms of time series. The recurrent information flow within17

an RNN implies that the data seen in the past has influence on the current state of the RNN, forming a18

mechanism for having memory through (nonlinear) temporal traces that encode both what and when. Past19

works have used RNNs to study neural population dynamics (Costa et al., 2017), and have demonstrated20

qualitatively similar dynamics between biological neural networks and artificial networks trained under21

analogous conditions (Mante et al., 2013; Sussillo et al., 2015; Cueva et al., 2020). In turn, this brings22

into question the efficacy of using such networks as a means to study brain function. With this in mind,23

training standard vanilla RNNs to capture long-range dependences within a sequence is challenging due to24

the vanishing gradient problem (Hochreiter, 1991; Bengio et al., 1994). Several special RNN architectures25

have been proposed to mitigate this issue, notably the long short-term memory (LSTM) units (Hochreiter26
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and Schmidhuber, 1997) which explicitly guard against unwanted corruption of the information stored in27

the hidden state until necessary. Recently, a simplification of the LSTM called the gated recurrent unit28

(GRU) (Cho et al., 2014) has become popular in the computational neuroscience and machine learning29

communities thanks to its performance in speech (Prabhavalkar et al., 2017), music (Choi et al., 2017),30

video (Dwibedi et al., 2018), and extracting nonlinear dynamics underlying neural data (Pandarinath et al.,31

2018). However, certain mechanistic tasks, specifically unbounded counting, come easy to LSTM networks32

but not to GRU networks (Weiss et al., 2018).33

Despite these empirical findings, we lack systematic understanding of the internal time evolution of GRU’s34

memory structure and its capability to represent nonlinear temporal dynamics. Such an understanding will35

make clear what specific tasks (natural and artificial) can or cannot be performed (Bengio et al., 1994),36

how computation is implemented (Sussillo and Barak, 2012; Beer, 2006), and help to predict qualitative37

behavior (Zhao and Park, 2016; Beer, 1995). In addition, a great deal of the literature discusses the local38

dynamics (equilibrium points) of RNNs (Bengio et al., 1994; Sussillo and Barak, 2012), but a complete39

theory requires an understanding of the global properties as well (Beer, 1995). Furthermore, a deterministic40

understanding of a GRU network’s topological structure will provide fundamental insight as to a trained41

network’s generalization ability, and therefore help in understanding how to seed RNNs for specific tasks42

(Doya, 1993; Sokół et al., 2019).43

In general, the hidden state dynamics of an RNN can be written as ht+1 = f(ht,xt) where xt is the

current input in a sequence indexed by t, f is a nonlinear function, and ht represents the hidden memory

state that carries all information responsible for future output. In the absence of input, ht evolves over time

on its own:

ht+1 = f(ht) (1)

where f(·) := f(·,0) for notational simplicity. In other words, we can consider the temporal evolution of44

memory stored within an RNN as a trajectory of an autonomous dynamical system defined by (1), and use45

dynamical systems theory to further investigate and classify the temporal features obtainable in an RNN. In46

this paper, we intend on providing a deep intuition of the inner workings of the GRU through a continuous47

time analysis. While RNNs are traditionally implemented in discrete time, we show in the next section48

that this form of the GRU can be interpreted as a numerical approximation of an underlying system of49

ordinary differential equations. Historically, discrete time systems are often more challenging to analyze50

when compared with their continuous time counterparts, primarily due to their more jumpy nature, allowing51

for more complex dynamics in low-dimensions (Pasemann, 1997; Laurent and von Brecht, 2017). Due to52

the relatively continuous nature of many abstract and physical systems, it may be of great use to analyze53

the underlying continuous time system of a trained RNN directly in some contexts, while interpreting the54

added dynamical complexity from the discretization as anomalies from numerical analysis (He et al., 2016;55

Heath, 2018; LeVeque and Leveque, 1992; Thomas, 1995). Furthermore, the recent development of Neural56

Ordinary Differential Equations have catalyzed the computational neuroscience and machine learning57

communities to turn much of their attention to continuous-time implementations of neural networks (Chen58

et al., 2018; Morrill et al., 2021).59

We discuss a vast array of observed local and global dynamical structures, and validate the theory by60

training GRUs to predict time series with prescribed dynamics. As to not compromise the presentation, we61

restrict our analysis to low dimensions for easy visualization (Zhao and Park, 2016; Beer, 1995). However,62

given a trained GRU of any finite dimension, the findings here still apply, and can be applied with further63
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analysis on a case by case basis (more information on this in the discussion). Furthermore, to ensure our64

work is accessible we will assume a pedagogical approach in our delivery. We recommend Meiss (Meiss,65

2007) for more background on the subject.66

2 UNDERLYING CONTINUOUS TIME SYSTEM OF GATED RECURRENT UNITS

The GRU uses two internal gating variables: the update gate zt which protects the d-dimensional hidden

state ht ∈ R
d and the reset gate rt which allows overwriting of the hidden state and controls the interaction

with the input xt ∈ R
p.

zt = σ(Wzxt +Uzht−1 + bz) (2)

rt = σ(Wrxt +Urht−1 + br) (3)

ht = (1− zt)⊙ tanh(Whxt +Uh(rt ⊙ ht−1) + bh) + zt ⊙ ht−1 (4)

where Wz,Wr,Wh ∈ R
d×p and Uz,Ur,Uh ∈ R

d×d are the parameter matrices, bz,br,bh ∈ R
d are67

bias vectors, ⊙ represents element-wise multiplication, and σ(z) = 1/(1 + e−z) is the element-wise68

logistic sigmoid function. Note that the hidden state is asymptotically contained within [−1, 1]d due to69

the saturating nonlinearities, implying that if the state is initialized outside of this trapping region, it must70

eventually enter it in finite time and remain in it for all later time.71

Note that the update gate zt controls how fast each dimension of the hidden state decays, providing72

an adaptive time constant for memory. Specifically, as limzt→1 ht = ht−1, GRUs can implement perfect73

memory of the past and ignore xt. Hence, a d-dimensional GRU is capable of keeping a near constant74

memory through the update gate—near constant since 0 < [zt]j < 1, where [·]j denotes j-th component of75

a vector. Moreover, the autoregressive weights (mainly Uh and Ur) can support time evolving memory76

((Laurent and von Brecht, 2017) considered this a hindrance and proposed removing all complex dynamical77

behavior in a simplified GRU).78

To investigate the memory structure further, let us consider the dynamics of the hidden state in the absence

of input, i.e. xt = 0, ∀t, which is of the form (1). From a dynamical system’s point of view, all inputs to

the system can be understood as perturbations to the autonomous system, and therefore have no effect

on the set of achievable dynamics. To utilize the rich descriptive language of continuous time dynamical

systems theory, we recognize the autonomous GRU-RNN as a weighted forward Euler discretization to the

following continuous time dynamical system:

z(t) = σ(Uzh(t) + bz) (5)

r(t) = σ(Urh(t) + br) (6)

ḣ = (1− z(t))⊙ (tanh(Uh(r(t)⊙ h(t)) + bh)− h(t)) (7)

where ḣ ≡ dh(t)
dt . Since both σ(·) and tanh(·) are smooth, this continuous limit is justified and serves as a79

basis for further analysis, as all GRU networks are attempting to approximate this continuous limit. In the80

following, GRU will refer to the continuous time version (7). Note that the update gate z(t) again plays81

the role of a state-dependent time constant for memory decay. We note, however, that z(t) adjusts flow82

speed point-wise, resulting in non-constant nonlinear slowing of all trajectories, as z(t) ∈ (0, 1). Since83

1− z(t) > 0, and thus cannot change sign, it acts as a homeomorphism between (7) and the same system84

with this leading multiplicative term removed. Therefore, it does not change the topological structure of85
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the dynamics (Kuznetsov, 1998), and we can safely ignore the effects of z(t) in the following theoretical86

analysis sections (3 & 4). In these sections we set Uz = 0 and bz = 0. A derivation of the continuous87

time GRU can be found in section 1 of the supplementary material. Further detail on the effects of z(t) are88

discussed in the final section of this paper.89

3 STABILITY ANALYSIS OF A ONE DIMENSIONAL GRU

0 0 0

stable fixed point

half-stable fixed point
unstable fixed point

A B C

Figure 1. Three possible types of one dimensional flow for a 1D GRU. When ḣ > 0, h(t) increases. This

flow is indicated by a rightward arrow. Nodes ({h | ḣ(h) = 0}) are represented as circles and classified by
their stability (Meiss, 2007).

For a 1D GRU∗ (d = 1), (7) reduces to a one dimensional dynamical system where every variable is a90

scalar. The expressive power of a 1D GRU is quite limited, as only three stability structures (topologies)91

exist (see section 2 in the supplementary material): (A) a single stable node, (B) a stable node and a92

half-stable node, and (C) two stable nodes separated by an unstable node (see Fig. 1). The corresponding93

time evolution of the hidden state are (A) decay to a fixed value, (B) decay to a fixed value, but from one94

direction halt at an intermediate value until perturbed, or (C) decay to one of two fixed values (bistability).95

The bistability can be used to model a switch, such as in the context of simple decision making, where96

inputs can perturb the system back and forth between states.97

The topology the GRU takes is determined by its parameters. If the GRU begins in a region of the98

parameter space corresponding to (A), we can smoothly vary the parameters to transverse (B) in the99

parameter space, and end up at (C). This is commonly known as a saddle-node bifurcation. Speaking100

generally, a bifurcation is the change in topology of a dynamical system, resulting from a smooth change101

in parameters. The point in parameter space at which the bifurcation occurs is called the bifurcation point102

(e.g. Fig. 1B), and we will refer to the fixed point that changes its stability at the bifurcation point as the103

bifurcation fixed point (e.g. the half-stable fixed point in Fig. 1B). The codimension of a bifurcation is the104

number of parameters which must vary in order to remain on the bifurcation manifold. In the case of our105

example, a saddle-node bifurcation is codimension-1 (Kuznetsov, 1998). Right before transitioning to (B),106

from (A), the flow near where the half-stable node would appear can exhibit arbitrarily slow flow. We will107

refer to these as slow points (Sussillo and Barak, 2012). In this context, slow points allow for metastable108

states, where a trajectory will flow towards the slow point, remain there for a period of time, before moving109

to the stable fixed point.110

4 ANALYSIS OF A TWO DIMENSIONAL GRU

We will see that the addition of a second GRU opens up a substantial variety of possible topological111

structures. For notational simplicity, we denote the two dimensions of h as x and y. We visualize the112

flow fields defined by (7) in 2-dimensions as phase portraits which reveal the topological structures of113

interest (Meiss, 2007). For starters, the phase portrait of two independent bistable GRUs can be visualized114

∗The number/dimension of GRUs references to the dimension of the hidden state dynamics.
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as Fig. 2A. It clearly shows 4 stable states as expected, with a total of 9 fixed points. This could be thought115

of as a continuous-time continuous-space implementation of a finite state machine with 4 states (Fig. 2B).116

The 3 types of observed fixed points—stable (sinks), unstable (sources), and saddle points—exhibit locally117

linear dynamics, however, the global geometry is nonlinear and their topological structures can vary118

depending on their arrangement.119
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Figure 2. Illustrative example of two independent bistable GRUs. (A) Phase portrait. The flow field ḣ =
[ẋ, ẏ]⊤ is decomposed into direction (black arrows) and speed (color). Purple lines represent trajectories of
the hidden state which converge to one of the four stable fixed points. Note the four quadrants coincide with
the basin of attraction for each of the stable nodes. The fixed points appear when the x- and y-nullclines
intersect. (B) The four stable nodes of this system can be interpreted as a continuous analogue of 4-discrete
states with input-driven transitions.

We explored stability structures attainable by 2D GRUs. Due to the relatively large number of observed120

topologies, this section’s main focus will be on demonstrating all observed local and global dynamical121

features obtainable by 2D GRUs. A catalog of all known topologies can be found in section 3 of the122

supplementary material, along with the parameters of every phase portrait depicted in this paper. We cannot123

say whether or not this catalog is exhaustive, but the sheer number of structures found is a testament to the124

expressive power of the GRU network, even in low dimensions.125

Before proceeding, let us take this time to describe all the local dynamical features observed. In addition126

to the previously mentioned three types of fixed points, 2D GRUs can exhibit a variety of bifurcation fixed127

points, resulting from regions of parameter space that separate all topologies restricted to simple fixed128

points (i.e stable, unstable, and saddle points). Behaviorally speaking, these fixed points act as hybrids129

between the previous three, resulting in a much richer set of obtainable dynamics. In Fig. 3, we show all130

observed types of fixed points.† While no codimension-2 bifurcation fixed points were observed in the 2D131

†2D GRUs feature both codimension-1 and pseudo-codimension-2 bifurcation fixed points. In codimension-1, we have the saddle-node bifurcation fixed

point, as expected from its existence in the 1D GRU case. These can be thought of as both the fusion of a stable fixed point and a saddle point, and the fusion of

an unstable fixed point and a saddle point. We will refer to these fixed points as saddle-node bifurcation fixed points of the first kind and second kind respectively.
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GRU system, a sort of pseudo-codimension-2 bifurcation fixed point was seen by placing a sink, source,132

and two saddle points sufficiently close together, such that, when implemented, all four points remain133

below machine precision, thereby acting as a single fixed point. Fig. 4 further demonstrates this concept,134

and Fig. 3B depicts and example. We will discuss later that this sort of pseudo-bifurcation point allows135

the system to exhibit homoclinic-like behavior on a two dimensional compact set. In Fig. 3A, we see 11136

fixed points, the maximum number of fixed points observed in a 2D GRU system. A closer look at this137

system reveals one interpretation as a continuous analogue of 5-discrete states with input-driven transitions,138

similar to that depicted in Fig. 2. This imposes a possible upper bound on the network’s capacity to encode139

a finite set of states in this manner.140
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Figure 3. Existence of all observed simple fixed points and bifurcation fixed points with 2D GRUs,
depicted in phase space. Orange and pink lines represent the x and y nullclines respectively. Purple lines
indicate various trajectories of the hidden state. Direction of the flow is determined by the black arrows,
where the colormap underlaying the figure depicts the magnitude of the velocity of the flow in log scale.

Figure 4. A cartoon representation of the
observed pseudo-codimension-2 bifurcation
fixed point. This structure occurs in
implementation when placing a sink (top
right), a source (bottom left), and two saddle
points (top left and bottom right) close enough
together, such that the distance between the two
points furthest away from one another d is below
machine precision ǫ. Under such conditions, the
local dynamics behave as a hybridization of all
four points. Since at least two parameters need
to be adjusted in order to achieve this behavior,
we give it the label of pseudo-codimension-2;
pseudo because d can never equal 0 in this
system.

The addition of bifurcation fixed points opens the door to dynamically realize more sophisticated models.141

Take for example the four state system depicted in Fig. 3B. If the hidden state is set to initialize in the142

first quadrant of phase space (i.e (0,∞)2), the trajectory will flow towards the pseudo-codimension-2143

bifurcation fixed point at the origin. Introducing noise through the input will stochastically cause the144

trajectory to approach the stable fixed point at (−1,−1) either directly, or by first flowing into one of the145

two saddle-node bifurcation fixed points of the first kind. Models of this sort can be used in a variety of146

applications, such as perceptual decision making (Wong and Wang, 2006; Churchland and Cunningham,147

2014).148
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We will begin our investigation into the non-local dynamics observed with 2D GRUs by showing the149

existence of an Andronov-Hopf bifurcation, where a stable fixed point bifurcates into an unstable fixed150

point surrounded by a limit cycle. A limit cycle is an attracting set with a well defined basin of attraction.151

However, unlike a stable fixed point, where trajectories initialized in the basin of attraction flow towards a152

single point, a limit cycle pulls trajectories into a stable periodic orbit. If the periodic orbit surrounds an153

unstable fixed point the attractor is self-exciting, otherwise it is a hidden attractor (Meiss, 2007). While154

hidden attractors have been observed in various 2D systems, they have not been found in the 2D GRU155

system, and we conjecture that they do not exist. If all parameters are set to zero except for the hidden state156

weights, which are parameterized as a rotation matrix with an associated gain, we can introduce rotation157

into the vector field as a function of gain and rotation angle. Properly tuning these parameters will give158

rise to a limit cycle; a result of the saturating nonlinearity impeding the rotating flow velocity sufficiently159

distant from the origin, thereby pulling trajectories towards a closed orbit.160

For α, β ∈ R
+ and s ∈ R,161

Uz,Ur,bz,bh = 0, Uh = β

[

cosα − sinα
sinα cosα

]

,br = s (8)

Let β = 3 and s = 0. If α = π
3 , the system has a single stable fixed point (stable spiral), as depicted in Fig.162

5A. If we continuously decrease α, the system undergoes an Andronov-Hopf bifurcation at approximately163

α = π
3.8 . As α continuously decreases, the orbital period increases, and as the nullclines can be made164

arbitrarily close together, the length of this orbital period can be set arbitrarily. Fig. 5B shows an example165

of a relatively short orbital period, and Fig. 5C depicts the behavior seen for slower orbits. If we continue166

allowing α to decrease, the system will undergo four simultaneous saddle-node bifurcations, and end up in167

a state topologically equivalent to that depicted in Fig. 2A. Fig. 6-Left depicts regions of the parameter168

space of (7) parameterized by (8), where the Andronov-Hopf bifurcation manifolds can be clearly seen.169

Fig.6-Right demonstrates one effect the reset gate can have on the frequency of the oscillations. If we170

alter the bias vector br, the expected oscillation period changes for regions of the α− β parameter space171

which exhibit a limit cycle. Computationally speaking, limit cycles are a common dynamical structure172

for modeling neuron bursting (Izhikevich, 2007), taking place in many foundational works including173

the Hodgkin-Huxley model (Hodgkin and Huxley, 1952) and the FitzHugh-Nagumo Model (FitzHugh,174

1961). Such dynamics also arise in various population level dynamics in artificial tasks, such as sine175

wave generation (Sussillo and Barak, 2012). Furthermore, initializing the hidden state matrix Uh of an176

even dimensional continuous-time RNN (tanh or GRU) with 2× 2 blocks along the diagonal and zeros177

everywhere else is theoretically shown to aid in learning long-term dependencies, when all the blocks act178

as decoupled oscillators (Sokół et al., 2019).179

Regarding the second non-local dynamical feature, it can be shown that a 2D GRU can undergo a180

homoclinic bifurcation, where a periodic orbit (in this case a limit cycle) expands and collides with a181

saddle at the bifurcation point. At this bifurcation point the system exhibits a homoclinic orbit, where182

trajectories initialized on the orbit fall into the same fixed point in both forward and backward time. In183

order to demonstration this behavior, let the parameters of the network be defined as follows:184

For γ ∈ R,185

Uz,Ur,bz,br = 0, Uh = 3

[

cos π
20 sin π

20
− sin π

20 cos π
20

]

,bh =

[

0.32
γ

]

(9)
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Figure 5. Two GRUs exhibit an Andronov-Hopf bifurcation, where the parameters are defined by (8).
When α = π

3 the system exhibits a single stable fixed point at the origin (Fig. 5A). If α decreases
continuously, a limit cycle emerges around the fixed point, and the fixed point changes stability (Fig. 5B).
Allowing α to decrease further increases the size and orbital period of the limit cycle (Fig. 5C). The bottom
row represents the hidden state as a function of time, for a single trajectory (denoted by black trajectories
in each corresponding phase portrait).

Under this parameterization the 2D GRU system exhibits a homoclinic orbit when γ = 0.054085 (Fig 7).186

In order to showcase this bifurcation as well as the previous Andronov-Hopf bifurcation sequentially in187

action we turn to Fig 8, where the parameters are defined by (9) and γ is initialized at 0.051 in Fig 8A.188

In addition to proper homoclinic orbits, we observe that 2D GRUs can exhibit one or two bounded planar189

regions of homoclinic-like orbits for a given set of parameters, as shown in Fig. 9A and 9B respectively.190

Any trajectory initialized in one of these regions will flow into the pseudo-codimension-2 bifurcation191

fixed point at the origin, regardless of which direction time flows in. Since the the pseudo-codimension-2192

bifurcation fixed point is technically a cluster of four fixed points, including one source and one sink, as193

demonstrated in Fig. 4, there is actually no homoclinic loop. However, due to the close proximity of these194

fixed points, trajectories repelled away from the source, but within the basin of attraction of the sink, will195

appear homoclinic due to the use of finite precision. This featured behavior enables the accurate depiction196

of various models, including neuron spiking (Izhikevich, 2007).197

With finite-fixed point topologies and global structures out of the way, the next logical question to198

ask is can 2D GRUs exhibit an infinite number of fixed points? Such behavior is often desirable in199

models that require stationary attraction to non-point structures, such as line attractors and ring attractors.200

Computationally, movement along a line attractor may be interpreted as integration (Mante et al., 2013),201

and has been shown as a crucial population level mechanism in various tasks, including sentiment analysis202

(Maheswaranathan et al., 2019a) and decision making (Mante et al., 2013). In a similar light, movement203

around a ring attractor my computationally represent either modular integration or arithmetic. One known204

application of ring attractor dynamics in neuroscience is a representation of heading direction (Kim et al.,205

2017). While such behavior in the continuous GRU system has yet to be seen, an approximation of a line206

attractor can be made, as depicted in Fig. 10. We will refer to this phenomenon as a pseudo-line attractor,207
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by (9) expresses a
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where the nullclines remain sufficiently close on a small finite interval, thereby allowing for arbitrarily slow208

flow, by means of slow points.209
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Figure 8. Two GRUs exhibit an Andronov-Hopf bifurcation followed by a homoclinic bifurcation under
the same parameterization. The plots directly under each phase portrait depict the time evolution of the
black trajectory for the corresponding system. 8A (γ = 0.051): the system exhibits a stable fixed point.
8B (γ = 0.0535): the system has undergone an Andronov-Hopf bifurcation and exhibits a stable limit
cycle. 8C (γ = 0.054085): the limit cycle collides with the saddle point, creating a homoclinic orbit. 8D
(γ = 0.0542): the system has undergone a homoclinic bifurcation exhibits neither a homoclinic orbit nor a
limit cycle.
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Figure 9. Two GRUs exhibit 2D bounded regions of homoclinic-like behavior. 9C and 9D represent the
hidden state as a function of time for a single initial condition within the homoclinic-like region(s) of the
single and double homoclinic-like region cases respectively (denoted by solid black trajectories in each
corresponding phase portrait).

5 EXPERIMENTS: TIME-SERIES PREDICTION

As a means to put our theory to practice, in this section we explore several examples of time series210

prediction of continuous time planar dynamical systems using 2D GRUs. Results from the previous section211

indicate what dynamical features can be learned by this RNN, and suggest cases by which training will fail.212

All of the following computer experiments consist of an RNN, by which the hidden layer is made up of a213

2D GRU, followed by a linear output layer. The network is trained to make a 29-step prediction from a214

given initial observation, and no further input through prediction. As such, to produce accurate predictions,215

the RNN must rely solely on the hidden layer dynamics.216

We train the network to minimize the following multi-step loss function:217

L(θ) =
1

T

Ntraj
∑

i=1

T
∑

k=1

‖ŵi(k;wi(0))−wi(k)‖
2
2 (10)

where θ are the parameters of the GRU and linear readout, T = 29 is the prediction horizon, wi(t) is the218

i-th time series generated by the true system, and ŵ(k;w0) is the k-step prediction given w0.219

The hidden states are initialized at zero for each trajectory. The RNN is then trained for 4000 epochs,220

using ADAM (Kingma and Ba, 2014) in whole batch mode to minimize the loss function, i.e., the mean221
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Figure 10. Two GRUs exhibit a pseudo-line attractor. Nullclines intersect at one point, but are close
enough on a finite region to mimic an analytic line attractor in practice. 10A and 10B depict the same phase

portrait on [−1.5, 1.5]2 and [−0.2, 0.2]2 respectively.

square error between the predicted trajectory and the data. Ntraj = 667 time series were used for training.222

Fig. 11 depicts the experimental results of the RNN’s attempt at learning each dynamical system we223

describe below.224

5.1 Limit Cycle225

To test if 2D GRUs can learn a limit cycle, we use a simple nonlinear oscillator called the FitzHugh-226

Nagumo Model (FitzHugh, 1961). The FitzHugh-Nagumo model is defined by: ẋ = x− x3

3 −y+Iext, τ ẏ =227

x+ a− by, where in this experiment we will chose τ = 12.5, a = 0.7, b = 0.8, and Iext = N (0.7, 0.04).228

Under this choice of model parameters, the system will exhibit an unstable fixed point (unstable spiral)229

surrounded by a limit cycle (Fig. 11). As shown in section 4, 2D GRUs are capable of representing this230

topology. The results of this experiment verify this claim (Fig. 11), as 2D GRUs can capture topologically231

equivalent dynamics.232

5.2 Line Attractor233

As discussed in section 4, 2D GRUs can exhibit a pseudo-line attractor, by which the system mimics an234

analytic line attractor on a small finite domain. We will use the simplest representation of a planar line235

attractor: ẋ = −x, ẏ = 0. This system will exhibit a line attractor along the y-axis, at x = 0 (Fig. 11).236

Trajectories will flow directly perpendicular towards the attractor. white Gaussian noise N (0, 0.1I) in the237

training data. While the hidden state dynamics of the trained network do not perfectly match that of an238

analytic line attractor, there exists a small subinterval near each of the fixed points acting as a pseudo-line239

attractor (Fig. 11). As such, the added affine transformation (linear readout) can scale and reorient this240

subinterval on a finite domain. Since all attractors in a d-dimensional GRU are bound to [−1, 1]d, no241

line attractor can extend infinitely in any given direction, which matches well with the GRUs inability to242

perform unbounded counting, as the continuous analog of such a task would require a trajectory to move243

along such an attractor.244
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Figure 11. Training 2D GRUs. (top row) Phase portraits of target dynamical systems. Red solid lines
represent 1-dimensional attractors. See main text for each system. (middle row) GRU dynamics learned
from corresponding 29-step forecasting tasks. The prediction is an affine transformation of the hidden
state. (bottom row) An example time series generated through closed-loop prediction of the trained GRU
(denoted by a black trajectory). GRU fails to learn the ring attractor.

Figure 12. Average learning curves (training loss) for ring attractor (left) and the FitzHugh-Nagumo
(right) dynamics. Note that the performance of the ring attractor improves as the dimensionality of the
GRU increases unlike the FHN dynamics. Four network sizes (2, 4, 8, 16 dimensional GRU) were trained
3 times with different initializations, depicted by the more lightly colored curves.
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5.3 Ring Attractor245

For this experiment, a dynamical system representing a standard ring attractor of radius one is used:246

ẋ = −(x2 + y2 − 1)x; ẏ = −(x2 + y2 − 1)y. This system exhibits an attracting ring, centered around an247

unstable fixed point. We added Gaussian noise N (0, 0.1I) in the training data.248

In our analysis we did not observe two GRUs exhibit this set of dynamics, and the results of this249

experiment, demonstrated in Fig. 11, suggest they cannot. Rather, the hidden state dynamics fall into250

an observed finite fixed point topology (see case xxix in section 3 of the supplementary material). In251

addition, we robustly see this over multiple initializations, and the quality of approximation improves as the252

dimensionality of GRU increases (Fig. 12), suggesting that many GRUs are required to obtain a sufficient253

approximation of this set of dynamics for a practical task (Funahashi and Nakamura, 1993).254

6 DISCUSSION

Through example and experiment we indicated classes of dynamics which are crucial in expressing various255

known neural computations and obtainable with the 2D GRU network. We demonstrated the system’s256

inability to learn continuous attractors, seemingly in any finite dimension, a structure hypothesized to exist257

in various neural representations. While the GRU network was not originally made as a neuroscientific258

model, there has been considerable work done showing high qualitative similarity between the underlying259

dynamics of neural recordings and artificial RNNs on the population level (Mante et al., 2013; Sussillo et al.,260

2015). Furthermore, recent research has modified such artificial models to simulate various neurobiological261

phenomenon (Heeger and Mackey, 2019). One recent study demonstrated that trained RNNs of different262

architectures and nonlinearities express very similar fixed point topologies to one another when successfully263

trained on the same tasks (Maheswaranathan et al., 2019b), suggesting a possible connection in the dynamics264

of artificial networks and neural population dynamics. As such, an understanding of the obtainable265

dynamical features in a GRU network allow one to comment on the efficacy of using such an architecture266

as an analog of brain dynamics at the population level.267

Although this manuscript simplified the problem by considering the 2D GRU, a lot of research has resulted268

in interpreting cortical dynamics as low dimensional continuous time dynamical systems (Zhao and Park,269

2020; Harvey et al., 2012; MacDowell and Buschman, 2020; Flesch et al., 2021; Mante et al., 2013; Cueva270

et al., 2020). This is not to say that most standard neuroscience inspired tasks can be solved with such271

a low dimensional network. However, demonstrating that common dynamical features in neuroscience272

can arise in low dimensions can aid in one’s ability to comment on attributes of large networks. These273

attributes include features such as sparsity of synaptic connections. For example, spiking models exhibiting274

sparse connectivity have been shown to perform comparatively with fully connected RNNs (Bellec et al.,275

2018). Additionally, pruning (i.e. removing) substantial percentages of synaptic connections in a trained276

RNN is known to often result in little to no drop in the network’s performance on the task it was trained277

on (Frankle and Carbin, 2018). This suggests two more examinable properties of large networks. The278

first is redundancy or multiple realizations of the dynamical mechanisms needed to enact a computation279

existing within the same network. For example, if only one limit cycle is sufficient to accurately perform280

a desired task, a trained network may exhibit multiple limit cycles, each qualitatively acting identically281

towards the overall computation. The second is the robustness of each topological structure to synaptic282

perturbation/pruning. For example, if we have some dynamical structure, say a limit cycle, how much can283

we move around in parameter space while still maintaining the existence of that structure?284

In a related light, the GRU architecture has been used within more complex machine learning setups285

to interpret the real-time dynamics of neural recordings (Willett et al., 2021; Pandarinath et al., 2018).286
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These tools allow researchers to better understand and study the differences between neural responses, trial287

to trial. Knowledge of the inner workings and expressive power of GRU networks can only further our288

understanding of the limitations and optimization of such setups by the same line of reasoning previously289

stated, thereby helping to advance this class of technologies, aiding the field of neuroscience as a whole.290

The most compared RNN architecture to the GRU is LSTM, as GRU was designed as both a model291

and computational simplification of this preexisting design in discrete time implementation. LSTM, for a292

significant period of time, was arguably the most popular discrete time RNN architecture, outperforming293

other models of the time on many benchmark tasks. However, there is one caveat when comparing the294

continuous time implementations of LSTM and GRU. A one dimensional LSTM (i.e. a single LSTM unit)295

is a two dimensional dynamical system, as information is stored in both the system’s hidden state and cell296

state (Hochreiter and Schmidhuber, 1997). With the choice of analysis we use to dissect the GRU in this297

paper, LSTM is a vastly different class of system. We would expect to see a different and more limited298

array of dynamics for an LSTM unit when compared with the 2D GRU. However, we wouldn’t consider299

this a fair comparison.300

One attribute of the GRU architecture we chose to disregard in this manuscript was the influence of301

the update gate z(t). As stated in section 2, every element of this gate is bound to (0, 1)d. Since (7) only302

has one term containing the update gate, (1− z(t)), which can be factored out, the fixed point topology303

does not depend on z(t), as this term is always strictly positive. The role this gate plays is to adjust the304

point-wise speed of flow, and therefore can bring rise to slow manifolds. Because each element of z(t)305

can become arbitrarily close to the value of one, regions of phase space associated with an element of306

the update-gate sufficiently close to one will experience seemingly no motion in the directions associated307

with those elements. For example, in the 2D GRU system, if the first element of z(t) is sufficiently close308

to one, the trajectory will maintain a near fixed value in x. These slow points are not actual fixed points.309

Therefore, in the autonomous system, trajectories traversing them will eventually overcome this stoppage310

given sufficient time. However, this may add one complicating factor for analyzing implemented continuous311

time GRUs in practice. The use of finite precision allows for the flow speed to dip below machine precision,312

essentially creating pseudo-attractors in these regions. The areas of phase space containing these points313

will qualitatively behave as attracting sets, but not by traditional dynamical systems terms, making them314

more difficult to analyze. If needed, we recommend looking at z(t) separately, because this term acts315

independently from the remaining terms in the continuous time system. Therefore, any slow points found316

can be superimposed with the traditional fixed points in phase space. In order to avoid the effects of finite317

precision all together, the system can be realized through a hardware implementation (Jordan and Park,318

2020). However, proper care needs to be given in order to mitigate analog imperfections.319

Unlike the update gate, we demonstrated that the reset gate r(t) affects the network’s fixed point topology,320

allowing for more complicated classes of dynamics, including homoclinic-like orbits. These effects are best321

described through the shape of the nullclines. We will keep things qualitative here as to help build intuition.322

In 2D, if every element of the reset gate weight matrix Ur and bias br is zero, nullclines can form two323

shapes. First is a sigmoid-like shape (Fig. 5A, 10, and 11 (inferred limit cycle and line attractor)), allowing324

them to intersect a line (or hyperplane in higher dimensions) orthogonal to their associated dimension a325

single time. The second is an s-like shape (Fig. 5B, 5C, 7, and 11 (limit cycle)), allowing them to intersect326

a line orthogonal to their associated dimension up to three times. The peak and trough of the s-like shape327

can be stretched infinitely as well (Fig. 2A). In this case, two fo the three resultant seemingly disconnected328

nullclines associated with a given dimension can be placed arbitrarily close together (Fig. 3B). Varying329

r(t) allows the geometry of the nullclines to take on several additional shapes. The first of these additional330
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structures is a pitchfork-like shape (Fig. 3A, 3C, 9). By disconnecting two of the prongs from the pitchfork331

we get our second structure, simultaneously exhibiting a sigmoid-like shape and a U-like shape (Fig. 3C).332

Bending the ends of the ”U” at infinity down into R
2 connects them, forming our third structure, an O-like333

shape (Fig. 11 (inferred ring attractor – orange nullcline)). This O-like shape can then also intersect the334

additional segment of the nullcline, creating one continuous curve (Fig. 11 (inferred ring attractor – pink335

nullcline). One consequence of the reset-gate is the additional capacity to encode information in the form336

of stable fixed points. If we neglect r(t), we can obtain up to four sinks (Fig. 2A), as we are limited to337

the intersections of the nullclines; two sets of three parallel lines. Incorporating r(t) increases the number338

of fixed points obtainable (Fig. 3A). Refer to section 3 of the supplementary material to see how these339

nullcline structures lead to a vast array of different fixed point topologies.340

Several interesting extensions to this work immediately come to mind. For one, the extension to a 3D341

continuous time GRU network opens up the door for the possibility of more complex dynamical features.342

Three spatial dimensions are the minimum required to experience chaotic dynamics in nonlinear systems343

(Meiss, 2007), and due to the vast size of the GRU parameter space, even in low dimensions, such behavior344

is probable. Similarly, additional types of bifurcations may be present, including bifurcations of limit cycles,345

allowing for more complex oscillatory behavior (Kuznetsov, 1998). Furthermore, higher dimensional346

GRUs may bring rise to complex center manifolds, requiring center manifold reduction to better analyze347

and interpret the phase space dynamics (Carr, 1981). While we considered the underlying GRU topology348

separate from training, considering how the attractor structure influences learning can bring insight into349

successfully implementing RNN models (Sokół et al., 2019). As of yet, this topic of research is mostly350

uncharted. We believe such findings, along with the work presented in this manuscript, will unlock new351

avenues of research on the trainability of recurrent neural networks and help to further understand their352

mathematical parallels with biological neural networks.353
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