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ABSTRACT

Gated recurrent units (GRUSs) are specialized memory elements for building recurrent neural
networks. Despite their incredible success on various tasks, including extracting dynamics
underlying neural data, little is understood about the specific dynamics representable in a GRU
network. As a result, it is both difficult to know a priori how successful a GRU network will perform
on a given task, and also their capacity to mimic the underlying behavior of their biological
counterparts. Using a continuous time analysis, we gain intuition on the inner workings of
GRU networks. We restrict our presentation to low dimensions, allowing for a comprehensive
visualization. We found a surprisingly rich repertoire of dynamical features that includes stable
limit cycles (nonlinear oscillations), multi-stable dynamics with various topologies, and homoclinic
bifurcations. At the same time we were unable to train GRU networks to produce continuous
attractors, which are hypothesized to exist in biological neural networks. We contextualize the
usefulness of different kinds of observed dynamics and support our claims experimentally.

Keywords: Recurrent Neural Networks, Dynamical Systems, Continuous Time, Bifurcations,Time-Series

1 INTRODUCTION

Recurrent neural networks (RNNs) can capture and utilize sequential structure in natural and artificial
languages, speech, video, and various other forms of time series. The recurrent information flow within
an RNN implies that the data seen in the past has influence on the current state of the RNN, forming a
mechanism for having memory through (nonlinear) temporal traces that encode both what and when. Past
works have used RNNs to study neural population dynamics (Costa et al., 2017), and have demonstrated
qualitatively similar dynamics between biological neural networks and artificial networks trained under
analogous conditions (Mante et al., 2013; Sussillo et al., 2015; Cueva et al., 2020). In turn, this brings
into question the efficacy of using such networks as a means to study brain function. With this in mind,
training standard vanilla RNNs to capture long-range dependences within a sequence is challenging due to
the vanishing gradient problem (Hochreiter, 1991; Bengio et al., 1994). Several special RNN architectures
have been proposed to mitigate this issue, notably the long short-term memory (LSTM) units (Hochreiter
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and Schmidhuber, 1997) which explicitly guard against unwanted corruption of the information stored in
the hidden state until necessary. Recently, a simplification of the LSTM called the gated recurrent unit
(GRU) (Cho et al., 2014) has become popular in the computational neuroscience and machine learning
communities thanks to its performance in speech (Prabhavalkar et al., 2017), music (Choi et al., 2017),
video (Dwibedi et al., 2018), and extracting nonlinear dynamics underlying neural data (Pandarinath et al.,
2018). However, certain mechanistic tasks, specifically unbounded counting, come easy to LSTM networks
but not to GRU networks (Weiss et al., 2018).

Despite these empirical findings, we lack systematic understanding of the internal time evolution of GRU’s
memory structure and its capability to represent nonlinear temporal dynamics. Such an understanding will
make clear what specific tasks (natural and artificial) can or cannot be performed (Bengio et al., 1994),
how computation is implemented (Sussillo and Barak, 2012; Beer, 2006), and help to predict qualitative
behavior (Zhao and Park, 2016; Beer, 1995). In addition, a great deal of the literature discusses the local
dynamics (equilibrium points) of RNNs (Bengio et al., 1994; Sussillo and Barak, 2012), but a complete
theory requires an understanding of the global properties as well (Beer, 1995). Furthermore, a deterministic
understanding of a GRU network’s topological structure will provide fundamental insight as to a trained
network’s generalization ability, and therefore help in understanding how to seed RNNs for specific tasks
(Doya, 1993; Sokét et al., 2019).

In general, the hidden state dynamics of an RNN can be written as h;; = f(hy, x;) where x; is the
current input in a sequence indexed by ¢, f is a nonlinear function, and h; represents the hidden memory
state that carries all information responsible for future output. In the absence of input, h; evolves over time
on its own:

hiy1 = f(hy) (D

where f(-) := f(-,0) for notational simplicity. In other words, we can consider the temporal evolution of
memory stored within an RNN as a trajectory of an autonomous dynamical system defined by (1), and use
dynamical systems theory to further investigate and classify the temporal features obtainable in an RNN. In
this paper, we intend on providing a deep intuition of the inner workings of the GRU through a continuous
time analysis. While RNNs are traditionally implemented in discrete time, we show in the next section
that this form of the GRU can be interpreted as a numerical approximation of an underlying system of
ordinary differential equations. Historically, discrete time systems are often more challenging to analyze
when compared with their continuous time counterparts, primarily due to their more jumpy nature, allowing
for more complex dynamics in low-dimensions (Pasemann, 1997; Laurent and von Brecht, 2017). Due to
the relatively continuous nature of many abstract and physical systems, it may be of great use to analyze
the underlying continuous time system of a trained RNN directly in some contexts, while interpreting the
added dynamical complexity from the discretization as anomalies from numerical analysis (He et al., 2016;
Heath, 2018; LeVeque and Leveque, 1992; Thomas, 1995). Furthermore, the recent development of Neural
Ordinary Differential Equations have catalyzed the computational neuroscience and machine learning
communities to turn much of their attention to continuous-time implementations of neural networks (Chen
et al., 2018; Morrill et al., 2021).

We discuss a vast array of observed local and global dynamical structures, and validate the theory by
training GRUs to predict time series with prescribed dynamics. As to not compromise the presentation, we
restrict our analysis to low dimensions for easy visualization (Zhao and Park, 2016; Beer, 1995). However,
given a trained GRU of any finite dimension, the findings here still apply, and can be applied with further
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analysis on a case by case basis (more information on this in the discussion). Furthermore, to ensure our
work is accessible we will assume a pedagogical approach in our delivery. We recommend Meiss (Meiss,
2007) for more background on the subject.

2 UNDERLYING CONTINUOUS TIME SYSTEM OF GATED RECURRENT UNITS

The GRU uses two internal gating variables: the update gate z; which protects the d-dimensional hidden
state h; € R? and the reset gate r; which allows overwriting of the hidden state and controls the interaction
with the input x; € RP.

VARES O'(Wth + Uzht_l -+ bz) (2)
ry = O'(WrXt +U,h; 1 + br) 3)
h; = (1 — Zt) ® tanh(tht + Uh(rt ® ht—l) + bh) + 2z ®hy_q 4

where W, W,., W}, € R¥P and U,, U,,, U}, € R%*? are the parameter matrices, b,, b,, by, € R? are
bias vectors, ® represents element-wise multiplication, and o(z) = 1/(1 + e~ %) is the element-wise
logistic sigmoid function. Note that the hidden state is asymptotically contained within [—1, 1]d due to
the saturating nonlinearities, implying that if the state is initialized outside of this trapping region, it must
eventually enter it in finite time and remain in it for all later time.

Note that the update gate z; controls how fast each dimension of the hidden state decays, providing
an adaptive time constant for memory. Specifically, as lim,,_,; hy = h;_1, GRUs can implement perfect
memory of the past and ignore x;. Hence, a d-dimensional GRU is capable of keeping a near constant
memory through the update gate—near constant since 0 < [z;]; < 1, where [-]; denotes j-th component of
a vector. Moreover, the autoregressive weights (mainly Uy, and U,) can support time evolving memory
((Laurent and von Brecht, 2017) considered this a hindrance and proposed removing all complex dynamical
behavior in a simplified GRU).

To investigate the memory structure further, let us consider the dynamics of the hidden state in the absence
of input, i.e. x; = 0, V¢, which is of the form (1). From a dynamical system’s point of view, all inputs to
the system can be understood as perturbations to the autonomous system, and therefore have no effect
on the set of achievable dynamics. To utilize the rich descriptive language of continuous time dynamical
systems theory, we recognize the autonomous GRU-RNN as a weighted forward Euler discretization to the
following continuous time dynamical system:

z(t) = o(Uh(t) + b.) (5)
r(t) = o(U,h(t) + by) (6)
h = (1 —2(t)) ® (tanh(Uy(r(t) © h(t)) + by) — h(t)) (7)

h(t)

where h = dT. Since both ¢ (+) and tanh(-) are smooth, this continuous limit is justified and serves as a
basis for further analysis, as all GRU networks are attempting to approximate this continuous limit. In the
following, GRU will refer to the continuous time version (7). Note that the update gate z(¢) again plays
the role of a state-dependent time constant for memory decay. We note, however, that z(t) adjusts flow
speed point-wise, resulting in non-constant nonlinear slowing of all trajectories, as z(¢) € (0, 1). Since
1 — z(t) > 0, and thus cannot change sign, it acts as a homeomorphism between (7) and the same system
with this leading multiplicative term removed. Therefore, it does not change the topological structure of
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the dynamics (Kuznetsov, 1998), and we can safely ignore the effects of z(t) in the following theoretical
analysis sections (3 & 4). In these sections we set U, = 0 and b, = 0. A derivation of the continuous
time GRU can be found in section 1 of the supplementary material. Further detail on the effects of z(t) are
discussed in the final section of this paper.

3 STABILITY ANALYSIS OF A ONE DIMENSIONAL GRU

A B C

half-stable fixed point
i unstable fixed point
h stable fixed point

» 0

0 *—p 0 |
h _> > > —> —> —> > > > > >—>—> —> [ -

Figure 1. Three possible types of one dimensional flow for a 1D GRU. When A > 0, h(t) increases. This

flow is indicated by a rightward arrow. Nodes ({h | 2(h) = 0}) are represented as circles and classified by
their stability (Meiss, 2007).

For a 1D GRU* (d = 1), (7) reduces to a one dimensional dynamical system where every variable is a
scalar. The expressive power of a 1D GRU is quite limited, as only three stability structures (topologies)
exist (see section 2 in the supplementary material): (A) a single stable node, (B) a stable node and a
half-stable node, and (C) two stable nodes separated by an unstable node (see Fig. 1). The corresponding
time evolution of the hidden state are (A) decay to a fixed value, (B) decay to a fixed value, but from one
direction halt at an intermediate value until perturbed, or (C) decay to one of two fixed values (bistability).
The bistability can be used to model a switch, such as in the context of simple decision making, where
inputs can perturb the system back and forth between states.

The topology the GRU takes is determined by its parameters. If the GRU begins in a region of the
parameter space corresponding to (A), we can smoothly vary the parameters to transverse (B) in the
parameter space, and end up at (C). This is commonly known as a saddle-node bifurcation. Speaking
generally, a bifurcation is the change in topology of a dynamical system, resulting from a smooth change
in parameters. The point in parameter space at which the bifurcation occurs is called the bifurcation point
(e.g. Fig. 1B), and we will refer to the fixed point that changes its stability at the bifurcation point as the
bifurcation fixed point (e.g. the half-stable fixed point in Fig. 1B). The codimension of a bifurcation is the
number of parameters which must vary in order to remain on the bifurcation manifold. In the case of our
example, a saddle-node bifurcation is codimension-1 (Kuznetsov, 1998). Right before transitioning to (B),
from (A), the flow near where the half-stable node would appear can exhibit arbitrarily slow flow. We will
refer to these as slow points (Sussillo and Barak, 2012). In this context, slow points allow for metastable
states, where a trajectory will flow towards the slow point, remain there for a period of time, before moving
to the stable fixed point.

4 ANALYSIS OF A TWO DIMENSIONAL GRU

We will see that the addition of a second GRU opens up a substantial variety of possible topological
structures. For notational simplicity, we denote the two dimensions of h as x and y. We visualize the
flow fields defined by (7) in 2-dimensions as phase portraits which reveal the topological structures of
interest (Meiss, 2007). For starters, the phase portrait of two independent bistable GRUs can be visualized

*The number/dimension of GRUs references to the dimension of the hidden state dynamics.
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as Fig. 2A. Tt clearly shows 4 stable states as expected, with a total of 9 fixed points. This could be thought
of as a continuous-time continuous-space implementation of a finite state machine with 4 states (Fig. 2B).
The 3 types of observed fixed points—stable (sinks), unstable (sources), and saddle points—exhibit locally
linear dynamics, however, the global geometry is nonlinear and their topological structures can vary
depending on their arrangement.

ox 7 log speed
A tr?:é?fris o =0 N dh” B (hidden) Markov Chain /
) ) nulicline ®l e Finite State Machine
1-1.5
* (o)
< {2
/
f V
! {1-2.5
!/
NN 1-3
SR B 135
‘ (®) ()
\ 4
{ V
? -4.5
-5
# sink (stable node point)
0 # saddle point
T ’ source (unstable node point)

Figure 2. Illustrative example of two independent bistable GRUs. (A) Phase portrait. The flow field h =

[T, y]T is decomposed into direction (black arrows) and speed (color). Purple lines represent trajectories of
the hidden state which converge to one of the four stable fixed points. Note the four quadrants coincide with
the basin of attraction for each of the stable nodes. The fixed points appear when the x- and y-nullclines
intersect. (B) The four stable nodes of this system can be interpreted as a continuous analogue of 4-discrete
states with input-driven transitions.

We explored stability structures attainable by 2D GRUs. Due to the relatively large number of observed
topologies, this section’s main focus will be on demonstrating all observed local and global dynamical
features obtainable by 2D GRUs. A catalog of all known topologies can be found in section 3 of the
supplementary material, along with the parameters of every phase portrait depicted in this paper. We cannot
say whether or not this catalog is exhaustive, but the sheer number of structures found is a testament to the
expressive power of the GRU network, even in low dimensions.

Before proceeding, let us take this time to describe all the local dynamical features observed. In addition
to the previously mentioned three types of fixed points, 2D GRUs can exhibit a variety of bifurcation fixed
points, resulting from regions of parameter space that separate all topologies restricted to simple fixed
points (i.e stable, unstable, and saddle points). Behaviorally speaking, these fixed points act as hybrids
between the previous three, resulting in a much richer set of obtainable dynamics. In Fig. 3, we show all
observed types of fixed points.” While no codimension-2 bifurcation fixed points were observed in the 2D

2D GRUs feature both codimension-1 and pseudo-codimension-2 bifurcation fixed points. In codimension-1, we have the saddle-node bifurcation fixed
point, as expected from its existence in the 1D GRU case. These can be thought of as both the fusion of a stable fixed point and a saddle point, and the fusion of
an unstable fixed point and a saddle point. We will refer to these fixed points as saddle-node bifurcation fixed points of the first kind and second kind respectively.
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GRU system, a sort of pseudo-codimension-2 bifurcation fixed point was seen by placing a sink, source,
and two saddle points sufficiently close together, such that, when implemented, all four points remain
below machine precision, thereby acting as a single fixed point. Fig. 4 further demonstrates this concept,
and Fig. 3B depicts and example. We will discuss later that this sort of pseudo-bifurcation point allows
the system to exhibit homoclinic-like behavior on a two dimensional compact set. In Fig. 3A, we see 11
fixed points, the maximum number of fixed points observed in a 2D GRU system. A closer look at this
system reveals one interpretation as a continuous analogue of 5-discrete states with input-driven transitions,
similar to that depicted in Fig. 2. This imposes a possible upper bound on the network’s capacity to encode
a finite set of states in this manner.

@ sink (stable fixed point)
@ saddle point
source (unstable fixed point)

saddle-node bifurcation
3 & fixed point

(sink-saddle collision)

saddle-node bifurcation
-4 ‘= fixed point

(source-saddle collision)

pseudo co-dimension
5 2 bifurcation fixed point

Figure 3. Existence of all observed simple fixed points and bifurcation fixed points with 2D GRUs,
depicted in phase space. Orange and pink lines represent the x and y nullclines respectively. Purple lines
indicate various trajectories of the hidden state. Direction of the flow is determined by the black arrows,
where the colormap underlaying the figure depicts the magnitude of the velocity of the flow in log scale.

I Figure 4. A cartoon representation of the

[ observed pseudo-codimension-2 bifurcation

fixed point. This structure occurs in

{ implementation when placing a sink (top

—— :‘ e right), a source (bottom left), and two saddle
Y

2 points (top left and bottom right) close enough
L together, such that the distance between the two
points furthest away from one another d is below

machine precision €. Under such conditions, the
- SC Y, ‘ local dynamics behave as a hybridization of all
four points. Since at least two parameters need
to be adjusted in order to achieve this behavior,
I I we give it the label of pseudo-codimension-2;
[ [ pseudo because d can never equal 0 in this
system.

The addition of bifurcation fixed points opens the door to dynamically realize more sophisticated models.
Take for example the four state system depicted in Fig. 3B. If the hidden state is set to initialize in the
first quadrant of phase space (i.e (0, 00)?), the trajectory will flow towards the pseudo-codimension-2
bifurcation fixed point at the origin. Introducing noise through the input will stochastically cause the
trajectory to approach the stable fixed point at (—1, —1) either directly, or by first flowing into one of the
two saddle-node bifurcation fixed points of the first kind. Models of this sort can be used in a variety of
applications, such as perceptual decision making (Wong and Wang, 2006; Churchland and Cunningham,
2014).
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We will begin our investigation into the non-local dynamics observed with 2D GRUs by showing the
existence of an Andronov-Hopf bifurcation, where a stable fixed point bifurcates into an unstable fixed
point surrounded by a limit cycle. A limit cycle is an attracting set with a well defined basin of attraction.
However, unlike a stable fixed point, where trajectories initialized in the basin of attraction flow towards a
single point, a limit cycle pulls trajectories into a stable periodic orbit. If the periodic orbit surrounds an
unstable fixed point the attractor is self-exciting, otherwise it is a hidden attractor (Meiss, 2007). While
hidden attractors have been observed in various 2D systems, they have not been found in the 2D GRU
system, and we conjecture that they do not exist. If all parameters are set to zero except for the hidden state
weights, which are parameterized as a rotation matrix with an associated gain, we can introduce rotation
into the vector field as a function of gain and rotation angle. Properly tuning these parameters will give
rise to a limit cycle; a result of the saturating nonlinearity impeding the rotating flow velocity sufficiently
distant from the origin, thereby pulling trajectories towards a closed orbit.

Fora,3 € RT and s € R,

UZaU’f’va7bh:07 Uh:B Lina COS v b =S (8)

cosa —sin a}
-

Let f = 3and s = 0. If a = %, the system has a single stable fixed point (stable spiral), as depicted in Fig.
SA. If we continuously decrease o, the system undergoes an Andronov-Hopf bifurcation at approximately
« = g5. As a continuously decreases, the orbital period increases, and as the nullclines can be made
arbitrarily close together, the length of this orbital period can be set arbitrarily. Fig. 5B shows an example
of a relatively short orbital period, and Fig. 5C depicts the behavior seen for slower orbits. If we continue
allowing « to decrease, the system will undergo four simultaneous saddle-node bifurcations, and end up in
a state topologically equivalent to that depicted in Fig. 2A. Fig. 6-Left depicts regions of the parameter
space of (7) parameterized by (8), where the Andronov-Hopf bifurcation manifolds can be clearly seen.
Fig.6-Right demonstrates one effect the reset gate can have on the frequency of the oscillations. If we
alter the bias vector b,., the expected oscillation period changes for regions of the o — [ parameter space
which exhibit a limit cycle. Computationally speaking, limit cycles are a common dynamical structure
for modeling neuron bursting (Izhikevich, 2007), taking place in many foundational works including
the Hodgkin-Huxley model (Hodgkin and Huxley, 1952) and the FitzHugh-Nagumo Model (FitzHugh,
1961). Such dynamics also arise in various population level dynamics in artificial tasks, such as sine
wave generation (Sussillo and Barak, 2012). Furthermore, initializing the hidden state matrix U} of an
even dimensional continuous-time RNN (tanh or GRU) with 2 x 2 blocks along the diagonal and zeros
everywhere else is theoretically shown to aid in learning long-term dependencies, when all the blocks act
as decoupled oscillators (Sokét et al., 2019).

Regarding the second non-local dynamical feature, it can be shown that a 2D GRU can undergo a
homoclinic bifurcation, where a periodic orbit (in this case a limit cycle) expands and collides with a
saddle at the bifurcation point. At this bifurcation point the system exhibits a homoclinic orbit, where
trajectories initialized on the orbit fall into the same fixed point in both forward and backward time. In
order to demonstration this behavior, let the parameters of the network be defined as follows:

For v € R,
coS 2”—0 sin210 0.32
UZaUT7b27b7":07 Uh:?) 7bh: (9)

: s s
— S1n 20 COS 20 Y
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400 600

Figure 5. Two GRUs exhibit an Andronov-Hopf bifurcation, where the parameters are defined by (8).
When a = % the system exhibits a single stable fixed point at the origin (Fig. 5A). If a decreases
continuously, a limit cycle emerges around the fixed point, and the fixed point changes stability (Fig. 5B).
Allowing « to decrease further increases the size and orbital period of the limit cycle (Fig. 5C). The bottom
row represents the hidden state as a function of time, for a single trajectory (denoted by black trajectories
in each corresponding phase portrait).

Under this parameterization the 2D GRU system exhibits a homoclinic orbit when v = 0.054085 (Fig 7).
In order to showcase this bifurcation as well as the previous Andronov-Hopf bifurcation sequentially in
action we turn to Fig 8, where the parameters are defined by (9) and +y is initialized at 0.051 in Fig 8A.

In addition to proper homoclinic orbits, we observe that 2D GRUs can exhibit one or two bounded planar
regions of homoclinic-like orbits for a given set of parameters, as shown in Fig. 9A and 9B respectively.
Any trajectory initialized in one of these regions will flow into the pseudo-codimension-2 bifurcation
fixed point at the origin, regardless of which direction time flows in. Since the the pseudo-codimension-2
bifurcation fixed point is technically a cluster of four fixed points, including one source and one sink, as
demonstrated in Fig. 4, there is actually no homoclinic loop. However, due to the close proximity of these
fixed points, trajectories repelled away from the source, but within the basin of attraction of the sink, will
appear homoclinic due to the use of finite precision. This featured behavior enables the accurate depiction
of various models, including neuron spiking (Izhikevich, 2007).

With finite-fixed point topologies and global structures out of the way, the next logical question to
ask is can 2D GRUs exhibit an infinite number of fixed points? Such behavior is often desirable in
models that require stationary attraction to non-point structures, such as line attractors and ring attractors.
Computationally, movement along a line attractor may be interpreted as integration (Mante et al., 2013),
and has been shown as a crucial population level mechanism in various tasks, including sentiment analysis
(Maheswaranathan et al., 2019a) and decision making (Mante et al., 2013). In a similar light, movement
around a ring attractor my computationally represent either modular integration or arithmetic. One known
application of ring attractor dynamics in neuroscience is a representation of heading direction (Kim et al.,
2017). While such behavior in the continuous GRU system has yet to be seen, an approximation of a line
attractor can be made, as depicted in Fig. 10. We will refer to this phenomenon as a pseudo-line attractor,

This is a provisional file, not the final typeset article 8
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Figure 6. (Fig. 6-Left) parameter sweep of (8) over a € (0, 7) (rotation matrix angle) and 5 € (1,3)
(gain term), for s = (. Color map indicates oscillation frequency in Hertz, where white space shows
parameter combinations where no limit cycle exists. (Fig. 6-Right) average oscillation frequency across
regions of the displayed o« — 3 parameter space where a limit cycle exists. The purple shaded region depicts
variance of oscillation frequency. Increasing s slows down the average frequency of the limit cycles, while
simultaneously reducing variance.

Figure 7. A 2D
GRU  parameterized
by (9) expresses a
homoclinic orbit when
~v = 0.054085 (denoted

by a black trajectory).

Trajectories initialized
on the homoclinic orbit
will approach the same
fixed point in both
forward and backward
time.

208 where the nullclines remain sufficiently close on a small finite interval, thereby allowing for arbitrarily slow
209 flow, by means of slow points.
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Figure 8. Two GRUs exhibit an Andronov-Hopf bifurcation followed by a homoclinic bifurcation under
the same parameterization. The plots directly under each phase portrait depict the time evolution of the
black trajectory for the corresponding system. 8A (v = 0.051): the system exhibits a stable fixed point.
8B (v = 0.0535): the system has undergone an Andronov-Hopf bifurcation and exhibits a stable limit
cycle. 8C (v = 0.054085): the limit cycle collides with the saddle point, creating a homoclinic orbit. 8D
(7 = 0.0542): the system has undergone a homoclinic bifurcation exhibits neither a homoclinic orbit nor a
limit cycle.
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Figure 9. Two GRUs exhibit 2D bounded regions of homoclinic-like behavior. 9C and 9D represent the
hidden state as a function of time for a single initial condition within the homoclinic-like region(s) of the
single and double homoclinic-like region cases respectively (denoted by solid black trajectories in each
corresponding phase portrait).

5 EXPERIMENTS: TIME-SERIES PREDICTION

210 As a means to put our theory to practice, in this section we explore several examples of time series
211 prediction of continuous time planar dynamical systems using 2D GRUSs. Results from the previous section
212 indicate what dynamical features can be learned by this RNN, and suggest cases by which training will fail.
213 All of the following computer experiments consist of an RNN, by which the hidden layer is made up of a
214 2D GRU, followed by a linear output layer. The network is trained to make a 29-step prediction from a
215 given initial observation, and no further input through prediction. As such, to produce accurate predictions,
216 the RNN must rely solely on the hidden layer dynamics.

217  We train the network to minimize the following multi-step loss function:

N, traj T

£0) = 7 32 S 19k wil0) — wilh)|3 (10)

i=1 k=1

218 where 6 are the parameters of the GRU and linear readout, 7" = 29 is the prediction horizon, w;(t) is the
219 i-th time series generated by the true system, and w(k; wy) is the k-step prediction given wy.

220  The hidden states are initialized at zero for each trajectory. The RNN is then trained for 4000 epochs,
221 using ADAM (Kingma and Ba, 2014) in whole batch mode to minimize the loss function, i.e., the mean
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Figure 10. Two GRUs exhibit a pseudo-line attractor. Nullclines intersect at one point, but are close
enough on a finite region to mimic an analytic line attractor in practice. 10A and 10B depict the same phase

portrait on [—1.5,1.5]% and [—0.2, 0.2]? respectively.

square error between the predicted trajectory and the data. Ny,; = 667 time series were used for training.
Fig. 11 depicts the experimental results of the RNN’s attempt at learning each dynamical system we
describe below.

5.1 Limit Cycle

To test if 2D GRUs can learn a limit cycle, we use a simple nonlinear oscillator called the FitzZHugh-
Nagumo Model (FitzHugh, 1961). The FitzHugh-Nagumo model is defined by: & = z — % —yY+lext, TY =
x + a — by, where in this experiment we will chose 7 = 12.5, a = 0.7, b = 0.8, and Iex; = N(0.7,0.04).
Under this choice of model parameters, the system will exhibit an unstable fixed point (unstable spiral)
surrounded by a limit cycle (Fig. 11). As shown in section 4, 2D GRUs are capable of representing this
topology. The results of this experiment verify this claim (Fig. 11), as 2D GRUs can capture topologically
equivalent dynamics.

5.2 Line Attractor

As discussed in section 4, 2D GRUs can exhibit a pseudo-line attractor, by which the system mimics an
analytic line attractor on a small finite domain. We will use the simplest representation of a planar line
attractor: © = —x, y = 0. This system will exhibit a line attractor along the y-axis, at v = 0 (Fig. 11).
Trajectories will flow directly perpendicular towards the attractor. white Gaussian noise N (0,0.17) in the
training data. While the hidden state dynamics of the trained network do not perfectly match that of an
analytic line attractor, there exists a small subinterval near each of the fixed points acting as a pseudo-line
attractor (Fig. 11). As such, the added affine transformation (linear readout) can scale and reorient this
subinterval on a finite domain. Since all attractors in a d-dimensional GRU are bound to [—1, 1]%, no
line attractor can extend infinitely in any given direction, which matches well with the GRUs inability to
perform unbounded counting, as the continuous analog of such a task would require a trajectory to move
along such an attractor.
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Figure 11. Training 2D GRUs. (top row) Phase portraits of target dynamical systems. Red solid lines
represent 1-dimensional attractors. See main text for each system. (middle row) GRU dynamics learned
from corresponding 29-step forecasting tasks. The prediction is an affine transformation of the hidden
state. (bottom row) An example time series generated through closed-loop prediction of the trained GRU
(denoted by a black trajectory). GRU fails to learn the ring attractor.
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Figure 12. Average learning curves (training loss) for ring attractor (left) and the FitzHugh-Nagumo
(right) dynamics. Note that the performance of the ring attractor improves as the dimensionality of the
GRU increases unlike the FHN dynamics. Four network sizes (2, 4, 8, 16 dimensional GRU) were trained
3 times with different initializations, depicted by the more lightly colored curves.
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5.3 Ring Attractor

For this experiment, a dynamical system representing a standard ring attractor of radius one is used:
&= —(2? + 9% — 1)z; y = —(22 + y?> — 1)y. This system exhibits an attracting ring, centered around an
unstable fixed point. We added Gaussian noise N (0, 0.17) in the training data.

In our analysis we did not observe two GRUs exhibit this set of dynamics, and the results of this
experiment, demonstrated in Fig. 11, suggest they cannot. Rather, the hidden state dynamics fall into
an observed finite fixed point topology (see case xxix in section 3 of the supplementary material). In
addition, we robustly see this over multiple initializations, and the quality of approximation improves as the
dimensionality of GRU increases (Fig. 12), suggesting that many GRUs are required to obtain a sufficient
approximation of this set of dynamics for a practical task (Funahashi and Nakamura, 1993).

6 DISCUSSION

Through example and experiment we indicated classes of dynamics which are crucial in expressing various
known neural computations and obtainable with the 2D GRU network. We demonstrated the system’s
inability to learn continuous attractors, seemingly in any finite dimension, a structure hypothesized to exist
in various neural representations. While the GRU network was not originally made as a neuroscientific
model, there has been considerable work done showing high qualitative similarity between the underlying
dynamics of neural recordings and artificial RNNs on the population level (Mante et al., 2013; Sussillo et al.,
2015). Furthermore, recent research has modified such artificial models to simulate various neurobiological
phenomenon (Heeger and Mackey, 2019). One recent study demonstrated that trained RNNs of different
architectures and nonlinearities express very similar fixed point topologies to one another when successfully
trained on the same tasks (Maheswaranathan et al., 2019b), suggesting a possible connection in the dynamics
of artificial networks and neural population dynamics. As such, an understanding of the obtainable
dynamical features in a GRU network allow one to comment on the efficacy of using such an architecture
as an analog of brain dynamics at the population level.

Although this manuscript simplified the problem by considering the 2D GRU, a lot of research has resulted
in interpreting cortical dynamics as low dimensional continuous time dynamical systems (Zhao and Park,
2020; Harvey et al., 2012; MacDowell and Buschman, 2020; Flesch et al., 2021; Mante et al., 2013; Cueva
et al., 2020). This is not to say that most standard neuroscience inspired tasks can be solved with such
a low dimensional network. However, demonstrating that common dynamical features in neuroscience
can arise in low dimensions can aid in one’s ability to comment on attributes of large networks. These
attributes include features such as sparsity of synaptic connections. For example, spiking models exhibiting
sparse connectivity have been shown to perform comparatively with fully connected RNNs (Bellec et al.,
2018). Additionally, pruning (i.e. removing) substantial percentages of synaptic connections in a trained
RNN is known to often result in little to no drop in the network’s performance on the task it was trained
on (Frankle and Carbin, 2018). This suggests two more examinable properties of large networks. The
first is redundancy or multiple realizations of the dynamical mechanisms needed to enact a computation
existing within the same network. For example, if only one limit cycle is sufficient to accurately perform
a desired task, a trained network may exhibit multiple limit cycles, each qualitatively acting identically
towards the overall computation. The second is the robustness of each topological structure to synaptic
perturbation/pruning. For example, if we have some dynamical structure, say a limit cycle, how much can
we move around in parameter space while still maintaining the existence of that structure?

In a related light, the GRU architecture has been used within more complex machine learning setups
to interpret the real-time dynamics of neural recordings (Willett et al., 2021; Pandarinath et al., 2018).
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These tools allow researchers to better understand and study the differences between neural responses, trial
to trial. Knowledge of the inner workings and expressive power of GRU networks can only further our
understanding of the limitations and optimization of such setups by the same line of reasoning previously
stated, thereby helping to advance this class of technologies, aiding the field of neuroscience as a whole.

The most compared RNN architecture to the GRU is LSTM, as GRU was designed as both a model
and computational simplification of this preexisting design in discrete time implementation. LSTM, for a
significant period of time, was arguably the most popular discrete time RNN architecture, outperforming
other models of the time on many benchmark tasks. However, there is one caveat when comparing the
continuous time implementations of LSTM and GRU. A one dimensional LSTM (i.e. a single LSTM unit)
is a two dimensional dynamical system, as information is stored in both the system’s hidden state and cell
state (Hochreiter and Schmidhuber, 1997). With the choice of analysis we use to dissect the GRU in this
paper, LSTM is a vastly different class of system. We would expect to see a different and more limited
array of dynamics for an LSTM unit when compared with the 2D GRU. However, we wouldn’t consider
this a fair comparison.

One attribute of the GRU architecture we chose to disregard in this manuscript was the influence of
the update gate z(t). As stated in section 2, every element of this gate is bound to (0, 1)?. Since (7) only
has one term containing the update gate, (1 — z(t)), which can be factored out, the fixed point topology
does not depend on z(t), as this term is always strictly positive. The role this gate plays is to adjust the
point-wise speed of flow, and therefore can bring rise to slow manifolds. Because each element of z(t)
can become arbitrarily close to the value of one, regions of phase space associated with an element of
the update-gate sufficiently close to one will experience seemingly no motion in the directions associated
with those elements. For example, in the 2D GRU system, if the first element of z(¢) is sufficiently close
to one, the trajectory will maintain a near fixed value in . These slow points are not actual fixed points.
Therefore, in the autonomous system, trajectories traversing them will eventually overcome this stoppage
given sufficient time. However, this may add one complicating factor for analyzing implemented continuous
time GRUs in practice. The use of finite precision allows for the flow speed to dip below machine precision,
essentially creating pseudo-attractors in these regions. The areas of phase space containing these points
will qualitatively behave as attracting sets, but not by traditional dynamical systems terms, making them
more difficult to analyze. If needed, we recommend looking at z(t) separately, because this term acts
independently from the remaining terms in the continuous time system. Therefore, any slow points found
can be superimposed with the traditional fixed points in phase space. In order to avoid the effects of finite
precision all together, the system can be realized through a hardware implementation (Jordan and Park,
2020). However, proper care needs to be given in order to mitigate analog imperfections.

Unlike the update gate, we demonstrated that the reset gate r(¢) affects the network’s fixed point topology,
allowing for more complicated classes of dynamics, including homoclinic-like orbits. These effects are best
described through the shape of the nullclines. We will keep things qualitative here as to help build intuition.
In 2D, if every element of the reset gate weight matrix U, and bias b, is zero, nullclines can form two
shapes. First is a sigmoid-like shape (Fig. 5A, 10, and 11 (inferred limit cycle and line attractor)), allowing
them to intersect a line (or hyperplane in higher dimensions) orthogonal to their associated dimension a
single time. The second is an s-like shape (Fig. 5B, 5C, 7, and 11 (limit cycle)), allowing them to intersect
a line orthogonal to their associated dimension up to three times. The peak and trough of the s-like shape
can be stretched infinitely as well (Fig. 2A). In this case, two fo the three resultant seemingly disconnected
nullclines associated with a given dimension can be placed arbitrarily close together (Fig. 3B). Varying
r(t) allows the geometry of the nullclines to take on several additional shapes. The first of these additional
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structures is a pitchfork-like shape (Fig. 3A, 3C, 9). By disconnecting two of the prongs from the pitchfork
we get our second structure, simultaneously exhibiting a sigmoid-like shape and a U-like shape (Fig. 3C).
Bending the ends of the ”U” at infinity down into R2 connects them, forming our third structure, an O-like
shape (Fig. 11 (inferred ring attractor — orange nullcline)). This O-like shape can then also intersect the
additional segment of the nullcline, creating one continuous curve (Fig. 11 (inferred ring attractor — pink
nullcline). One consequence of the reset-gate is the additional capacity to encode information in the form
of stable fixed points. If we neglect r(¢), we can obtain up to four sinks (Fig. 2A), as we are limited to
the intersections of the nullclines; two sets of three parallel lines. Incorporating r() increases the number
of fixed points obtainable (Fig. 3A). Refer to section 3 of the supplementary material to see how these
nullcline structures lead to a vast array of different fixed point topologies.

Several interesting extensions to this work immediately come to mind. For one, the extension to a 3D
continuous time GRU network opens up the door for the possibility of more complex dynamical features.
Three spatial dimensions are the minimum required to experience chaotic dynamics in nonlinear systems
(Meiss, 2007), and due to the vast size of the GRU parameter space, even in low dimensions, such behavior
is probable. Similarly, additional types of bifurcations may be present, including bifurcations of limit cycles,
allowing for more complex oscillatory behavior (Kuznetsov, 1998). Furthermore, higher dimensional
GRUs may bring rise to complex center manifolds, requiring center manifold reduction to better analyze
and interpret the phase space dynamics (Carr, 1981). While we considered the underlying GRU topology
separate from training, considering how the attractor structure influences learning can bring insight into
successfully implementing RNN models (Sokét et al., 2019). As of yet, this topic of research is mostly
uncharted. We believe such findings, along with the work presented in this manuscript, will unlock new
avenues of research on the trainability of recurrent neural networks and help to further understand their
mathematical parallels with biological neural networks.
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