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Abstract—Many regions of the protein universe remain in-
accessible by wet-laboratory or homology modeling methods.
Elucidating these regions necessitates structure determination
in silico. Protein structure determination in the absence of a
structural template remains a challenging task with two core
problems, known as decoy generation and decoy selection. In this
paper, we address the problem of decoy generation, which inher-
ently involves exploring the unknown, vast, and high-dimensional
structure space of a given amino-acid sequence in the presence of
a finite computational budget for relevant structures. Leveraging
a stochastic optimization framework, we first demonstrate how
selection pressure can be employed to control the trade-off
between exploration and exploitation. Moreover, we then propose
a novel algorithm that tunes its behavior towards exploration
or exploitation as needed via an adaptive selection mechanism.
We present a thorough evaluation on 30 protein targets in a
comparative setting, where we compare the proposed adaptive
algorithm to state-of-the-art algorithms that include the top ten
groups in the two recent CASP competitions. The results show
that the proposed algorithm is not only competitive against
several of these groups, but it additionally outperforms several
of them on many targets, suggesting that adaptive stochastic
optimization is a promising framework for decoy generation.

Keywords-protein structure prediction, decoy generation,
stochastic optimization, tertiary structure

1. INTRODUCTION

Protein structure determination remains a hallmark problem
in molecular biology. First, the recognition is due to the
knowledge that the three-dimensional/tertiary structure deter-
mines to a great extent the biological activities in which a
protein molecule participates in the living cell [1]. Second,
the problem poses outstanding challenges in wet and dry
laboratories; currently, many regions of the protein universe
remain inaccessible. A recent study estimates that 44-54% of
the proteome in eukaryotes and viruses (~ 546,000 proteins)
and 14% of the proteome in archaea and bacteria is dark [2].

Computational progress is closely tracked biannually via the
“Critical Assessment of protein Structure Prediction” (CASP)
community-wide experiments [3]. A prominent category as-
sesses the ability to predict the biologically-active/native ter-
tiary structure of a given protein amino-acid sequence for
which there is no structural template from a close or remote
homolog (with sufficiently similar sequence). The methods
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that operate in the absence of a template are known as ab initio
or template-free protein structure determination/prediction, or
more generally as free modeling.

Free modeling is a task with two inherent problems, decoy
generation and decoy selection. The term decoy is used to
denote a computed tertiary structure to convey that a set of
computed decoys may hide within them the actual near-native
structures. The objective in decoy selection is to tease out the
relevant/near-native structures from the generated decoys.

Decoy generation methods operate under an optimization
framework, whether one considers the popular Rosetta plat-
form [4], Quark [5], or the much-publicized AlphaFold [6] in
the latest CASP. At their core, these methods seek to optimize
a scoring function. The hypothesis is that the native structure
resides at the global minimum. The structure space is vast and
high-dimensional, all current scoring functions are inherently
inaccurate, and the surface of the scoring function is rugged; in
response, the assumption is relaxed, and the objective becomes
seeking local minima of the scoring function that are populated
by near-native structures [7].

A leap was made more than two decades ago, with the
introduction of fragment replacement for decoy generation [8].
The realization was that though the protein structure universe
is large, there are only a finite number of different structural
pieces/fragments if one “cut” known protein structures into
fixed-length fragments. Simple Monte Carlo-based algorithms
were debuted, which at every Monte Carlo step proposed
replacing the structure of a fragment selected at random over
the backbone chain to vary the current decoy and obtain a
new one. A Metropolis criterion based on score improvement
provided the bias towards local minima.

Many optimization algorithms followed, including many
EAs by our group over the years [9]—-[11]. Other groups focus
on improving the accuracy of scoring functions and/or devising
novel fragments [12]. The recent AlphaFold falls in this
latter category, as well, learning a scoring function, generating
novel fragments, and then carrying out a gradient descent
over the learned scoring function, putting together decoys
with fragments [6]. Other groups avoid tertiary structure and
fragments and operate instead over other representations, such
as contact maps or distance maps. Deep learning is emerging
as powerful in this thread of research [13]. It is worth noting
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that optimization is again needed to go from contact or
distance maps to the actual tertiary structures [14].

In this paper, we address the problem of decoy generation.
Our research over the years has demonstrated that casting
an optimization algorithm under the umbrella of evolution-
ary computation results in powerful evolutionary algorithms
(EAs) with higher exploration capability than gradient descent,
Metropolis Monte Carlo (MMC), or even Simulated Annealing
MMC (SA-MMC) [9]-[11], [15]. Given a finite computational
budget, these algorithms see more of the structure space (or the
associated scoring function). This is key to obtaining diverse
but physically-realistic decoys so as not to miss the near-native
ones in the presence of an inaccurate scoring function.

The evolutionary computation setting exposes algorithmic
knobs that can be varied to control the inherent trade-off be-
tween exploration (seeing more of the space) and exploitation
(getting to better-scoring regions of the space). In this paper,
we focus on how to better control this trade-off. We first
demonstrate how selection pressure is useful for this purpose.
Learning from our observations, we then propose a novel
adaptive algorithm that tunes its behavior towards exploration
or exploitation as needed via an adaptive selection mechanism.

In our experiments, we consider 30 protein targets that
include recent hard CASP targets from the free modeling
category. We generate dozens of thousands of decoys for
each target, and analyze their quality in comparison to results
by the top ten groups in the two recent CASP competi-
tions. The results, presented in Section III, show that the
proposed algorithm is competitive and even outperforms on
many targets, suggesting that adaptive stochastic optimization
is a promising framework for decoy generation. We place our
findings in context in Section IV, which concludes the paper.
Before proceeding with methodological details in Section II,
we provide a brief summary of related work in Section I-A.

A. Related Work and Preliminaries

Let us first provide some more detail behind the concept
of a fragment and a fragment configuration, as these are key
concepts utilized in this paper. Given a chain of n amino
acids, numbered from the N- to the C-terminus, we specify a
fragment [¢, j]. This notation indicates that the fragment starts
at amino acid ¢ and ends at amino acid j in the sequence
[1,...,n]. A configuration for this fragment consists of a
vector of 2 - (j — ¢ + 1) dihedral angles, with two dihedral
angles, ¢ and 1, specified for each amino acid. The reader is
referred to Ref. [16] for a review of protein geometry.

Known native structures of proteins in the Protein Data
Bank (PDB) [17] can be excised into fixed-length fragments of
some chosen length f. The resulting fragment configurations
are organized in a fragment configuration library indexed
by fragment amino-acid sequences. A new decoy can be
easily obtained by varying an existing decoy at a selected
(often at random) amino acid ¢; the configuration for the
fragment [i,4 + f — 1] in the decoy is replaced with a new
configuration for a same or similar-sequence fragment chosen
from a fragment configuration library.
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Fragment replacement is a key unit in many decoy gen-
eration platforms. Lengths employed in Rosetta are 9 and 3.
Quark makes use of longer fragments [18]. AlphaFold [6] aug-
ments fragment configuration libraries with novel fragments
generated from a generative recurrent neural network.

Different methods use different scoring functions and differ-
ent optimization algorithms. Rosetta and Quark use SA-MMC.
AlpaFold uses a simple gradient descent. Others use single-
objective or multi-objective EAs to improve upon simulated
annealing [9]-[11], [14], [19]. While EAs are naturally better
equipped at addressing the balance between exploration and
exploitation for complex optimization problems, the existing
algorithms do not explicitly control this balance. We do so here
by managing the EA selection pressure to achieve a proper
exploration-exploitation balance.

In this paper, we build over a hybrid evolutionary algorithm
(HEA) [9], which we describe briefly; the interested reader can
find further details in Ref. [9]). HEA is a population-based EA
that evolves a fixed-size population of p individuals (decoys)
over generations. The initial population operator instantiates
the first population. In each generation, the individuals in the
population are considered parents and offspring are produced
from the parents via a variation operator. The offspring are
then subjected to an improvement operator to further improve
their score, which is more generally referred to as fitness. The
improved offspring then compete with the top parents, and a
selection operator down-selects to p individuals that initialize
the population for the next generation.

Given the amino-acid sequence of a protein target, the initial
population operator first constructs p identical extended chains
using Rosetta’s centroid representation [4], which, for each
amino-acid, models only the heavy-backbone atoms and a
pseudo-atom representing the centroid of the side chain atoms.
The chains are then randomized via a two-stage MMC search
where each move is a fragment replacement of length 9. The
first stage is greedy and employs the Rosetta scoreQ scoring
function that encourages steric repulsion. The second stage
employs the Rosetta scorel to encourage the formation of
secondary structures and uses the Metropolis criterion.

Each individual in the population is subjected to a varia-
tion operator to obtain an offspring, which applies a single
fragment (of length 3) replacement to a parent decoy. Each
offspring is then subjected to an improvement operator. It uses
a greedy local search to map the offspring to a nearby local
minimum in the Rosetta score3 energy function landscape. Its
moves are fragments replacements over fragments of length 3.
The search ends when £ consecutive moves fail to decrease
the score, where k£ is the length of the target sequence.

HEA uses a elitism-based truncation selection operator.
Essentially, all individuals (parents and improved offspring)
are first evaluated using Rosetta’s full centroid scoring function
scored. The top-scoring [% individuals from the parents are
combined with the improved offspring to compete for survival;
[ is the elitism rate. These individuals are then sorted in
increasing order of their score4, and the top p individuals are
selected to represent the population for the next generation.
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II. METHODS

The selection mechanism is a very powerful knob via which
one can control the balance between exploration and exploita-
tion and directly control the quality of generated decoys.
For this reason, we first design three variants of the HEA
algorithm summarized in Section I-A. These variants only
change the selection mechanism, utilizing the other operators
(initial population, variation, and improvement) as in HEA.

To make prominent the fact that HEA uses truncation-based
selection, we refer to it as HEA-TR from now on. We note
that it is well-understood that truncation-based selection places
very strong selection pressure over a population and tips the
scales towards more exploitation and less exploration. In the
three variants we design, we gradually weaken the selection
pressure, thus tipping the scales towards more exploration than
exploitation, to observe its impact over the quality of generated
decoys. We name these three variants HEA-QT, HEA-FP, and
HEA-US and describe them in greater detail below.

Finally, we propose a fourth algorithm, HEA-AD, to achieve
an appropriate balance between exploration and exploitation.
HEA-AD tunes its behavior towards exploration or exploita-
tion as needed via an adaptive selection mechanism. We now
provide further details.

A. The HEA-QT Algorithm

HEA-QT uses quaternary tournament as the selection mech-
anism, which applies weaker selection pressure than truncation
selection. The goal is to decrease the selection pressure so
as to reduce exploitation and promote exploration. In HEA-
QT, the parents and the improved offspring are first evaluated
via score4 and combined to construct a selection pool. Then,
for each of the p “open spots” in the population for the next
generation (p is population size), a 4-way tournament is held.
4 individuals are randomly selected from the selection pool
using a uniform probability distribution with replacement. The
top individual among the selected 4 according to scored is
designated winner and so selected to survive for the next
generation (the selected individual fills the next open spot).

B. The HEA-FP Algorithm

HEA-FP employs a fitness-proportional selection scheme.
Fitness proportional selection applies even less selection pres-
sure than quaternary tournament. In HEA-FP, each indi-
vidual ¢ in the combined selection pool S of parents and
improved offspring is assigned a selection probability of
fitness(i)/ 3 ;cq fitness(j), where fitness() is the Rosetta
scored of an individual. We sample this distribution p times to
select p individuals to survive for the next generation, where
p is the size of the population.

C. The HEA-US Algorithm

HEA-US applies the weakest selection pressure through
uniform stochastic. Uniform stochastic selection assumes iden-
tical fitness for all the individuals. In HEA-US, the parents and
the improved offspring are combined to form a selection pool
of size 2p (p is the population size). p individuals are then
selected from it uniformly at random for the next generation.
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D. HEA-AD Algorithm

HEA-AD employs an adaptive selection operator to better
balance between exploration and exploitation. Instead of keep-
ing the same selection pressure over generations, HEA-AD
adapts the selection pressure based on the characteristics of the
population. The algorithm evaluates the population every few
generations for possible adjustments in the selection pressure
and decreases or increases the selection pressure as needed.

Specifically, the adaptive mechanism periodically checks for
a possible change of the selection pressure. The algorithm
tracks the best-so-far fitness, which measures the best fitness
(lowest Rosetta score4) over the g populations over the past
g generations. Let us refer to this statistic as BSFF.

When a change needs to be made, as detailed below,
the algorithm chooses a new selection mechanism from a
scheme pool SP = {uniform stochastic, fitness proportional,
quaternary tournament, truncation}. The pool is sorted in
ascending order of selection pressure. HEA-AD first starts
with a weaker selection scheme, the fitness proportional one,
so as to encourage more exploration in the early generations.
Over every g generations, the choice of the selection scheme
is revisited as follows.

If the current BSFF (over the last g generations) increases
by < 5% over the BSFF observed over g generations earlier,
the selection pressure is increased by replacing the current
selection scheme with the next one in the pool S'P that applies
more selection pressure. Recall that the selection schemes are
ordered from weakest to strongest. For example, if the current
selection mechanism in HEA-AD is the fitness proportional
one, HEA-AD will then set the current selection mechanism
to be quaternary tournament. A slowly rising best-so-far curve
suggests the selection pressure is too weak [20].

If the current BSFF (over the last g generations) increases
by > 15% over the BSFF observed over g generations
earlier, we take this as indication that too much exploitation
is happening. The algorithm can converge prematurely to
a suboptimal minimum. Therefore, the selection pressure is
decreased by switching the current selection scheme with the
previous scheme in SP. For example, if the algorithm is using
truncation selection at this point, it will go on to use quaternary
tournament from now on.

If the the current BSFF (over the last g generations) is
unchanged from the BSFF observed over g generations earlier,
and the algorithm is currently using truncation selection, the
population could be stagnated and more exploration can help.
Therefore, the selection pressure is decreased gradually by
choosing the previous scheme in S P until the BSFF improves.

If the current BSFF (over the last g generations) is un-
changed from the BSFF observed over g generations ear-
lier, and the algorithm is currently using uniform stochastic
selection, this indicates that the selection pressure has kept
decreasing from truncation to end up in uniform stochastic.
So, some exploration has already been performed by selecting
weaker individuals and allowing them to reproduce. Therefore,
we can now aim to improve the BSFFE. The selection pressure
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is increased gradually for more exploitation by choosing the
next scheme in S P until the BSFF improves.

This adaptive selection operator is utilized in HEA-AD
algorithm to select individuals for the next generation. As
with the other variants, the initial population, variation, and
improvement operators remain unchanged and the fitness of
an individual is evaluated via the Rosetta score4.

E. Implementation Details

The population size is p = 100; the elitism rate for elitism-
based truncation selection is set to I = 25%, as in [9]. As
is common for decoy generation, the termination criterion is
set to a total budget of fitness/score evaluations, 10M here.
This results in typically 120 — 300K decoys generated over
700 — 1600 generations. The checking parameter g for HEA-
AD is set to 15. The algorithms are implemented in Python
and interface with the PyRosetta library. The algorithms take
1 — 3 hours on one Intel Xeon E5-2670 CPU with 2.6GHz
base processing speed and 20GB of RAM. The runtime differs
mainly due to different lengths of the target proteins. The
algorithms are run 5 times on each target protein’s amino-acid
sequence to account for the effects of stochasticity.

III. RESULTS
A. Experimental Setup

We evaluate on two datasets. The first is a benchmark
dataset, first introduced in [21] and enriched with more tar-
gets [9], [22], [23]. The dataset consists of 20 target proteins
of varying lengths (53 to 146 amino acids) and folds («, 3,
a + S, and coil). The second dataset is also used in recent
literature [10], [14], [24], [25] and contains 10 hard, free-
modeling targets from CASP12 and CASP13.

We first compare HEA-TR, HEA-QT, HEA-FP, HEA-US,
and HEA-AD to one another and Rosetta’s decoy generation
algorithm on the benchmark dataset. We then compare HEA-
AD’s performance on the CASP targets dataset against the top
10 performing groups on each target, as listed on the CASP
website (https://predictioncenter.org/casp13/index.cgi).

Our algorithms are run 5 times on each target to count for
the stochastic optimization; the best performance over 5 runs
combined is reported. Each run exhausts 10/ energy evalu-
ations. For a fair comparison, Rosetta is run for 541/ energy
evaluations on each target. Rosetta is evaluation expensive,
and one run of it exhausts 36K score evaluations. The above
total budget results in 1,500 decoys over 1,500 runs.

Performance is measured on best-achieved score and best
proximity to a known native structure. The score-based anal-
ysis is particularly important to expose the impact of the
selection mechanism on the exploration-exploitation trade-
off [26]. We make use of two popular metrics to measure prox-
imity of decoys to the native structure; root-mean-squared-
deviation (RMSD) [27] and Global Distance Test - Total Score
(GDT_TS) [28]. RMSD is a dissimilarity metric (lower values
indicate better proximity), GDT_TS is a similarity metric
(higher values indicate better proximity). GDT_TS is reported
in CASP competitions as a percentage value, as we do here.

53

In addition, as is practice in CASP, the comparison focuses on
the CA atoms (the main carbon atom of each amino acid).

Finally, we carry out statistical significance tests for a prin-
cipled evaluation. We utilize Fisher’s [29] and Barnard’s [30]
exact tests for this purpose. Although Fisher’s conditional
test is widely adopted for statistical significance, Barnard’s
unconditional exact test is generally considered more powerful
than Fisher’s test for 2x2 contingency matrices.

B. Evaluation on Benchmark Dataset

Figure 1 shows the best score (lowest Rosetta scored)
over decoys generated by HEA-TR, HEA-QT, HEA-FP, HEA-
US, HEA-AD, and Rosetta for each benchmark target. In
the interest of clarity, a target is named by the entry id of
a representative native structure known for it in the PDB.
Figure 1 shows that HEA-AD achieves the best score on 11/20
of the target proteins. In comparison, Rosetta achieves the best
score in 4/20, HEA-TR in 3/20, and HEA-QT in 2/20 of the
targets. In a head-to-head comparison, HEA-AD comfortably
outperforms each of the other algorithms. P-values for the
statistical significance tests are listed in Table I. The p-values
indicate that the performance (score) improvements of HEA-
AD over other algorithms are statistically significant at the
95% confidence level (p-values < 0.05).

| -

o .

~100

Lowest Rosetta scored energy

-1504

.Q A - y -.D -‘1 y
FH AL S

PO » o
FLEHELS P

Target
Fig. 1. Comparison of the best Rosetta score4 (measured in Rosetta Energy
Units - REUSs) over decoys generated by each of the algorithms on each target
in the benchmark dataset. The algorithms are distinguished by color-coding.

More observations can be drawn from Figure 1 and Ta-
ble I(b). HEA-QT outperforms all algorithms comfortably, ex-
cept HEA-AD. Its performance improvements are statistically
significant at the 95% confidence level. This confirms that
truncation selection exerts strong selection pressure that results
in premature convergence. As quaternary tournament applies
less selection pressure, it is able to better explore more of the
space. On the other hand, HEA-TR easily outperforms HEA-
FP and HEA-US; Table I(c) indicates the performance im-
provements are statistically significant at the 95% confidence
level. These results show that fitness proportional and uniform
selection apply too little selection pressure, resulting in little
exploitation.

Similar analysis is now presented on the best proximity to
the known native structure reached over generated decoys for
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TABLE 1
RESULTS FOR THE 1-SIDED FISHER’S AND BARNARD’S TESTS ON
HEAD-TO-HEAD COMPARISONS IN FIGURE 1. THE TESTS EVALUATE THE
NULL HYPOTHESIS THAT (A) HEA-AD DOES NOT ACHIEVE, (B) HEA-QT
DOES NOT ACHIEVE, (C) HEA-TR DOES NOT ACHIEVE BETTER SCORE ON
THE BENCHMARK DATASET IN COMPARISON TO A PARTICULAR
ALGORITHM; P-VALUES LESS THAN 0.05 ARE MARKED IN BOLD.

Test Rosetta  HEA- HEA- HEA- HEA-
TR QT FP UsS
(a) HEA-AD
Fisher’s 0.01282 0.01282 0.05642 7.25E-12 7.25E-12
Barnard’s 0.008299 0.008299 0.04035 9.10E-13 9.10E-13
(b) HEA-QT
Fisher’s 0.05642 0.01282 N/A 2.91E-09 7.25E-12
Barnard’s  0.04035  0.008299 N/A 747E-10 9.10E-13
(c) HEA-TR
Fisher’s N/A N/A N/A 0.01282 2.91E-09
Barnard’s  N/A N/A N/A 0.008299 7.47E-10

a target. Figure 2 shows the best RMSD (lowest) over decoys
generated by HEA-TR, HEA-QT, HEA-FP, HEA-US, HEA-
AD, and Rosetta for each benchmark target. Figure 2 shows
that HEA-AD achieves the best RMSD on 12/20 of the targets.
In comparison, Rosetta achieves the best RMSD in 7/20 of
the targets, HEA-QT in 4/20, and HEA-TR in 1/20 of the
targets. In a head-to-head comparison, HEA-AD comfortably
outperforms each of the other algorithms. P-values for the
statistical significance tests are listed in Table II. The p-values
indicate that the performance (score) improvements of HEA-
AD over other algorithms are statistically significant at the
95% confidence level (p-values < 0.05).

Additional observations can be drawn. For instance, HEA-
QT outperforms all the other algorithms except HEA-AD. Ta-
ble II(b) indicates that performance improvements over HEA-
TR, HEA-FP, and HEA-US are statistically significant at the
95% confidence level. Moreover, HEA-TR outperforms HEA-
FP and HEA-US. Table II(c) indicates that the performance
improvement over HEA-US is statistically significant.
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Fig. 2. Comparison of the best/lowest RMSD (measured in A) to the native
structure over decoys generated by each of the algorithms on each target in

the benchmark dataset. The algorithms are distinguished by color-coding.

C. Evaluation on CASP Dataset

Since we do not have access to the decoy datasets generated
by the top ten groups in the recent CASP competitions,
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TABLE II
RESULTS FOR THE 1-SIDED FISHER’S AND BARNARD’S TESTS ON
HEAD-TO-HEAD COMPARISONS IN FIGURE 2. THE TESTS EVALUATE THE
NULL HYPOTHESIS THAT (A) HEA-AD DOES NOT ACHIEVE, (B) HEA-QT
DOES NOT ACHIEVE, (C) HEA-TR DOES NOT ACHIEVE LOWER LOWEST
RMSD ON THE BENCHMARK DATASET IN COMPARISON TO A PARTICULAR
ALGORITHM. P-VALUES LESS THAN 0.05 ARE MARKED IN BOLD.

Test Rosetta HEA- HEA- HEA- HEA-
TR QT FP UsS
(a) HEA-AD
Fisher’s 0.05642 0.0006159 0.001528 1.52E-10 1.68E-09
Barnard’s 0.04035 0.0003401 0.0006061 3.73E-11 3.83E-10
(b) HEA-QT
Fisher’s 0.3762 0.05548 N/A 1.11E-06 7.25E-12
Barnard’s  0.3179 0.03517 N/A 2.97E-07 9.10E-13
(c) HEA-TR
Fisher’s N/A N/A N/A 0.5 0.02808
Barnard’s  N/A N/A N/A 0.4373 0.01924

we can only evaluate the model submitted by a group. Our
analysis employs RMSD and GDT_TS. Since the analysis
above related HEA-AD superior over other HEA variants, we
focus on HEA-AD. Fig. 3 compares the best RMSD achieved
by HEA-AD on a CASP target to the RMSD of the model
submitted by the top ten performing groups. Fig. 3 shows that
HEA-AD ranks in the top ten on 6/10 targets. The algorithm
ranks 1st on two targets, T0859-D1 and T0957s1-D1, 2nd on
T0953s1-D1, and 3rd on T0897-D1. Fig. 4 compares GDT_TS
values. HEA-AD ranks in the top ten on 3/10 targets. The
algorithm ranks 1st on two targets, T0859-D1 and T0897-D1.
ra
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Fig. 3. Comparison of the lowest RMSD (measured in A) obtained by the
top 10 groups and HEA-AD on each target in the CASP dataset.
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IV. CONCLUSION

The results presented above show that the adaptive selection
mechanism in HEA-AD balances the exploitation and explo-
ration effectively and samples regions of the structure space
that contain better-scoring structures. The results from the
RMSD-based analysis agree with these observations. The bet-
ter balance between exploration and exploitation in HEA-AD
yields better-quality decoys in both score and proximity to the
native structure. The comparison with top-performing groups
over CASP targets shows that HEA-AD is a competitive
algorithm on hard CASP targets. These results warrant further
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Fig. 4. Comparison of the highest GDT_TS score (measured in percentage)

obtained by the top 10 groups and HEA-AD on each target in the CASP

dataset.

research on more powerful stochastic optimization algorithms.
Future work will investigate the impact of adaptive selection
in multi-objective optimization, as well as its interaction with
different variation schemes.
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