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Abstract—The so-called dark proteome, referring to regions
of the protein universe that remain inaccessible by either wet-
or dry-laboratory methods, continues to spur computational
research in protein structure determination. An outstanding
challenge relates to the ability to discriminate relevant tertiary
structure(s) among many structures, also referred to as decoys,
that are computed for a protein of interest. The problem is
known as decoy selection. While prime for investigation as an
inference problem, the decoy datasets generated in silico are
sparse and highly imbalanced towards the negative class (ir-
relevant structures). These characteristics continue to challenge
both supervised and unsupervised learning approaches to this
problem. In this paper, we propose a novel decoy selection method
based on symmetric non-negative matrix factorization in a graph
clustering setting. The method is evaluated on two datasets, a
benchmark dataset of ensembles of decoys for a varied list of
protein molecules, and a dataset of decoy ensembles for targets
drawn from the recent CASP competitions. The evaluation
demonstrates that the proposed method outperforms several
state-of-the-art decoy selection methods. This performance, as
well as the method’s computational expediency, suggest that the
proposed method advances the state of the art in decoy selection
and, in particular, our the ability to tackle inherent challenges
related to imbalanced datasets.

Keywords—decoy selection, eigen-gap heuristic, graph cluster-
ing, protein structure determination, symmetric NMF.

I. INTRODUCTION

The tertiary (three-dimensional) structure is recognized to
be central to the biological activities of a protein in the living
cell [1]. Currently, however, many regions of the protein
universe are inaccessible by either wet- or dry-laboratory
methods [2]. It is estimated that about 44–54% of the proteome
in eukaryotes and viruses (about 546, 000 proteins) and about
14% of the proteome in archaea and bacteria is dark.

The dark proteome continues to spur computational research
in protein structure determination [3]. When no structural
template exists for a protein target, the task of structure
determination is beyond the scope of homology modeling [4].
Addressing this task with template-free methods involves
first generating many physically-realistic tertiary structures. A

designed molecular energy/score function is used as a proxy to
evaluate the physical relevance, or the nativeness of a tertiary
structure. The emphasis on proxy is due to the fact that,
while useful, all such functions fall short and result in many
irrelevant structures dominating the generated dataset [5], [6];
hence, the popular term decoy is used when referring to a
generated structure in this setting.

It is imperative that the generated decoys be further assessed
so as to determine one or more that are native. Determining
this is known as model accuracy/quality assessment, model
selection, or decoy selection. The terms model and decoy are
used interchangeably. We will use the term decoy from now
on, as model has a different meaning in machine learning
(ML). It is also worth noting that there are differences between
assessment and selection that are not explicitly stated in related
literature. Decoy assessment involves assessing each given
decoy via a quantity/score that evaluates its “nativeness”.
Decoy selection involves selecting from a given set of decoys
one or few and predicting them as (near-)native.

One can utilize assessment for selection, for instance, by re-
lying on a ranking-based approach, but not necessarily. Indeed,
unsupervised learning approaches based on clustering remain
popular. A summary of related work on decoy assessment
and selection is provided in Section II. As our exposition
relates, assessment methods are challenged by the accuracy
of scoring functions, whereas selection methods that rely on
clustering, and to a great extent even current methods that
leverage supervised learning, struggle with data sparsity and
imbalance. A recent method published by our laboratories
offered non-negative matrix factorization as a novel framework
for unsupervised decoy selection [7].

In this paper, we propose a novel decoy selection method,
SNMF-DS, that utilizes symmetric non-negative matrix fac-
torization (NMF) in the graph clustering setting for decoy
selection. The method is fully non-parametric and employs
the eigen-gap statistic to automatically determine the number
of components for matrix factorization.
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SNMF-DS proceeds in stages, first organizing the decoys
into groups, identifying a best group, and then drawing a
best decoy from this group. The potential energy of decoys is
used to determine the best group. A decoy weighting scheme
is employed to find the best decoy from the best group.
Section III describes the proposed SNMF-DS in greater detail.

Extensive experiments and evaluation via rigorous metrics,
related in Section IV, show that SNMF-DS outperforms sev-
eral state-of-the-art methods, suggesting that matrix factoriza-
tion advances the state of the art in decoy selection. Section V
summarizes the performance and offers some further directions
of work in this thread of research.

II. RELATED WORKS

In the very early days of decoy selection being recognized
as central to protein structure determination, energy-based
methods were prominent. These methods, also referred to as
single-model methods (recall that model in this context is
interchangeable with decoy), were based on the hypothesis
that better scores or energies translated to closer proximity to
the unknown native structure. This turned out not to be the
case, particularly for the early energy functions [8].

In response, researchers pursued clustering-based methods
(also known as multi-model methods). These methods ignored
decoy energies/scores and instead clustered decoys based only
on structural similarity [9], [10]. MUFOLD-CL [11] represents
a state-of-the-art clustering method to which we compare the
proposed SNMF-DS method in this paper.

Clustering-based methods were shown superior to energy-
based methods for some time, as evaluated in the Critical
Assessment of protein Structure Prediction (CASP) series of
biannual community-wide experiments [12]. However, better
energy-based methods have emerged recently, with energy
functions of ever-increasing accuracy. SBROD [13] represents
the state-of-the-art in such methods, and for this reason we
include it in the comparative evaluation of the SNMF-DS
method we propose in this paper.

The landscape of decoy selection methods is rich in its
diversity. The landscape includes quasi-single and supervised
learning methods. Quasi-single combine (and improve upon)
the aspects of energy- and clustering-based methods by first
picking up some high-quality structures that are then compared
with the rest of the decoys [14]. Recent methods leverage
the concept of the energy landscape and offer basins as more
effective clusters [15], [16].

A recent thread of research introduced NMF for decoy
selection [7], [17]. NMF has shown promise in various
computational biology applications [18]–[20]. However, NMF
remains largely unexplored for protein decoy selection. Work
in [7] debuted an NMF-based method for decoy selection that
leveraged several features pre-computed for decoys and can
be explored further at a large scale [21]. In this paper, we
debut a symmetric NMF framework for decoy selection. The
framework is feature-agnostic, non-parametric, computation-
ally expedient, and can handle sparse and highly imbalanced
datasets. We now describe it in greater detail.

III. METHODOLOGY

We first provide a conceptual summary of the proposed
SNMF-DS before relating further methodological details.

A. Proposed Framework for Decoy Selection
The framework that SNMF-DS operationalizes for decoy

selection proceeds in three stages. In the first stage, given
decoys, which we recall are tertiary structures of a given
target protein, are organized into groups {Gi}. The second
stage utilizes decoy energies to discriminate among the groups
and select a best group G∗ from {Gi}. In the third stage,
a weighting scheme associates weights with decoys in the
best group to select a best decoy from the best group. The
best decoy is the one offered for prediction. Conceptually, the
framework is related in Figure 1.

Fig. 1. The framework operationalized by the proposed SNMF-DS method
is shown schematically here.

Figure 1 shows that the input to SNMF-DS are the Cartesian
coordinates of the decoys. These are utilized to construct
a decoy similarity matrix, which is then subjected to an
EigenGap heuristic in order to determine k, the number of
groups. We use this information of k to perform symmetric
non-negative matrix factorization. The resultant factor (W) is
used to elucidate k groups in which decoys are organized by
finding the group membership from the factor matrix, W. The
method is non-parametric, as the value for k is determined
automatically by exploiting the EigenGap heuristic. We now
proceed to relate each of these steps in greater detail.

B. From Decoys to Decoy Similarity Matrix
SNMF-DS takes as input the decoys of a given protein tar-

get. Each decoy is a tertiary structure computed via a template-
free method. Given the popularity and public availability of the
Rosetta platform and, in particular, the ease of using the open-
source PyRosetta, the decoys of a given protein target in this
paper are generated via the Rosetta AbInitio protocol [22].
Each computed tertiary structure is stripped down to its main-
chain carbon atoms (the CA atoms), discarding side-chain
atoms and other backbone atoms. This reduction improves the
cost of computing the similarity matrix S in Figure 1.

The matrix S is symmetric and contains at entry Si,j the
similarity between two decoys i, j in the given decoy set.
Specifically, Si,j = 1

RMSD(i,j)+ε . In this equation, RMSD
refers to the root-mean-squared-deviation (RMSD) [23] metric
that measures the dissimilarity between two decoys, and ε
refers to an infinitesimally-small constant set to 1e−12. While
different metrics other than RMSD can be used, we elect
to use RMSD due to its popularity in comparing molecular
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structures. RMSD averages the Euclidean distance over the
number of atoms (CA atoms in our case). In order to remove
differences due to rigid-body motions in three dimensions
(whole-body translation and rotation), the decoys are first
optimally superimposed over an arbitrarily-chosen decoy (we
use the first in the set of given decoys) to minimize differences
due to rigid-body motions. In this way, the decoy pairwise
RMSD values capture internal structural differences rather
than differences due to whole-body motions in space. In the
above equation, the reason for using ε is to guard against, in
principle, a division by 0 in the case of two identical decoys.

C. From Decoy Similarity Matrix to Number of Decoy Groups
In this step, SNMF-DS finds the number of decoy groups

in a non-parametric manner using EigenGap heuristic [24],
[25]. The pairwise decoy similarity matrix S is used to search
for the m nearest neighbors of each decoy. Some suggestions
about the value of m are available in literature [26], such as
log(n) + 1,

√
n, 2n1/d where, n is the number of decoys in

our setting, and d is the number of coordinates in a decoy. For
our implementation, we pick m =

√
n.

Finding the m nearest neighbors of each decoy in the decoy
set is instantiating a nearest-neighbor graph (nngraph), where
decoys are vertices, and edges connect decoys to their nearest-
neighbors. We note that this graph is not explicitly constructed.
Instead, SNMF-DS constructs an adjacency matrix A and a
degree matrix D. The entries of A indicate whether pairs
of vertices/decoys are adjacent or not in the nngraph. Since
the nngraph is a finite simple graph, A is a (0, 1)-matrix
with zeros on its diagonal (we do not allow a decoy to be
considered a nearest neighbor of itself). The degree matrix D
is a diagonal matrix that contains the degree of each vertex;
Di,j = deg(i, j) if i = j and 0 otherwise. A and D are used
together to construct the Laplacian matrix, L = D−A of the
nngraph and obtain the optimal number k of groups in which
to organize decoys.

D. Organizing Decoys into Groups via Symmetric Non-
negative Matrix Factorization

In this step, the proposed SNMF-DS method approximates
the similarity matrix S by a lower-rank factorization WWT .
The matrix W is interpreted by SNMF-DS as the cluster
membership indicator matrix, which reveals the groups to
which decoys belong.

We recall that NMF is an unsupervised method which
approximates a given non-negative data-matrix, X ∈ Rn×d

+ by
factoring it into two non-negative factor matrices, W ∈ Rn×k

+ ,
and H ∈ Rk×d

+ such that, X = WH [27]; note that k is
identified via the EigenGap heuristic. Symmetric NMF is a
special case of NMF having completely positive and identical
non-negative factor matrices [28]. In symmetric NMF [29],
we solve the following equation for the cluster membership
indicator matrix W ∈ Rn×k

+ ,

minW≥0 f(W ) = ||S −WWT ||2F (1)

where similarity matrix S ∈ Rn×n
+ (note that S is symmetric,

so S = ST ), and ||.||F indicates the Frobenius norm-based

minimization. Typically, k << n. To solve the optimization
problem in Eq. (1) for W , we apply alternating non-negative
least squares (ANLS) optimization (with block principal piv-
oting) that converges to stationary points [30].

Symmetric NMF is a graphical clustering framework, which
exhibits enhanced clustering characteristics on non-linear man-
ifolds of the data as well, than regular NMF or distance
based clustering techniques like k-means which are reliable for
only linear manifolds that exists in the data [31]. Traditional
graph-based clustering like spectral clustering relies on the
additional initialization-sensitive methods like k-means on
spectral embeddings of the data, generated with eigen vectors
of graph Laplacian. Symmetric NMF, in fact, overcomes
this problem with non-negative constrained optimization to
generate stationary point solutions [31].

We apply non-negative double singular value decomposi-
tion (NNDSVD) [32] which is based on approximations of
positive sections of the partial SVD factors of the similarity
matrix [32], to initialize the factor W for SymmNMF opti-
mization to have better convergence. The largest entry in each
row of the W matrix indicates the clustering assignments [31].

E. Determining the Best Group of Decoys
After determining the group composition using the matrix

W as described above, we then identify the best group as
follows. Each group of decoys is associated a score that is
computed as the average over the potential energies of decoys
in the group. We recall that our decoy datasets have been
computed with the Rosetta AbInitio protocol, which provides
all-atom detail and evaluates each decoy with its all-atom
score12 scoring function [33]. Thus, each decoy, even when
stripped down to its CA atoms by SNMF-DS, is associated
with this score. The groups are then ranked, and the one with
the lowest score is selected as the best group.

F. Determining the Best Decoy in a given Group
Once the best group of decoys is determined, the decoys

in the group are evaluated so as to determine a best decoy.
We make use of the strategy recently proposed in [17], which
employs a decoy density score [34]. Specifically, let a decoy xi

belong to a group comprised of l decoys. The density score dsi
of decoy xi is given by dsi =

∑l
j=1 rij
l ; where rij denotes the

pairwise root-mean-squared-deviation (RMSD) between decoy
xi and decoy xj (1 ≤ i, j ≤ l). The decoy density scores
are normalized to be in the range −1 and 1. The normalized
density score ds

′

i is given by

ds
′

i =






(dsi−dsmedian)
dsmedian−dsmin

if dsi < dsmedian

0 if dsi = dsmedian
(dsi−dsmedian)
dsmax−dsmedian

if dsi > dsmedian

where dsmin, dsmax, and dsmedian denote the minimum,
maximum, and median density scores respectively. Using these
normalized scores, we then assign weight wi to each decoy
as in: wi = e−ds

′
i . Once the decoys in a group are weighted

in this manner, the maximum-weigh decoy is then selected as
the best decoy and offered for prediction.
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G. Experimental Setup

We compare SNMF-DS with three representative, state-of-
the-art methods, (1) our most recent NMF-based method [7]
which was shown to outperform the basin-based [16] decoy
selection methods (which outperform community-based graph-
clustering methods [17], [35]), (2) SBROD, an energy-based
method, and (3) MUFOLD-CL, a clustering-based method.
The comparative evaluation is carried out on two datasets and
via rigorous metrics, as described below.

Dataset: SNMF-DS is evaluated on two datasets. The first,
shown in Table I, contains 18 benchmark proteins of different
folds and lengths (number of amino acids). The second dataset,
shown in Table II, contains 10 targets selected from the free
modeling category in CASP12 and CASP13; the list includes
several hard targets [36], [37].

As described above, for each protein target, we use the
Rosetta AbInitio protocol to generate 12, 000 decoys. Ta-
bles I-II provide additional detail for each decoy dataset.
For instance, Table I shows the entry id of a known native
structure (ground truth) for each target in the Protein Data
Bank (PDB) [38]. The fold of the native structure, and the
number of amino acids in the corresponding target are shown,
as well. The minimum RMSD to the native structure in a
decoy dataset is shown in Column 6. This value is utilized to
estimate the difficulty of a decoy dataset for decoy selection.
Targets where this value does not exceed 1Å are considered
easy; those where this value does not exceed 3Å are considered
medium; the rest are considered hard. Moreover, Table II lists
similar information for the CASP targets. We note that in two
cases, marked by asterisks, the native structure has not been
deposited yet in the PDB and is only available on the CASP
website. The minimum RMSDs shown in Column 5 convey
the higher difficulty Rosetta experiences on the CASP targets
and generally convey the variability of the quality of decoy
datasets over which a decoy selection method has to perform.

TABLE I
BENCHMARKS DATASET (* DENOTES PROTEINS WITH A PREDOMINANT β

FOLD AND A SHORT HELIX). THE CHAIN EXTRACTED FROM A
MULTI-CHAIN PDB ENTRY IS SHOWN IN PARENTHESES. PDB ID, FOLD,
LENGTH, AND MIN RMSD OVER DECOY DATASET TO CORRESPONDING

NATIVE STRUCTURE ARE SHOWN FOR EACH TARGET.
Difficulty # PDB ID Fold Length RMSD (Å)

Easy

1 1ail α 70 0.573
2 1dtd(B) α+β 61 0.565
3 1wap(A) β 68 0.568
4 1tig α+β 88 0.623
5 1dtj(A) α+β 74 0.701
6 1hz6(A) α+β 64 0.827

Medium

7 1c8c(A) β∗ 64 1.331
8 2ci2 α+β 65 1.581
9 1bq9 β 53 1.308
10 1hhp β∗ 99 1.761
11 1fwp α+β 69 1.568
12 1sap β 66 2.031
13 2h5n(D) α 123 2.053

Hard

14 2ezk α 93 3.475
15 1aoy α 78 3.496
16 1aly β 146 9.179
17 1cc5 α 83 4.654
18 1isu(A) coil 62 5.912

Evaluation Metrics: Since SNMF-DS selects a best group
and a best decoy, we evaluate the quality of each.

a) Group Purity: The quality of a group is assessed
via a metric we have introduced in earlier work on decoy

TABLE II
CASP DATASET. CASP TARGET IDS ARE SHOWN IN COLUMN 2. PDB ID,
LENGTH, AND MIN RMSD OVER DECOY DATASET TO CORRESPONDING

NATIVE STRUCTURE ARE SHOWN FOR EACH TARGET. NATIVE STRUCTURES
ONLY AVAILABLE IN THE CASP WEBSITE ARE MARKED BY ASTERISKS.

# Target ID PDB ID Length RMSD (Å)
1 T1008-D1 6msp 77 1.542
2 T0886-D1 5fhy 69 5.102
3 T0953s1-D1 6f45 67 6.344
4 T0960-D2 6cl5 84 6.402
5 T0898-D2 ** 55 6.598
6 T0892-D2 5nv4 110 6.950
7 T0953s2-D3 6f45 77 7.607
8 T0957s1-D1 6cp8 108 7.677
9 T0897-D1 ** 138 9.638
10 T0859-D1 5jzr 113 10.268

selection [16]. The metric, known as purity is related to the
concept of precision in ML, as it counts the fraction of near-
native decoys in a given group over the total number of decoys
in the group. If we relate near-native decoys to true positives
(TP), then purity p(Gi) of a group Gi measures TP

TP+FP ,
where FP, false positives, corresponds to non-native decoys.
We delay details on how a decoy is determined to be near-
native in the presence of a known native structures (the ground
truth) later in this section in the interest of clarity.

b) Decoy Loss: The quality of a decoy is assessed via
the loss metric we have introduced in [7]. While work in [7]
utilizes only RMSD loss, here we additionally make use of
TM-Score loss and GDT-TS loss. TM-Score [39] and GDT-
TS [40] vary in [0, 1], capture the similarity between two
tertiary structures, and are popular in CASP. We measure loss
as the difference in quality between the decoy selected by a
decoy selection method and the best-quality decoy in a dataset,
with quality assessed by any of the metrics. For instance, when
RMSD is used, loss is measured as the difference between the
selected decoy and the decoy with the lowest RMSD to the
known native structure in a given dataset. When TM-Score or
GDT-TS are used, the best decoy in a dataset is the one with
the highest TM-Score (alternatively, highest GDT-TS score).

IV. RESULTS

We present two sets of results, comparison with state-of-
the-art methods in terms group purity, and analysis of decoy
loss with the help of three popular measures.

A. Purity Comparison

We now compare the purity of the group/cluster selected
by SNMF-DS, NMF-MAD, and MUFOLD-CL. We note that
SBROD ranks decoys by energies and so does not organize
them into groups. Table III compares purities over the bench-
mark targets, whereas Table IV does so over the CASP targets.

Tables III-IV show that SNMF-DS and NMF-MAD largely
outperform MUFOLD-CL. Specifically, for the easy bench-
mark targets, the purity values obtained by MUFOLD-CL
range from 17% to 62%, whereas NMF-MAD attains 78%
to 100% purity, and SNMF-DS dominates with 100% purity
in each target. For the medium benchmark targets, SNMF-
DS achieves better purity than NMF-MAD on 4/7 cases;
MUFOLD-CL is inferior to SNMF-DS on all the medium
benchmark targets (and with only two marginal wins over
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TABLE III
THE PURITY(%) OF THE GROUP/CLUSTER SELECTED BY SNMF-DS,
NMF-MAD, AND MUFOLD-CL FOR THE BENCHMARK TARGETS

Difficulty # PDB ID SNMF-DS NMF-MAD MUFOLD-CL

Easy

1 1ail 99.75 94.6 17.15
2 1dtd(B) 100 100 58.34
3 1wap(A) 100 99.96 62.2
4 1tig 100 92.31 38.6
5 1dtj(A) 100 100 51.35
6 1hz6(A) 100 78.27 22.72

Medium

7 1c8c(A) 70.1 85.4 20.8
8 2ci2 85.14 100 62.14
9 1bq9 44.44 86.8 10.05
10 1hhp 88.54 50.22 0
11 1fwp 64.95 21.05 14.96
12 1sap 19.56 0 1.1
13 2h5n(D) 17.54 2.55 5.1

Hard

14 2ezk 51 11.61 14.37
15 1aoy 43.15 81.81 12.24
16 1aly 3.35 0 3.05
17 1cc5 28.75 66.66 19.55
18 1isu(A) 5.15 71 1.1

TABLE IV
THE PURITY(%) OF THE GROUP/CLUSTER SELECTED BY SNMF-DS,

NMF-MAD, AND MUFOLD-CL FOR THE CASP TARGETS

# Target ID SNMF-DS NMF-MAD MUFOLD-CL
1 T1008-D1 21.43 28.12 0
2 T0886-D1 17.7 33.33 5.15
3 T0953s1-D1 21.86 25.93 6.12
4 T0960-D2 30.7 18.18 8.99
5 T0898-D2 49.2 46.67 16.37
6 T0892-D2 14.3 50 3.65
7 T0953s2-D3 4.32 44.44 5.29
8 T0957s1-D1 23.88 21.95 13.15
9 T0897-D1 16.94 20 4.54
10 T0859-D1 3.14 13.64 3.2

NMF-MAD). On the hard benchmark targets, NMF-MAD
does particularly well, reaching purity value from 11% to 81%
(except for 1aly); SNMF-DS purities over these targets range
from 3% to 51%. MUFOLD-CL does not perform better than
SNMF-DS on any target; it only beats NMF-MAD on one
target (2ezk). These observations are further confirmed over
the CASP dataset. On the 10 CASP targets, MUFOLD-CL
reaches purities ranging from 3% to 16% (on T1008-D1, purity
is 0%) and is inferior to both NMF-MAD and SNMF-DS; it
performs as well or slighly better than SNMF-DS on only 2/10
targets. Specifically, in 7/10 targets, NMF-MAD outperforms
SNMF-DS with purities ranging from 13% to 50%; in the
remaining 3 targets, SNMF-DS performs better than NMF-
MAD with purities ranging from 3% to 49%. Altogether, these
results demonstrate that SNMF-DS is as competitive as NMF-
MAD in terms of the quality of the selected group.

B. Loss Comparison

We compare SNMF-DS, NMF-MAD, MUFOLD-CL, and
SBROD in terms of RMSD loss, TM-Score loss, and GDT-TS
loss of the selected decoy. This comparison is in Table V for
the benchmark targets and in Table VI for the CASP targets.

Tables V-VI make clear the superiority of SNMF-DS over
the other methods. For instance, Table V shows that the RMSD
loss incurred by SNMF-DS is below 1Å for 11/18 of the
benchmark targets. Table V also shows that for 14/18 of
these targets, the best decoy selected by SNMF-DS incurs
the minimum loss compared to the other methods in terms
of at least one of the three quantities (RMSD loss, TM-Score
loss, and GDT-TS loss). Table VI shows that the RMSD loss
incurred by SNMF-DS is below 2Å for 6/10 of the CASP
targets. For 7/10 CASP targets, the best decoy selected by

TABLE V
SNMF-DS, MUFOLD-CL, SBROD, AND NMF-MAD ARE COMPARED

IN TERMS OF RMSD, TM-SCORE, AND GDT-TS LOSS ON THE
BENCHMARK TARGETS. LOWEST LOSS PER PDB ID IN ANY METRIC

(RMSD, TM-SCORE, OR GDT-TS) IS HIGHLIGHTED IN BOLD.

PDB ID RMSD Loss, TM-Score Loss, GDT-TS Loss
SNMF-DS MUFOLD-CL SBROD NMF-MAD

1ail 0.5084, 0.0655, 0.072 1.447, 0.1676, 0.1336 2.937, 0.314, 0.3478 0.971, 0.1604, 0.1357
1dtj(A) 0.1941, 0.0048, 0.0296 0.036, 0.0198, 0.0066 0.69, 0.006, 0.0329 0.3345, 0.0782, 0.1081
1dtd(B) 0.3528, 0.0042, 0.0041 0.49, 0.0052, 0.0043 0.12, 0.005, 0.0082 0.5915, 0.0329, 0.0451
1wap(A) 0.3425, 0.0288, 0.0166 0.263, 0.0242, 0.0233 1.242, 0.1107, 0.1 0.6219, 0.0531, 0.04
1tig 0.0717, 0.003, 0.0053 0.749, 0.004, 0.008 0.709, 0.0134, 0.016 0.6569, 0.0469, 0.0483
1hz6(A) 0.0936, 0.002, 0.0034 0.405, 0.0037, 0.0036 0.191, 0.0145, 0.0382 0.809, 0.0415, 0.0352
1bq9 1.1992, 0.1677, 0.1389 2.02, 0.2115, 0.1759 1.337, 0.1331, 0.1065 1.3089, 0.1167, 0.0755
1c8c(A) 0.7991, 0.1092, 0.086 1.012, 0.135, 0.1016 1.531, 0.1465, 0.1328 1.092, 0.0596, 0.0429
1fwp 0.5085, 0.0034, 0.0036 0.724, 0.0074, 0.0018 1.039, 0.0589, 0.1332 0.5319, 0.0471, 0.0616
1hhp 2.1971, 0.0601, 0.0707 10.919, 0.6326, 0.6161 2.76, 0.0533, 0.0606 2.6835, 0.2939, 0.2828
1sap 0.5592, 0.074, 0.0417 1.61, 0.0831, 0.0492 1.873, 0.141, 0.1136 2.075, 0.0989, 0.125
2ci2 0.3118, 0.007, 0.006 3.202, 0.1155, 0.1114 3.083, 0.1334, 0.1175 1.7897, 0.3246, 0.3462
2h5n(D) 3.7028, 0.3178, 0.3215 7.806, 0.2479, 0.2576 3.883, 0.0856, 0.094 3.3498, 0.0805, 0.0732
1aoy 2.7896, 0.1136, 0.093 5.246, 0.1856, 0.1635 2.047, 0.1286, 0.1218 2.9788, 0.2918, 0.2788
1aly 5.7842, 0.0167, 0.0368 3.467, 0.0155, 0.024 4.373, 0.029, 0.0325 7.9939, 0.1411, 0.1635
1cc5 0.4732, 0.048, 0.0452 1.159, 0.0831, 0.0392 1.949, 0.0501, 0.0551 2.1843, 0.0565, 0.0573
1isu(A) 2.9928, 0.2182, 0.2299 6.357, 0.2106, 0.242 5.32, 0.1603, 0.2137 2.5552, 0.081, 0.0887
2ezk 2.9154, 0.0188, 0.0177 1.172, 0.003, 0.0076 3.142, 0.0178, 0.0244 3.5136, 0.0229, 0.0296

TABLE VI
SNMF-DS, MUFOLD-CL, SBROD, AND NMF-MAD ARE COMPARED
IN TERMS OF RMSD, TM-SCORE, AND GDT-TS LOSS ON THE CASP
TARGETS. LOWEST LOSS PER TARGET ID IN ANY METRIC (RMSD,

TM-SCORE, OR GDT-TS) IS HIGHLIGHTED IN BOLD.

Target ID RMSD Loss, TM-Score Loss, GDT-TS Loss
SNMF-DS MUFOLD-CL SBROD NMF-MAD

T1008-D1 0.3656, 0.007, 0.0011 3.305, 0.0137, 0.065 0.398, 0.0086, 0.0032 1.0238, 0.0156, 0.0162
T0886-D1 3.6714, 0.03, 0.0362 4.94, 0.0403, 0.0435 2.12, 0.034, 0.0326 2.5984, 0.0331, 0.029
T0953s1-D1 2.9398, 0.02, 0.0112 2.947, 0.055, 0.0187 3.032, 0.084, 0.0037 2.613, 0.0225, 0.0223
T0960-D2 1.8595, 0.0307, 0.0268 0.53, 0.0384, 0.0328 0.67, 0.0505, 0.0417 2.6181, 0.0182, 0.0178
T0898-D2 1.4889, 0.003, 0.0071 0.468, 0.008, 0.0091 0.162, 0.001, 0.0137 2.3824, 0.0108, 0.0181
T0892-D2 0.9038, 0.0119, 0.004 1.787, 0.0129, 0.0069 1.51, 0.0134, 0.0114 2.8416, 0.0242, 0.009
T0953s2-D3 1.4223, 0.01, 0.011 2.137, 0.0187, 0.0162 0.326, 0.0109, 0.0033 1.8621, 0.0256, 0.0153
T0897-D1 3.471, 0.0263, 0.0108 1.137, 0.0064, 0.018 0.236, 0.0032, 0.0055 2.9413, 0.0158, 0.009
T0957s1-D1 1.18, 0.0027, 0.0047 0.709, 0.008, 0.0023 0.423, 0.0079, 0.001 1.6803, 0.018, 0.0076
T0859-D1 2.3755, 0.056, 0.045 0.421, 0.0094, 0.0023 0.518, 0.0088, 0.0044 3.5967, 0.0329, 0.0132

SNMF-DS incurs the minimum loss compared to the other
methods in terms of at least one of the three measures (RMSD
loss, TM-Score loss, and GDT-TS loss).

V. CONCLUSION

The evaluation presented in Section IV shows that the
proposed SNMF-DS method is a powerful method for de-
coy selection, outperforming state-of-the-art methods. These
results are very encouraging, as exploiting non-negative matrix
factorization is a relatively new thread of research for decoy
selection. Several directions of future work are warranted. One
can pursue different metrics, such as TM-Score and GDT-TS
in the construction of the similarity matrix. The computation
of the adjacency and degree matrices can be further expedited
by utilizing proximity query data structures, such as C-trees.
Alternative techniques can be considered to automatically
determine the optimal number of decoy groups. Finding target-
wise sub-spaces of features representative of a decoy dataset
could additionally prove informative.
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