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Abstract: We propose an evolutionary transfer learning approach for QoT estimation in
multi-domain optical networks. The results demonstrate that our approach can reduce the
amounts of required training data by 10x while achieving accuracies of > 90%. © 2020 The Author(s)
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1. Introduction

The rapid growth of emerging network applications and their stringent quality-of-service requirements are driving
today’s multi-autonomous system (multi-AS) backbone networks to evolve toward multi-domain elastic optical
networks (MD-EONSs), which can support high-capacity and user-customized end-to-end services across ASes
[1]. To realize resource-efficient service provisioning in EONs, accurate quality-of-transmission (QoT) modeling
techniques are indispensable. In this context, recent studies have reported a number of machine learning (ML)-
aided cognitive QoT estimation designs that can model complex network dynamics (e.g., dynamic traffic profiles)
and uncertainties (e.g., uncertain device conditions) using big data analytics [2,3]. However, these existing works
focus on single-domain scenarios and cannot be applied to MD-EONs, where only a very limited amount of
domain information is available due to domain privacy concerns. Therefore, we lately proposed a hierarchical
learning approach for QoT estimation in MD-EONs [4], where domain managers (DMs) work cooperatively with
a broker plane by learning domain-level and inter-domain QoT estimators, respectively. Nonetheless, a major
challenge remaining unmet is that the approach entails a significant amount of performance monitoring data for
every inter-domain lightpath, which can be very costly (i.e., collecting data for each inter-domain lightpath requires
nontrivial efforts from the broker plane and DMs) and unscalable. Fortunately, the invention of transfer learning
(TL) has enabled to significantly reduce the amount of efforts required for training a ML task by reusing knowledge
learned from relevant tasks [5]. The application of TL for QoT estimation was first studied in [6]. However, the
work in [6] only adopts a very simple and straightforward TL scheme, and more importantly, does not address the
challenges in MD-EONSs.

In this paper, we propose Evol-TL, an evolutionary transfer leaning approach, for enabling scalable QoT es-
timation in MD-EONSs. Evol-TL exploits a broker-based MD-EON architecture, where a broker plane performs
end-to-end QoT estimation by collecting encoded features from DMs. A generic algorithm (GA) is designed to
enable Evol-TL to determine the proper neural network architectures and the right sets of parameters for trans-
ferring through iterative optimizations. Evaluations with experimental data show that Evol-TL can significantly
reduce the amount of required training data for new tasks without sacrificing the estimation accuracies.

2. Framework

Fig. 1(a) depicts the schematic of Evol-TL in an MD-EON with broker orchestration. A broker plane works with
DMs to provide inter-domain services (e.g., QoT-aware lightpath provisioning), following mutual service level
agreements. Each DM reports an abstraction of its domain to the broker plane for preventing disclosure of confi-
dential domain information. Particularly, to assist QoT estimation for inter-domain lightpaths, each DM employs
an encoder (e.g., a neural network) to map the performance monitoring data collected along the corresponding
intra-domain path segments to a new feature space and reports the encoded features to the broker plane. The bro-
ker plane combines the received features, and hereby, builds and trains a deep neural network (DNN)-based QoT
estimator for each of the inter-domain paths. Differently from the work in [4], where QoT estimators are trained
independently, we apply Evol-TL to pursue a more scalable and effective realization of end-to-end QoT estima-
tion. Specifically, as the nature of different QoT estimation tasks (for different paths) are similar, we exploit and
transfer the knowledge learned by a pre-trained QoT estimation model to the training of new models so that only
small amounts of additional data will be needed to fit the models. Such knowledge transfers can be achieved by
initializing the new models with weights copied from the pre-trained model. Fig. 1(b) illustrates the principle of
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Fig. 1. (a) Schematic of Evol-TL in an MD-EON with broker orchestration, and (b) principle of
knowledge transfer in Evol-TL.

knowledge transfer in Evol-TL. We first copy a few hidden layers (typically, the lower layers, as they are less over-
fitted) from the pre-trained model to the new model and set the corresponding weights locked. A few randomly
initialized and trainable hidden layers are then added on the top to mitigate overfitting. Eventually, we fine tune
the obtained model with data for the new task.

3. GA-based Optimization

Determining proper DNN architectures to use and the most effective sets of knowledge to transfer have always
been a challenging task, whereas previous works mostly rely on human experiences or brute-force searches. In
this work, we propose to optimize the DNNs with GA-assist evolutionary learning. Let P = {C;,i € [1,I]} denote
a population of I individuals. Each individual C; is encoded as [L;,L,,K, 52°,¥] to convey the information of: 1)
L, number of hidden layers transferred from the pre-trained model to the new model; 2) L,, number of trainable
hidden layers added; 3) K, numbers of neurons in each trainable layer; 4) 7#, activation function of the DNN, and
5) ¢, optimizer used in training. We measure the performance of each C; by defining a fitness function % (C;) that
calculates the average QoT estimation accuracy with the model given by C;. Table 1 summarizes the procedures
of the proposed GA-based optimization. Firstly, we randomly initialize a population P (Step 1) and evaluate the
fitness function . (C;) for each individual C; € P by performing a training process using the model encoded by C;
(Step 2). In Steps 3-4, to facilitate a positive evolution, we sort the individuals in the descending order of .% (C;)
and select the top 80% of the individuals as parents, which are then used to produce offsprings with crossover
(exploiting advantageous knowledge) and mutation (exploring) operations. We maintain P of a fixed length by
padding with new randomly generated individuals. Finally, we repeat the above procedures for M iterations.

Step 1: Randomly initialize P.

Step 2: Perform training for each model conveyed by C; and calculate % (C;),VC; € P.

Step 3: Sort individuals in the descending order of . (C;) and select the first 80% of individuals as parents Fy.

Step 4: Perform crossover and mutation operations with Py to obtain offspring P; and restore the population by adding
randomly generated individuals P, i.e., P = P;UP,.

Step 5: Repeat Step 2-4 for M iterations.

Table 1. GA-based optimization procedures adopted in Evol-TL.

4. Results

We evaluated the performance of Evol-TL with experimental data collected from the two-domain EON testbed
shown in Fig. 2(a). We set up three inter-domain lightpaths consisting of three, four, and five nodes, respectively.
For each of the paths, we generated diversified network conditions by randomly changing the background traffic
and attenuation for each wavelength selective switch (WSS), leading to the signal launch power varying between
-7dBm and 12dBm. At each run, we measured the actual Q-factor of the testing signal at Co-Rx and record this
value as the current data label. Then, we used WSSs to remove the testing signal and recorded the outputs of
optical spectrum analyzers (OSAs) as the features. We collected 1095, 1440, 1795 data instances for the three-
node, four-node, and five-node paths respectively. We pre-trained a QoT estimator of two fully-connected layers
(12 neurons for each) for the three-node path and transferred the knowledge to the training of the QoT estimators
for the four-node (task 1) and five-node paths (task 2).
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Fig. 2. (a) Two-domain EON testbed implementation; (b) convergence process of Evo-TL; (c-d)
loss vs training epochs (c) with Evo-TL and (d) without Evo-TL (number of training data instances
being 30); (e) accuracies with different numbers of data instances; (f) results of required training
data instances to threshold (accuracies above 90%) and asymptotic accuracy. Task 1: training of the
QoT estimator for the four-node path. Task 2: training of the QoT estimator for the five-node path.

Fig. 2(b) shows the evolutionary process of Evol-TL for task 1, where each point represents the fitness of the
best individual at certain generation. For each individual, 30 instances of the four-node path data were used for
training and another 100 instances were used for evaluation and test, respectively. We can see that the performance
of Evol-TL keeps improving steadily with the generation. At generation 20, Evol-TL converges and obtains an
individual with % (C;) > 90%. We decoded the information in the individual to build a fully-connected DNN
with three hidden layers (11 neurons for each), two of which copied from the pre-trained model. Meanwhile,
activation function of ELU and gradient-based optimizer of adamax were used for the DNN. Figs. 2(c) and (d)
show the comparison between loss (validation and training) versus training epochs without and with Evol-TL for
the new model. In Fig. 2(c), we can see that with the increasing of epoch, the validation loss is obviously higher
than the training loss, which indicates overfitting due to the small number of training samples. In contrast, with
Evol-TL, the validation loss and the training loss are comparable, showing that the model is well fit (Fig. 2(d)).
Fig. 2(e) depicts the comparison between accuracy versus different sizes of training dataset with and without
Evol-TL in Task 1. Without Evol-TL, we can realize that the accuracy of the new model increases steadily with
the increasing of the number of data instances and reach 90% with 300 training data instances. In contrast, with
Evol-TL, the accuracy increases drastically when we increase the size of training dataset from 20 to 30 and remain
stable afterward. If we set a threshold for achieving a good model as its accuracy being above 90%. The numbers
of training data instances required to reach the threshold are 30 and 300 for training with and without Evol-TL,
respectively. This means 10x reduction in the amount of required training data. Fig. 2(f) summarizes the results of
number of required training data instances to threshold and asymptotic accuracy (accuracy achieved by using full
dataset). Overall, the evaluation results demonstrate that Evol-TL enables us to decide proper DNN architectures
and the right knowledge to transfer, leading 10x reduction in the amount of required training data.

5. Conclusion

In this paper, we proposed Evol-TL for scalable QoT estimation in MD-EONSs. Evaluation results demonstrate
10x reduction in the amount of required training data by Evol-TL.
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