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Standard epidemiological models for COVID-19 employ variants
of compartment (SIR or susceptible-infectious-recovered) mod-
els at local scales, implicitly assuming spatially uniform local
mixing. Here, we examine the effect of employing more geo-
graphically detailed diffusion models based on known spatial
features of interpersonal networks, most particularly the presence
of a long-tailed but monotone decline in the probability of inter-
action with distance, on disease diffusion. Based on simulations
of unrestricted COVID-19 diffusion in 19 US cities, we conclude
that heterogeneity in population distribution can have large
impacts on local pandemic timing and severity, even when aggre-
gate behavior at larger scales mirrors a classic SIR-like pattern.
Impacts observed include severe local outbreaks with long lag
time relative to the aggregate infection curve, and the presence
of numerous areas whose disease trajectories correlate poorly
with those of neighboring areas. A simple catchment model for
hospital demand illustrates potential implications for health care
utilization, with substantial disparities in the timing and extrem-
ity of impacts even without distancing interventions. Likewise,
analysis of social exposure to others who are morbid or deceased
shows considerable variation in how the epidemic can appear
to individuals on the ground, potentially affecting risk assess-
ment and compliance with mitigation measures. These results
demonstrate the potential for spatial network structure to gen-
erate highly nonuniform diffusion behavior even at the scale of
cities, and suggest the importance of incorporating such structure
when designing models to inform health care planning, predict
community outcomes, or identify potential disparities.

COVID-19 | spatial heterogeneity | diffusion | health disparities |
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Since its emergence at the end of 2019, severe acute respi-
ratory syndrome coronavirus 2 (SARS-CoV-2) has spread
rapidly to all portions of the globe, infecting over 20 million peo-
ple as of mid-August 2020 (1). The disease caused by this virus,
denoted COVID-19, generally manifests as a respiratory illness
that is spread primarily via airborne droplets. While most cases of
COVID-19 are nonfatal, a significant fraction of those infected
require extensive supportive care, and the mortality rate is sub-
stantially higher than more common infectious diseases such as
seasonal influenza (2). Even for survivors, infection can lead to
long-term damage to the lungs and other organs, leading to long
convalescence times and enhanced risk of secondary complica-
tions (3, 4). By early March of 2020, COVID-19 outbreaks had
appeared on almost every continent, including significant clus-
ters within many cities (5). In the absence of an effective vaccine,
public health measures to counteract the pandemic in developed
nations have focused on social distancing measures that seek
to slow diffusion sufficiently to avoid catastrophic failure of the
health care delivery system. Both the planning and public accep-
tance of such measures have been highly dependent upon the use
of epidemiological models to probe the potential impact of dis-
tancing interventions, and to anticipate when such measures may
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be loosened with an acceptable level of public risk. As such, the
assumptions and behavior of COVID-19 diffusion models are of
significant concern.

Currently, dominant approaches to COVID-19 modeling
(6-8) are based on compartment models (often called SIR
models, after the conventional division of the population into
susceptible, infected, and recovered groups in the most basic
implementations) that implicitly treat individuals within a pop-
ulation as geographically well mixed. While some such models
include differential contact by demographic groups (e.g., age),
and may treat states, counties, or, occasionally, cities as distinct
units (e.g., work by ref. 9), those models presently in wide use do
not incorporate spatial heterogeneity at local scales (e.g., within
cities). Past work, however, has shown evidence of substantial
heterogeneity in social relationships at regional, urban, and sub-
urban scales (10-12), with these variations in social network
structure impacting outcomes as diverse as regional identifica-
tion (13), disease spread (14), crime rates (15), neighborhood
identification, and development (12, 16). If individuals are not
socially “well-mixed” at local scales, then it is plausible that dif-
fusion of SARS-CoV-2 via interpersonal contacts will likewise
depart from the uniform mixing characteristic of the SIR mod-
els. Indeed, at least one computational study (17) using a fairly
“generic” (non-COVID) diffusion process on realistic urban net-
works has shown considerable nonuniformity in diffusion times,
suggesting that such effects could hypothetically be present.
Variations across local regions on the pandemic timing, severity,

Significance
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and the hospital load could have huge impacts on the social out-
comes of different population groups (e.g., racial/ethnic groups)
in the pandemic, given the heterogeneity of their spatial distribu-
tion in urban and suburban areas (18, 19). However, it could also
be hypothesized that such effects would be small perturbations
to the broader infection curve captured by conventional com-
partment models, with little practical importance. The question
of whether these effects are likely to be present for COVID-19,
and, if so, their strength and size, has, to date, remained open.

In this paper, we examine the potential impact of local spatial
heterogeneity on COVID-19, modeling the diffusion of SARS-
CoV-2 in populations whose contacts are based on spatially
plausible network structures. We focus here on the urban con-
text, examining 19 different cities in the United States. We
simulate the population of each city in detail (i.e., at the indi-
vidual level), simulating hypothetical outbreaks on the contact
network in each city in the absence of measures such as social
distancing. Despite allowing the population to be well mixed in
all other respects (i.e., not imposing mixing constraints based on
demographic or other characteristics), we find that spatial het-
erogeneity alone is sufficient to induce substantial departures
from spatially homogeneous SIR behavior. Among the phenom-
ena observed are “long lag” outbreaks that appear in previously
unharmed communities after the aggregate infection wave has
largely subsided, frequently low correlations between infection
timing in spatially adjacent communities, and distinct subpat-
terns of outbreaks found in some urban areas that are uncorre-
lated with the broader infection pattern. Gaps between infection
peaks at the intraurban level can be large, for example, on the
order of weeks or months in extreme cases, even for communi-
ties that are within kilometers of each other. Such heterogeneity
is potentially consequential for the management of health care
delivery services: As we show, using a simple “catchment” model
of hospital demand, local variations in infection timing can easily
overload hospitals in some areas, generating “hospital deserts”
(20), while leaving others relatively empty (absent active real-
location of patients). Likewise, we show that individuals’ social
exposures to others who are morbid or deceased vary greatly
over the course of the pandemic, potentially leading to differ-
ences in risk assessment and bereavement burden for persons
residing in different locations. Differences in outbreak timing
and severity may exacerbate health disparities (since, e.g., surge
capacity varies by community) and may even affect perception of
and support for prophylactic behaviors among the population at
large, with those in so-far untouched communities falsely assum-
ing that the pandemic threat is either past or was exaggerated to
begin with, or attributing natural variation in disease timing to
the impact of health interventions.

We note at the outset that the models used here are intended
to probe the hypothetical impact of spatial heterogeneity on
COVID-19 diffusion within particular scenarios, rather than
to produce high-accuracy predictions or forecasts. For the lat-
ter applications, it is desirable to incorporate many additional
features that are here simplified to facilitate insight into the phe-
nomenon of central interest. In particular, we do not incorporate
either demographic effects or social distancing (21, 22), allow-
ing us to consider a setting that is as well mixed as possible (and
hence as close as possible to an idealized SIR model), with the
exception of spatial heterogeneity. As we show, even this basic
scenario is sufficient to produce large deviations from the SIR
model. Despite the simplicity of our models, we do note that
the approach employed here could be integrated with other fac-
tors and calibrated to produce models intended for forecasting
or similar applications.

Materials and Methods

Spatial Network Data. Networks are generated using population distri-
butions from the most recent US Census in 2010. Network construction
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followed the same methodology as Butts et al. (23). Hospital information
was obtained from the Homeland Infrastructure Foundation-Level Data
(HIFLD) database (24). HIFLD is an initiative that collects geospatial infor-
mation on critical infrastructure across multiple levels of government. We
employ the national-level hospital facility database, which contains loca-
tions of hospitals for the 50 US states; Washington, DC; and US territories
of Puerto Rico, Guam, American Samoa, Northern Mariana Islands, Palau,
and Virgin Islands; underlying data are collated from various state depart-
ments or federal sources (e.g., Oak Ridge National Laboratory). We employ
all hospitals within our 19 target cities, excluding facilities closed since 2019.
Latitude/longitude coordinates and capacity information were employed to
create a spatial database that includes information on the number of beds
in each hospital. The capacity information includes the number of beds that
each hospital has available, and can be used to assess strain that a surge in
hospitalizations could create.

The dates of the first confirmed case and all of the death cases for King
County, where Seattle is located, were obtained from The New York Times,
based on reports from state and local health agencies (25). The death rate
was calculated based on population size of each county from the 2018
American Community Survey, and employed to calibrate the infection rate
(the only free parameter in the models used here); details are provided in
SI Appendix.

We ran 10 replicates of the COVID-19 diffusion process in each of our 19
cities, seeding with 25 randomly selected infections in each replicate and fol-
lowing the course of the diffusion until no infectious individuals remained.
Simulations were performed using a combination of custom scripts for the
R statistical computing system (26) and the statnet library (27-29). Analyses
were performed using R.

Methods. COVID-19 is typically transmitted via direct contact with infected
individuals, with the greatest risk occurring when an uninfected person is
within approximately six feet of an infected person for an extended period.
Such interactions can be modeled as events within a social network, where
individuals are tied to those with whom they have a high hazard of inten-
sive interaction. In prior work, this approach has been successfully employed
for modeling infectious diseases ranging from HIV (30) and influenza (31)
to Zika (32). To model networks of potential contacts at scale, we employ
spatial network models (33), which are both computationally tractable and
able to capture the effects of geography and population heterogeneity on
network structure (23). Such models have been successfully used to cap-
ture social phenomena ranging from neighborhood-level variation in crime
rates (15) and regional identification (13) to the flow of information among
homeless persons (34).

The spatial network models used here allow for complex social depen-
dence through a kernel function, referred to as the social interaction
function (SIF). The SIF formally defines the relationship between two indi-
viduals based on spatial proximity. For example it has been shown that
many social interaction patterns obey the Zipf law (35), where individu-
als are more likely to interact with others close by rather than far away
[a pattern that holds even for online interactions (10)]. Here, we use this
approach to model a network that represents the combination of frequent
interactions due to ongoing social ties and contacts resulting from frequent
incidental encounters (e.g., interactions with neighbors and community
members).

We follow the protocol of refs. 15 and 23 to simulate social network
data that combine the actual distribution of residents in a city with a
prespecified SIF. We employ the model of ref. 15 with decennial Census
data to produce large-scale social networks for 19 cities and counties in
the United States—providing a representation of major urban areas in
the United States (S/ Appendix). Given these simulated networks, we then
implement an individual-level SIR-like framework to examine COVID-19 dif-
fusion. At each moment in time, each individual can be in a susceptible,
infected but not infectious, infectious, deceased, or recovered state. The
disease diffuses through the contact network, with currently infectious
individuals infecting susceptible neighbors as a continuous time Poisson
process with a rate estimated from mortality data (S/ Appendix); recov-
ered or deceased individuals are not considered infectious for modeling
purposes. Upon infection, an individual’s transitions between subsequent
states (and into mortality or recovery) are governed by waiting time dis-
tributions based on epidemiological data as described in S/ Appendix. To
begin each simulated trajectory, we randomly infect 25 individuals, with all
others being considered susceptible. Simulation proceeds until no infectious
individuals remain.

From the simulated trajectory data, we produce several metrics to assess
spatial heterogeneity in disease outcomes. First, we present infection curves
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for illustrative cities, showing the detailed progress of the infection and its
difference from what an SIR model would posit. We also present choropleth
maps showing spatial variation in peak infection times, as well as the cor-
relations between the infection trajectory within local areal units and the
aggregate infection trajectory for the city as a whole. While an SIR model
would predict an absence of systematic variation in the infection curves or
the peak infection day for different areal units in the same city, geograph-
ically realistic models show considerable disparities in infection progress
from one neighborhood to another. To quantify the degree of heterogene-
ity more broadly, we examine spatial variation in outcomes for each of our
city networks. We show that large variations in peak infection days across
tracts are typical (often spanning weeks or even months), and that overall
correlations of within-tract infection trajectories with the aggregate urban
trajectory are generally modest (a substantial departure from what would
be expected from an SIR model).

In addition to these relatively abstract metrics, we also examine a simple
measure of the potential load on the health care system in each city. Given
the locations of each hospital in each city, we attribute infections to each
hospital using a Voronoi tessellation (i.e., under the simple model that indi-
viduals are most likely to be taken to the nearest hospital if they become
seriously ill). Examination of the potential hospital demand over time shows

Infection Curves in Seattle
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substantial differences in load, with some hospitals severely impacted while
others have few cases. Finally, we consider the social exposure of individu-
als to COVID-19, by computing the fraction of individuals with a personal
contact who is respectively morbid or deceased. Our model shows consider-
able differences in these metrics over time, revealing that the pandemic can
appear very different to those “on the ground”—evaluating its progress by
its impact on their own personal contacts—than what would be suggested
by aggregate statistics.

Results

Smooth Aggregate Infection Trajectories Can Mask Local Out-
break Dynamics. When taken over even moderately sized
regions, aggregate infection curves can appear relatively smooth.
Although this suggests homogeneous mixing (as assumed, e.g.,
by standard SIR models), appearances can be deceiving. Fig. 1
shows typical realizations of infection curves for two cities (Seat-
tle, WA, and Washington, DC), showing both the aggregate
trajectory (red) and trajectories within individual Census tracts
(black). While the infection curves in both cases are relatively

Infection Curves in Washington D.C.
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Fig. 1. (Top Left) Infection curves for Seattle, WA. The red line is the curve for the whole city, while the black lines are the infection curves for each tract in

the city. While the red curve is relatively smooth, this smoothness hides a significant amount of heterogeneity in the timing of the infection curves for each
census tract. (Top Right) Infection curves for Washington, DC. As with Seattle, the city-level curve conceals considerable spatial variability in the infection’s
progress. (Bottom Left) Histogram showing the mean pairwise correlation of infection curves for each tract within each city, across our entire sample. The
infection curve in any given tract is likely to have a correlation of only around 0.2 with any other tract in the city. This histogram includes a single data point
for each tract in the sample. (Bottom Right) Histogram of variance accounted for by the principal component of the standardized tract-level curve set. None
of the principal components account for more than 60% of the variance, with most accounting for around only 35% of the total variance. The data points
included here include a single amount of variance explained for each city.

Thomas et al. PNAS Latest Articles | 3of 8

SOCIAL SCIENCES



Downloaded by guest on September 10, 2020

smooth, and suggestive of a fairly simple process involving a
sharp early onset followed by an initially sharp but mildly slow-
ing decline in infections, within-tract trajectories tell a different
story. Instead of one common curve, we see that tracts vary
wildly in onset time and curve width, with some tracts show-
ing peaks weeks or months after the initial aggregate spike
has passed.

The cases of Fig. 1 are emblematic of a more systematic phe-
nomenon: The progress of the infection within any given areal
unit often has relatively little relationship to its progress in the
city as a whole. Fig. 1, Bottom assesses this phenomenon over
our entire sample, using two different consensus metrics. First,
we simply compute the correlation between the infection curves
in each pair of tracts (assessed at daily resolution), taking the
mean for each tract of its correlation with all other tracts within
the city; if the progress of the infection were uniform across the
city, the mean correlations would be large and positive. Second,
we provide a more direct assessment of the extent to which the
set of infection curves can be summarized by a common pat-
tern by taking the variance on the first principal component of
the correlation matrix generated from the tract-level correlations
discussed immediately above. As before, where different parts
of the city experience similar patterns of growth and decline in
infections, we expect the dimension of greatest shared variance
to account for the overwhelming majority of variation in infec-
tion rates. Contrary to these expectations, however, Fig. 1 shows
that there is little coherence in tract-level infection patterns.
Mean correlations of local infection curves across tracts typically
range from ~0 to 0.5, with a mean of approximately 0.2, indicat-
ing very little correspondence between infection timing in one
tract and that of another. The principal component analysis tells
a similar story: Overall, we see that the first component accounts
for relatively little of the total variance in trajectories, with, on
average, only around 35% of variation in infection curves lying
on the first principal component (and no observed case of the
first component accounting for more than 60% of the variance).
Interestingly, this variation is not explained by time required for
the diffusion process to reach each tract (ST Appendix, Fig. S4),
in contrast to the hypothesized importance of similar delays in
a cross-national context (9). This confirms that local infection
curves are consistently distinct, with behavior that is only weakly
related to infections in the city as a whole. This is a substantially
different scenario than what is commonly assumed in traditional
SIR models.

Peak Infection Day in Seattle Peak Infection Day in Washington D.C.

(63.262] [74,173]

(262,440]
(440,618
(618,797]
(
(

EREOCO

797,976]
976,1.15e+03]

EECOOCE

Fig. 2. (Left) Choropleth showing the peak day of infection in each tract
in the city of Seattle. The map shows significant variability in peak times,
with nearby regions sometimes having sharply different patterns. In outly-
ing parts of Seattle, the infection does not peak until almost a year past the
first infections, while, in the more eastern and central parts of the city, the
infection peaks much earlier. (Right) Times to peak infection for Washing-
ton, DC tracts. The southern and eastern part of the city has infections that
are more delayed than in the central and northern parts of the city. Both
of these maps show that there is a high degree of spatial heterogeneity
present in the infection curves.
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Fig. 3. Marginal distributions of days to peak infection by tract, across 10
simulated trajectories. Although locales vary both in terms of overall median
peak time and range of tract-level variation, large differences in peak
time are nearly ubiquitous. (Trajectory specific distributions are shown in
Fig. 52.)

Peak Infection Days Can Vary Substantially, Even among Nearby
Regions. These differences in local infection curves are a con-
sequence of the unevenness of the “social fabric” that spans the
city: While the disease can spread rapidly within regions of high
local connectivity, it can easily become stalled upon reaching the
boundaries of these regions. Further transmission requires that
a successful infection event occur via a bridging tie, an event
with a potentially long waiting time. Such delays create potential
opportunities for public health interventions (trace/isolate/treat
strategies), but they can also create a false sense of security for
those on the opposite side of the bridge (who may incorrectly
assume that their area was passed over by the infection). Indeed,
examining the time to peak infection across the cities of Seattle
and Washington, DC (Fig. 2) shows that, while peak times are
visibly autocorrelated, tracts with different peak times frequently
border each other. Residents on opposite sides of the divide may
be exposed to very different local infection curves, making risk
assessment difficult.

The cases of Seattle and Washington, DC are not anoma-
lous. Looking across multiple trajectories over our entire sample,
Fig. 3 shows consistently high variation in per-tract peak infec-
tion times for nearly all study communities. (This variation is also
seen within individual trajectories, as shown in SI Appendix, Fig.
S2.) Although peak times in some cities are concentrated within
an interval of several days to a week, it is more common for peak
times to vary by several months or longer. Extreme delays in peak
time arise from “slow burn” trajectories associated with very long
infection chains, in which sequential transmission to only one or
two alters at a time can sustain infection for greatly extended
periods. Such gaps can arise naturally in inhomogeneous net-
works, but are far from what would be expected under uniform
local mixing.

Heterogeneous Impact Timing May Affect Hospital Load. Variation
in the timing of COVID-19 impacts across the urban land-
scape has potential ramifications for health care delivery, creat-
ing unequally distributed loads that overburden some providers
while leaving others with excess resources. To obtain a sense of
how spatial heterogeneity in the infection curve could potentially
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impact hospitals, we employ a simple “catchment” model in
which seriously ill patients are taken to the nearest hospi-
tal, subsequently recovering and/or dying as assumed through-
out our modeling framework. Based on prior estimates (36),
we assume that 14% of all infections are severe enough to
require hospitalization (robustness to alternative rate estimates
is shown in SI Appendix). While hospitals draw from (and
hence average across) areas that are larger than tracts, the
heterogeneity shown in Fig. 1 suggests the potential for sub-
stantial differences in hospital load over time. Indeed, our
models suggest that such differences will occur. Fig. 4 shows
the number of patients arriving at each hospital in Seattle
and Washington, DC during a typical simulation trajectory.
While some hospitals do have demand curves that mirror the
city’s overall infection curve, others show very different pat-
terns of demand. In particular, some hospitals experience rel-
atively little demand in the early months of the pandemic,
only to be hit hard when infections in the city as a whole are
winding down.

Just as hospital load varies, hospital capacities vary as well. As
a simple measure of strain on hospital resources, we consider
the difference between the number of COVID-19 hospitaliza-
tions and the total capacity of the hospital (in beds), truncating at
zero when demand outstrips supply. (For ease of interpretation
as a measure of strain, we take the difference such that higher
values indicate fewer available beds.) Using data on hospital
locations and capacities, we show, in Fig. 4, strain on all hospitals

Hospital Curves in Seattle

in Seattle and Washington, DC during a typical infection trajec-
tory. While some hospitals are hardest hit early on (as would be
expected from the aggregate infection curve), others do not peak
for several months. Likewise, hospitals proximate to areas of the
city with very different infection trajectories experience natu-
ral “curve flattening,” with a more distributed load, while those
that happen to draw from positively correlated areas experience
very sharp increases and declines in demand. These conditions
in some cases combine to keep hospitals well under capacity
for the duration of the pandemic, while others are overloaded
for long stretches of time. These marked differences in strain
for hospitals within the same city highlight the potentially com-
plex consequences of heterogeneous diffusion for health care
providers.

Looking across cities, we see the same high-variability pat-
terns as observed in Seattle and Washington. In particular, we
note that local variation in disease timing leads to a heavy-tailed
distribution for the duration at which hospitals will be at capac-
ity. Fig. 4 shows the marginal distribution of hospital overload
periods (defined as total number of days at capacity during the
pandemic), over the entire sample. While the most common out-
come is for hospitals to be stressed for a brief period (not always
to the breaking point), a significant fraction of hospitals end up
being overloaded for months—or even, in a small fraction of
cases, nearly the whole duration of the pandemic.

It should be reiterated that the hospital load model used
here is extremely simplified, and that we are employing a

Hospital Curves in Washington D.C.
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Fig. 4. (Top Left) Numbers of infections attributed to each hospital in the city of Seattle, with each curve representing a different hospital. Hospital peak
demand times vary markedly, with some getting the majority of their hospitalizations before day 100, and others peaking almost a year into the pandemic.
(Top Middle) Hospitalizations in Washington, DC. As in Seattle, each hospital has a unique demand trajectory, with some hospitals not getting their peak
of infections until more than a year after the infection begins. (Bottom Left) Hospital strain in Seattle, WA. Values closer to zero indicate that hospitals are
more strained and have fewer open beds, while lower values suggest more resources are available; color varies from blue (low average strain) to red (high
average strain). Much like the number of infections, there is a high degree of heterogeneity present here, with hospitals freeing up resources at different
points across the first year of the pandemic. (Bottom Middle) Hospital strain for Washington, DC. Most hospitals get overwhelmed in the first 25 days of
the pandemic, but then are able to recover at different times, usually within the second hundred days of the pandemic; some, however, are hit hard by a
second wave, and others remain overwhelmed for several months. (Right) Marginal distribution of number of days without available beds, for all hospitals
in our sample. While most hospitals will have only brief periods of overload, some will be at or over capacity for the entire pandemic, potentially several
years.
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no-mitigation scenario. However, these results quite graphically
demonstrate that the importance of curve-flattening interven-
tions does not abate once geographical factors are taken into
account. On the other hand, these results suggest that differ-
ences in hospital load may be substantially more profound than
would be anticipated from uniform mixing models, creating logis-
tical challenges and possibly exacerbating existing differences
in resource levels across hospitals. At the same time, such het-
erogeneity implies that resource sharing and patient transfer
arrangements could prove more effective as load management
strategies than would be suggested by spatially homogeneous
models, as hospitals are predicted to vary considerably in the
timing of patient demand.

Social Exposures to Morbidity and Mortality Vary by Location. In
addition to health care strain, the subjective experience of the
pandemic will potentially differ for individuals residing in differ-
ent locations. In particular, social exposures to outcomes such
as morbidity or mortality may shape individuals’ understand-
ings of the risks posed by COVID-19, and their willingness to
undertake protective actions to combat infection. Such exposures
may furthermore act as stressors, with potential implications for
physical and/or mental health. As a simple measure of social
exposure, we consider the question of whether a focal individ-
ual (ego) either has experienced a negative outcome themself
or has at least one personal contact (alter) who has experi-
enced the outcome in question. (Given the highly salient nature
of COVID-19 morbidity and mortality, we focus on the tran-
sition to first exposure rather than, e.g., the total number of
such exposures, as the first exposure is likely to have the great-
est impact on ego’s assessment of the potential severity of the
disease.)

To examine how social exposure varies by location, we com-
pute the fraction of individuals in each tract who are socially
exposed to morbidity or mortality. Fig. 5 shows these proportions
for Baltimore, MD, over the course of the pandemic. As with
other outcomes examined here, we see considerable variation
in timing, with many tracts seeing a rapid increase in expo-
sure to infections, while others go for weeks or months with
relatively few persons having a personal contact with the dis-
ease. Another notable axis of variation is sharpness. In many
tracts, the fraction of individuals with at least one morbid con-
tact transitions from near zero to near one within a matter of
days, creating an extremely sharp social transition between the
“preexposure world” (in which almost no one present knows
someone with the illness) to a “postexposure world” in which
almost everyone knows someone with the illness). By contrast,
other tracts show a much more gradual increase (sometimes
punctuated by jumps), as more and more individuals come to
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know someone with the disease. In a few tracts that are never
hit hard by the pandemic, few people ever have an infected alter;
residents of these areas obviously have a very different experi-
ence than those of high-prevalence tracts. These distinctions are
even more stark for mortality, which takes longer to manifest
and which does so much more unevenly. Tracts vary greatly in
the fraction of individuals who ultimately lose a personal con-
tact to the disease, and in the rapidity with which that fraction
is reached. In many cases, it may take a year or more for this
quantity to be realized; until that point, many residents may be
skeptical to the notion that the pandemic poses a great risk to
them personally.

By way of assessing the milieu within each tract, it is use-
ful to consider the “cross-over” point at which at least half
of the residents who will be socially exposed in a given tract
have been socially exposed to either COVID-19 morbidity or
mortality. Fig. 6 maps these values for Baltimore, MD. It is
immediately apparent that social exposures are more strongly
spatially autocorrelated than other outcomes considered here,
due to the presence of long-range ties within individuals’ per-
sonal networks. Even so, however, we see strong spatial dif-
ferentiation, with residents in the urban core being exposed to
both morbidity and mortality much more quickly than those on
the periphery. This suggests that the social experience of the
pandemic will be quite different for those in city centers com-
pared to those in more outlying areas, with the latter taking far
longer to be exposed to serious consequences of COVID-19.
This may manifest in differences in willingness to adopt pro-
tective actions, with those in the urban core being more highly
motivated to take action (and perhaps resistant to rhetoric down-
playing the severity of the disease) than those on the outskirts of
the city.

Discussion

Our simulation results all underscore the potential effects of
local spatial heterogeneity on disease spread. The spatial het-
erogeneity driving these results occurs on a very small scale
(i.e., Census blocks), operating well below the level of the city
a whole. As the infection spreads, relatively small differences in
local network connectivity and the prevalence of bridging ties
driven by uneven population distribution can lead to substan-
tial differences in infection timing and severity, leading different
areas in each city to have vastly different experiences of the pan-
demic. Resources will be utilized differently in different areas, as
some areas will experience the bulk of their infections far later
than others, and the subjective experience of a given individ-
ual regarding the pandemic threat may differ substantially from
someone in another area. These behaviors are in striking con-
trast to what is assumed by models based on the assumption of
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Fig. 5. (Left) Trajectories showing the fraction of people in each tract in Baltimore who have an infected person in their personal network across time. We

see a large degree of spatial heterogeneity, as some tracts are more insulated from others in terms of social exposure. However, by the end of the pandemic,
most people across all tracts have been exposed to someone who has had the disease. (Right) The fraction of persons in each tract who have an alter who
died from COVID-19 in their personal network. On average, only around 20 to 30% of people in any given tract know someone who died, by the end of the
pandemic, although this varies widely across tracts.
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Fig. 6. (Left) Choropleth showing the time for half of those in each tract to be socially exposed to COVID-19 morbidity in Baltimore, MD. The central parts
of the city are exposed far sooner than the northwestern part of the city. (Right) Choropleth showing the time for half of those in each tract to be socially
exposed to COVID-19 mortality. Central Baltimore is exposed to deaths in personal networks far sooner than the more outlying areas of the city.

spatially homogeneous mixing, which posit uniform progress of
the infection within local areas.

As noted at the outset, our model is based on a no-
mitigation scenario, and is not intended to capture the impact of
social distancing. While distancing measures by definition limit
transmission rates—and will hence slow diffusion—contacts
occurring through spatially correlated networks like those mod-
eled here are still likely to show patterns of heterogeneity
like those described. One notable observation from our sim-
ulations is the long outbreak delay that some census tracts
experience, even in the absence of social distancing. This
would suggest that relaxation of mitigation measures leading
to a resumption of “normal” diffusion may initially appear
to have few negative effects, only to lead to deadly out-
breaks weeks or months later. Public health messaging may
need to stress that apparent lulls in disease progress are not
necessarily indicators that the threat has subsided, and that
areas “passed over” by past outbreaks could be impacted at
any time.
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Supporting Information Text
Introduction

In this supplement, we go into more depth on Spatial Interaction Functions, Spatial Bernoulli Models, the setup and
parameterization of our simulations, and the parameter estimates that were used for this paper. We also provide additional
analyses regarding the role of local first-passage times as determinants of individuals’ waiting times to infection, and the impact
of alternative estimates of hospitalization rates on numbers of days at which hospitals would be expected to be at capacity.

Spatial Interaction Function

A Spatial Interaction Function (SIF) describes the marginal probability of a tie between any two nodes, given the distance
between them. We denote the SIF by F(D;;,0), with D;; being the distance between vertices i and j, and 6 being the
parameters for the function. Prior literature has found that spatial interaction functions for social networks like those of
interest here tend to be of the power law or attenuated power law form (1). Following this, we employ SIFs of the form
F(D;ij,0) = MJW Here, py represents the base tie probability, which can be thought of as the probability of a tie between
two individuals residing at the same location. « is a scaling parameter that determines the phenomenological unit of distance
for the decay in tie probability, and ~ is the parameter that determines the weight of the tail (higher values imply fewer
long-range ties, ceteris paribus).

We employ two SIFs in this paper, using models for social interactions and face-to-face interactions employed in prior
studies (2, 3). The social interaction SIF declines with a 7 of 2.788, while the face-to-face SIF declines with v of 6.437. The
parameters for the social interaction SIF are p, = 0.533, a = 0.032, v = 2.788, and the parameters for the face-to-face SIF are
py = 0.859,a = 0.035, v = 6.437 (3).

Spatial Bernoulli Models

The Bernoulli Network Models are a class of random graph models in which each edge occurs as a Bernoulli trial, possibly with
a distinct probability of occurrence. In a spatial Bernoulli graph, tie probabilities are determined by a Spatial Interaction
Function, applied to the pairwise distances between individuals within some space (here, geographically determined using
Census data). Spatial Bernoulli models are highly scalable due to the conditional independence of edges, but allow for extremely
complex structure due to the heterogeneity in edge probabilities induced by the SIF; likewise, they naturally produce properties
such as local cohesion and degree heterogeneity observed in many types of social networks (2). Formally, we can specify a
Spatial Bernoulli Model by Pr(Y;; = 1) = F(D;;, 6), where Y;; is a dichotomous indicator for the presence of the 4, j edge, and
F(D;j,0) is a Spatial Interaction Function taking as inputs the 4, j distance D;; and parameters 6.

Network Simulations

To simulate diffusion of COVID-19, we require a contact network. Here, we employ the above-described spatial Bernoulli
graphs, with node locations for each of our 19 study locations drawn based on block-level Census data (including clustering
within households, an important factor in disease diffusion). We follow the protocols described in (2, 4) to generate node
positions, specifically using the quasirandom (Halton) placement algorithm. Node placement begins with the households in
each census block, using Census 2010 data with regions defined per (3). The quasirandom placement algorithm uses a Halton
sequence to place households in space within the areal unit in which they reside. If any two households are placed within a
critical radius of each other, then the algorithm “stacks” the households on top of each other by introducing artificial elevation
(simulating e.g. a multistory apartment building). Once all households are placed, individuals within households are placed at
jittered locations about the household centroid. (Individuals not otherwise attached to households are treated as households of
size 1.)

Given an assignment of individuals to spatial locations, we simulate spatial Bernoulli graphs using the models specified above.
We generate two networks for each city, one with the social interaction SIF, and the other with the face-to-face interaction
SIF. To form a network of potential high-risk contacts, we then merge these networks (which share the same node set) by
taking their union, leading to a network in which two individuals are tied if they either have an ongoing social relationship or
would be likely to have extensive face-to-face interactions for other reasons (e.g., interacting with neighbors). This process is
performed for each city in our sample.

List of Cities. Table S1 lists the cities that we use for our simulations. These data are drawn from (3), with population data
updated to reflect the most recent (2010) decennial Census.

Disease Simulations

We conduct a series of simulations to examine the spread of COVID-19 across city-sized networks. These simulations use a
simple continuous-time network diffusion process, the general description of which are described in the main text. The input for
the diffusion simulation is a network and a vector of initial disease states (susceptible, latent (infected but not yet infectious),
infectious, recovered, and deceased), and the output is detailed history of the diffusion process up to the point at which a steady
state is obtained (i.e., no infectious individuals remain). Infection occurs via the network, with currently infectious individuals
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Table S1. List of study communities.

City/County

1 Buffalo

2  Baltimore

3  Cincinnati

4  Cleveland

5  Denver

6 Indianapolis

7 Miami

8  Milwaukee

9  Nashville
10  Pittsburgh
11 Rochester
12 Sacramento
13  Salinas
14  San Diego City
15  Seattle
16  St. Petersburg
17 Tampa
18  Tuscon
19  Washington DC

infecting susceptible alters as Poisson events with a fixed rate. The transitions between latent and infectious, and infectious
and either recovery or mortality are governed by gamma distributions estimated from epidemiological data. Table S2 shows
the estimated shape and scale parameters for the gamma distributions employed here. The parameters for waiting time to
infectiousness are directly available in the Appendix of (5), while those for the recovery and death are estimated by matching
the mean and standard deviation of durations reported in the literature (6). Selection into death versus recovery was made via
a Bernoulli trial drawn at time of infection (thereby determining which waiting time distribution was used), with the estimated
mortality probability being 0.0138 using the case fatality rate adjusted for under-ascertainment reported in (6). Under these
parameters, the median time to infectiousness is 5.2 days, with 95% of cases falling between 2 and 10.1 days; once infectious,
respective median times to recovery and death are 25.1 days (95% range 9.6 to 52.2) and 16.9 days (95% range 5.5 to 38.3).
We note in particular that these distributions incorporate the clinically observed skewness in recovery times, with many cases
resolving in less than two weeks but a non-trivial fraction persisting for six weeks or longer.

Table S2. Shape and Scale parameters for Gamma distributions for durations (unit: day).

Death  Recovery Infectious

Shape 4566  5.834 5.807
Rate 0.251 0.219 1.055
Scale (i.e., 1/Rate)  3.984 4.566 0.948

Infection Rate Parameter Estimation

To determine the infection rate (the only free parameter for the models used in our simulations), we simulate the diffusion of
virus in Seattle and fit it to the over-time death rate of the King County, WA before the first shelter-in-place order went into
effect on March 23, 2020. We limit our data to this time period because our simulation employs a no-mitigation scenario. A
grid search strategy was employed to determine the expected days to transmission (which is the inverse of infection rate), and
the number of days between the existence of the first infected cases and the first confirmed cases (aka the time lag, a nuisance
parameter that is relevant only for estimation of the infection rate). The time lag is treated as an integer and the expected
days to transmission as a continuous variable. For each lag/rate pair, we randomly take 5 draws from the expected infection
waiting time distribution, add them to the lag time (i.e. the introduction of the true patient zero for the initial outbreak),
and simulate 50 realizations of the diffusion process (redrawing the network each time). The diffusion rate parameter was
selected based on minimizing the mean squared error between the simulated death rate and the observed death rate over the
selected period. The first round of grid-search divided the expected days of search into 100 intervals, from (0,1) to (99,100),
with days of lag ranging from 1 to 100 days. The second round of grid-search, based on the performance of the first round,
divided the expected days of search into 240 intervals, from (40.00,40.25) to (99.75,100.00), with days of lag ranging from 1 to
60 days. The grid-search suggests that the expected days to transmission is 82.875 (82.75,83.00) days (Fig S1); that is, in a
hypothetical scenario in which a single infective ego remained indefinitely in the infective state, and a single alter remained
otherwise susceptible, the average waiting time for ego to infect alter would be approximately 80 days. While this may at
first blush appear to be a long delay, it should be borne in mind that this embodies the reality that no individual is likely to
infect any given alter within a short period (since, indeed, ego and alter may not happen to interact within a narrow window).
With many alters, however, the chance of passing on the disease is quite high. Likewise, we note that the thought experiment
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above should not be taken to imply that actors remain infectious for such an extended period of time; per the above-cited
epidemiological data, individuals typically remain infectious for roughly 25.1 days (95% range 9.6-52.2). When both delay
times are considered, the net probability of infecting any given alter prior to recovering is approximately 27%. We further
calculated the corresponding basic reproductive number (Rg), which is the product of the probability of infection (27%) and
the mean degree of the networks (10). The corresponding basic reproductive number in the diffusion simulation model is 2.7,
compatible with estimates of Rg at the pre-mitigation stage in other literature (7-9).

Simulation Replicates

To supplement the results on the variation in the peak infection time given in the main text, we ran a series of simulation
replicates. Figure 3 in the main text shows the data from the figure below aggregated across all replicates. In the supplemental
Figure S2, we break out the peak infection days in each city, by replicate. These data show that the significant variation in
Figure 3 is not due to the number of replicates that were run, but instead due to the intrinsic variation that is present (i.e.,
spatial heterogeneity).

Timing and Shape of Infection Curves

‘While our simulations show substantial heterogeneity in infection patterns across tracts, it may be hypothesized that this
pattern is driven by a characteristic pattern of infection within tracts, with the heterogeneity being driven by the differences in
arrival time of the infection to different tracts. (Such a pattern has been hypothesized by e.g. (10) at the national level to
explain heterogeneity at global scales.) To examine this possibility, we ran several additional analyses. First, to assess whether
diffusion patterns within tracts follow a universal curve, we compare standardized within-tract prevalence curves across the
entire sample of cities. To standardize the infection curves, we apply the following transformations. First, all selected infection
prevalence curves (i.e., active cases as a function of time) were translated to the origin, such that the first infection occurs
at time 0. Next, we standardized the maximum prevalence by dividing the number of infections active on any day by the
maximum prevalence for the tract. Finally, we standardized the time scale of the prevalence curve so that the mean prevalence
time (i.e., the centroid of the temporal distribution) occurs at unit time. The resulting standardized curves reflect the pure
shape of the infection trajectory; if infection follows a universal pattern at local scales (up to an affine transformation), then
the standardized curves should be approximately identical.

To assess the standardized curves, we chose a stratified sample of tracts from across the sample, selecting 5 tracts at random
from each city. To avoid artifacts from tracts with insufficient infections, we exclude tracts with fewer than 20 infections during
the time course of the simulation. Figure S3 shows the resulting distribution of standardized prevalence curves. In line with
the universality hypothesis, there is a dominant functional form approximately followed by a large fraction of tracts. However,
we also observe a large fraction of tracts that deviate from this central pattern. Modes of deviation are idiosyncratic, and
include multi-modality, substantial differences in skewness, and differences in “roughness” over time. Quantitatively, relatively
large variations in standardized time to maximum prevalence are observed, with maxima for the majority of the sample falling
between approximately 0.5 and 1.5 time-to-mean-prevalence units. These observations suggest that, while there is a fairly
common tract-level infection pattern, this pattern coexists with a wide range of other types of trajectories and is better thought
of as a central tendency than a universal phenomenon.

Even if there is not a universal tract-level diffusion curve, it could still be the case that the majority of heterogeneity in
infection times could be explained by the time taken for the infection to reach each tract: in particular, if the city-level diffusion
process reflects a union of very small outbreaks with the waiting time for the infection to “jump” from one area to another
being large compared to the time needed for the local outbreaks to reach all susceptibles within the local area, then the primary
determinant of individual infection time would be the time taken for the infection to reach the individual’s local region. We
examine this hypothesis in figure S4. The left-most boxplot of figure S4 shows the distribution of times to infection for all
individuals in our sample, timed from the onset of the first infection. The right-most boxplot shows the corresponding waiting
times for the same individuals, net of the first appearance of the infection in their tracts. If infection time were determined
primarily by the time it takes for the infection to reach an individual’s local area, we would see a substantially compressed
distribution relative to the total waiting time; on the contrary, the two are nearly the same, falsifying the conjecture that
diffusion to the local area is the driver of waiting time heterogeneity.

The reason for this lack of compression can be seen in the middle boxplot of figure S4, which shows the distribution of
waiting times for the first case in each tract. We can see that, while individual infection times vary markedly, first passage times
to tracts are both short and highly compressed: once introduced, the infection diffuses rapidly to nearly all tracts. Further, we
can see that nearly all tracts are reached long before the majority of individuals are infected — thus, diffusion to local areas
is not the primary limiting factor determining individual waiting times. Instead, the relative permeability of those areas to
diffusion (which may depend upon factors such as local population density and the presence of barriers to interaction) appears
to play a much greater role in governing the distribution of infection times.

Robustness of Spatial Heterogeneity on Hospital Load

Currently, considerable uncertainty exists regarding the fraction of SARS-CoV-2 infections leading to hospitalization; as such, it
is useful to verify that the overall patterns of spatial heterogeneity seen here are robust to the hospitalization rate. On the high
end, the World Health Organization and the CDC have estimated the rate to be 20% and 20-30%, respectively, in the absence
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of mitigation (11, 12). Arguably, these estimates are inflated by under-reporting of asymptomatic or mildly symptomatic
infections, particularly given the poor state of testing in the early stage of the pandemic. At the opposite extreme, one recent
serology study contended that less than 10% of infections were reported in USA (13), implying a potential hospitalization rate
in the neighborhood of 2%. This study, too, faces problems with selection, as population prevalence was based on a convenience
sample from patients seeking health care during the pandemic (and who are hence disproportionately likely to be infected); the
true extent of under-reporting is thus likely to be smaller than this estimate (and the hospitalization rate correspondingly
higher). Taking these two estimates as upper and lower bounds on the likely rate of COVID-19 hospitalizations, we replicated
our analysis on hospital load using 20% and 2% (i.e., 10% of 20%) as respective probabilities of hospitalization per infection.

Fig. S5 shows the respective marginal distributions of hospital overload periods with 20% and 2% hospitalization rates.
While the scale of full-capacity days varies with the selection of the hospitalization rate, the shape of these distributions closely
resembles that of Fig. 7 in the main text: despite the majority of hospitals running at capacity for a relatively short period of
time, a sizable fraction of hospitals experience overloads for very long periods. The persistence of this pattern over a full order of
magnitude variation in hospitalization rates demonstrates the potential of unmitigated COVID-19 infections to severely strain
local resources even under fairly optimistic scenarios, and suggests that substantial inequalities in healthcare service demand
are robust to detailed hospitalization rates. However, we also note that the current level of uncertainty in hospitalization rates
serves as a significant obstacle to quantitative prediction of the spatial distribution of hospital load for planning or response
purposes. Particularly given the large gap between anticipated load on “typical” units and those expected to be hit hardest,
more refined rate estimates would seem to have the potential to inform important resource allocation decisions.

Code and Data Availability

Code and data needed to replicate the simulation and analysis for this paper can be found at:

Loring J. Thomas; Peng Huang; Fan Yin; Xiaoshuang Iris Luo; Zack W. Almquist; John R. Hipp; Carter T. Butts, 2020,
“Replication Data for: Spatial Heterogeneity Can Lead to Substantial Local Variations in COVID-19 Timing and Severity,”
https://doi.org/10.7910/DVN/B9XKSR, Harvard Dataverse.
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Fig. S1. Grid-search for infection rate. The mean squared error (in logarithm form) for simulations with combinations of days of lag and expected days to transmission, for the
first round (A) and the second round (C). The cross-sectional analysis of the minimum log error for each days of lag and expected days to transmission (B) suggests the interval
of both variables for the second round of search (areas in gray). Curves of death rate based on the best-fit parameter: 44 days of lag, 82.875 expected days to transmission (D).
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Normalized Tract Prevalence Curves across the Sample
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Fig. S3. Standardized infection curves at the tract level. Many tracts approximately follow the stereotypical “bell-shaped” pattern, but a large number of tracts deviate by being
irregular, multimodal, and/or long-tailed. (Note: all trajectories scaled to unit maximum; apparent truncation actually reflects between-curve variation in time to maximum
prevalence.)
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Simulation of Diffusion Timing
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Fig. S4. Respective distributions of individual infection times (left), tract arrival times (middle), and tract specific infection times (right) for the tract sample. Individual infection
times relative to arrival within tracts show little difference from infection times relative to the start of the larger outbreak, as tract arrival times are substantially shorter than the
time needed to diffuse within tracts.
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Distribution of Number of Days at Capacity per Hospital Distribution of Number of Days at Capacity per Hospital
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Fig. S5. (Left) The distribution of days that hospitals are at capacity, with a 20% hospitalization rate. (Right) The distribution of days that hospitals are at capacity with a 2%
hospitalization rate. While higher hospitalization rates lead to higher levels of strain overall, extreme inequality in load persists in both scenarios.
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