
IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 6, NO. 3, JULY 2021 4931

Learning Barrier Functions With Memory for Robust
Safe Navigation

Kehan Long , Cheng Qian, Jorge Cortés , and Nikolay Atanasov

Abstract—Control barrier functions are widely used to enforce
safety properties in robot motion planning and control. However,
the problem of constructing barrier functions online and synthe-
sizing safe controllers that can deal with the associated uncertainty
has received little attention. This letter investigates safe naviga-
tion in unknown environments, using on-board range sensing to
construct control barrier functions online. To represent different
objects in the environment, we use the distance measurements
to train neural network approximations of the signed distance
functions incrementally with replay memory. This allows us to
formulate a novel robust control barrier safety constraint which
takes into account the error in the estimated distance fields and its
gradient. Our formulation leads to a second-order cone program,
enabling safe and stable control synthesis in a prior unknown
environments.

Index Terms—Machine learning for shape modeling, robust and
adaptive control, sensor-based control.

I. INTRODUCTION

M
ODERN applications of ground, aerial, and underwater
mobile robots necessitate safe operation in unexplored

and unstructured environments. Planning and control techniques
that ensure safety, relying on limited field-of-view observations,
are critical for autonomous navigation. The seminal work of
Khatib [1] introduced artificial potential fields to enable colli-
sion avoidance during not only the motion planning stage but
also the real-time control of a mobile robot. Potential fields
inspired subsequent work on joint path-planning and control.
Rimon and Koditschek [2] developed navigation functions,
special artificial potential functions designed to simultaneously
guarantee collision avoidance and stabilization to a desired goal
configuration. In the 2000’s, barrier certificates were proposed
as a general construction to verify safety of closed-loop non-
linear and hybrid systems [3], [4]. Barrier certificates were
extended by [5] to consider control inputs explicitly and en-
able safe control design. Control barrier functions (CBFs) have
become a key technique for encoding safety constraints, and
have been successfully employed, along with control Lyapunov
functions (CLFs), to encode stability requirements in quadratic
program (QP) control synthesis for control-affine nonlinear
systems [6].

Manuscript received October 15, 2020; accepted March 5, 2021. Date of
publication March 31, 2021; date of current version April 19, 2021. This
work was supported by NSF RI IIS-2007141. Kehan Long and Cheng Qian

contributed equally to this work. (Corresponding author: Kehan Long.)

The authors are with the Contextual Robotics Institute, University of Cal-
ifornia San Diego, La Jolla, CA 92093 USA (e-mail: k3long@ucsd.edu;
chqian@ucsd.edu; cortes@ucsd.edu; natanasov@ucsd.edu).

Digital Object Identifier 10.1109/LRA.2021.3070250

A common assumption in many CLF-CBF-QP works is that
the robot already has complete knowledge of the unsafe regions,
encoded in an a priori known CBF. However, navigation in
unknown environments requires online estimation of unsafe
regions using onboard sensing and, hence, a CBF should also
be constructed online. This paper considers a mobile robot
equipped with a LiDAR scanner and tasked to follow a motion
plan, relying on streaming range measurements to ensure safety.
We focus on constructing CBFs, approximating the shape of
the objects in the environment, and introduce corresponding
safety constraints in the synthesis of the robot’s control policy
to enforce safety.

The signed distance function (SDF) of a set Ω in a metric
space determines the distance of a given point x to the boundary
of Ω, with sign indicating whether x is in Ω or not. SDFs are
an implicit surface representation, employed in computer vision
and graphics for surface reconstruction and rendering [7], [8].
In contrast with other object geometry representations, an SDF
provides distance and gradient information to object surfaces
directly, which is necessary information for collision avoidance
in autonomous navigation [9]. In this work, we approximate the
SDFs of observed objects and define corresponding CBF safety
constraints for control synthesis. Using the LiDAR measure-
ments, we incrementally train a multilayer perceptron to model
each obstacle’s SDF shape online. To balance the accuracy and
efficiency of SDF reconstruction, we employ replay memory in
training [10].

The obstacle SDF approximations provide distance and gra-
dient information for the barrier functions. We take into account
the estimation errors for the controller synthesis, resulting in
safety constraints where the input appears both linearly and
within an l2-norm term. The presence of such constraints means
that the control synthesis problem can no longer be stated as
a QP but we show that the problem can be formulated as a
second-order cone program (SOCP), which is still convex and
can be solved efficiently. The proposed CLF-CBF-SOCP frame-
work integrates the SDF estimation of the CBFs to synthesize
safe controls at each time instant, allowing the robot to safely
navigate the unknown environment. In summary, this paper
makes the following contributions.
� An online incremental training approach, utilizing replay

memory, is proposed for deep neural network approxima-
tion of the signed distance functions of objects observed
with streaming distance measurements.

� Our analysis shows that incorporating safety con-
straints that account for the worst-case estimation er-
ror of the SDF approximations into a control syn-
thesis optimization problem leads to a convex SOCP
formulation.

2377-3766 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on July 22,2021 at 05:43:21 UTC from IEEE Xplore. Restrictions apply.

4932 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 6, NO. 3, JULY 2021

II. RELATED WORK

This section reviews related work on scene representations
and CLF-CBF techniques for safe control.

Occupancy mapping techniques aim to partition an environ-
ment into occupied and free subsets using sensor observations.
Octomap [11] is a probabilistic occupancy mapping algorithm
that uses a tree-based structure to store and update the probability
of occupied and free space based on streaming range observa-
tions. Occupancy information alone may not be enough for safe
planning and control, since many algorithms require distance (or
even gradient) information to the obstacle surfaces. Voxblox [12]
is an incremental truncated SDF mapping algorithm that approx-
imates the distance to the nearest surface at a set of weighted
support points. The approach also provides an efficient extension
from truncated to complete (Euclidean) SDF using an online
wavefront propagation algorithm. Fiesta [9] further improves
the efficiency and accuracy of building online SDF maps by
using two independent queues for inserting and deleting obsta-
cles separately and doubly linked lists for map maintenance.
These SDF representations, however, require discretizing the
environment into voxels, resulting in potentially large memory
use. Recently, impressive results have been achieved in object
shape modeling using deep neural networks. DeepSDF [7] and
Occupancy Nets [13] implicitly represent 3D shapes by su-
pervised learning via fully connected neural networks. Gropp
et al. [14] further extended the DeepSDF model by introducing
the Eikonal constraint that any SDF function must satisfy in
training the neural network. We extend this offline training
method in two ways: enabling online training by introducing
replay memory, which helps the network to remember the re-
constructed shape from past observations, and adding truncated
signed distance points to the training set to ensure the correct
sign of the approximated SDF. Compared with state-of-the-art
SDF methods [9], [12] for navigation and obstacle avoidance,
which rely on discretization, our approach enables continuous
and differentiable SDF representations, as required by the CBF
framework.

Quadratic programming with CBF constraints offers an el-
egant and efficient framework for safe control synthesis in
robot navigation tasks [15], [16]. This approach employs CLF
constraints to stabilize the system and achieve the control ob-
jectives whenever possible, whereas the CBF constraints are
used to ensure safety of the resulting controller at all times.
CBFs are used for safe multi-robot navigation in [15]. CLF
and CBF constraints are combined to solve a simultaneous
lane-keeping (LK) and adaptive speed regulation (ASR) problem
in [16]. CLFs are used to ensure convergence to the control
objectives for LK and ASR, whereas CBFs are used to meet
safety requirements. However, the barrier functions in these
approaches are assumed to be known. When the environment
is unknown, a robot may only rely on the estimation of barrier
functions using its sensors. A closely related work by Srinivasan
et al. [17] presents a Support Vector Machine (SVM) approach
for the online synthesis of barrier functions from range data.
By approximating the boundary between occupied and free
space as the SVM decision boundary, the authors extract CBF
constraints and solve a CBF-QP to generate safe control inputs.
Our approach constructs CBFs directly from an approximation
of the object SDFs and explicitly considers the potential errors
in the CBF constraints when formulating the control synthesis
optimization problem.

III. PROBLEM FORMULATION

Consider a robot whose dynamics are governed by a non-
linear control-affine system:

ẋ = f(x) + g(x)u

y = v(x)
(1)

where x ∈ X ⊆ R
n is the robot state, u ∈ U ⊆ R

m is the
control input, and y ∈ Y ⊆ R

w is the system output. Taking
the robot in Section VI as an example, x is the robot posi-
tion and orientation, u is the linear and angular velocity in-
put, while y is the robot position. Assume that f : R

n �→ R
n,

g : R
n �→ R

n×m, and v : R
n �→ R

w are continuously differ-
entiable functions. Define the admissible control input space
as U := {u ∈ R

m |Au ≤ b}, where A ∈ R
k×m and b ∈ R

k.
The output space Y is a Euclidean robot workspace (e.g.,
robot positions), used for collision checking. The state space
X is partitioned into a closed safe set S and an open obstacle
set O such that S ∩ O = ∅ and X = S ∪ O. Correspondingly,
the workspace Y is partitioned into a closed set v(S) and an
open set v(O), obtained by applying the output function v
to each element in S and O. The obstacle set O is further
partitioned into K obstacles, denoted O1,O2, . . .OK , such that
O = ∪K

i=1Oi and Oj ∩ Ok = ∅ for any 0 ≤ j, k ≤ K. Each of
these sets is defined through a continuously differentiable func-
tion ϕi : R

w �→ R, with gradient ∇ϕi : R
w �→ R

w. Formally,
Oi = {x ∈ X |ϕi(v(x)) < 0}. Note that ϕi(v(x)) < 0 if the
output y is in the open set v(Oi) and ϕi(v(x)) = 0 if y is on
its boundary ∂v(Oi).

The robot is equipped with a range sensor, such as a LiDAR
scanner, and aims to follow a desired path, relying on the noisy
distance measurements to avoid collisions. A path is a piece-wise
continuous function r : [0, 1] �→ Int(v(S)). Let F(x) ⊂ Y be
the field of view of the range sensor when the robot is in state x.
At discrete times tk, for k ∈ N, the range sensor provides a set of
pointsPk,i = {pk,i,j}j ⊂ F(x(tk)) ∩ ∂v(Oi) on the boundary
of each obstacle v(Oi) which are within its field-of-view.

Problem: Consider the system in (1) operating in an unknown
environment, i.e., the obstacles sets {v(Oi)}Ki=1 are unknown
a priori. Given a desired path r and noisy range sensor mea-
surements Pk,i for k ∈ N and i = 1, . . . ,K, design a feedback
controlleru(x) for (1) that ensures that the robot can move safely
along the path r, i.e., y(t) ∈ v(S) for all t and y(t) → r(1) as
t → ∞.

IV. OBSTACLE ESTIMATION VIA ONLINE SIGNED DISTANCE

FUNCTION APPROXIMATION

Throughout the paper, we rely on the concept of signed
distance function to describe each unsafe region {v(Oi)}Ki=1.
For each i, the SDF function ϕi : Y �→ R is:

ϕi(y) :=

{−d(y, ∂v(Oi)), y ∈ v(Oi),

d(y, ∂v(Oi)), y /∈ v(Oi),
(2)

where d denotes the Euclidean distance between a point and
a set. In this section, we describe an approach to construct
approximations to the obstacle SDFs ϕi using the point cloud
observations {Pk,i}k at time step tk.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on July 22,2021 at 05:43:21 UTC from IEEE Xplore. Restrictions apply.

LONG et al.: LEARNING BARRIER FUNCTIONS WITH MEMORY FOR ROBUST SAFE NAVIGATION 4933

A. Data Pre-Processing

Given the point cloud Pk,i ⊂ R
w on the surface of the ith

obstacle at time tk, we can regard Pk,i as the points on the
zero level-set of a distance function. To normalize the scale
of the training data, we define the point coordinates with re-
spect to the obstacle centroid. Since the centroid is unknown,
we approximate it as the sample mean of the training points
p̄k,i :=

1
m

∑m
j=1 pk,i,j . The points pk,i,j − p̄k,i are centered

around p̄k,i and have a measured distance of 0 to the obstacle
surface v(∂Oi). Let c = ‖v(xk)− qk,i,j‖ be the Euclidean
distance between the robot state xk := x(tk) and pk,i,j . Let
δ > 0 be a small positive constant. Define a point qk,i,j :=
δ
c
v(xk) + (1− δ

c
)pk,i,j along the LiDAR ray from the output

v(xk) to pk,i,j that is approximately a distance δ from the
obstacle surface ∂v(Oi). We call the set {qk,i,j − p̄k,i}j a
truncated SDF point set. The training set for each obstacle
i is constructed as a union of the points on the boundary
and the truncated SDF points. The training set at time tk is
Dk,i := {(pk,i,j − p̄k,i, 0)} ∪ {(qk,i,j − p̄k,i, δ)}.

B. Loss Function

Inspired by the recent impressive results on multilayer per-
ceptron approximation of SDF [7], [14], we introduce a fully
connected neural network ϕ̃i(y;θk) with parameters θk to
approximate the SDF of each observed obstacle i at time step
tk. Our approach relies on the fact that the norm of the SDF
gradient satisfies the Eikonal equation ‖∇ϕi(y)‖ = 1 in its
domain. We use a loss function that encourages ϕ̃i(y;θk) to
approximate the measured distances in a training setD (distance
loss ℓDi) and to satisfy the Eikonal constraint for set of points
D′ (Eikonal loss ℓEi). For example, ϕ̃i equals 0 for points
on the obstacle surface and equals δ for the truncated SDF
points along the LiDAR rays. The loss function is defined as
ℓi(θk;D,D′) := ℓDi (θk;D) + λℓEi (θk;D′), with a parameter
λ > 0 and:

ℓDi (θk;D) :=
1

|D|
∑

(p,d)∈D
|ϕ̃i(p;θk)− d|,

ℓEi (θk;D′) :=
1

|D′|
∑

p∈D′

(‖∇ϕ̃i(p;θk)‖ − 1) .

(3)

The training set D′ for the Eikonal term can be generated
arbitrarily in Y since ϕ̃i needs to satisfy the Eikonal constraint
almost everywhere inY . In practice, we generateD′ by sampling
points from a mixture of a uniform distribution and Gaussians
centered at the points in the distance training setD with standard
deviation equal to the distance to the k-th nearest neighbor
(k = |D|/2). For the distance training set D, ideally, we should
use as much data as possible to obtain an accurate approximation
of the SDF ϕi. For example, at time tk, all observed data may
be used as the distance training set D = ∪k

l=0Dl,i. However,
the online training time becomes longer and longer as the robot
receives more and more LiDAR measurements, which makes
it impractical for real-time mapping and navigation tasks. We
introduce an “Incremental Training with Replay Memory” ap-
proach in Section IV-C, which obtains accurate SDF estimates
with training times suitable for online learning.

Fig. 1. A ground robot equipped with a LiDAR scanner is navigating safely
along a desired path (blue curve) in an unknown room.

C. Incremental Learning

When an obstacle i is first observed at time t0, we use the
data set D0,i to train the SDF network ϕ̃i(y;θ0). When new
observations Dk,i of obstacle i are obtained at k = 1, 2, . . . , we
need to update the network parameters θk. We first consider
an approach that updates ϕ̃i(y;θk−1) based on the new data set
Dk,i and uses the previous parameters θk−1 as initialization. We
call this approach “Incremental Training” (IT). Alternatively,
we can update ϕ̃i(y;θk−1) using all prior data Di = ∪k

l=0Dl,i,
observed up to time tk, and θk−1 as initialization. We call this
approach “Batch Training” (BT).

The IT approach is efficient because, at each time tk, it uses
data sets Dk,i of approximately constant cardinality, leading
to approximately constant update times during online training.
However, discarding the old data ∪k−1

l=0Dl,i and using stochastic
gradient descent to re-train the network parameters θk−1 on the
new data Dk,i causes degradation in the neural network’s ability
to represent the old data. In other words, the SDF approximation
ϕ̃i(y;θk) at time tk is good at approximating the latest observed
obstacle surface but the approximation quality degrades at pre-
viously observed surfaces, as shown in Fig. 2. The BT approach
does not have this limitation since it uses all data ∪k

l=0Dl,i for
training at time tk but, as a result, its training time increases over
time. Hence, our motivation for introducing an “Incremental
Training with Replay Memory” (ITRM) approach is to balance
the trade-off between SDF estimation error and online training
time, making it suitable for real-time robotic tasks.

Experience replay is an effective and commonly used tech-
nique for online reinforcement learning, which enables con-
vergence of stochastic gradient descent to a critical point in
policy and value function approximation [10], [18]. This idea has
not been explored for online supervised learning of geometric
surfaces. The first contribution of this paper is to use replay
memory for online incremental learning of SDF. At each time
step tk−1, We construct an experience replay memory Qk−1,i at
each time step by utilizing the SDF approximations ϕ̃i(y;θk−1).

Definition 1: The replay memory Q associated with a signed
distance function ϕ and truncation parameter τ ≥ 0 is the set of
points that are at most a distance τ from the zero-level set of ϕ:
Q := {(q, ϕ(q)) ∈ (Rw,R) | |ϕ(q)| ≤ τ}.

To construct the replay memory set Qk−1,i, we need to
generate samples from the level sets of the SDF approximation

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on July 22,2021 at 05:43:21 UTC from IEEE Xplore. Restrictions apply.

4934 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 6, NO. 3, JULY 2021

Fig. 2. Shape estimation with and without replay memory. The top row shows
the training data used at time step k = 0 and k = 70 by the IT and ITRM
approaches. The purple points are the observed LiDAR end points, while the
blue points are the truncated SDF points along the LiDAR rays. In (c), the green
and red points are boundary and truncated SDF points obtained from the replay
memory. The bottom row shows the SDF estimation of the obstacle surface
at time step k = 0 and k = 70 for the IT and ITRM approaches. The black
rectangle shows the ground-truth obstacle boundary, while colored regions are
level-sets of the SDF estimate. The white region denotes the estimated obstacle
boundary. The blue (resp. red) region denotes negative (resp. positive) signed
distance. IT and ITRM use the same data and lead to the same estimate at k = 0
because the replay memory set is empty. In (e), the SDF estimate of the top
obstacle region at k = 70, without memory replay, degrades compared to (d).
In (f), training with replay memory helps the neural network remember the
overall obstacle shape.

ϕ̃i(y;θk−1). In robotics applications, where the environments
are commonly 2-D or 3-D, samples from the level sets of
ϕ̃i(y;θk−1) can be obtained using the Marching Cubes algo-
rithm [19]. In our experiments in Section VI, we used Marching
Cubes to extract samplesq0 andqδ from the zero and δ level-sets
of ϕ̃i(y;θk−1), respectively, and construct the replay memory
as Qk−1,i := {(q0, 0)} ∪ {(qδ, δ)}.

Given the replay memory Qk−1,i, our ITRM approach con-
structs a training set at time tk by combining the latest observa-
tion Dk,i with a randomly sampled subset Q̄k−1,i from Qk−1,i.
To make the algorithm efficient without losing significant infor-
mation about prior data, we let |Q̄k−1,i| = |Dk,i|, i.e., we pick
as many points from the replay memory as there are in the latest
observation Dk,i.

The three training techniques, IT, BT, and ITRM, discussed in
this section, are formally defined as follows. In all approaches,
for obstacle i, the parameters θk−1 obtained at the previous time
step are used as an initial guess for the new parameters θk at time
tk. The SDF approximations ϕ̃i(y;θk) are trained via the loss
function in (3) but each method uses a different training set D:

IT: D = Dk,i BT: D = ∪k
l=0Dl,i ITRM: D = Dk,i ∪ Q̄k,i.

We use the continuously differentiable Softplus function ln(1 +
ex) as the non-linear activation to ensure that ϕ̃i(y;θk) is
continuously differentiable. The gradient∇ϕ̃i(y;θk) is an input
in the loss function in (3) and can be calculated via backpropa-
gation [14].

V. SAFE NAVIGATION WITH ESTIMATED OBSTACLES

We rely on the estimated SDFs constructed in Section IV to
formalize the synthesis of a controller that guarantees safety
with respect to the exact obstacles, despite errors in the SDF
approximation. Our analysis assumes error bounds are available,
and we leave their actual computation for future work. In this
regard, several recent works study the approximation power and
error bounds of neural networks [20], [21]. In our evaluation
in Section VI, we obtain SDF error bounds by comparing the
estimated and ground-truth object SDFs.

A. Safe Control With Estimated Barrier Functions

A useful tool to ensure that the robot state remains in the safe
set S throughout its evolution is the notion of control barrier
function (CBF).

Definition 2 ([22]): A continuously differentiable function
h : R

n �→ R, with h(x) > 0 if x ∈ Int(S) and h(x) = 0 if x ∈
∂S , is a zeroing control barrier function (ZCBF) on X ⊂ R

n if
there exists an extended class K function αh such that, for each
x ∈ X , there exists u ∈ U with

Lfh(x) + Lgh(x)u+ αh(h(x)) ≥ 0, (4)

where Lfh(x) is the Lie derivative of h(x) along f(x).
Any Lipschitz-continuous controller u : X �→ U such that

u(x) satisfies (4) renders the set S forward invariant for the
control-affine system (1) [6], [22]. If the exact SDFs ϕi de-
scribing the obstacles Oi were known, we could define ZCBFs
hi(x) := ϕi(v(x)) that ensure the forward invariance of S .
However, when the environment is observable through online
range measurements as described in Section IV, we only have
the estimated SDFs ϕ̃i(v(x);θk) at our disposal to define
h̃i(x) := ϕ̃i(v(x);θk). Our next result describes how to use
this information to ensure the safety of S . The statement is for
a generic h̃ (e.g., a single obstacle). We later particularize our
discussion to the case of multiple obstacles.

Proposition 1: Let e1(x) := h(x)− h̃(x) ∈ R be the error
at x in the approximation of h, and likewise, let e2(x) :=

∇h(x)−∇h̃(x) ∈ R
n be the error at x in the approximation

of its gradient. Assume there are available known functions
eh(x) : R �→ R≥0 and e∇h(x) : R

n �→ R≥0 such that

|e1(x)| ≤ eh(x), ‖e2(x)‖ ≤ e∇h(x) (5)

with eh(x) → 0 and e∇h(x) → 0 as x → ∂S . Let

Kh̃(x) := {u ∈ U | Lf h̃(x) + Lgh̃(x)u−

‖f(x) + g(x)u‖e∇h(x) + αh(h̃(x)− eh(x)) ≥ 0}.
(6)

Then, any locally Lipschitz continuous controller u : X �→ U
such thatu(x) ∈ Kh̃(x) guarantees that the safe setS is forward
invariant.

Proof: We start by substituting h(x) = h̃(x) + e1(x) in (4):

Lf h̃(x) + Lgh̃(x)u+ e2(x)
⊤f(x) + e2(x)

⊤g(x)u

≥ −αh(h̃(x) + e1(x)).

For any fixed x and any errors e1(x) and e2(x) satisfying (5),
we need the minimum value of the left-hand side greater than
the maximum value of the right-hand side to ensure that (4) still

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on July 22,2021 at 05:43:21 UTC from IEEE Xplore. Restrictions apply.

LONG et al.: LEARNING BARRIER FUNCTIONS WITH MEMORY FOR ROBUST SAFE NAVIGATION 4935

holds, namely:

min
‖e2(x)‖≤e∇h(x)

{

Lf h̃(x) + Lgh̃(x)u+ e2(x)
⊤f(x)

+e2(x)
⊤g(x)u

}

≥ max
|e1(x)|≤eh(x)

{

−αh(h̃(x) + e1(x))
}

.

(7)

Note that since eh(x) ≥ 0 and αh is an extended class K
function, the maximum value in (7) is obtained by:

max
|e1(x)|≤eh(x)

−αh(h̃(x) + e1((x))) = −αh(h̃(x)− eh(x)).

The minimum value is attained when e2(x) is in the opposite
direction to the gradient of f(x) + g(x)u, namely

min
‖e2(x)‖≤e∇h(x)

{

e2(x)
⊤f(x) + e2(x)

⊤g(x)u
}

= −‖f(x) + g(x)u‖e∇h(x).

Therefore, the inequality condition (7) can be rewritten
as Lf h̃(x) + Lgh̃(x)u− ‖f(x) + g(x)u‖e∇h(x) ≥
−αh(h̃(x)− eh(x)), which is equivalent to the condition
in (6). �

Proposition 1 allows us to synthesize safe controllers even
though the obstacles are not exactly known, provided that error
bounds on the approximation of the barrier function and its
gradient are available and get better as the robot state gets closer
to the boundary of the safe set S .

B. Control Synthesis Via Second-Order Cone Programming

We encode the control objective using the notion of a Lya-
punov function. Formally, we assume the existence of a control
Lyapunov function, as defined next.

Definition 3 ([6]): A control Lyapunov function (CLF) for the
system dynamics in (1) is a continuously differentiable function
V : R

n �→ R≥0 for which there exist a classK functionαV such
that, for all x ∈ X :

inf
u∈U

[LfV (x) + LgV (x)u+ αV (V (x))] ≤ 0.

The function V may be used to encode a variety of control
objectives, including for instance path following. We present a
specific Lyapunov function for this purpose in Sec. VI.

When the barrier function is precisely known, one can com-
bine CLF and CBF constraints to synthesize a safe controller via
the following QP:

min
u∈U,δ∈R

‖L(x)⊤(u− ũ(x))‖2 + λδ2

s.t. LfV (x) + LgV (x)u+ αV (V (x)) ≤ δ

Lfh(x) + Lgh(x)u+ αh(h(x)) ≥ 0,

(8)

where ũ(x) is a baseline controller, L(x) is a matrix penalizing
control effort, and δ ≥ 0 (with the corresponding penalty λ)
is a slack variable, introduced to relax the CLF constraints in
order to ensure the feasibility of the QP. The baseline controller
ũ(x) is used to specify additional control requirements such as
desirable velocity or orientation (see Section VI) but may be
set to ũ(x) ≡ 0 if minimum control effort is the main objective.
The QP formulation in (8) modifies ũ(x) online to ensure safety
and stability via the CBF and CLF constraints.

Without exact knowledge of the barrier function h, we need
to replace the CLF constraint in (8) by (6):

min
u∈U,δ∈R

‖L(x)⊤(u− ũ(x))‖2 + λδ2

s.t. LfV (x) + LgV (x)u+ αV (V (x)) ≤ δ

Lf h̃(x) + Lgh̃(x)u+ αh(h̃(x)− eh(x))

≥ ‖f(x) + g(x)u‖ e∇h(x).

(9)

This makes the optimization problem in (9) no longer a quadratic
program. However, the following result shows that (9) is a
(convex) second-order cone program (SOCP).

Proposition 2: The optimization problem in (9) is equivalent
to the following second-order cone program:

min
u∈U,δ∈R,l∈R

l

s.t. LfV (x) + LgV (x)u+ αV (V (x)) ≤ δ

‖f(x) + g(x)u‖ e∇h(x) ≤ Lf h̃(x) + Lgh̃(x)u

+ αh(h̃(x)− eh(x))

∥

∥

∥

∥

∥





2L(x)⊤(u− ũ(x))

2
√

λδ

l − 1





∥

∥

∥

∥

∥

≤ l + 1.

(10)

Proof: We first introduce a new variable l so that the problem
in (9) is equivalent to

min
u∈U,δ∈R,l∈R

l

s.t. LfV (x) + LgV (x)u+ αV (V (x)) ≤ δ

‖f(x) + g(x)u‖ e∇h(x) ≤ Lf h̃(x) + Lgh̃(x)u

+ αh(h̃(x)− eh(x))

‖L(x)⊤(u− ũ(x))‖2 + λδ2 ≤ l.

(11)

The last constraint in (11) corresponds to a rotated
second-order cone, Qn

rot := {(xr, yr, zr) ∈ R
n+2 | ‖xr‖2 ≤

yrzr, yr ≥ 0, zr ≥ 0}, which can be converted into a standard
SOC constraint [23]:

∥

∥

∥

∥

[

2xr

yr − zr

]∥

∥

∥

∥

≤ yr + zr.

Let yr = l, zr = 1 and consider the constraint ‖L(x)⊤(u−
ũ(x))‖2 + λδ2 ≤ l. Multiplying both sides by 4 and adding
l2 + 1, makes the constraint equivalent to

4‖L(x)⊤(u− ũ(x))‖2 + 4λδ2 + (l − 1)2 ≤ (l + 1)2.

Taking a square root on both sides, we end up with
√

‖2L(x)⊤(u− ũ(x))‖2 + (2
√

λδ)2 + (l − 1)2 ≤ l + 1,
which is equivalent to the third constraint in (10). �

For multiple obstacles in the environment, one can add mul-
tiple CBF constraints to (10). We leave for future work the
characterization of the Lipschitz continuity properties of the
controller resulting from (10).

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on July 22,2021 at 05:43:21 UTC from IEEE Xplore. Restrictions apply.

4936 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 6, NO. 3, JULY 2021

Fig. 3. Object instances used to evaluate the estimation performance of online
signed distance function approximation.

VI. EVALUATION

We use the PyBullet simulator [24] to evaluate our approach
for online shape estimation and safe navigation. We use a
TurtleBot, equipped with a LiDAR scanner with a 270 ◦ field
of view, 150 rays per scan, 3 m range, and zero-mean Gaussian
measurement noise with standard deviation σ = 0.01. The sim-
ulation environments contain obstacles with various shapes, a
priori unknown to the robot.

A. Modeling

We model the robot motion using unicycle kinematics and
take a small distance a �= 0 off the wheel axis as in [25] to
obtain a relative-degree-one model:





ẋ

ẏ

θ̇



 =





ψ cos(θ)− aω sin(θ)

ψ sin(θ) + aω cos(θ)

ω



 , (12)

where ψ, ω represent the robot linear and angular velocity,
respectively. The state, input, and output are x := [x, y, θ]⊤ ∈
R

2 × [−π, π), u := [ψ, ω]⊤ ∈ R
2, and y = v(x) := [x, y] ∈

R
2. We use a baseline controller ũ(x) ≡ [ψmax, 0]

⊤ to encour-
age the robot to drive at max velocity ψmax in a straight line
whenever possible. The desired robot path is specified by a 2-D
curve r(γ), γ ∈ [0, 1]. To capture the path-following task via a
CLF constraint, we defineη(x) := v(x)− r(γ(x)). The closest
point on the reference path r(γ) to the robot state x is obtained
by γ(x) := arctan(y/x)/(2π) ∈ [0, 1]. According to [26], the
following is a valid CLF for path following:

V (x) = [η⊤(x), η̇⊤(x)]P [η⊤(x), η̇⊤(x)]⊤, (13)

where P is a positive-definite matrix calculated by solving the
Lyapunov equation of the input-output linearization.

B. SDF Estimation Results

We compare the training time and prediction accuracy of
the proposed ITRM approach for SDF estimation versus the IT
and BT approaches described in Section IV-C for various 2-D
obstacle shapes. Figs. 3 and 4 show our experiment setup. We
used the multilayer perceptron architecture proposed by Gropp
et al. [14] and Park et al. [7] for ITRM training. The details of
the neural network architecture are specified in Section VI-C.

Fig. 4. Robot motion (left) and training time (right) for the SDF estimation
experiment in Section VI-B. The robot starts at (2,0) and follows a circular
reference path (green) to a goal position at (−2, 0) (red triangle). The actual
trajectory followed by the robot is shown in blue. The black dots are points on the
surface of a ground-truth Dog object and vary for different object instances. The
average training times for the BT, IT, and ITRM methods for SDF approximation
of the 8 objects in Fig. 3 are compared.

TABLE I
SDF ESTIMATION ERROR (14) OF THE IT, ITRM, AND BT TRAINING METHODS

FOR LIDAR MEASUREMENTS WITH ZERO-MEAN GAUSSIAN RANGE NOISE

WITH STANDARD DEVIATION σ = 0.01

We measure SDF approximation error as:

E =
1

m

m
∑

i=1

|ϕ̃(yi;θk)|, (14)

where {yi}mi=1 are m = 500 points uniformly sampled on the
surface of the ground-truth object. The SDF error is shown in
Table I for the eight object instances in Fig. 3. The error of our
ITRM approach is comparable with the error of the BT approach
and is much smaller than the error of the IT approach. The
training update time is the time needed for updating the network
parameters from θk−1 to θk. The average training update time
across the 8 object instances for the three methods is shown in
Fig. 4. We see that as the robot moves around the environment,
the average training update time of the ITRM approach remains
at about 0.7 s while the BT approach requires more and more
time for training.

C. Network Architecture and Training Implementation

To accelerate the training time of the ITRM approach further
to support online navigation, we explore the trade-off between
training time and accuracy for different neural network configu-
rations. The baseline neural network used in Section VI-B has 8
fully connected layers with 512 neurons each and a single skip
connection from the input to the middle layer. All internal layers
use Softplus nonlinear activations. We set the parameter λ = 0.1
in (3). At each time step tk, we trained the network for 16 epochs
with the ADAM optimizer [27] with constant learning rate of
0.001. We also experimented with neural network configurations

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on July 22,2021 at 05:43:21 UTC from IEEE Xplore. Restrictions apply.

LONG et al.: LEARNING BARRIER FUNCTIONS WITH MEMORY FOR ROBUST SAFE NAVIGATION 4937

TABLE II
TRAINING TIME AND VALIDATION ERROR OF DIFFERENT NEURAL NETWORK

CONFIGURATIONS FOR SDF APPROXIMATION. THE NUMBER OF NETWORK

LAYERS, THE NUMBER OF TRAINING EPOCHS, AND WHETHER A GPU IS USED

ARE VARIED. THE RESULTS ARE OBTAINED USING THE SETTINGS IN TABLE I
FOR THE DOG OBJECT SHOWN IN FIG. 3. THE SDF TRAINING TIME INCLUDES

BOTH PRE-PROCESSING OF THE LIDAR DATA AND NEURAL NETWORK

TRAINING. WE REPORT THE AVERAGE TIME PER LIDAR SCAN ALONG THE

ROBOT PATH. THE SDF VALIDATION ERROR IS COMPUTED VIA (14)

with fewer layers (4 or 6) and different number of training epochs
(5, 10, or 16), while keeping fixed the rest of the architecture.
As real-time navigation necessitates obstacle shape estimation
to be as quick as possible, we aim to obtain the smallest network
architecture, trained with as few epochs as possible, that still
maintains good SDF prediction accuracy. We report training
time and accuracy results using a GPU (one Nvidia Geforce
2080 Super) or a CPU (Intel i7 9700 K) in Table II. The best
trade-off between training time and SDF error for a 2-D shape is
obtained using a GPU to train a 6 layer network for 5 epochs. This
configuration enables training times of less than 0.1 s, suitable
for real-time navigation.

D. Safe Navigation Results

The second set of experiments demonstrates safe trajectory
tracking using online SDF obstacle estimates to define con-
straints in the CLF-CBF-SOCP control synthesis optimization
in (10). The robot moves along a reference path while avoiding
unknown obstacles in 8 different environments, similar to the one
shown in Fig. 1. To account for the fact that the robot body is not
a point mass, we subtract the robot radius τ = 0.177 from the
SDF estimate when defining the CBF: h̃i(x) = ϕ̃i(y;θ)− τ .
The error bounds of CBF eh(x) and its gradient e∇h(x) are ap-
proximated based on Table I. We compare our CLF-CBF-SOCP
approach to a CLF-CBF-QP. To account for estimation errors, it
is possible to inflate the CBFs in the CLF-CBF-QP formulation
by both the robot radius and the SDF approximation error,
h̃i(x) = ϕ̃i(y;θ)− τ − eh(x). This preserves linearity of the
CBF constraints and leads to a more conservative controller.
Comparing with (10), we can see that the CLF-CBF-SOCP
formulation accounts for both direct and gradient errors in the
CBF approximations, and naturally reduces to a QP if e∇h(x)
is zero. To emphasize the importance of accounting for esti-
mation errors, we compare to a CLF-CBF-QP that assumes the
estimated CBFs h̃i(x) are accurate and ignores the estimation
errors.

To avoid low velocities, we set diagonal of L(x) in Sec-
tion V-B as l1 = 10, l2 = 1, l3 = 10

√
10, where l1, l2, l3 are the

penalty parameters for linear velocity, angular velocity and path
following, respectively. If there is no solution found at some

Fig. 5. Simulation results for the CLF-CBF-SOCP and CLF-CBF-QP con-
trollers. The reference path is shown in blue. The ground-truth obstacle surfaces
are shown in black. The estimated obstacles, obtained after the whole path is
traversed by the CLF-CBF-SOCP controller are shown in different colors (red,
green, blue, orange). The trajectory generated by CLF-CBF-SOCP is shown in
green, while the trajectory generated by CLF-CBF-QP is shown in pink. The
starting point is cyan and the goal region is a light green circle.

TABLE III
FRÉCHET DISTANCE BETWEEN THE REFERENCE PATH AND THE ROBOT

TRAJECTORIES GENERATED BY THE CLF-CBF-SOCP AND THE CLF-CBF-QP
CONTROLLERS (SMALLER VALUES INDICATE LARGER TRAJECTORY

SIMILARITY, N/A INDICATES THAT THE ROBOT FAILED TO

REACH THE GOAL REGION)

time step, l1 is divided by
√
2 until a feasible solution found.

We use the Fréchet distance between the reference path r and
the paths produced by the CLF-CBF-SOCP and CLF-CBF-QP
controllers to evaluate their similarities. For paths A, B, the
Fréchet distance is computed by:

F (A,B) = inf
α,β

max
t∈[0,1]

{d(A(α(t)), B(β(t)))} , (15)

whereα, β : [0, 1] �→ [0, 1] are continuous, non-decreasing, sur-
jections and d is the Euclidean distance in our case.

In Fig. 5, the robot can follow the prescribed reference path if
no obstacles are nearby. The green trajectory generated by CLF-
CBF-SOCP is always more conservative than the pink trajectory
since it takes the errors in the CBF estimation into account.
When there is an obstacle near or on the reference path, the
robot controlled by the CLF-CBF-SOCP controller stays further
away from the obstacles than the robot controlled by the CLF-
CBF-QP controller. This agrees with the Fréchet distance results
presented in Table III. In Fig. 6, we see that the CLF-CBF-QP
controller sometimes fails to avoid obstacles because it does

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on July 22,2021 at 05:43:21 UTC from IEEE Xplore. Restrictions apply.

4938 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 6, NO. 3, JULY 2021

Fig. 6. Simulation results in environments where the CLF-CBF-SOCP con-
troller succeeds but CLF-CBF-QP one fails. The robot is shown as a purple circle
when crashing into an obstacle using the CLF-CBF-QP controller. Fig. 6(b) and
Fig. 6(d) show enlargements of the crash regions in Fig. 6(a) and Fig. 6(c),
respectively.

not consider the errors in the CBF estimation. In contrast, the
CLF-CBF-SOCP controller is guaranteed by Prop. 2 to remain
safe if the CBF estimation is captured correctly in the SOC
constraints.

In summary, Table III indicates that the trajectory mismatch
with respect to the reference path is larger under our CLF-
CBF-SOCP controller than under the CLF-CBF-QP controller
if they both succeed. However, our approach guarantees safe
navigation, while the CLF-CBF-QP controller sometimes causes
collisions due to errors in CBF estimation.

VII. CONCLUSION

We introduced an incremental training approach with replay
memory to enable online estimation of signed distance functions
and construction of corresponding safety constraints in the form
of control barrier functions. The use of replay memory balances
training time with estimation error, making our approach suit-
able for real-time estimation. We showed that accounting for the
direct and gradient errors in the CBF approximations leads to
a new CLF-CBF-SOCP formulation for safe control synthesis.
Future work will consider capturing localization and robot dy-
namics errors in the safe control formulation and will apply our
techniques to real autonomous navigation experiments.

REFERENCES

[1] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” Int. J. Robot. Res., vol. 5, no. 1, pp. 90–98, 1986.

[2] E. Rimon and D. E. Koditschek, “Exact robot navigation using artificial po-
tential functions,” IEEE Trans. Robot. Automat., vol. 8, no. 5, pp. 501–518,
Oct. 1992, doi: 10.1109/70.163777.

[3] S. Prajna, “Barrier certificates for nonlinear model validation,” in Proc.

Conf. Decis. Control, 2003, pp. 2884–2889.

[4] S. Prajna and A. Jadbabaie, “Safety verification of hybrid systems using
barrier certificates,” Hybrid Systems: Computation and Control. Berlin
Heidelberg: Springer, 2004, pp. 477–492.

[5] P. Wieland and F. Allgöwer, “Constructive safety using control barrier
functions,” IFAC Proc. Volumes, vol. 40, no. 12, pp. 462–467, 2007.

[6] A. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and P.
Tabuada, “Control barrier functions: Theory and applications,” in Proc.

Eur. Control Conf., 2019, pp. 3420–3431.
[7] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove,

“DeepSDF: Learning continuous signed distance functions for shape
representation,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2019,
pp. 165–174.

[8] C.-H. Lin, C. Wang, and S. Lucey, “SDF-SRN: Learn. Signed Distance 3D

Object Reconstruction from Static Images,” in Adv. Neural Inf. Process.

Syst. (NeurIPS), 2020.
[9] L. Han, F. Gao, B. Zhou, and S. Shen, “Fiesta: Fast incremental eu-

clidean distance fields for online motion planning of aerial robots,” in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Macau, China, 2019, pp.
4423–4430, doi: 10.1109/IROS40897.2019.8968199.

[10] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” in Proc. Int. Conf. Learn. Representations, San Juan, PR, USA,
May 2016, pp. 1–21.

[11] A. Hornung, K. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard,
“Octomap: An efficient probabilistic 3D mapping framework based on
octrees,” Auton. Robots, vol. 34, no. 3, pp. 189–206, 2013.

[12] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto, “Voxblox: In-
cremental 3 d euclidean signed distance fields for on-board mav planning,”
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2017, pp. 1366–1373.

[13] L. M. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A.
Geiger, “Occupancy networks: Learning 3 d reconstruction in function
space,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2019,
pp. 4455–4465.

[14] A. Gropp, L. Yariv, N. Haim, M. Atzmon, and Y. Lipman, “Implicit
geometric regularization for learning shapes,” in Proc. Int. Conf. Mach.

Learn., 2020, pp. 3569–3579.
[15] P. Glotfelter, J. Cortés, and M. Egerstedt, “Nonsmooth barrier functions

with applications to multi-robot systems,” IEEE Contr. Syst. Lett., vol. 1,
no. 2, pp. 310–315, Oct. 2017.

[16] X. Xu et al., “Realizing simultaneous lane keeping and adaptive speed
regulation on accessible mobile robot testbeds,” in Proc. IEEE Conf.

Control Technol. Appl., 2017, pp. 1769–1775.
[17] M. Srinivasan, A. Dabholkar, S. Coogan, and P. Vela, “Synthesis of control

barrier functions using a supervised machine learning approach,” in Proc.

IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), 2020, pp. 7139–7145.
[18] D. Rolnick, A. Ahuja, J. Schwarz, T. Lillicrap, and G. Wayne, “Experience

replay for continual learning,” in Proc. AAAI Conf. Artif. Intell., 2019, pp.
350–360.

[19] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution 3d sur-
face construction algorithm,” Comput. Graph., vol. 21, no. 4, pp. 163–169,
1987.

[20] B. Bailey, Z. Ji, M. Telgarsky, and R. Xian, “Approximation power of
random neural networks,” 2019, arXiv:abs/1906.07709.

[21] D. Yarotsky, “Error bounds for approximations with deep relu networks,”
Neural Netw., vol. 94, pp. 103–114, 2017.

[22] A. Ames, X. Xu, J. Grizzle, and P. Tabuada, “Control barrier function
based quadratic programs for safety critical systems,” IEEE Trans. Autom.

Control, vol. 62, no. 8, pp. 3861–3876, Aug. 2017.
[23] F. Alizadeh and D. Goldfarb, “Second-order cone programming,” Math.

Program., vol. 95, no. 1, pp. 3–51, 2003.
[24] E. Coumans and Y. Bai, “PyBullet, a Python module for physics simulation

for games, robotics and machine learning,” 2016, pp. 2016–2017. [Online].
Available: http://pybullet.org.

[25] J. Cortés and M. Egerstedt, “Coordinated control of multi-robot systems:
A survey,” SICE J. Control, Meas., Syst. Integration, vol. 10, no. 6,
pp. 495–503, 2017.

[26] A. D. Ames, K. Galloway, K. Sreenath, and J. W. Grizzle, “Rapidly
exponentially stabilizing control Lyapunov functions and hybrid zero
dynamics,” IEEE Trans. Autom. Control, vol. 59, no. 4, pp. 876–891,
Apr. 2014.

[27] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on July 22,2021 at 05:43:21 UTC from IEEE Xplore. Restrictions apply.

