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Abstract—Accurate models of robot dynamics are critical for
safe and stable control and generalization to novel operational
conditions. Hand-designed models, however, may be insufficiently
accurate, even after careful parameter tuning. This motivates
the use of machine learning techniques to approximate the
robot dynamics over a training set of state-control trajectories.
The dynamics of many robots, including ground, aerial, and
underwater vehicles, are described in terms of their SE(3) pose
and generalized velocity, and satisfy conservation of energy prin-
ciples. This paper proposes a Hamiltonian formulation over the
S F(3) manifold of the structure of a neural ordinary differential
equation (ODE) network to approximate the dynamics of a rigid
body. In contrast to a black-box ODE network, our formula-
tion guarantees total energy conservation by construction. We
develop energy shaping and damping injection control for the
learned, potentially under-actnated S£(3) Hamiltonian dynamics
to enable a unified approach for stabilization and trajectory
tracking with various platforms, including pendulum, rigid-body,
and quadrotor systems.

SUPPLEMENTARY MATERIAL

Software and videos supplementing this paper:
https://thaipduong.github.io/SE3HamDL/

1. INTRODUCTION

Motion planning and optimal control algorithms depend on
the availability of accurate system dynamics models. Models
obtained from first principles and calibrated over a small set of
parameters via system identification [19] are widely used for
unmanned ground vehicles (UGVs), unmanned aerial vehicles
(UAVs), and unmanned underwater vehicles (UUVs). Such
models often over-simplify or even incorrectly describe the un-
derlying structure of the dynamical system, leading to bias and
modeling errors that cannot be corrected by optimization over
few parameters. Data-driven techniques [26, 9, 42, 29, 6] have
emerged as a powerful approach to approximate the function
describing the system dynamics with an over-parameterized
machine learning model, trained over a dataset of system
state and control trajectories. Neural networks are especially
expressive function approximation models, capable of iden-
tifying and generalizing dynamics interaction patterns from
the training data. Training neural network models, however,
typically requires large amounts of data and computation time,
which is impractical in robotics applications. Recent works
[22, 14, 8, 13, 5, 32] have considered a hybrid approach to
this problem, where prior knowledge of the physics, governing

the system dynamics, is used to assist the learning process.
The dynamics of physical systems obey kinematic constraints
and energy conservation laws. While these laws are known
to be universally true, a black-box machine learning model
might struggle to infer them for the training data, causing
poor generalization. Instead, prior knowledge may be encoded
into the learning model, e.g., using a prior distribution [9],
a graph-network forward kinematic model [34], or a net-
work architecture reflecting the structure of Lagrangian [22]
or Hamiltonian [13] mechanical systems. Moreover, many
physical robot platforms are composed of rigid-body inter-
connections and their state evolution respects the position and
orientation kinematics over the S F(3) manifold [23]. The goal
of this paper is to incorporate both the SFE(3) kinematics
and energy conservation constraints in the structure of the
dynamics learning model. We only focus on learning the
dynamics of a single rigid body but this is already sufficient
to model many UGV, UAV, and UUYV robots. We also aim to
design a unified control approach that attempts to stabilize the
learned model without depending on any prior knowledge of
its parameters or level of under-actuation.

Lagrangian and Hamiltonian mechanics [20, 15] provide
physical system descriptions that can be integrated into the
structure of a neural network [13, 3, 5, 11, 43, 41]. Prior
work, however, has only considered vector-valued states, when
designing Lagrangian- or Hamiltonian-structured neural net-
works. This limits the applicability of these techniques as
most interesting robot systems have states on the SFE(3)
manifold. Hamiltonian equations of motion are available for
orientation states but existing formulations rely predominantly
on 3 dimensional vector parametrizations, such as Euler angles
[24, 35], which suffer from singularities. We design a neural
ordinary differential equation (ODE) network [4], whose struc-
ture captures Hamiltonian dynamics over the SF(3) manifold
[17]. Our model guarantees by construction that its long-
term trajectory predictions satisfy SE(3) constraints and total
energy conservation. Inspired by [43, 44], we model kinetic
energy and potential energy by separate neural networks,
each governed by a set of Hamiltonian equations on SFE(3).
The Hamiltonian formulation can be generalized to a Port-
Hamiltonian one [38], enabling us to design an energy-based
controller for trajectory tracking. In summary, this paper
makes the following contributions.



« We design a neural ODE model that respects the structure
of Hamiltonian dynamics over the SF/(3) manifold to en-
able data-driven learning of rigid-body system dynamics.

e We develop a unified controller for (Port-)Hamiltonian
SE(3) dynamics that achieves trajectory tracking if per-
missible by the system’s degree of underactuation.

e« We demonstrate our dynamics learning and control ap-
proach for fully-actuated pendulum and rigid-body sys-
tems and an under-actuated quadrotor system.

II. RELATED WORK

Physics-guided dynamics learning, in which prior knowl-
edge about a physical system is integrated into the design
of a machine learning model, has received significant atten-
tion recently [41]. Models designed with structure respecting
kinematic constraints [34], symmetry [33, 39], Lagrangian
mechanics [32, 22, 14, 8, 21] or Hamiltonian mechanics
[13, 3,5, 11, 43, 41] guarantee that the laws of physics are sat-
isfied by construction, regardless of the training data. Sanchez-
Gonzalez et al. [34] design graph neural networks to represent
the kinematic structure of complex dynamical systems and
demonstrate forward model learning and online planning via
gradient-based trajectory optimization. Ruthotto et al. [33]
propose a partial differential equation (PDE) interpretation
of convolutional neural networks and derive new parabolic
and hyperbolic ResNet architectures guided by PDE theory.
Wang et al. [39] design symmetry equivariant neural network
models, encoding rotation, scaling, and uniform motion, to
learn physical dynamics that are robust to symmetry group dis-
tributional shifts. Lagrangian-based methods [32, 22, 14, §, 21]
design neural network models for physical systems, based on
the Euler-Lagrange differential equations of motion [20, 15],
in terms of generalized coordinates ¢, their velocity q and a
Lagrangian function £(q, 4), defined as the difference between
the kinetic and potential energies. The energy terms are mod-
eled by neural networks, either separately [22, 21] or together
[8]. Hamiltonian-based methods [13, 3, 5, 11, 43, 41] use a
Hamiltonian formulation [20, 15] of the system dynamics,
instead, in terms of generalized coordinates ¢, generalized
momenta p, and a Hamiltonian function, (g, p), representing
the total energy of the system. Greydanus et al. [13] model
the Hamiltonian as a neural network and update its param-
eters by minimizing the discrepancy between its symplectic
gradients and the time derivatives of the states (q,p). This
approach, however, requires that the state time derivatives
are available in the training data set. Chen et al. [5] and
Zhong et al. [43] relax this assumption by using differentiable
leapfrog integrators [18] and differentiable ODE solvers [4],
respectively. The need for time derivatives of the states is
eliminated by back-propagating a loss function measuring state
discrepancy through the ODE solvers via the adjoint method.
Toth et al. [37] show that, instead of from state trajectories, the
Hamiltonian function can be learned from high-dimensional
image observations. Finzi et al. [11] show that using Cartesian
coordinates with explicit constraints improves both the accu-
racy and data efficiency for the Lagrangian- and Hamiltonian-

based approaches. In a recent closely related work, Zhong et
al. [44] showed that dissipating elements, such as friction or
air drag, can be incorporated in a Hamiltonian-based neural
ODE network by reformulating the system dynamics in Port-
Hamiltonian form [38].

In addition to learning the dynamics of a physical system
from training data, this paper considers designing control
methods for stabilization and trajectory tracking, relying only
on the Hamiltonian dynamics structure rather than a par-
ticular system realization. The Hamiltonian formulation and
its Port-Hamiltonian generalization [38] are built around the
notion of system energy and, hence, are naturally related to
control techniques for stabilization aiming to minimize the
total energy. Since the minimum point of the Hamiltonian
might not correspond to a desired regulation point, the control
design needs to inject additional energy to ensure that the
minimum of the total energy is at the desired equilibrium.
For fully-actuated (Port-)Hamiltonian systems, it is sufficient
to shape the potential energy only using an energy-shaping
and damping-injection (ES-DI) controller [38]. For under-
actuated systems, both the kinetic and potential energies needs
to be shaped, e.g., via interconnection and damping assignment
passivity-based control (IDA-PBC) [38, 27, 1, 7]. Wang and
Goldsmith [40] extend the IDA-PBC controller to trajectory
tracking problem. Closely related to our controller design,
Souza et. al. [36] apply this technique to design controller
for an underactuated quadrotor but use Euler angles as the
orientation representation.

While existing Hamiltonian-based learning methods are
designed for generalized coordinates in R”, we develop a
neural ODE network for learning Hamiltonian dynamics over
the SF(3) manifold [17]. We connect Hamiltonian-dynamics
learning with the idea of IDA-PBC control to allow sta-
bilization of any rigid-body robot without relying on its
model parameters a priori. We design the trajectory tracking
controller for under-actuated systems based on the IDA-PBC
approach and show how to construct desired pose and mo-
mentum trajectories given only a desired position trajectory.
We demonstrate the tight integration of dynamics learning and
control to achieve closed-loop trajectory tracking with fully-
and under-actuated quadrotor robots.

III. PROBLEM STATEMENT

Consider a robot with state x consisting of its position
p € R?, orientation R € SO(3), body-frame linear velocity
v € R3, and body-frame angular velocity w € R3. Let
f(x,u) characterize the robot dynamics with control
input u. For example, the control input of an Ackermann-
drive UGV may include its linear acceleration and steering
angle rate, and that of a quadrotor UAV may include the total
thrust and moment generated by the propellers.

We assume that the function f specifying the robot dy-
namics is unknown and aim to approximate it using a
dataset D of state and control trajectories. Specifically, let
D = {1, x\, u®1B | consist of D state sequences x ),
obtained by applying a constant control input u” to the
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system with initial condition ng) at time tg) and sampling
its state x(i)(tg)) =: xg) at times tgi) < tgi) <. .. < tg\i,). We
aim to find a function fg with parameters @ that approximates
the true dynamics f well on the dataset D. To optimize the
parameters 8, we toll out the approximate dynamics fo with
initial state xg) and constant control u'”) and minimize the
discrepancy between the computed state sequence )’cﬁv and
the true state sequence Xﬁv
problem is summarized below.

in D. The dynamics learning

Problem 1. Given a dataset D — {t(()f)N, x(()fzv, u®}P and a
function fy, find the parameters 8 that minimize:

D N
: @ <@
e ZZ“XJ- %50)
1=1n=1
() £ (x® @y x® (2) M
st XV (1) = (X' (1), u'”), xW(ty) =xy7,
0 = xW(t)), Yn=1,...,N, Yi=1,...,D,
where / is a distance metric on the state space.

Further, we aim to design a feedback controller that attempts
to track a desired state trajectory x* (t), t > tg, for any learned
realization fg of the robot dynamics.

Problem 2. Given an initial condition xg at time tq, desired
state trajectory x*(t), t+ > to, and learned dynamics fp,
design a feedback control law u = w(x, 8, x*(¢)) such that
limsup,_, . £(x(t),x*(t)) is bounded.

In our setting, the robot kinematics need to evolve over the
SFE(3) manifold and the dynamics f(x, u) respect the law of
energy conservation, when there is no control input, u = 0.
We embed these constraints in the structure of the parametric
function fp. We review the S F/(3) kinematics and Hamiltonian
dynamics equations next.

IV. PRELIMINARIES
A. SE(3) Kinematics

Consider a fixed world inertial frame of reference {WW}
and a rigid body with a body-fixed frame {B} attached to
its center of mass. The pose of {B} in {W} is determined by
the position p = [z,y,2]" € R? of the center of mass and the
orientation of the coordinate axes of {B}:

R=[r1 1 r3] €S0(3), )

where ri,rs,rs € R? are the rows of the rotation matrix R,
which is an element of the special orthogonal group:

SOB)={ReR¥>¥ :R'R=Ldet(R)=1}. (3)

The rigid-body position and orientation can be combined in
a single pose matrix T € SFE/(3), which is an element of the
special Euclidean group:

SE(3) = { [(fi ‘1’] cRY4 R € SO3),p € R3} @

The kinematic equations of motion of the rigid body are
determined by the linear velocity v € R?® and angular

velocity w € R3 of frame {B} with respect to frame {W},
expressed in body-frame coordinates. The generalized velocity
¢ =[vh w']" € R® determines the rate of change of the
rigid-body pose according to the SE(3) kinematics:

. . w v
torc-rfs 1] )
where we overload * to denote the mapping from a vector
¢ € RS to a4 x 4 twist matrix ¢ in the Lie algebra se(3) of

SE(3) and from a vector w € R? to a 3 x 3 skew-symmetric
matrix @ in the Lie algebra so(3) of SO(3):

0 —Wws3 w2
(.:) = Wi 0 —wh . (6)
—Wwo w1 0

Please refer to [2] for an excellent introduction to the use of
matrix Lie groups in robot state estimation problems.

B. Hamiltonian and Port-Hamiltonian Dynamics

There are three predominant formulations of classical me-
chanics [15] for describing the motion of macroscopic objects:
Newtonian, Lagrangian, and Hamiltonian. Newtonian mechan-
ics models the dynamics of mobile objects using forces and
Cartesian coordinates according to the Newton’s laws of mo-
tion. Lagrangian and Hamiltonian mechanics use generalized
coordinates and energy in their formulations, which simplifies
the equations of motion and reveals conserved quantities and
their symmetries. Lagrangian mechanics considers generalized
coordinates q € R” and velocity ¢ € R”™, and defines a
Lagrangian function £(q, q) as the difference between kinetic
energy +4' M(q)q and the potential energy V(q):

£(a,6) = 53 M) - V(@) ™

where the symmetric positive definite matrix M(q) € SI5"

represents the generalized mass of the system. Starting from
the Lagrangian formulation, Hamiltonian mechanics expresses
the system dynamics in terms of the generalized coordinates
q € R™ and generalized momenta p € R™, defined as:
0L(q,9) .
= =M ) 8
p 94 (@)4 (®)
Instead of the Lagrangian function, a Hamiltonian function
H(q,p), representing the total energy of the dynamical sys-
tems, is obtained by a Legendre transformation of £(q, 4):

. 1
Hap) =p'd - L(a,9) = 5p M) p+ V(). O

The Hamiltonian characterizes the system dynamics according
to the equations:
oH

- 877-1 s _9H
q= op p= By

where u € R” is an external affine generalized control input

with a coefficient matrix g(q) € R™*" that only affects the

generalized momenta p. Without any external control, i.e., u =
0, the total energy of the system is conserved, £H(q,p) = 0.

g(a)u, 10)



The notion of energy in dynamical systems is shared across
multiple domains, including mechanical, electrical, and ther-
mal. A Port-Hamiltonian generalization [38] of Hamiltonian
mechanics is used to model systems with energy-storing ele-
ments (e.g., kinetic and potential energy), energy-dissipating
elements (e.g., friction or resistors), and external energy
sources (e.g., control inputs), connected via energy ports. An
input-state-output Port-Hamiltonian system is expressed in the
following form:

OH

o | + Gy,
p

- @ -ram an

where J(q,p) is a skew-symmetric inter-connection matrix,
representing the energy-storing elements, R(q,p) is a posi-
tive semi-definite dissipation matrix, representing the energy-
dissipating elements, and G(q, p) is an input matrix such that
G(q,p)u represents the external energy sources. Intuitively,
without the energy-dissipating elements and external energy
sources, the skew-symmetry of J(q,p) guarantees the energy
conservation of the system. The Hamiltonian dynamics (10)
are a special case of the Port-Hamiltonian dynamics (11) with:

gaw =] 3 o maw -0 gwn | 0] a2

C. Symplectic Neural ODE Networks

The previous section described a system with Hamilto-
nian dynamics of the form x = f(x,u) in (10) with
x = J[q" p"]". Now, we consider approximating the
function f(x,u) when its elements, generalized mass M({q),
potential energy V'(q), input matrix g(q), are unknown. Chen
et al. [4] proposed a neural ODE formulation to approximate
the closed-loop dynamics x = f(x, w(x)) for some unknown
control policy u = 7(x) by a neural network fg(x). The
parameters of the network fy(x) are trained using a data set
D= {t(()f)N, xgﬁv ; of state trajectory samples x4 — x@ (£)
via forward and backward passes through a differentiable ODE
solver. Given an initial state ng) at time t((f), a forward pass

returns predicted states at times tgi), . ,tg\i,):

(= %1 = ODESolver(x{", £, 87 . . ). (13)

The gradient of a loss function, Zil Zjvzl E(xgl),igl)), is
back-propagated by solving another ODE with adjoint states.
The parameters 8 are updated by gradient descent to minimize
the loss.

For physical systems, a symplectic neural ODE formulation,
proposed by Zhong et al. [43], extends the neural ODE by
integrating the structure of the Hamiltonian dynamics in (9)
and (10) into the neural network model fg(x). Three neural
networks are used to approximate the three unknown func-
tions: generalized mass inverse Mg, (q) !, potential energy
Vo,(q), and input matrix gg.(q), where 6y, 85, O3 are
the network parameters. A constant control input u is also
considered, leading to the approximated dynamics:

Rl

(14)

where fg(x,u) has the form of (10).

V. HAMILTONIAN DYNAMICS ON THE SE(3) MANIFOLD

The symplectic neural ODE formulation [43] is designed
for generalized coordinates g and generalized momenta p,
both in R™. For dynamical systems with states evolving on a
manifold, such as SF(3), it is necessary to enforce the mani-
fold constraints (Sec. IV-A) on the Hamiltonian dynamics. In
this section, we describe the Hamiltonian equations of motion
on the SFE(3) manifold and reformulate the dynamics in the
input-state-output Port-Hamiltonian form.

Let q = [p' r{ rd rd]" € R'? be the generalized
coordinates, and ¢ = [v! w']" € R® be the generalized
velocity. Note that q and ¢ have different dimensions and
satisfy the SF(3) kinematics constraints in (5), re-expressed
in vectorized form as:

. RT 0 0 o0
q:qXCa CIX: 0 AT AT f-T

15)
The Lagrangian function on SFE(3) is expressed in terms of
g and ¢, instead of q and §:

£(,0) = 3¢ "M(@)C -~ V(a). (16

The generalized mass matrix has a block-diagonal form when
the body frame is attached to the center of mass [17]:

M(q) — [Ml(Q) 0

0 Mox(q) 4

6X6
| sz,
where M (q), Ma(q) € S25°. The generalized momenta are
defined, as before, via the partial derivative of the Lagrangian
with respect to the velocity:

_[pe] 22040 6
p= [br] = 25— miac e e

While the Hamiltonian function, H(q, p), is the same as (9),
the system dynamics do not satisfy (10) due to the SFE(3)
kinematics constraints in (15). However, the dynamics can be
specified in a Port-Hamiltonian form [17, 12, 31] as in (11)
with inter-connection matrix:

0 g% x_ [0 Py
3 - X x| — |la ~ y 19
J(a,p) [q Ty ] p [Pv Pw] (19)

and dissipation and input matrices:

R(qap) =0, g(qap) - [OT g(q)T]

Note that the dissipation matrix may not be necessarily zero
and can, in fact, be used to model the effects of friction or
drag forces [44]. However, for the clarity of the model learning
approach and unified control design, we leave this for future
work. We consider a system with unknown generalized mass
M(q), potential energy V(q), input matrix g(q), and design
a structured neural ODE network to learn these terms from
state-control trajectories.

(18)

T o



VI. HAMILTONIAN SFE(3) DYNAMICS LEARNING

This section describes a neural ODE network design in-
corporating SE(3) kinematics and energy conservation con-
straints. We discuss data generation, embedding the constraints
into the model architecture, and the training process.

A. Training Data Generation

We collect a data set D = {to N g%v’ ul}P . consisting

of state sequences x(()zv, where x() = [q(i)T CS)T]T,
W = T e
¢ = T W € RS forn =0,...,N. Such data

are generated by applying a constant control 1nput ul” to the
system and sampling the state xg ) x@) (ts )) at times tgf ) for
n = 0,...,N. The generalized coordinates gq and velocity ¢
may be obtained from an odometry algorithm, such as [10, 25],
or from a motion capture system. In physics-based simulation
the data can be generated by applying random control inputs
u(® . In real-world applications, where safety is a concern, data
may be collected by a human operator manually controlling
the robot.

B. Model Design

To learn the dynamics f(x,u) from the data set D, we
design a neural ODE network (Sec. IV-C), approximating the
dynamics via a parametric function fg(x,u). To impose the
SFE(3) Hamiltonian equations described in Sec. V on the
structure of the neural network fg(x,u), we expand (11) with
the interconnection matrix 7 in (19):

p - r7GEE @D

£, = 1 X 87;;‘1’3), i—1,2,3 (22)

b = pex ZOEEL R TE g (g,
+Z e x 2 )+gw(q> (24)

where the input matrix g(q) = [gv(q)' gw(Q)T]T is

decomposed into components corresponding to p,, and p,,, and
the Hamiltonian function H(q, p) is defined in (9). Since the
generalized momenta p are not directly available in the data set
D (Sec. VI-A), we use the time derivative of the generalized
velocity, obtained from (18):
; d 1 —1/ Ny
C- (M@ Mi@n o)
The approximated dynamics function fg(x,u) is described by
(21), (22), and (25) with an internal state p satisfying the ODEs
in (23) and (24).
To integrate the Hamiltonian equations into the structure

of fg(x,u), we use four neural networks with parameters
6 — (01,0:,05,0,) to approximate the blocks M; '(q),

M, '(q) of the inverse generalized mass in (17), the potential
energy V' (q), and the input matrix g(q), respectively. The
blocks M, *(q), M, '(q) are forced to be positive definite
using Cholesky decomposition:

M, ' (q) = Li(9)L{ (q) + <,
M; " (q) = La2(q)L3 (q) + <,

where L1 (q), La(q) are lower-triangular matrices implemented
as two neural networks with parameters 8, and 0-, respec-
tively, and ¢ > 0. The time derivative £M(q) ' and the
partial derivatives %—7; and %—7: are calculated using automatic
differentiation, e.g. by Pytorch.

In many applications, prior information is available about
the generalized mass matrices M *(q), M, *(q) and can be
used to assist the training process. If a potentially inaccurate
estimate of the masses is available, the neural networks mod-
eling Ly (q), L2(q) can be pre-trained to fit this estimate. For
example, if we guess that the generalized mass matrix inverse
is an identity matrix I, we can sample M random inputs q and
pre-train the network to output I. The pre-trained networks are
used as initialization for the full training process which may
correct these parameters using the dataset D.

(26)

C. Training Process
Let x(U(t) ¢ R'S denote the state trajectory pre-
dicted with control input u'” by the approximate dy-
namics fy initialized at x(V(¢ (l)) x(()l). For sequence
, forward passes through the ODE solver in (13) return
the predicted states xg v at times tg 3\,, where xﬁ) =

(T =0T ()T @OT T z@OT LTy
77_1 C ] > qn [ Pn Fip Ton L ] ’
C(l = [vn @ ’mT]T for n = 1,..., N. The predicted

fgiz] and the ground-

are used to calculate an

rotation matrix R,,(i) —(1) 7%171
truth one RS — [ 1n éln rgn
orientation loss:

S»>

i=1 n=1

<1og R“)R@T)) 27)

2

where log : SE(3) + s0(3) converts a rotation matrix to a
skew-symmetric matrix and (-)¥ : 50(3) > R? is the inverse
of the hat map in (6), which extracts the components of a
vector w € R3 from W € 50(3). We use the squared Euclidean
norm to calculate losses for the position and generalized
velocity terms:

D -
ZZ Ips) — B3,
A 29
PP B[RRI
i=1n=1
The total loss £(0) is defined as:
L£(0) = Lr(0) + Lp(0) + L (0). (29)

The gradient of the total loss function L£(8) is back-
propagated by solving an ODE with adjoint states [4]. Specif—
ically, let a = 3§ be the adjoint state and s = (X, a, 39) be



the augmented state. The augmented state dynamics are [4]:

Of, of
T Olg T Olg
—,—a —). 30
ox’ " 98 ) G0)
The predicted state x, the adjoint state a, and the derivatives
g—g can be obtained by a single call to a reverse-time ODE

solver starting from sy = s(ty):

=fs=(fo, -

oL =
So = (Xg,ag, 80) = ODESolver(sy, fs, tn ), (31)
where at each time ¢,k = 1,..., N, the adjoint state a at
time 7y, is reset to 5= DL The resultmg derivative gg is used to
update the parameters 6 using gradient descent.

VII. ENERGY-BASED CONTROL DESIGN

The function fy learned in Sec. VI satisfies the input-state-
output Port-Hamiltonian dynamics on the SFE(3) manifold in
Sec. V by design. This section extends the interconnection and
damping assignment passivity-based control (IDA-PBC) [38,
40, 36] to the SFE(3) manifold to achieve trajectory tracking
(Problem 2) based on the learned SFE(3) Port-Hamiltonian
dynamics.

First, consider a desired regulation point x* = (q*, p*) that
the system should be stabilized to. The Hamiltonian function
H(q, p), representing the total energy of the system, generally
does not have a minimum at x*. An IDA-PBC controller is
designed to inject additional energy H.(q,p) such that the
desired total energy H4(q,p) achieves its minimum at x*:

Ha(q, p) = H(q,p) + Halq,p). (32)

To drive the system towards the desired state x*, the Port-
Hamiltonian dynamics in (11) should be shaped into a desired
form [38, 27, 40]:

[q] = (Ja(a,») — Ralq, p)) lmﬂ ]

g (33)
Specifically, the control input u should be chosen so that (11)
and (33) are equal. This usual matching equation design does
not directly apply to trajectory tracking problems, especially
for under-actuated systems [36, 40].

Consider a desired state trajectory x*(t) = (q*(¢),p*(t))
that the system should track. Let x. = (q.,p.) denote the
time-varying error state between the system state x and the
desired trajectory x*. Let R, = R*"R = [1‘61 Ceo I‘eg]T
represent the rotation error between the current rotation matrix
R and the desired one R*. The error q. in the generalized
coordinates is:

R*"(p—p*)
Fel . (34)

The error in the generalized momenta is p. = p — p*. For
under-actuated trajectory tracking, the desired total energy
should be defined in terms of the error state as:

1 _
Ha(de, pe) = §peTMd l(qe)pe + Va(de), (35)

where M4(q.) and V;(q.) are the desired generalized mass
and potential energy. The new states q. and p. satisfy the
desired dynamics:

. OHy
[ge] (a0 pe) — Ra(qepe)) [5&;] .66
€ Ipe

leading to the following matching equations for the control
input design:

OHa
g(q,p)u - (jd(qeape) - Rd(qeape)) gf-ﬁ] (37)
Ope
OH

—(J(@,p) — R(a,p))

-

Choosing the following desired inter-connection matrix and
dissipation matrix:

By

0o J, o o
f‘]ir J2:| ) Rd(qe;pe) - |:0 Kd:| )
(38)
and plugging J(q, p) and R(q, p) from (19) into the matching
equations in (37), leads to:

Ta(e, pe) = [

OHa < OH
0 = J -
1 O 9% op +4 -4, (39
oH O0Hqg OHqg oH
_ xTY T X
g(q)u - q 8q 1 8(]6 +J2 8]36 p 8p
Ot
—Ka I, (40)

Note that (39) is satisfied if we choose J1 = q, ie., 4. =
9XMy(ge) 'pe . The desired control input can be obtained
from (40) as the sum u = ugg + upy of an energy-shaping
component ugg and a damping-injection component up;:

oH oH oH
— i xTYIt  xT d d
ugs g (q) (q 8(] Ye 8qe 2 8]36
< OH
Py e ) (1)
oH
upr = —g'(9)Kq apj, (42)

where g'(q) = (gT(q)g(q))f1 g'(q) is the pseudo-inverse
of g(q). The control input ugg exists as long as the desired

M.,(q.) and J5 satisfy the following matching condition:

OH OHa OHq
1 xTYv xT
g (q) (q a0 % a7,
< OH
- p 8p + p pe) - 0; (43)

where g1 (q) is a maximal-rank left annihilator of g(q), i.e.,
g (@)gla) =0.

To avoid solving the PDE equations in (43) needed for
the IDA-PBC controller, the parameters of the desired Port-
Hamiltonian dynamics can be further specified to satisfy



My(qe) = M(q) and J5 = 0. With this choice, we add the
following Hamiltonian energy term:

1
Ha(a,p) = —H(a,p) + 5(p — ") 'Kp(p — ") (44)

KR RTRY) + 56— 5) M (@)~ p)

to reshape the open-loop Hamiltonian H(q,p) into a desired
total energy Hq(q,p) = H(q,p) + Ha(q, p) that is minimized
along the desired trajectory x* = (q*, p*). For an SFE/(3) rigid-
body system with constant generalized mass matrix My = M
and J» = 0, the energy-shaping term in (41) and the damping-
injection term in (42) simplify as follows:

oV — * <%
ugs(a,p) =g'(q) (qﬂaq —p*M 'p—e(q,q") +p ) :
upr(a,p) = —g' (@)KaM " (p — p%), (45)

where the generalized coordinate error between gq and q* is:

T *
e(qaq*) = q:T% - |:1 R*E{p(p Tp )* T V:| .
9. |3 (KrR*TR-RTR'K})

(46)
Without requiring a priori knowledge of the system param-
eters, the control design in (45) and (46) offers a unified
control approach for S F(3) Hamiltonian systems that achieves
trajectory tracking, if permissible by the system’s degree of
under-actuation.

VIII. EVALUATION

We verify the effectiveness of our Hamiltonian-based neural
ODE network for dynamics learning and control on the SF(3)
manifold using two fully-actuated systems (a pendulum and
a rigid body) and one under-actuated system (a quadrotor).
The implementation details for the experiments are provided
in Appendix X-A.

A. Pendulum

We consider a pendulum with the following dynamics:

@ = —15sine + 3u, (47)

where ¢ is the angle of the pendulum with respect to its
vertically downward position and u is a scalar control input.
The ground-truth mass, potential energy, and the input coef-
ficient are: m = 1/3,V (@) = 5(1 — cos¢), and g(¢) = 1,
respectively. We collected data of the form {(cos ¢, sin ¢, @)}
from an OpenAl Gym environment, provided by [43], with
the dynamics in (47). To illustrate our manifold-constrained
neural ODE learning, we viewed ¢ as a yaw angle and convert
(cos ¢, sin ) into a rotation matrix:

cos¢ —sing 0
R = |siny cose O (48)
0 0 1

We used w = [0, 0, ¢] for angular velocity and remove position
p and linear velocity v from the Hamiltonian dynamics in (21),
(22), (23), (24), restricting the system to the SO(3) manifold

with generalized coordinates q = [r{ rq ri]" € R

As described in Sec. VI-A, control inputs u‘ were sampled
randomly and applied to the pendulum for five time intervgls
of 0.05s, forming a dataset D = {tg:zv, qgj\,, wgl:)N, u(i))}_
with N =5 and D = 5120. We trained the SO(3) Hamifto-
nian neural ODE network as described in Sec. VI-C for 1000
iterations with no pre-training.

As noted in [43], since the generalized momenta p are not
available in the dataset, the dynamics of q in (47) do not
change if p is scaled by a factor 3 > 0. This is also true
in our formulation as scaling p leaves the dynamics of q in
(22) and (25) unchanged. To emphasize this scale invariance,

let Mg(q) = BM(q), Vs(q) = BV (a), gs(q) = Bg(q), and:
ps = Mp(q)w = 8Bp, ps = By,
1

op

ops 7
guaranteeing that (21), (22), and (25) still hold.

Fig. 1 shows the training and testing behavior of our SO(3)
Hamiltonian ODE network. Fig. 1b and 1d show that the
[M(q)*l]&3 entry of the mass inverse and the [g(q)], entry
of the input matrix are close to their correct values of 3
and 1, respectively, while the other entries are close to zero.
Fig. lc indicates a constant gap between the learned and the
ground-truth potential energy, which can be explained by the
relativity of potential energy. The learned pendulum dynamics
are illustrated by the phase portrait of a test trajectory in Fig.
le, which coincides with the ground-truth portrait.

We tested stabilization of the pendulum based on the learned
dynamics to the stable equilibrium at the downward position
¢ = 0 and to the unstable equilibrium at the upward position
¢ = m. Since the pendulum is a fully-actuated system and
the desired state has zero velocity, potential energy shaping is
enough to drive the system to the desired state (q*,0). Our
energy-based controller in Sec. VII achieved this by setting
Js =p*, Mu(q) = M(q) in (41), leading to:

3
OHa
u=1ugs+ups= gl(‘l)zri X5
i=1

— gl Ka(q)w, (50)

1

where the additional energy H,(q,p) was simplified by re-
moving the position error:

Halap) = V(@) + (K- RTR). (5D

The controlled angle ¢ and angular velocity ¢ as well as the
control inputs u with gains Kg = I and Kgq = 0.41 are shown
over time in Fig. 1f, 1g, and 1h. We can see that the controller
was able to smoothly drive the pendulum from ¢ = Oto ¢ = 7,
relying only on the learned dynamics.

Lastly, Fig. 2a verifies that the SO(3) constraints are satis-
fied by plotting | det R — 1| and |[RR." —I|| from the learned
model along a 5-second trajectory rollout with zero input,
initialized at ¢ = 7 /2. To verify the energy conservation as
well, we calculated the Hamiltonian via (9) along the trajectory
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Fig. 2: SO(3) constraints and total energy along a trajectory rollout
from the learned pendulum model, initialized at ¢ = 7 /2.

using: (1) ground-truth mass, potential energy, and velocity;
(2) ground-truth mass and potential energy but velocity rolled
out from the learned dynamics; and (3) all mass, potential
energy and velocity rolled out from the learned dynamics. The
constant Hamiltonian in Fig. 2b verifies that, with no control
input, our model obeys the law of energy conservation and
remains close to the ground-truth energy after scaling by 5.

B. Fully-actuated Rigid Body

Next, we consider a fully-actuated rigid body with mass
m = 0.027 and inertia matrix J = 10~ °diag([1.4, 1.4, 2.17)).
This can be viewed as an abstraction of any mobile robot
that can be modeled as a single rigid body, such as car-
like, fixed-wing, and quadrotor robots. For example, a hexaro-
tor UAV with fixed-tilt rotors pointing in different direc-
tions is fully actuated [30]. The ground-truth dynamics fol-
low (21), (22), (23), and (24) with generalized coordinates
g = [p' r{ ry ri]" € R!2, generalized velocity
¢ = [vl w'" ¢ RS generalized mass M;(q) = ml,
Mo,(q) = J, potential energy V(q) = mgz, and the input
matrix g(q) = L The control input u is a 6-dimensional
wrench (i.e., 3-dimensional force and 3-dimensional torque).

As described in Sec. VI-A, control inputs u‘*) were sampled
randomly and applied to the system for one time step of

0.05s, forming a dataset D = {t(();zv,quv, (()f)N,u(i))

with N = 1 and D = 11520. The SE(3) ODE network
was trained as described in Sec. VI-C for 6000 iterations. The
neural networks modeling M (q) and Ms(q) were pre-trained
to output an identity matrix.

Similar to the pendulum system in Sec. VIII-A, the dynam-
ics of g do not change if p is scaled. In fact, as the ground-
truth generalized mass is M;(q) ml, and the potential
energy V(q) = mgz only depends on the position p, the
generalized momenta p,, and p, can be scaled, respectively,
by two different factors o > 0 and 8 > 0. In other words,
M., (q), V(q), and gv(q) can be scaled by 5 and Ms(q) and
g.(q) can be scaled by « without changing the dynamics of
g and ¢ in (21), (22), and (25).

Fig. 3 shows the training and testing performance of the
SE(3) Hamiltonian ODE network. The training loss is shown
in Fig. 3a in log scale. Fig. (3b), 3c, and 3d show that the
diagonal entries of the scaled mass matrices M (q), Ma(q)
and the input matrix g(q) converge to the ground-truth values
while the remaining entries are close to 0. Fig. 3e shows that
the learned potential energy closely resembles the ground-truth
values up to scaling.

We tested regulation of the fully-actuated rigid body based
on its learned dynamics from an initial position p = 0 and
randomized initial orientation to a desired position p*
[1,2,5] and desired orientation R* = I. As for the pendulum,
potential energy shaping was enough to drive the system to
a desired state (q*,0) and was achieved by setting Jo = p*,
My(q) = M(q) in (41). The additional energy H,(q,p) was
simplified to:

—V(q) + %(p —p) ' Kp(p—p)

1
+§tr(KR(I ~R*"R)).

Hala,p)

(52)
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Fig. 4: SO(3) constraints and total energy along a trajectory rollout
with zero control input from the learned rigid body model.

The controller becomes u = ugg + up; where:

3 OH

;X r_a
uES(qap) - g(gg(Q) lZFﬁTﬁiﬁ ]] 3 (53)

op

upr(a,p) = —gh, (9)Kac. (54)
With control gains K, = Kgr = 051 and
Kq =  0.25diag(1073,1073,103,1.0,1.0,1.0), the
errors tr(I — R*TR) and ||p — p*|| and the velocities v, w

go to 0 and regulation is achieved successfully, as shown in
Fig. 3f and 3g. Fig. 3h shows the control input u, in which
the torque component goes to 0 while the force component
approaches a constant value compensating for gravity.

As for the pendulum, we also verified that predicted orien-
tation trajectories from the learned model satisfy the SO(3)
constraints. Fig. 4a shows |detR — 1| and |RR' — I
along a trajectory rollout. As before, we also calculated the
Hamiltonian via (9) along the trajectory with no control input
using: 1) ground-truth mass, potential energy and velocity; 2)
ground-truth mass and potential energy but velocity rolled out
from the learned dynamics; and 3) all mass, potential energy
and velocity rolled out from the learned dynamics. Fig. 2b
shows that the Hamiltonian stays constant for cases 1) and
3) but not for case 2) after 25 time steps. This indicates

that the learned dynamics, by design, are guaranteed to obey
the law of energy conservation with respect to the learned
mass and potential energy, rather than the ground-truth ones.
This discrepancy can be fixed by increasing the length of
the training sequence N (in this experiment, N = 1) or by
avoiding rollout predictions of more than 25 steps with the
model without additional training.

C. Crazyflie Quadrotor

Finally, we demonstrate that our SF(3) dynamics learning
and control approach can achieve trajectory tracking for an
under-actuated system. We consider a Crazyflie quadrotor,
shown in Fig. 7a, simulated in the physics-based simulator
PyBullet [28]. The control input u = [f,7] includes a
thrust f € R>g and a torque vector = € R3 generated by
the 4 rotors. The generalized coordinates and velocity are
g=[p"' r{ ri ri]"'cRZand¢(=[v' w']! cRS
as before.

The quadrotor was controlled from a random starting
point to 18 different desired poses using a PID con-
troller provided by [28], providing 18 2.5-second trajecto-
ries. The trajectories were used to generate a dataset D =
{59 ab%, ¢ u@) )2 with N = 5 and D = 1080. The
SFE(3) Hamiltonian ODE network was trained, as described
in Sec. VI-C, for 1000 iterations with M (q) and Mx(q) pre-
trained to output an identity matrix.

Our training and test results are shown in Fig. 5. The learned
generalized mass and inertia converged to constant diagonal
matrices: M7 '(q) ~ 12.81, M, '(q) ~ diag([70, 70, 36]).
The input matrix g, (q) converged to a constant matrix whose
entry [gv(q)] 50 ~ 2.8 while other entries were closed to 0,
consistent with the fact that the thrust only affects the linear
velocity along the z axis in the body-fixed frame. The input
matrix g,,(q) converged to ~ 3801 as the torques affects all
components of the angular velocity w. The potential energy
V(q) was linear in the height z, agreed with the gravitational
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Fig. 5: Evaluation of the SF(3) Hamiltonian neural ODE network on an under-actuated Crazyflie quadrotor in the PyBullet simulator [28].
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potential.

We verified that predicted orientation trajectories from the
learned model satisfy the SO(3) constraints. Fig. 5g plots two
near-zero quantities |det R — 1| and [|[RR" — I, by rolling
out our learned dynamics for 5 seconds. We also calculated the
Hamiltonian via (9) using the learned generalized mass matrix
and the velocity rolled out from the learned dynamics. Fig. Sh
shows a constant total energy along the 5-second trajectory
without control input, obeying the law of energy conservation.

Finally, we verified our energy-based controller for under-
actuated systems in Sec. VII by driving the drone to track a
pre-defined trajectory. We are given the desired position p*
and the desired heading )" by the trajectory and construct
an appropriate choice of R*, p* to be used with the energy-
based controller in (45). The desired momenta are constructed

25
2.0
N 15
=~ 10

B :

(a) Crazyflie simulator

(b) Trajectory tracking

Fig. 7: Trajectory tracking experiment with a Crazyflie quadrotor in
the PyBullet simulator [28].

as follows:

. R'p*
M RTp* — R p*
PoMIRTRG - 0RTR w"
The control input (45) becomes:
av _ "
u = g'(q) (q”&gq) —p*M'p —e(q.9%)
~ KaM ™ (p—p*) +p*). (56)
By expanding the terms in (56), we have:
X nA—1 _ pw
I [wwpvv], (57)
=L ok _ v - RTp
8V(q) RT oVi(q)
xT . aﬁp\/(q) . (59)

q - =
8(] Z?:l r; or;



Choosing the control gain K4 of the form Kg = [If)” I? ] s
the control input can be written explicitly as
by
u=gf(q) [b ] , (60)
where
by~ BTV RTK (- p)
p
~Ky(v-R'p") + My(RTp" —@R'p"), (61)
3
oV(q) T
b, = i; ~— K, (w—R'R'w*
; r ar., (w w™)
. . 1
~(putw + pyv) — 5 (KrR*TR RTR'KR)’

+M(R'R*&* — @R"R*w*). (62)
Note that by, € R? is the desired thrust in the body frame that
depend only on the desired position p* and the current pose.
It is transformed to the world frame as Rby,, representing the
thrust in the world frame. Inspired by [16], the vector Rb,,
should be the z axis of the body frame, i.e., the third column
b3 of the desired rotation matrix R*. The second column b3
of the desired rotation matrix R* can be chosen so that it has
the desired yaw angle 1/* and is perpendicular to b3. This can
be done by projecting the second column of the yaw’s rotation
matrix b;p = [—sin), cos1), 0] onto the plane perpendicular
to b%. We have R* = [b] b3 bj] where:

Rb, by x b
* * 2 X 3 b*:ngbi,

by = v g by xb5 (63)
P Rby[”TN T bY x byl

and & = R*TR*. The derivative R* is calculated as follows.

, Rb
b: = bix —Y xb, (64)
° T Rby| T
. bY x b% + bY x b}
bi — bix 2 XI2 I h (65)
b x bl
b, = b%Zxbi+b;xbi. (66)

By plugging R* and w* back in b,,, we obtain the complete
control input u in (60).

Fig. 7b qualitatively shows that the drone controlled by our
energy-based controller successfully finished the task. Since
the learned generalized mass M; and inertia Ms converged
to constant diagonal matrices, the control gains were chosen
as follows: K, = 5M1, K, = 2.5M;,Kgr = 250M>, K, =
20M,. Fig. 5 quantitatively plots the tracking errors for posi-
tion, yaw angles, linear and angular velocity. Our controller’s
computation time was 3.5ms per control input, including
forward passes of the learned neural networks, showing that
it is suitable for fast real-time applications.

IX. CONCLUSION

This paper proposes a neural ODE network design for
rigid body dynamics learning that captures SE(3) kinematics
and Hamiltonian dynamics constraints by construction. It

also developed a general control approach for under-actuated
trajectory tracking based on the learned SFE(3) Hamiltonian
dynamics. The learning and control designs are not system-
specific and thus can be applied to any mobile robot, whose
state evolves on SFE(3). These techniques have the potential to
enable mobile robots to adapt their models online, in response
to changing operational conditions or structural damage, and,
yet, maintain stability and autonomous operation. Future work
will focus on comparison with other dynamics learning ap-
proaches, extending our formulation to allow learning the
kinematic and dynamic structure of multi-rigid body systems
and provide safe and stable adaptive control, in the presence
of noise and disturbances.

X. APPENDIX
A. Implementation Details

We used fully-connected neural networks whose architec-
ture is shown below. The first number is the input dimension
while the last number is the output dimension. The numbers
in between are the hidden layers’ dimensions and activation
functions. The value of € in (26) is set to 0.01.

1) Pendulum:

« Input dimension: 9. Action dimension: 1.
o L(q):
9 - 300 Tanh - 300 Tanh - 300 Tanh - 300 Linear - 6.

« V(q): 9 - 50 Tanh - 50 Tanh - 50 Linear - 1.

e g(q): 9 - 300 Tanh - 300 Tanh - 300 Linear - 3.
2) Rigid body:
Input dimension: 12. Action dimension: 6.
L1(q) only takes the position p € R? as input:
3 - 400 Tanh - 400 Tanh - 400 Tanh - 400 Linear - 6.
L2(q) only takes the rotation matrix R € R3*3 as
input:
9 - 400 Tanh - 400 Tanh - 400 Tanh - 400 Linear - 6.
V(q): 12 - 400 Tanh - 400 Tanh - 400 Linear - 1.

« g(q): 12 - 400 Tanh - 400 Tanh - 400 Linear - 36.
3) Quadrotor:

o Input dimension: 12. Action dimension: 4.

L1(q) only takes the position p € R?® as input:

3 - 400 Tanh - 400 Tanh - 400 Tanh - 400 Linear - 6.
L2(q) only takes the rotation matrix R € R3*3 as
input:

9 - 400 Tanh - 400 Tanh - 400 Tanh - 400 Linear - 6.
V(q): 12 - 400 Tanh - 400 Tanh - 400 Linear - 1.
g(q): 12 - 400 Tanh - 400 Tanh - 400 Linear - 24.
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