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A B S T R A C T   

With a growing interest in utilizing visible light to drive biocatalytic processes, several light-harvesting units and 
approaches have been employed to harness the synthetic potential of heme monooxygenases and carry out 
selective oxyfunctionalization of a wide range of substrates. While the fields of cytochrome P450 and Ru(II) 
photochemistry have separately been prolific, it is not until the turn of the 21st century that they converged. 
Non-covalent and subsequently covalently attached Ru(II) complexes were used to promote rapid intramolecular 
electron transfer in bacterial P450 enzymes. Photocatalytic activity with Ru(II)-modified P450 enzymes was 
achieved under reductive conditions with a judicious choice of a sacrificial electron donor. The initial concept of 
Ru(II)-modified P450 enzymes was further improved using protein engineering, photosensitizer functionaliza
tion and was successfully applied to other P450 enzymes. In this review, we wish to present the recent con
tributions from our group and others in utilizing Ru(II) complexes coupled with P450 enzymes in the broad 
context of photobiocatalysis, protein assemblies and chemoenzymatic reactions. The merging of chemical cat
alysts with the synthetic potential of P450 enzymes has led to the development of several chemoenzymatic 
approaches. Moreover, strained Ru(II) compounds have been shown to selectively inhibit P450 enzymes by 
releasing aromatic heterocycle containing molecules upon visible light excitation taking advantage of the rapid 
ligand loss feature in those complexes.   

1. Introduction 

The heme-thiolate cytochrome P450 enzymes have attracted great 
attention due to their unique ability to activate molecular dioxygen to 
carry out selective oxyfunctionalization of a wide range of substrates 
[1]. They have emerged as valuable biocatalysts [2,3] for the synthesis 
of pharmaceuticals [4], the late stage diversification of natural products 
[5] and lead compounds in important biomedical [6], biotechnological 
[7] and industrial [8] applications. Moreover, several P450 enzymes 
are amenable to protein engineering using rational design or directed 
evolution approaches [9–11] as to confer unique properties and broad 
substrate scope and recently to expand their chemical reaction space 
towards abiological reactions [12]. 

The delivery of the necessary reducing equivalents has been a focal 
point as it often involves diverse redox partners [13] complementing 
the rich superfamily of P450 enzymes. These partners play a crucial role 
in the catalytic mechanism and the delivery of electrons, one at a time, 
towards a productive pathway. Misuse of the electrons leads to un
coupled pathways and release of reactive oxygen species detrimental to 
the overall process [14,15]. The archetypical system is the P450 BM3 
holoenzyme from Bacillus megaterium [16] where the redox partner is 

fused to the heme domain in a single polypeptide resulting in a highly 
coupled system and the highest catalytic rate observed in the selective 
oxidation of long chain fatty acids. In order to address some of the 
limitations associated with electron delivery, redox-partners or cofactor 
dependence in many P450 enzymes, a myriad of alternative approaches 
have encompassed chemical [17,18] and electrochemical [19] reduc
tions, cofactor regeneration [20,21], design of fusion proteins [22], use 
of peroxides via the peroxide shunt [23] as well as recently the use of 
light-harvesting units to activate various P450 enzymes [24]. 

Harnessing visible light to activate biocatalytic processes is cur
rently gathering a lot of interest [25,26] and several light harvesting 
units have been employed to activate heme monooxygenases for the 
selective oxyfunctionalization of substrate CeH bonds. The focus herein 
is on the use of the inorganic Ru(II)-diimine complexes in conjunction 
with P450 enzymes. These metal complexes have been extensively in
vestigated due to the unique nature of the excited state and the ability 
to initiate various single electron transfer events [27–29]. This review 
starts with a brief introduction on cytochrome P450 enzymes, the di
verse photosensitizers used to activate monooxygenases or perox
ygenases for selective CeH oxyfunctionalization, and the photo
chemistry of Ru(II) complexes. A description will follow on strategies to 
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rapidly inject electrons into P450 active site using bound or covalently 
attached complexes leading to efficient photocatalysis in the Ru(II)- 
modified P450 BM3 heme domain mutants under reductive conditions. 
The next section is dedicated to the existing P450 crystal structures 
complexed with their natural or artificial redox partners. 

The concept of Ru(II) complexes coupled with P450 enzymes has 
been expanded in several directions which will be discussed in the 
context of current work on photobiocatalysis, protein assemblies, che
moenzymatic reactions and P450 inhibitions. Specifically, we would 
like to focus on five areas: 1) protein engineering and tuning of the Ru 
(II) photophysical properties for the development of the next generation 
of hybrid P450 enzymes; 2) introduction of various groups on the an
cillary ligands to promote covalent dimerization and heterogeneous 
P450 biocatalysts; 3) determination of the coupling efficiency in the 
hybrid enzymes and a complimentary approach in the light-activation 
of P450 enzymes with peroxygenase activity; 4) merging of chemical 
catalysis with the unique synthetic potential and evolvability of P450 
biocatalysts and 5) strained Ru(II) complexes that selectively inhibit 
P450 enzymes utilizing a rapid ligand photorelease feature. 

2. Background 

2.1. Cytochrome P450 enzymes 

The heme thiolate enzymes have attracted the interest of the sci
entific community since their discovery in the early 1960s and the 
characterization of the red pigment in liver microsomes [30,31]. The 
following decades have seen a surge of attention from mechanistic, 
pharmaceutical, biophysical, protein engineering and biocatalytic ap
plications. The reader is directed to some of the most recent reviews on 
those topics with a special emphasis on the unique P450 synthetic po
tential [2–7]. 

The reducing equivalents necessary for the dioxygen activation are 
provided by several redox partners organized in various classes using 
mostly NAD(P)H as cofactor [13]. The redox active centers in the 
electron transfer machinery comprise flavin mononucleotide (FMN) or 
flavin adenine dinucleotide (FAD) flavins in P450 reductases and/or 
iron‑sulfur clusters in various ferredoxins. The redox partners can either 
be soluble or membrane bound. The consensus mechanism includes 
well-characterized intermediates illustrated in Fig. 1 leading to the 
formation of the highly oxidative Compound I, a ferryl species with a 
porphyrin radical [32]. Disruption of the electron delivery leads to the 
formation of reactive oxygen species, such as superoxide or hydrogen 
peroxide, detrimental to the enzymes [14,15]. A small class of P450 
enzymes is known to utilize hydrogen peroxide via the peroxide shunt 
pathway to sustain catalysis (Fig. 1) [23,33]. 

Due to their unique regio- and stereoselectivity, P450 enzymes have 
been of particular interest for biocatalytic applications. Protein en
gineering of highly mutation tolerant P450 enzymes has provided op
portunities to expand their reaction space and substrate scope from 
small alkanes to large hydrophobic molecules as well as to diversify 
natural products and produce valuable drug metabolites. Beyond site- 
directed mutations and rational design, directed evolution has con
ferred unique properties to these enzymes [9–11] and recently enabled 
some abiological reactions [12,34]. Very innovative approaches have 
also emerged to complement protein engineering. Decoy molecules 
developed by Watanabe and Shoji are used to functionalize small sub
strates by tricking the P450 BM3 holoenzyme in a conformation primed 
for catalysis [35]. Engineering of substrate anchoring or directing group 
has been successfully employed to alter the regioselectivity of enzy
matic hydroxylation [36–38]. Alternatively, Gillam and coworkers 
pioneered ancestor reconstruction methodology in a vertebrate CYP3 
family to obtain mutants with enhanced thermal stability and broad 
substrate promiscuity [39]. The recent pursuit of light-harvesting units 
has enabled the photoactivation of several members of the P450 su
perfamily. 

2.2. Light-harvesting units employed to power various heme 
monooxygenases 

Over the last two decades, efforts to convert light energy into bio
chemical transformations have led to the use of various light-harvesting 
units, covering the visible range, to activate P450 enzymes or unspecific 
peroxygenases (UPOs) for the selective oxyfunctionalization of sub
strate CeH bonds. The structure and absorption maxima of the various 
complexes ranging from organic to inorganic complexes as well as 
biological, nanostructures and semi-conductors are summarized in  
Fig. 2. 

To photoactivate P450 enzymes, three approaches have emerged 
[24]. First, the photosensitizer can interact with molecular dioxygen to 
generate reactive oxygen species that can be utilized for peroxygenase 
activity. The excitation of CdS quantum dots (Q.D.) has enabled the 
activation of the P450BSβ peroxygenase immobilized on the nanos
tructures [40]. Urlacher and coworkers utilized various flavin mono
nucleotide (FMN) derivatives to activate P450 members of the 
CYP152A family [41]. Hollmann recently leveraged several acridine 
derivatives covering the visible range to activate an evolved unspecific 
peroxygenase from Agrocybe aegerita [42]. The same group also re
ported high total turnover numbers (> 60,000) in the light-driven 
oxyfunctionalization of ethylbenzene using a graphitic carbon nitride 
(g-C3N4) as photosensitizer and by physically separating the UPO en
zyme [43]. Second, the reducing equivalents can be provided to the 
redox partners and, utilizing intrinsic electron transfer pathways, acti
vate P450 heme domains. Deazaflavin, known to slowly react with 
molecular dioxygen in the reduced state, supported photocatalysis with 
the P450 BM3 holoenzyme but not with the heme domain [44]. Bio
logical components, such as Photosystem I or II, have emerged as 
promising avenues [45]. Photosystem I in conjunction with a mem
brane-bound CYP79A1 fused with ferredoxin was shown to produce the 
desirable cyanogenic glucoside, dhurrin, upon visible light excitation 
[46]. The Bibby group repurposed the wasted electrons from water 
oxidation in an engineered cyanobateria to activate an heterologous 
CYP1A1 enzyme [47,48]. The third approach has consisted in supplying 
the electrons directly to the heme domain circumventing the need of 
redox partners or cofactors. By confining the CYP3A4 enzyme in a 
microporous ordered silica and with a 2,9,16,23-tetra
aminophthalocyanine cobalt (CoTAPc) stacked onto reduced graphene 
oxide nanosheets, modest photocatalytic activity was achieved in the O- 
demethylation of 7-ethoxytrifluoromethyl coumarin [49]. In a whole 
cell approach, Eosin Y has been employed with P450 heme domain 
mutants to access several drug metabolites [50]. Our group has focused 
on the use of Ru(II)-diimine complexes which exhibit a strong, broad 
absorbance in the visible range to sustain P450 photocatalysis [51]. 

2.3. Ru(II)-diimine complexes 

The d6 [Ru(LL)3]2+ complexes with LL = polypyridyl ligands have 
been the most deeply investigated class of metal complexes due to their 
unique combination of chemical stability, excited-state reactivity, lu
minescence emission and excited-state lifetime (Fig. 3A) [27–29]. The 
long-lived excited state, *[Ru(LL)3]2+ can also encounter other solute 
molecules, quenchers, and participate in bimolecular processes such as 
energy transfer (1) and both reductive (2) and oxidative (3) electron 
transfers as shown in Fig. 3B. Thus, photoactivation of this complex has 
most commonly been used to drive redox processes. 

These complexes have been extensively used in triggering fast 
electron transfers in metalloenzymes [52] and more recently in in
itiating radical processes in photoredox catalysis [53–55] and biocata
lysis [56] to enable unique organic transformations. These complexes 
have also found important biological applications [57,58] in photo
dynamic therapy [59] with the local generation of singlet oxygen or by 
taking advantage of the rapid ligand dissociation via populating a 
thermally accessible metal-centered ([3]MC) excited state (Fig. 3A) 
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[60,61]. 

3. Hybrid P450 enzymes featuring covalently attached Ru(II) 
complexes 

The field of P450 enzymes and Ru(II) converged around the turn of 
the century with the initial development of Ru(II) molecular wires de
signed to bind to the substrate access channel of cytochrome P450 and 
several heme-thiolate enzymes [62]. Notably, rapid nanosecond re
duction of the ferric resting state was achieved in the P450cam heme 
domain [63]. However, other elusive intermediates couldn't be detected 
and photobiocatalysis couldn't be achieved until the Ru(II) complex was 

covalently attached to the heme domain of P450 BM3 mutants [64,65]. 
The covalent attachment was accomplished with sulfhydryl specific Ru 
(II) complexes bearing iodoacetamido or epoxy moieties on the ancil
lary ligands [66]. 

The Ru(II)-diimine functionalized P450 BM3 enzymes have been 
designed to use the photophysical properties of the Ru(II) excited state 
and stemmed from the vast study on intramolecular electron transfers 
in metalloenzymes [52]. The proof-of-concept establishing electronic 
communication between the photosensitizer and the light-harvesting 
unit came with the K97C-Ru1 hybrid enzyme where the Ru1 photo
sensitizer, bis(2,2’-bipyridine)(5-acetamidophenanthroline)Ru(II), Ru 
(bpy)2PhenA (Ru1), was covalently attached to a non-native single 

Fig. 1. Abbreviated P450 mechanism with well-characterized intermediates (2–4) in the oxyfunctionalization of unactivated CeH bonds, uncoupling reactions 
producing reactive oxygen species (green dashed lines) and peroxide shunt pathway (red arrow). 

Fig. 2. The various light-harvesting units used to 
power heme enzymes for selective CeH oxyfunctio
nalization ranging from biological, photosystem I 
(PSI) to organic (flavin, deazaflavin, phenosafranine 
and methylene blue) to inorganic complexes (Ru 
(bpy)3

2+ (bpy = 2,2'-bipyridine) and 2,9,16,23-tet
raaminophthalocyanine cobalt, CoTAPc) and nanos
tructures (quantum dots, Q.D.). 
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cysteine residue (K97C) of a P450 BM3 heme domain mutant. Under 
flash quench oxidative conditions (Fig. 3B), rapid generation of a highly 
oxidative Ru(III) species led to the oxidation of the porphyrin ring 
followed by intramolecular reorganization to the elusive Compound II 
species, a Fe(IV)-OH species [64]. The presence of the tryptophan at 
position 96 is proposed to mediate and enhance the oxidative electron 
transfer steps through a hopping mechanism [67,68]. 

Building on these initial results, our group utilized the hybrid P450 
enzymes in a reductive quenching approach to inject the necessary 
electrons, one electron at a time, into the heme active site and sustain 
photocatalysis (see Fig. 4) [51,69]. To this end, we screened a range of 
known natural reductive quenchers that would be suitable for 

photocatalytic activity in aerated aqueous buffer. 
The simple anion, diethydithiocarbamate (DTC) met all the neces

sary requirements and allowed the production of hydroxylated products 
with the hybrid enzymes under flash quench reductive conditions. 
Modest photocatalytic activity was initially observed with the K97C- 
Ru1 and Q397C-Ru1 hybrid P450 BM3 enzymes [65]. We consequently 
explored various non-native single cysteine positions on the proximal 
side of the heme domain in the C and L helices region where the re
ductase is binding [69]. The position 407 in a bowl-like cavity enabled 
close access to the heme active site and rapid electron injections. The  
sL407C-Ru1 mutant displayed exquisite photocatalytic activity sur
passing any of the known artificial systems at the time with close to 

Fig. 3. A) Jablonski diagram and B) excited state properties of a typical Ru(II)-diimine complex.  

Fig. 4. Representation of the hybrid P450 BM3 enzyme (PDB ID: 5JTD [70]) featuring a Ru(II) complex covalently attached to activate P450 enzyme activity upon 
visible light excitation using the sacrificial electron donor, diethyldithiocarbamate (DTC). 
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1000 total turnover numbers in the hydroxylation of the natural sub
strate lauric acid [51]. Using transient absorption measurement, the 
kinetics for the electron transfer could be mapped out revealing elec
tron transfer rate constant orders of magnitude faster than with natural 
redox partner enzymes [70]. 

4. Crystal Structures of P450 heme domains with their redox 
partners 

Crystal structures of P450 heme domains interacting with their 
natural or artificial electron transfer partners have been highly pursued 
in order to gain insights into the proteins interface, their conformations 
and the key role of amino acids involved in the electron transfer 
pathway. The first such crystal structure was solved in 1999 by Poulos 
disclosing a proteolysed FMN domain complexed with the P450 BM3 
heme domain [71]. Fourteen years later, a 1,6-bismaleimidohexane 
linker was successfully used, by the same group, to crosslink the redox 
partner with a P450cam heme domain revealing the crystal structure of 
a functional complex and details of the effector role of the putidar
edoxin [72]. Later on, NMR [73] and double electron-electron re
sonance (DEER) studies [74,75] corroborated similar structures in so
lution. Meanwhile, two crystal structures of the Ru(II)-modified 
enzymes were solved showing the unique location of the photo
sensitizer on the proximal heme side (see Figs. 4 and 5). The distances 
between the two metal centers of 18 and 24 Å for the L407C-Ru1 and 
K97C-Ru1, respectively are well within single electron transfer 

distances [64,70]. In the L407C-Ru1 structure, the electron transfer 
pathway was proposed to involve two highly conserved residues (Q403 
and F393) and could be further enhanced by stacking aromatic residues 
as shown in the Q403W mutant [70]. Noteworthy, in most crystal 
structures in Fig. 5, a redox active tryptophan residue (i.e. W574 in
teracting with the flavin ring, W106 at the putidaredoxin/P450cam 
interface, W96 and Q403W in the hybrid enzyme structures) is present 
in close proximity to each redox center and likely promotes electron 
transfer. In 2018, the crystal structure of a Co(III) sepulchrate in elec
trostatic interaction with the P450 BM3 M7 heme domain variant was 
reported. The mediator compound was located at the entrance of the 
substrate channel [76] and the observed distance of 35 Å was prohi
bitively long for electron transfer. The location in the crystal structure 
was in contrast with previous molecular dynamic simulations, which 
predicted alternative binding sites [77] in support of the high activity 
observed with this system [17,18]. While the crystal structure provided 
insights into the role of mutated residues, further studies are needed to 
identify the molecular mediator-protein interactions. 

5. Expanding on the Ru(II) complexes and P450 applications 

In this section, we would like to highlight and put into context some 
of the recent advances from our group (see Fig. 6) and others in com
bining Ru(II)-diimine complexes and P450 biocatalysis. A special em
phasis will be on 1) the development of the next generation of hybrid 
enzymes and the application of the photosensitizer covalent attachment 
to other P450 heme domains taking advantage of the highly conserved 
P450 tertiary fold; 2) the determination of coupling efficiency in the 
hybrid enzymes by indirect quantification of reactive oxygen species 
and the development of a complimentary light-driven bimolecular ap
proach to activate P450 peroxygenases; 3) the functionalization of the 
Ruthenium complexes to enable the formation of dimers and protein 
aggregates; and 4) the development of a selective light-driven che
moenzymatic approach. We will also introduce recent work by the 
groups of Turro and Glazer on strained Ru(II) complexes able to se
lectively photorelease P450 inhibitors. 

5.1. Next generation of hybrid enzymes and application to other P450 heme 
domains 

The development of colorimetric and fluorimetric assays has fa
cilitated the rapid and high-throughput screening of enzymatic activity. 
In the case of P450 BM3, chromogenic substrates containing a ni
trophenoxy moiety were initially developed to mimic the natural long 
chain fatty acids [78] and thus enabled the rapid generation of mutants 
with exquisite catalytic activity. The assay was also compatible with the 
light-driven reaction conditions and thus enabled to rapidly probe the 
substrate scope and reactivity of the hybrid enzymes [79]. A wide range 
of compounds bearing the nitrophenoxy moiety could be synthesized 
and was tested with a panel of hybrid enzymes. With an interest in 
benzylic hydroxylation, we initially focused on the 1-benzyloxy-4-ni
trobenzene derivative and implemented a directed evolution program 
to evolve the hybrid enzymes. The P450 BM3 D52-Ru1 mutant har
boring 4 mutations was identified with three to ten-fold activity en
hancement compared to the sL407C-Ru1 parent [80]. 

Because of the large superfamily of P450 enzymes and the vast 
redox partners library, considerable efforts have been dedicated to 
develop versatile redox partners [81,82]. The highly conserved tertiary 
fold in the cytochrome P450 enzymes prompted us to implement the 
light-driven approach to other P450 enzymes keeping the point of 
covalent attachment at the same location corresponding to the L407C 
mutation. As early attempts with the P450cam were promising [83], we 
recently turned our attention to the thermophile CYP119 from Sulfo
lobus acidocaldarius. This CYP119 was an attractive candidate as it is 
considered an orphan cytochrome with no dedicated redox partner. The 
hybrid CYP119-Ru1 enzyme displayed high photocatalytic activity in 

Fig. 5. X-ray crystal structures of P450 heme domain (blue) with the natural 
and artificial redox partners: FMN domain (magenta, PDB ID: 1BVY) [71], Fe2S2 

cluster of putidaredoxin (yellow, PDB ID: 5GXG) [72] and ferredoxin (orange) 
[75], Ru(II) photosensitizers (blue, PDB ID: 3NPL [64] and 5JTD [70]) and Co 
(III) sepulchrate (green, PDB ID: 5E78) [76]. 
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the hydroxylation of the chromogenic substrate, 11-nitrophenox
yundecanoic acid at elevated temperature (~50 °C). The determined 
kcat was the highest among reported CYP119 systems using natural 
redox partners [84]. Those findings establish the versatility of the 
covalently attached Ru(II)-diimine approach to activate various P450 
enzymes and the potential of directed evolution to improve the effi
ciency of the hybrid enzymes and various artificial metalloenzymes 
[85,86]. 

5.2. Coupling efficiency and light-driven peroxygenase 

One of the premier concerns in P450 biocatalysis is the economical 
use of the reducing equivalents towards productive pathway, i.e. oxy
genated product, as opposed to the leakage of detrimental reactive 
oxygen species (ROS) either as superoxide or hydrogen peroxide (see  
Fig. 1) [14,15]. In addition, excess holes generated at the heme active 
site are thought to be funneled away to the surface by chains of stacked 
aromatic residues [87]. Typically, those unproductive pathways are re
flected in the coupling efficiency, which varies from few percents in 
human P450 enzymes [88–90] to 100% for the P450 BM3 holoenzyme. 
The formation of ROS species is usually surmounted with the use of ra
dical scavengers or enzymes, such as superoxide dismutase or horse
radish peroxidase. An elegant approach by Reetz has recently combined a 
P450 enzyme with a peroxygenase as to use the side product from one 
enzyme to initiate the second biocatalytic transformation [91]. 

The coupling efficiency is primarily determined from the rate of 
NAD(P)H, dioxygen or electrons consumption versus the rate of product 

formation. Moreover, simultaneous quantification of hydrogen per
oxide produced has led to a more accurate determination of coupling 
efficiency [92]. 

For the light-driven hybrid enzymes, we recently took advantage of 
the dual properties of the sacrificial electron donor, DTC [84]. In ad
dition of being a suitable quencher of the Ru(II) excited state, this so
luble anion displays unique ROS scavenging properties leading to the 
formation of a dimeric oxidized species, DTC2, known as tetra
ethylthiuram disulfide. The dimer formation can be quantified con
comitantly with hydroxylated product using HPLC. We proposed that 
the DTC2 dimer formation can be used to quantify the formation of ROS 
generated over the course of the photoreaction and hence contribute to 
the determination of the coupling efficiency in the various light-driven 
hybrid enzymes [84]. As expected, an increase in the coupling effi
ciency correlates with a gain in total turnover numbers. For example, 
the directly evolved mutant, D52-Ru1, displayed low turnover numbers 
and coupling efficiency (9%) in the photocatalytic hydroxylation of a 
long chain acid substrate mimic. However a 2.8-fold increase in turn
over numbers was observed in the non-native substrate hydroxylation 
consistent with a higher coupling efficiency (32%) [84]. 

While working with dioxygen under reductive conditions has its 
own challenges [93], peroxygenases, that utilize directly hydrogen 
peroxide, have gathered increasing attention as valuable biocatalysts 
[94,95]. In particular, the recent identification of a class of fungal un
specific peroxygenases (UPO) with a broad substrate scope is particu
larly attractive albeit protein expression still being a major bottleneck 
[96,97]. 

Fig. 6. Recent advances encompassing Ru(II) photochemistry and P450 biocatalysis.  
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A small class of P450 enzymes and several P450 BM3 mutants have 
displayed unique peroxygenase activity [23,33]. Notably, a promising 
candidate for biofuel application is the OleT enzyme that decarbox
ylates long chain fatty acids to the corresponding C-1 alkene. Recent 
work by Makris established that this enzyme is going through a Com
pound I intermediate but the rebound mechanism is disfavored for the 
decarboxylation pathway [98,99]. In addition, clear evidence from the 
same group established that this enzyme is best suited to utilize hy
drogen peroxide as it is sluggish to activate molecular dioxygen due to 
rapid autooxidation [100]. 

Utilizing directed evolution, Cirino and Arnold engineered a lineage 
of P450 BM3 heme domain enzymes with peroxygenase activity and 
enhanced thermostability [101,102]. Initially, a 21B3 mutant was 
evolved to display high peroxygenase activity with 10 mM H2O2 in the 
hydroxylation of long chain fatty acids [101]. 

As mentioned previously, several light-driven approaches have al
ready been employed to activate peroxygenases. Urlacher and cow
orkers utilized FMN derivatives to activate two members of CYP152A 
family [41] while Hollmann pioneered several light-driven strategies to 
activate unspecific peroxygenase [42,43,103]. 

As part of expanding the hybrid enzyme library, we initially gen
erated the hybrid 21B3eRu1 enzyme where the photosensitizer Ru1 was 
attached to the L407C mutant of the 21B3 variant. No detectable ac
tivity was noted in this hybrid enzyme compared to the efficient L407C- 
Ru1 mutant (see Fig. 7). 

However, a light-initiated bimolecular approach using Ru(bpy)3
2+ in 

solution and the sacrificial triethanolamine (TEAO) quencher producing 
in-situ hydrogen peroxide unveils high total turnover numbers with the 
21B3 variant rivaling those obtained with addition of 10 mM hydrogen 
peroxide (see Fig. 7). Noteworthy, in this bimolecular approach, no ac
tivity is observed with the hydrogen peroxide sensitive L407C mutant or 
with the ROS scavenging DTC quencher. These findings strongly support 
that efficient electron delivery is achieved in the hybrid L40C-Ru1 en
zyme and photocatalysis is enabled by the dual role of the sacrificial 
electron donor. No H2O2 is available to initiate the peroxygenase activity 
of the 21B3 mutant when DTC is used as the sacrificial electron donor. 
Also, the inability to activate molecular dioxygen in the 21B3eRu1 en
zyme is consistent with rapid autooxidation as observed in the OleT 
enzyme [100]. These results confirmed key observations about the hy
brid enzyme system and provide a complementary strategy for Ru(II)- 
diimine photoinduced P450 catalytic activity. 

5.3. Functionalization of the Ru(II)-diimine photosensitizers 

This section focuses on the selective functionalization of the ancil
lary ligands to tune the complex photophysical properties and on the 
introduction of reactive groups to promote formation of protein as
semblies (see Fig. 8). In a series of seven hybrid enzymes, we in
vestigated the effect of altering the redox properties of the covalently 
attached photosensitizer by varying the para substituents on the bi
pyridine ancillary ligands, from chloro to dimethylamino [104]. A 
three-fold increase in photocatalytic activity was observed for the tert- 
butyl derivative compared to the chloro substituent while the more 
electron donating methoxy and dimethylamino substituents resulted in 
a decreased photocatalytic activity. A concave Hammett plot was in
dicative of a change in rate limiting steps, presumably from the electron 
injection to the quenching step with the sacrificial electron donor 
[104]. 

Furthermore, introduction of reactive groups such as carbox
aldehyde or iodoacetamide to the homoleptic Ru(II) complex led to the 
formation of P450 cross-linked aggregates and dimers. The aldehyde 
groups on the tris(1,10-phenanthroline)Ru(II) complex could react with 
surface exposed lysine residues to yield cross-linked P450 enzyme ag
gregates. Like in a classical chemical process, working with hetero
geneous biocatalysts enables their recovery and re-use, and in the case 
of the cross-linked enzyme technology has often resulted in a catalytic 
efficiency enhancement [105,106]. In a quest to determine suitable 
cross-linkers, we recently demonstrated that Ru(II)-diimine compounds 
bearing aldehyde functionalities surpass currently available organic 
cross-linkers leading to P450 enzyme aggregates with greater activity 
recovery than the enzyme in solution and reusable for several rounds of 
reaction [107]. Meanwhile, the sulfhydryl specific iodoacetamido 
groups on the homoleptic phenanthroline Ru(II) complex reacted with 
surface-exposed non-native single cysteines to yield P450 heme domain 
homodimers. Protein gel electrophoresis and mass spectrometry con
firmed the formation of dimers, that could be further separated from 
the monomer by size exclusion chromatography [108]. Overall, these 
examples illustrate the potential of those complexes to not only act as 
photosensitizers but also as building blocks to promote various protein 
assemblies [109] towards the development of heterogeneous photo
biocatalysts. 

Fig. 7. Comparison of photocatalytic activity between the L407C and 21B3 variants using the electron injection approach with covalently attach Ru1 complex (left) 
versus the bimolecular peroxygenase system using Ru(bpy)3

2+ in solution (right). 
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5.4. Chemoenzymatic strategies with P450 enzymes 

The synthetic potential of P450 enzymes has been widely re
cognized in the myriads of reactions and non-natural substrates that 
they are able to functionalize [3–5,7]. Several strategies have thus been 
put forth to employ monooxygenases in enzymatic cascades [110] as 
well as in chemoenzymatic reactions [111]. However, challenges re
main in finding optimal reaction conditions (buffer, pH, substrate 
loading) for enzymatic and chemical compatibility [112]. While great 
advances have been made in enzymatic cascade reactions, especially in 
one-pot and whole cell biocatalysis [113], we wish to focus on the 
lesser investigated chemoenzymatic approaches marrying the ad
vantages of the P450 biocatalysts with several chemical catalysts. 

Fasan and Arnold first demonstrated the use of P450 BM3 mutants 
combined with the selective fluorinating agent, diethylaminosulfur 
trifluoride or DAST, to access singly fluorinated compounds via deox
yfluorination of the enzymatically oxidized products (Fig. 9A) [114]. 
The groups of Zhao and Hartwig use P450 BM3 mutants to selectively 
epoxide the cross-methasesis products from various alkenes starting 
materials (Fig. 9B) [115,116]. The Reetz laboratory relied on Pd cata
lysis for selective amination of the P450 BM3 allylic hydroxylated 

cyclohexene-1-carboxylic acid methyl ester [117] and for Suzuki- 
Miyaura CeC coupling of an iodo intermediate to access several 
monooxygenated aryl compounds (Fig. 9C–D) [118]. The Flitsch group 
recently exploited a unique CYP166 variant to selectively hydroxylate 
long chain fatty acids at the 5th position and upon tosylic acid catalyzed 
cyclization produced chiral lactones (Fig. 9E) [119]. Macrolactoniza
tion was also employed for the synthesis of the natural product puta
minoxins using the chiral allylic alcohol intermediates obtained with a 
P450 BM3 mutant [120]. Since Ruthenium(II) complexes have recently 
enjoyed a renaissance in photoredox catalysis, our group combined the 
hybrid P450 enzymes with photoredox trifluoromethylation (Fig. 9F) in 
a light-driven chemoenzymatic approach. This strategy led to the se
lective trifluoromethylation and oxyfunctionalization of several sub
stituted arenes taking advantage of the unique selectivity of P450 BM3 
mutants [80]. 

5.5. Ruthenium complexes with photolabile P450 inhibitors 

Due to a thermally-accessible [3]MC from the [3]MLCT excited state 
(Fig. 3A), several strained Ruthenium complexes display loss of a che
lating ligand. This feature has been advantageous in newly developed 

Fig. 8. Introduction of electron donating substituents (A) or reactive groups (B) on the Ru(II) complexes to alter their photophysical properties or promote various 
protein assemblies, respectively. 

Fig. 9. Various chemoenzymatic approaches marrying the advantages of chemical catalysis and P450 biocatalysis.  
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strategies to deliver drugs [61], target DNA [121] and more recently to 
inhibit several P450 enzymes [60]. 

The groups of Turro and Glazer independently reported on 
Ruthenium complexes containing chelated P450 aromatic heterocycle 
inhibitors (Fig. 10). Photoexcitation of Turro's complex releases one 
molecule of the steroidal abiraterone to selectively inhibit the cyto
chrome CYP17A1 (Fig. 10A) [122]. The Glazer group demonstrated a 
dual modality with the Ru(II) complex shown in Fig. 10B where the 
photoreleased molecule binds to cytochrome P450 BM3 and the re
sulting bis-chelated complex covalently bind to DNA [123]. Current 
work [124,125] is focusing on tuning the photophysical properties of 
the complexes. The photocaging approach offers unique advantages in 
the spatial and temporal control of biological activity, selective in
hibition of a target of interest and drug release in selected tissues in 
vivo. 

6. Conclusion and perspectives 

Albeit major advances in the field of light-driven P450 enzymes, 
additional efforts are still needed to rival the well-established P450 
systems displaying high catalytic activity and coupling efficiency as 
well as the benefits of the regeneration strategies [20,21]. Valuable 
insights can be gained from this mature field to improve the efficiency 
of the light-driven processes. Ongoing work in various laboratories in
cluding ours are centered around improving the electronic coupling 
between the photosensitizer and P450 heme domains and directing the 
electrons towards the enzyme active sites using various protein en
gineering strategies [80,126]. 

Taking into account some of the current shortcomings limiting the 
light-driven P450 biocatalysis (i.e. generation of reactive oxygen, high 
levels of uncoupling…), there are several under explored areas where 
the use of Ru(II) photosensitizers could provide substantive advantages 
with their tunability, functionalization and importance in initiating 
various light-driven redox processes. For example, the recent utilization 
of Ru(II) complexes in biological applications [57] could be beneficial 
in whole cell light-driven biocatalysis following on the pioneering work 
with Eosin Y as photosensitizer [50]. In addition, to mirror some of the 
recent development in heterogeneous photocatalysis [127,128], 

heterogeneous photobiocatalysts could be an area of interest. Regarding 
P450 peroxygenases, expanding their substrate scope and stability 
would provide opportunities for in situ light-driven generation of hy
drogen peroxide in a control manner and at desirable excitation wa
velength as well as opportunity to expand the scope of chemoenzymatic 
reactions. Alternatively, the sacrificial electron donor in the light- 
driven system could be regenerated or even circumvented by coupling 
the reductive electron transfers to various oxidation processes. Some 
examples are starting to emerge using a water oxidation scheme with a 
light-driven peroxygenase [103] or chemical oxidation as proposed in a 
Ru(II)-modified laccase system [129]. The recent development of 
abiological reactions necessitating inert atmosphere [130] offers op
portunities for the controlled delivery of the reductive equivalents using 
various photosensitizers with tunable redox potential. 

In conclusion, while biocatalysis is gaining increasing importance in 
biotechnological and industrial applications, significant headways to
wards functional light-driven biocatalysts have been made in the last 
two decades. The use of visible light offers unique advantages to trigger 
biocatalytic processes with spatial and temporal controls. As high
lighted in this review, Ru(II)-diimine complexes have been one of many 
valuable light-harvesting units employed to initiate light-driven P450 
biocatalysis. Their unique properties and tunability have also enabled 
the development of P450 assemblies, selective photocage inhibitor 
deliveries and their use in photoredox catalysis and biocatalysis thus 
expanding their application beyond photosensitization. The continuous 
optimization of biocatalysts with a recent influx from machine learning 
[131,132] combined with an ever-growing photosensitizer library 
[133] hold great promises for a bright future in light-initiated P450 
catalysis and photobiocatalysis in general. 

Abbreviations  

3MC and 3MLCT triplet metal centered and metal to ligand charge 
transferrespectively 
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