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We exhibit a natural environment, social learning among heterogeneous agents,
where even slight misperceptions can have a large negative impact on long-run learn-
ing outcomes. We consider a population of agents who obtain information about the
state of the world both from initial private signals and by observing a random sample of
other agents’ actions over time, where agents’ actions depend not only on their beliefs
about the state but also on their idiosyncratic types (e.g., tastes or risk attitudes). When
agents are correct about the type distribution in the population, they learn the true
state in the long run. By contrast, we show, first, that even arbitrarily small amounts
of misperception about the type distribution can generate extreme breakdowns of in-
formation aggregation, where in the long run all agents incorrectly assign probability
1 to some fixed state of the world, regardless of the true underlying state. Second, any
misperception of the type distribution leads long-run beliefs and behavior to vary only
coarsely with the state, and we provide systematic predictions for how the nature of
misperception shapes these coarse long-run outcomes. Third, we show that how fragile
information aggregation is against misperception depends on the richness of agents’
payoff-relevant uncertainty; a design implication is that information aggregation can
be improved by simplifying agents’ learning environment. The key feature behind our
findings is that agents’ belief-updating becomes “decoupled” from the true state over
time. We point to other environments where this feature is present and leads to similar
fragility results.

KEYWORDS: Misspecification, social learning, information aggregation, fragility.

1. INTRODUCTION

1.1. Motivation and Overview

IN MANY ECONOMIC AND SOCIAL SETTINGS, individuals hold limited private information
about a payoff-relevant state of the world and rely on observing the behavior of others as
a vital source of additional information. Typically, however, others’ behavior reflects not
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only their own information about the state of the world, but is also influenced by their
idiosyncratic characteristics. For example, in assessing the quality of a new product or a
political candidate, people may draw inferences from the purchasing decisions or stated
opinions of others, but these depend at least in part on others’ consumption tastes or
political preferences. Likewise, in many decentralized markets (such as over-the-counter
markets or privately held auctions), agents learn about market fundamentals by observing
other participants’ trading behavior, yet the latter may also be driven by idiosyncratic
features such as risk attitudes, private values, or liquidity constraints.

A classic question concerns the possibility of information aggregation in such settings,
that is, under what conditions individuals are able to learn the true state of the world in
the long run. A large literature has studied this question under the modeling assumption
that individuals possess a correct understanding of their environment, in particular of the
distribution of relevant population characteristics.1 This conflicts with growing empiri-
cal evidence that people are prone to systematic misperceptions about such distributions,
from under- or overestimating the heterogeneity of sociopolitical attitudes, consumption
tastes, or wealth levels in their societies to misjudging the share of “fake” product rec-
ommenders or political supporters on review platforms and social networking sites.2 Such
evidence has motivated a burgeoning theoretical literature to incorporate various forms
of misspecification into models of social learning (see Section 1.2). At the same time,
a widely held view of economic models is that they are intended only as parsimonious and
useful approximations. This raises the question how severe agents’ misperceptions must
be to motivate departing from the standard model: Does the benchmark with correctly
specified agents perhaps offer a good enough approximation as long as agents’ amount of
misperception is sufficiently small?

The first main result in this paper suggests a negative answer to the latter question. We
consider a population of agents who obtain information about the state of the world both
from initial private signals and by observing a random sample of other agents’ actions
over time, where agents’ actions depend not only on their beliefs about the state but also
on their idiosyncratic types. When agents are correct about the type distribution in the
population, they learn the true state in the long run. By contrast, we show that even arbi-
trarily small amounts of misperception about the type distribution can generate extreme
breakdowns of information aggregation, where in the long run all agents incorrectly assign
probability 1 to some fixed state of the world, regardless of the true underlying state.

This stark discontinuous departure motivates analyzing information aggregation under
misperception in its own right, without extrapolating from the predictions of the correctly
specified benchmark. Our second main result shows that any misperception about the
type distribution gives rise to a specific failure of information aggregation where agents’
long-run beliefs and behavior vary only coarsely with the state. Moreover, we provide
systematic predictions for how the nature of misperception shapes these coarse long-run
outcomes. Finally, our third main result shows that how fragile information aggregation
is against misperception depends on the richness of agents’ payoff-relevant uncertainty.
A design implication is that information aggregation can be improved through interven-
tions aimed at simplifying the agents’ learning environment. As we discuss, the key feature
behind our findings is that agents’ belief-updating becomes “decoupled” from the true
state over time, and we point to other learning environments where this feature is present
and likewise leads to fragility against even arbitrarily small amounts of misperception.

1For surveys, see Vives (2010), Chamley (2004).
2See Section 2.4 for references.
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In our model, a large population of agents choose actions in each period t ∈ {1�2� � � �} to
maximize their expected utility given their time t information about a fixed but unknown
state of the world ω ∈ Ω = [ω�ω]. Each agent’s utility to a given action depends not only
on the state ω, but also on his idiosyncratic type θ, where types in the population are
distributed according to some cumulative distribution function (cdf) F . Each agent i’s
time t information about ω consists of two sources: First, in period 0, i observes a private
signal about ω; second, in each period up to time t, i randomly meets some other agent j
and observes j’s action in that period.

Our focus is on the case where agents are misspecified about the type distribution, in the
sense that they misperceive the true cdf F to be some other cdf F̂ . Here agents’ amount of
misperception can be quantified by standard notions of distance between cdfs F̂ and F .3
To isolate the effect of such misperception, we impose appropriate assumptions on signals
and payoffs that ensure that if agents are correct about F , then information aggregation
is successful (Lemma 1); intuitively, by observing a sufficiently large sample of others’
actions, agents are able to back out the true state in the long run if they interpret observed
actions correctly.4

By contrast, when agents misperceive the type distribution, this entails the possibility
of misinterpreting other agents, in the sense of drawing incorrect inferences about the
state from their actions. Nevertheless, one might expect that as long as the amount of
misperception is small, this effect should likewise be small, and information aggregation
should be approximately successful. Indeed, a natural analogy is with a single agent who
receives repeated exogenous signals about the state of the world, but misperceives the
mapping from states to signals. In this case, a classic result due to Berk (1966) implies that
the agent’s long-run belief is approximately correct when the amount of his misperception
is small (Proposition 0).

Theorem 1 offers a sharp contrast to this single-agent benchmark. In our social learning
setting, even vanishingly small amounts of misperception can lead to extreme breakdowns
of information aggregation, where long-run beliefs are state-independent point masses: For
any state ω̂, there exists a perception F̂ that is arbitrarily close to the true cdf F , but under
which in all states ω, all agents’ long-run beliefs incorrectly assign probability 1 to ω̂.

The logic behind Theorem 1 can be illustrated heuristically as follows. Suppose agents’
beliefs converge to a point mass on some state ω̂. Then our payoff assumptions imply that
behavior converges to a threshold strategy, where the types taking action 0 are precisely
those below some cutoff θ∗(ω̂) that is monotonic in ω̂. Thus, if agents’ perceived type
distribution is F̂ , they expect fraction F̂(θ∗(ω̂)) of long-run action observations to be
0. However, the actual fraction is F(θ∗(ω̂)), as the true cdf is F . Except for boundary
cases, we note that there cannot be any discrepancy between expected and actual action
observations, that is, it must be that F̂(θ∗(ω̂)) = F(θ∗(ω̂)); intuitively, otherwise long-
run beliefs could not concentrate on ω̂, because agents could find some other state ω̂′ �=

3We use the total variation distance, but our results go through under other standard norms. In addition,
Section 6 discusses more general forms of small misperceptions.

4Our correctly specified benchmark is a close variant of Duffie and Manso’s (2007) random matching model
of social learning, where information aggregation is likewise successful, as is also the case for sequential social
learning models with either rich type heterogeneity, unbounded private signals, or rich actions (e.g., Goeree,
Palfrey, and Rogers (2006), Smith and Sørensen (2000), Lee (1993)). As we discuss in Section 4.1, information
aggregation can fail in other important correctly specified settings, notably due to herding or informational
cascades (e.g., Bikhchandani, Hirshleifer, and Welch (1992), Banerjee (1992)), but the failures of information
aggregation we obtain under even vanishingly small amounts of misperception are more extreme and cannot
arise in any correctly specified model.
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ω̂ that better explains their observations. The key feature of the equality F̂(θ∗(ω̂)) =
F(θ∗(ω̂)) governing potential long-run beliefs is that it is decoupled from the true state,
in the sense that it does not depend on the realized ω. As a result, even for perceptions F̂
that are arbitrarily close to F , this equality can admit a unique solution ω̂, and in this case
a point mass on ω̂ is the only possible long-run belief, regardless of the true state ω. This
heuristic explanation side-steps the question of whether agents’ beliefs converge, which
is not obvious, since under misperception beliefs do not follow a martingale. Section 4.2
illustrates the argument for convergence, which is based on approximating our original
model by a simple “limit model.”

The decoupling mechanism highlighted above arises because agents’ belief-updating
places less and less weight over time on own initial private signals and increasingly more
weight on others’ behavior, but the latter depends on the true state only indirectly through
others’ beliefs. As we discuss in Section 4.3, this distinguishes our setting from the afore-
mentioned single-agent passive learning benchmark, as well as recent models of misspec-
ified single-agent active learning, such as Heidhues, Koszegi, and Strack (2018). In those
models, the agent’s belief-updating does not become decoupled from the true state, be-
cause it is based on informative signals that depend directly on ω even asymptotically; as a
result, long-run beliefs are approximately correct under small amounts of misperception.
At the same time, Section 7 points to several other natural environments, including single-
agent learning under a particular identification failure and other social learning settings,
where belief-updating also becomes decoupled, giving rise to similar fragility results as
Theorem 1.

While Theorem 1 highlights that vanishingly small amounts of misperception can gen-
erate stark discontinuous departures from the correctly specified benchmark, not every
misperception F̂ necessarily gives rise to breakdowns of information aggregation that are
as extreme as in Theorem 1. Theorem 2 therefore investigates information aggregation
under arbitrary well-behaved true and perceived type distributions F and F̂ . Based on the
decoupling mechanism highlighted above, we show that information aggregation contin-
ues to fail, but in general long-run beliefs need not be fully state-independent and instead
display the following weaker form of “coarseness”: F and F̂ generate a partition of the
state space Ω = [ω�ω] into finitely many intervals, and within each such interval, agents’
long-run beliefs incorrectly assign probability 1 to the same fixed state. As a result, long-
run behavior also varies only coarsely with the true state, remaining constant within each
interval of the partition and changing discretely from one interval to the next. As we
discuss, this prediction is broadly in line with the fact that behavior in many economic set-
tings is not finely attuned to economic fundamentals, suggesting a possible new channel
for this phenomenon. Theorem 2 also provides a starting point to analyze how long-run
beliefs vary across different forms of misperception. As an illustration, Section 4.4 shows
that when F and F̂ are ranked according to first-order stochastic dominance (e.g., when
agents under-/overestimate the share of “fake” recommenders), long-run beliefs exhibit
drastic overoptimism/-pessimism; by contrast, underestimating population heterogeneity
leads to conservative long-run beliefs.

Finally, Theorem 3 highlights a key determinant of the fragility of information aggre-
gation, by showing that information aggregation is more sensitive to misperception the
richer the state space. Suppose we approximate our continuous state space Ω= [ω�ω] by
an increasingly fine sequence Ωn of finite state spaces. Then for each n, there is some
threshold εn such that information aggregation is successful whenever the amount of
misperception is below this threshold. However, as the size of the state space grows, εn
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shrinks to 0, so that information aggregation is more and more sensitive to mispercep-
tion, and in the limit, arbitrarily small amounts of misperception can give rise to extreme
breakdowns of information aggregation analogous to Theorem 1. Many settings of eco-
nomic interest naturally feature rich state spaces, from safety levels of new products to
market fundamentals under decentralized trade. From a design perspective, Theorem 3
implies that information aggregation in such settings can be improved by simplifying the
agents’ learning environment: For instance, in the context of news releases by a central
bank or consumer protection agency, Example 3 highlights a new trade-off between pro-
viding more information for agents to aggregate and rendering information aggregation
more sensitive to misperception, and we argue that this may call for releasing only “vague”
information.

The paper proceeds as follows. Section 2 sets up the model. Section 3 establishes two
preliminary benchmarks: successful information aggregation under the correctly specified
model and the robustness of single-agent passive learning to small amounts of missper-
ception. Sections 4 and 5 present our main results, Theorems 1–3. Section 6 discusses
more general forms of misperception, in particular the interaction between misspecified
and correctly specified agents. Finally, Section 7 concludes by pointing to other natural
learning environments where similar fragility results apply.

1.2. Related Literature

Our paper contributes to the burgeoning literature on Bayesian learning with misspeci-
fied models, which has been studied in a variety of contexts spanning single-agent passive
and active learning (e.g., Nyarko (1991), Rabin (2002), Rabin and Vayanos (2010), Ortol-
eva and Snowberg (2015), Fudenberg, Romanyuk, and Strack (2017), Heidhues, Koszegi,
and Strack (2018, 2019), He (2018)) and social learning (e.g., Eyster and Rabin (2010),
Guarino and Jehiel (2013), Bohren (2016), Gagnon-Bartsch (2017), Dasaratha and He
(2020), Bohren and Hauser (2019), Bohren, Imas, and Rosenberg (2019)).5 Our main
contribution is to point to a natural setting, social learning with misperceptions of others’
characteristics, where even vanishingly small amounts of misspecification can lead to stark
breakdowns of learning and to highlight a decoupling mechanism that drives this fragility
result.6

Among single-agent learning models, the most closely related paper is Heidhues,
Koszegi, and Strack (2018), who studied active learning by an agent who is overconfi-
dent in his ability. They emphasized that the fact that the agent’s information depends
on his actions (and hence his beliefs) can amplify the effect of misperception over time,
a force that is present in our setting as well. However, as we discuss in Section 4.3, their
setting differs from ours in that learning does not become decoupled from the true state
and, as a result, the agent’s long-run belief is approximately correct when his amount of
misperception is small.

5See Glaeser and Sunstein (2009), Levy and Razin (2015) for static models of information aggregation
with misspecified agents. Specific forms of misspecification have also been incorporated into macroeconomic
models; for a survey, see Evans and Honkapohja (2012). Hassan and Mertens (2017) considered a general
equilibrium model in which agents misperceive signals about economic fundamentals. In their setting, small
amounts of misperception have a continuous effect on equilibrium, but they emphasized that the slope of this
effect can be arbitrarily large.

6We note that our fragility results are driven purely by misinferences from others’ actions, rather than by
payoff externalities. The latter channel drives Madarász and Prat’s (2017) finding that screening problems can
be highly sensitive to misspecification by the principal about agents’ preferences.
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In the context of social learning, several of the aforementioned papers incorporate vari-
ous specific forms of misspecification into sequential social learning models and show that
long-run beliefs grow confident in incorrect states. However, in contrast with our fragility
result, they rely on strong forms of misspecification, and in a general framework that nests
several of these misspecifications, Bohren and Hauser (2019) showed that information ag-
gregation is robust to small amounts of misspecification.7 As we discuss in Section 7.3, this
distinction stems from an assumption in these models that rules out decoupled learning;
absent this assumption, we show that sequential social learning can likewise be fragile,
although the exact fragility mechanism and results differ from our random matching set-
ting.

Esponda and Pouzo (2016) introduced Berk–Nash equilibrium to capture long-run be-
liefs under repetition of a game with (a single or multiple) misspecified players.8 Due
to its nonstationarity, our setting does not strictly fit into their framework, but we show
that, just as under Berk–Nash, agents’ long-run beliefs are based on minimization of
KL-divergence. Indeed, except for boundary cases, long-run beliefs achieve zero KL-
divergence between perceived and actual behavior.

Acemoglu, Chernozhukov, and Yildiz (2016) considered agents who observe exogenous
public signals and hold non-common full support priors about the signal technology. In
contrast with our focus on learning about the state, they focused on higher-order belief
disagreement and showed that even a small amount of uncertainty can lead to substantial
long-run disagreement, due to a non-identification problem in disentangling states and
signal technologies. As agents in their model are correctly specified (i.e., their beliefs
contain the truth in their support), it is not possible to generate long-run phenomena
such as state-independent point-mass beliefs.

A sizable literature considers models of non-Bayesian social learning where agents up-
date beliefs by employing various exogenous heuristics (e.g., Ellison and Fudenberg (1993,
1995), DeMarzo, Vayanos, and Zwiebel (2003), Golub and Jackson (2010, 2012)). Infor-
mation aggregation can fail in such settings as well. For example, Mueller-Frank (2018)
considered DeGroot-style learning on a network, where an agent can manipulate his up-
dating rule, and showed that small amounts of manipulation can have a significant and
arbitrary impact on other agents’ long-run beliefs. Given our goal of understanding the
robustness of the canonical model of rational social learning, we maintain the classical
assumption that agents are Bayesian. This also allows us to explicitly model agents’ per-
ceptions and how they affect their process of inference, which is usually abstracted away
from under heuristic rules.

2. MODEL

2.1. Environment

There is a continuum of agents with mass normalized to 1. Each agent is endowed with
a fixed (preference) type θ ∈ R. Each agent’s type is his private information. Types in the
population are distributed according to a cdf F that admits a positive density over R. Let
F denote the space of such cdfs.

7In Gagnon-Bartsch (2017), beliefs can fail to converge under an arbitrarily small amount of misperception,
but agents’ long-run average beliefs depend continuously on their misperceptions.

8Related approaches include Esponda (2008), Spiegler (2016), and Jehiel (2018). Esponda and Pouzo (2019)
formalized Berk–Nash equilibrium for single-agent learning in a Markovian environment.
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At the beginning of period 0, a state of the world ω is drawn once and for all from a cdf
Ψ that admits a positive and continuous density over a bounded interval Ω := [ω�ω] ⊆R.
Agents do not observe the realization of ω. At the beginning of each period t = 1�2� � � �,
each agent i chooses an action ait ∈ {0�1} to myopically maximize his expected utility
given his period-t information about ω.9 We assume binary actions for simplicity, but
as we discuss in Supplemental Appendix E.3 (Frick, Iijima, and Ishii (2020)), analogous
insights obtain under continuous actions.

We specify information in the next subsection. Each agent’s utility u(a�θ�ω) depends
on his action, his type, and the state of the world. We assume the utility difference
u(1� θ�ω) − u(0� θ�ω) between actions 1 and 0 to be strictly increasing and continu-
ously differentiable in both θ and ω, and denote this difference by u(θ�ω). Moreover,
limθ→∞ u(θ�ω) > 0 and limθ→−∞ u(θ�ω) < 0; that is, for high (respectively, low) enough
types it is always optimal to choose action 1 (respectively, action 0).10 For each ω, let
θ∗(ω) denote the threshold type that is indifferent between both actions in state ω; θ∗(ω)
is uniquely defined by u(θ∗(ω)�ω)= 0 and is strictly decreasing in ω.

2.2. Information

At the end of period 0, each agent i observes a private signal si ∈ R about the state
of the world. Conditional on any realized state ω, private signals are drawn i.i.d. across
agents from cdf 	(·|ω) with positive density φ(·|ω) over R.11 Private signal distributions
satisfy the monotone likelihood ratio property; that is, for each ω > ω′, φ(s|ω)

φ(s|ω′) is strictly
increasing in s, so that higher signal realizations are more indicative of higher states.

At the end of each period t = 1�2� � � �, each agent i randomly meets another agent j and
observes j’s period-t action ajt .12 We assume independent random matching, in the sense
that j’s type θj is drawn from the type distribution F in the population, independent of
i’s own type θi; Section 7.1 briefly discusses incorporating non-independent assortative
random matching.

Thus, at the beginning of each period t = 1�2� � � �, each agent’s information about the
state consists of two sources: his private signal in period 0; and, if t ≥ 2, a random sample
of other agents’ actions in periods 1� � � � � t − 1. Note that agents do not observe and draw
inferences from their utilities; two natural interpretations of this include settings where
payoffs are realized only in the long run or where successive generations of agents take
one-shot actions (see Section 2.4).

9Myopia is without loss in this setting as players’ actions do not affect their information.
10Such dominant types play the following technical role. They ensure (i) that information aggregation is

successful in the correctly specified model (Lemma 1) and (ii) that both actions are observed with positive
probability in each period; (ii) avoids the problem of belief-updating after zero probability events, as regardless
of their perceptions F̂ ∈ F , agents never encounter observations they considered impossible. In the context
of word-of-mouth learning about the quality of a new product, Example 1 interprets such types as “fake”
recommenders.

11We assume full-support signal distributions for notational simplicity. Our results remain valid as long as
all densities φ(·|ω) admit the same support S ⊆R.

12We follow convention in assuming a law of large numbers over a continuum of i.i.d. random variables (i.e.,
agents’ observations of signals and of other agents’ actions in a given period). Thus, in aggregate, a determin-
istic fraction of agents observe each set of signals and action histories. See Sun (2006), Duffie and Sun (2012)
for rigorous formulations.



2288 M. FRICK, R. IIJIMA, AND Y. ISHII

FIGURE 1.—Timeline. At the end of each period, each agent i Bayesian-updates his belief about the state
given the perception that the type distribution is F̂ .

2.3. Perceptions and Inferences

In drawing inferences from other agents’ actions, we allow for the possibility that agents
are misspecified about the type distribution F in the population. Specifically, throughout
most of the analysis, we assume that there is some cdf F̂ ∈ F such that all agents believe
the true type distribution to be F̂ and believe that F̂ is common certainty. We refer to
F̂ as agents’ perceived type distribution (perception for short) and focus on the case of
misperception, where F̂ �= F . This parsimonious departure from the correctly specified
model, where F̂ = F , is enough to convey our main insights, but Section 6 discusses more
general misperceptions.

The key implication of misperception is the possibility that agents may draw incorrect
inferences about the state from their observations of other agents’ actions. We will be par-
ticularly interested in the case when the amount of misperception is small. To formalize
this, we measure the amount of misperception by the total variation distance between F̂ and
F ; that is, ‖F̂ −F‖ := supB∈B | ∫ 1B(θ)dF̂(θ)−∫

1B(θ)dF(θ)|, where B denotes the Borel
σ-algebra on R. Our results go through under other standard norms (see footnote 22).

Aside from their potential misperception of the type distribution, agents’ inferences are
standard. In particular, the true distributions of states, Ψ , and of private signals, 	(·|ω),
are common certainty among agents (Section 4.3 briefly discusses incorporating misper-
ceptions about these distributions). Moreover, given perception F̂ , agents draw inferences
from information in each period by Bayesian updating; more precisely, agents’ actions
and beliefs in each period follow the perfect Bayesian equilibrium of our environment.13

Figure 1 summarizes the timeline of the model.
In any state ω and at the beginning of each period t ≥ 1, let μω

t ∈ �(�(Ω)) denote
the population distribution over agents’ posterior beliefs about the state.14 To study in-
formation aggregation, we consider the distribution of long-run beliefs, that is, the limit
μω

∞ := limt→∞ μω
t with respect to the topology of weak convergence. Whenever μω

∞ exists
and assigns probability 1 to a Dirac measure δω′ on some state ω′, we say that in state
ω almost all agents’ beliefs converge to a point mass on ω′; if ω′ = ω, then information
aggregation in state ω is successful.

2.4. Examples

The above framework captures numerous economic and social situations:

13Given common certainty that the type distribution is F̂ , equilibrium beliefs about ω are uniquely deter-
mined at each history and actions are uniquely determined except for a measure zero set of agents who are
indifferent.

14Given a topological space X , we let �(X) denote the set of Borel measures over X . For X = �(Ω), we
endow X with the topology of weak convergence.
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(i) Learning from others’ behavior. In assessing the long-term health effects ω of po-
tentially risky behaviors (e.g., recreational drug use) or new products (e.g., GMO
foods), individuals may possess only a “fuzzy” understanding s ∼ 	(·|ω) of exist-
ing research on the subject and obtain additional information by observing other
agents’ day-to-day behavior and consumption choices at .

(ii) Word-of-mouth communication. Based on a political candidate’s campaign an-
nouncement speech or a promotional trailer for an upcoming movie or music al-
bum, people may form their own opinions about the expected quality of the can-
didate or product, but update these opinions after hearing others’ assessments.

(iii) Decentralized markets. Duffie and Manso (2007) proposed a related framework
(without type heterogeneity and misperceptions thereof) to capture decentralized
markets (e.g., the markets for real estate or over-the-counter securities), where
agents who are uncertain about market fundamentals may randomly encounter
other participants (e.g., at privately held auctions) and gather additional informa-
tion by observing their trading behavior (e.g., their bids).

In each of the above settings, other agents’ behavior is influenced not only by their own
information, but also by their heterogeneous characteristics θ (e.g., consumption tastes,
sociopolitical preferences, risk attitudes, liquidity constraints). Moreover, as highlighted
in the Introduction, a growing empirical literature suggests that agents are prone to sys-
tematically misperceive the distributions of these characteristics, from under- or overesti-
mating the heterogeneity of sociopolitical attitudes, consumption tastes, or wealth levels
in their societies to misjudging the share of “fake” product recommenders or political
supporters on review platforms and social networking sites.15

Finally, we note that an implicit assumption in the previous examples is that agents take
actions repeatedly, but do not observe their payoffs to these actions, as is assumed in a
number of social learning models.16 This fits many settings where states affect payoffs only
in the long run, for example, long-term health effects in (i), the quality of a political candi-
date once in office in (ii), or an asset conditioned on a distant future event in (iii). Similar
to the literature on sequential social learning, our model also fits settings where succes-
sive generations of agents take one-shot actions whose payoffs they observe privately, and
subsequent generations observe a random sample of previous agents’ actions.

3. PRELIMINARY BENCHMARKS

Before turning to analyze information aggregation under misperception about the type
distribution in Section 4, this section presents two preliminary benchmarks that will serve
as a helpful contrast to our main results. In Section 3.1, we show that when agents’ percep-
tion of the type distribution is correct, information aggregation is successful in all states.
In Section 3.2, we consider a single agent who observes an exogenous sequence of ran-
dom actions and misperceives the distribution of actions in each state. We show that in
this case, the agent’s long-run beliefs are approximately correct as long as the amount of
misperception is sufficiently small.

15See, for example, Hauser and Norton (2017), Norton and Ariely (2011) for evidence of under-
/overestimation of wealth inequality; Ahler (2014) for overestimation of political attitude polarization; Kunda
(1999), Nisbett and Kunda (1985) for misperceptions of numerous taste and attitude distributions in society;
and Mayzlin, Dover, and Chevalier (2014) and the references therein for the difficulties of detecting fake
reviews.

16For example, Duffie and Manso (2007), Mossel, Sly, and Tamuz (2015).
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3.1. Information Aggregation Under Correct Perceptions

We first show that when agents correctly perceive the type distribution F , they learn
the true state in the long run. We will invoke this result in analyzing the case with mis-
perception in Section 4, where we will obtain starkly different conclusions. This result
also highlights that our model does not feature herding or related failures of information
aggregation that can arise even under correct perceptions. As such, it serves to isolate
misperception as the sole source of the breakdown of information aggregation that we
will study in Section 4.

LEMMA 1—Information Aggregation Under Correct Perceptions: Suppose that F̂ = F .
Then in any state ω, almost all agents’ beliefs converge to a point mass on ω.

We prove Lemma 1 in Appendix A. Letting qt(ω) denote the fraction of agents that
take action 0 in state ω and period t, the key idea is to prove that limt→∞ qt(ω) exists
and is strictly decreasing in ω, which enables agents to correctly back out the state in
the long run by observing sufficiently many actions of others. One complication is that
agents’ action observations, and hence their beliefs about the state, are private, so that
calculating qt(ω) requires keeping track of the population distribution of agents’ beliefs
μω

t ∈ �(�(Ω)), which does not admit a tractable expression.17

Instead, we first use an inductive argument to show that qt(ω) is strictly decreasing in
ω for each t. The intuition is quite simple: First, when the realized state ω is low, more
agents observe lower private signals in period 0, and consequently, more agents choose
action 0 in period 1. As a result, more agents observe action 0 at the end of period 1, and
given the first step, action 0 is more indicative of low states than action 1. This in turn
leads to more agents choosing action 0 in period 2, and so on. To use this to establish
that limt→∞ qt(ω) exists and is strictly decreasing in ω, we must additionally rule out the
possibility that qt(ω) becomes very flat in ω in the limit, in which case some states might
yield the same asymptotic action frequencies and be impossible for agents to distinguish in
the limit. In Appendix A, we establish this through an analysis of the asymptotic properties
of the belief distribution μt that is based on martingale convergence arguments and the
richness of types in the population.

3.2. Single Agent Benchmark With Misperception

In the previous subsection, agents’ ability to draw correct inferences about the state
from observed actions relied on the fact that they knew the true type distribution. When
agents misperceive the type distribution to be F̂ �= F , this introduces the possibility of
misinterpreting observed actions, in the sense that agents might have in mind an incorrect
mapping from states to probabilities of observing actions 0 or 1 at any point in time.

Nevertheless, one intuition one might have is that as long as the amount of misper-
ception is small, the effect of such misinterpretation will likewise be small, and agents
will “approximately” learn the true state in the long run. Our main results in Section 4
will show that this intuition is not valid. However, to better understand the logic behind
these results, it will be helpful to contrast them with the following benchmark, where a

17In Duffie and Manso’s (2007), Duffie, Malamud, and Manso’s (2009), and Duffie, Giroux, and Manso’s
(2010) related models of learning in decentralized markets (see Section 2.4), the population distribution of
posteriors can be calculated explicitly. The methods rely on these papers’ specific assumptions about state
distributions (binary or Gaussian) and homogeneous preferences, and thus do not apply to our setting.
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small amount of misinterpretation of observed actions does lead to approximately correct
long-run beliefs.

Specifically, consider a single agent who observes an exogenous sequence of binary ran-
dom variables (“actions”) at ∈ {0�1} in all periods t = 1�2� � � �. Unlike in our original
model, where observed actions result from utility-maximizing behavior by other agents,
we assume that conditional on realized state ω, at is distributed i.i.d. over time: at takes
value 0 with probability q(ω) and value 1 with complementary probability, where the
mapping q : Ω → (0�1) from states to probabilities of observing action 0 is continuous
and strictly decreasing. To capture misinterpretation of observed actions, we consider the
possibility that the agent misperceives the mapping q to be q̂ : Ω → (0�1), where q̂ is
again continuous and strictly decreasing.

A classic result due to Berk (1966) (see also Esponda and Pouzo (2016)) characterizes
the agent’s long-run beliefs in this case: Define the Kullback–Leibler (KL) divergence be-
tween probabilities p� p̂ ∈ (0�1) to be KL(p� p̂) := p log(p

p̂
) + (1 − p) log( 1−p

1−p̂
). Then in

any state ω, the agent’s long-run belief assigns probability 1 to the state

ω̂(ω) := argmin
ω̂∈Ω

KL
(
q(ω)� q̂(ω̂)

)

that minimizes KL divergence between the true action 0 frequency q(ω) and the agent’s
perceived frequency q̂(ω̂). Note that ω̂(ω) exists and is unique for each ω, as q and
q̂ are continuous and strictly decreasing. Note also that the minimization problem can
equivalently be written as argminω̂∈Ω |q(ω) − q̂(ω̂)|, since q̂(Ω) is a continuous interval.
An immediate implication is that when the amount of misperception is small, the agent’s
long-run belief is approximately correct, in the sense that the perceived state ω̂(ω) is
approximately equal to the true state ω:

PROPOSITION 0: For any continuous and strictly decreasing q� q̂ : Ω → (0�1), the agent’s
belief in any state ω converges almost surely to a point mass on ω̂(ω) := argminω̂∈Ω KL(q(ω)�
q̂(ω̂)) = argminω̂∈Ω |q(ω) − q̂(ω̂)|, which is strictly increasing and continuous in ω. More-
over, for any δ > 0, there exists ε > 0 such that if supω∈Ω |q̂(ω) − q(ω)| < ε, then
supω∈Ω |ω̂(ω)−ω|< δ.

4. FAILURE OF INFORMATION AGGREGATION UNDER MISPERCEPTION

We now return to analyzing the effect of misperception about the type distribution in
the population setting of Section 2. Our main results contrast sharply with the previous
two benchmarks.

4.1. Main Results

Our first main result finds that information aggregation is highly non-robust to small
amounts of misperception. Whereas Lemma 1 established that under correct perceptions,
agents eventually learn the true state, we now show that even arbitrarily small amounts of
misperception can lead information aggregation to break down.

The breakdown we derive is very stark: Given any type distribution F , we can find
an arbitrarily small amount of misperception under which agents’ long-run beliefs are
state-independent point masses, assigning probability 1 to some fixed state ω̂ regardless
of the true state ω. Moreover, long-run beliefs are arbitrary, in the sense that any state
ω̂ can arise as the long-run point-mass belief under some arbitrarily small amount of
misperception.
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THEOREM 1—Discontinuous Breakdown of Information Aggregation: Fix any F ∈ F
and ω̂ ∈Ω. For any ε > 0, there exists a perception F̂ ∈F with ‖F̂ − F‖< ε under which, in
any state ω, almost all agents’ beliefs converge to a point mass on ω̂.

Several prominent social learning models can give rise to unsuccessful information ag-
gregation even when agents are correctly specified; for example, due to the possibility of
herding and/or confounded learning in some sequential learning models (e.g., Bikhchan-
dani, Hirshleifer, and Welch (1992), Banerjee (1992)).18 However, Theorem 1 gener-
ates a more extreme breakdown of information aggregation—long-run beliefs that are
state-independent point masses—that cannot arise under any correctly specified Bayesian
learning model, because beliefs in such models follow a martingale.

Related instances where agents’ long-run beliefs grow confident in an incorrect state
have been derived in several recent papers that incorporate various forms of misspeci-
fication into sequential learning models (e.g., Eyster and Rabin (2010), Bohren (2016),
Gagnon-Bartsch and Rabin (2017)). The key novelty is that Theorem 1 shows that state-
independent point-mass beliefs can arise even under vanishingly small amounts of misper-
ception. In contrast, the aforementioned papers rely on strong forms of misspecification;19

indeed, in a general model of misspecified sequential learning that nests several of these
types of misspecification, Bohren and Hauser (2019) showed that agents learn the true
state whenever the amount of misspecification is sufficiently small. We discuss the source
of this difference in Section 7.3.

The fact that an arbitrarily small amount of misperception suffices to bring about this
breakdown is also in marked contrast to the single-agent passive-learning benchmark in
Section 3.2, where we saw that the agent’s long-run beliefs are approximately correct when
the amount of misperception is sufficiently small. We discuss the source of this contrast in
Section 4.3, where we will also see why more recent models of misspecified single-agent
active learning likewise lead to approximately successful learning under sufficiently small
amounts of misperception.

As the proof sketch in Section 4.2 will illustrate, for a given type distribution F , the mis-
perceptions F̂ that give rise to the extreme breakdown in Theorem 1 are quite specific,
though Section 4.4 provides natural examples of such misperceptions (e.g., underestima-
tion of type heterogeneity). Of course, Theorem 1 does not suggest that every misper-
ception leads to state-independent point-mass beliefs. Rather, the key implication is that
the correctly specified model need not offer a good approximation of a setting where
agents hold even slightly incorrect beliefs about others’ characteristics. This suggests that
information aggregation under misperception should be studied independently, without
relying on the predictions of the correctly specified model.

As a step in this direction, our second main result therefore investigates the effect
of arbitrary misperceptions F̂ . While in general long-run beliefs need not be fully state-
independent, we show that information aggregation continues to fail, and the failure takes

18Herding is ruled out under either rich type heterogeneity, unbounded private signals, or rich actions (Go-
eree, Palfrey, and Rogers (2006), Smith and Sørensen (2000), Lee (1993)). In a random matching setting,
see, for example, Banerjee and Fudenberg (2004), Wolinsky (1990), Blouin and Serrano (2001) for correctly
specified models where information aggregation can fail.

19For example, in Eyster and Rabin (2010) and Gagnon-Bartsch and Rabin (2017), agents naively believe
that each predecessor’s action reflects solely that person’s private information, fully neglecting the fact that
predecessors’ behavior also reflects their inferences from their own predecessors’ behavior.
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the specific form of “coarse” long-run beliefs and behavior. The result focuses on well-
behaved true and perceived type distributions; specifically, we assume that F and F̂ are
analytic.20

THEOREM 2—Coarse Information Aggregation: Fix any analytic F , F̂ ∈ F with F̂ �= F .
There exists a mapping ω̂∞ : Ω → Ω that is weakly increasing and has finite range such that
in any state ω, almost all agents’ beliefs converge to a point mass on ω̂∞(ω).

Information aggregation in Theorem 2 is coarse in the following sense: Since the map-
ping ω̂∞ from true states ω to long-run point-mass beliefs ω̂∞(ω) is weakly increasing
and has finite range, it partitions the continuous state space Ω= [ω�ω] into finitely many
intervals, and long-run point-mass beliefs are not necessarily fully state-independent, but
are constant within each of these finitely many intervals. This prediction again contrasts
with Proposition 0 from the single-agent benchmark, where the agent’s long-run belief
ω̂(ω) is a strictly increasing and continuous function of ω.

As a result of agents’ coarse long-run beliefs, their long-run behavior also varies only
coarsely with the true state, remaining constant within each interval of the partition gen-
erated by ω̂∞ and changing discretely from one interval to the next. This prediction is
broadly in line with the fact that behavior in many economic settings (e.g., firms’ pric-
ing behavior and individuals’ consumption-savings decisions) is not finely attuned to eco-
nomic fundamentals.21 A rich theory literature provides models of such coarse behavior
that are based on the idea that individuals face limitations in their ability to process or ac-
quire information (e.g., Sims (1998, 2003), Mullainathan (2002), Jehiel (2005), Fryer and
Jackson (2008), Gul, Pesendorfer, and Strzalecki (2017)). Theorem 2 highlights a possible
complementary channel: Agents in our model do not face any difficulties processing their
private information, but coarse behavior emerges because agents’ misperceptions of oth-
ers’ characteristics give rise to coarse aggregation of this dispersed individual information.

The proofs of Theorems 1 and 2 appear in Appendix B. In the next subsection, we
illustrate the basic argument, which relies on the feature that agents’ learning becomes
“decoupled” over time.

4.2. Illustration of Theorems 1 and 2

Step 1: Limit Model. To illustrate the key ideas, Steps 1 and 2 first present and analyze
a heuristic limit model, to which we will refer back throughout the paper. In Step 3 below,
we will show that this limit model approximates agents’ long-run beliefs and behavior in
the original model, allowing us to translate the conclusions obtained in the limit model
back into the original model.

We first consider an arbitrary perception F̂ . The limit model differs from the original
model solely in assuming that at the end of each period t ≥ 1, each agent meets not one,
but infinitely many other agents and observes their period-t actions. By an exact law of

20Function g : R → R is analytic if it is locally given by a convergent power series; that is, for any x0 ∈ R,
there is a neighborhood J of x0 and a sequence of real coefficients (αn)

∞
n=0 such that for all x ∈ J, g(x) =∑∞

n=0 αn(x − x0)
n and the right-hand side converges. As Section 4.2 illustrates, the only feature of analyticity

that Theorem 2 exploits is that analytic F̂ �= F can intersect at most finitely many times on any compact interval;
the theorem remains valid even if F̂ , F are not analytic but have this feature.

21See, for example, Reis (2006a,b) and references therein.
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large numbers, this means that in any state ω, all agents perfectly learn the fraction qt(ω)
of actions 0 that is played in the population in period t.

In period 1, all agents play the action that maximizes their expected utility given their
period-0 private signal. Because of this, if perception F̂ = F is correct, then by observing
q1(ω) at the end of period 1, all agents can correctly back out the true state ω. From
period 2 on, agents then follow a threshold strategy with threshold θ∗(ω), where types
above (respectively, below) θ∗(ω) play action 1 (respectively, action 0). Observing this
behavior in each period is consistent with agents’ belief that the state is ω.

Suppose next that F̂ �= F . Since all agents believe F̂ to be the true type distribution
(and believe this to be common certainty), observing q1(ω) at the end of period 1 leads
agents to commonly believe in some state ω̂1(ω). Since F̂ �= F , ω̂1(ω) need not equal ω,
though by a similar reasoning as in Section 3.2, |ω̂1(ω) − ω| is negligible when ‖F̂ − F‖
is sufficiently small. Given their belief in ω̂1, in period 2, agents then follow a threshold
strategy with threshold θ∗

1 := θ∗(ω̂1).
A key departure from the correct perceptions case arises at the end of period 2. This

takes the form of a possible inconsistency between expected behavior and actual obser-
vations: Given perception F̂ , all agents assign probability 1 to observing fraction F̂(θ∗

1)

of actions 0 at the end of period 2. However, since the true type distribution is F �= F̂ ,
agents’ actual observation at the end of period 2 is q2(ω) = F(θ∗

1), which typically does
not equal F̂(θ∗

1).
The limit model postulates that agents react to such possible “contradictions” as fol-

lows: Upon observing fraction qt(ω) of action 0 at the end of any period t ≥ 2, all
agents update beliefs to assign probability 1 to the state ω̂t(ω) := argminω̂∈Ω KL(qt(ω)�

F̂(θ∗(ω̂))) = argminω̂∈Ω |qt(ω) − F̂(θ∗(ω̂))|. State ω̂t is chosen to best explain observa-
tion qt under perception F̂ , in the sense of minimizing KL-divergence between qt and the
fraction F̂(θ∗(ω̂t)) of actions 0 that agents would have expected to observe if ω̂t had been
common certainty in period t.

Given the updated belief that the state is ω̂t , in period t + 1, agents then follow the
threshold strategy with cutoff θ∗

t := θ∗(ω̂t) and at the end of the period again face a pos-
sible discrepancy between expected behavior F̂(θ∗

t ) and actual behavior F(θ∗
t ). Starting

with ω̂1 as derived above, we thus obtain a process of point-mass beliefs ω̂t in all periods
t ≥ 2 given by

ω̂t = argmin
ω̂∈Ω

KL
(
F

(
θ∗
t−1

)
� F̂

(
θ∗(ω̂)

))
with θ∗

t−1 = θ∗(ω̂t−1)� (1)

We briefly note two features of (1). First, except for boundary cases, the adjusted belief
ω̂t satisfies F̂(θ∗(ω̂t))= F(θ∗

t−1), so that beliefs at the end of each period t perfectly explain
the behavior that was observed in the current period. But, importantly, each belief adjust-
ment is followed by a corresponding adjustment in next period’s behavior, which leads to
a new discrepancy between expected and actual behavior, triggering yet another belief
adjustment. This feature contrasts with the single-agent passive learning benchmark in
Section 3.2, where observed action frequencies qt(ω) in each period were exogenous and
hence were unaffected by changes in the belief about the state, but is also present in re-
cent models of single-agent active learning (e.g., Heidhues, Koszegi, and Strack (2018)).
However, Step 2 will highlight a key distinction between our setting and both types of
single-agent models.
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FIGURE 2.—Left: Starting with any point-mass belief ω̂1, agents face a discrepancy between expecting to
observe fraction F̂(θ∗(ω̂1)) of actions 0 and actually observing F(θ∗(ω̂1)). In response, they adjust beliefs to
a point mass on ω̂2, which perfectly explains the latter observation. But following this adjustment, next-period
behavior is governed by threshold θ∗(ω̂2), giving rise to another discrepancy between expected and actual
behavior F̂(θ∗(ω̂2)) and F(θ∗(ω̂2)). The process of adjustments continues, converging to the unique belief ω̂
under which expected and actual behavior coincide. Right: An example with three steady states ω̂∞, ω̂′

∞, ω̂′′
∞.

Second, the belief adjustment process (1) is of course heuristic, as it involves switching
from assigning probability 1 to state ω̂t−1 at the beginning of period t to assigning proba-
bility 1 to the possibly different state ω̂t at the end of period t. However, as we shall see in
Step 3, in the long run this adjustment process approximates the Bayesian belief dynamics
in the original model: For large t, agents’ beliefs in the original model are “close” to point-
mass beliefs on ω̂t−1 and ω̂t at the beginning and end of period t, but beliefs retain full
support throughout, so that agents do not face any “contradictions” and belief-updating
is always well-defined.

Step 2: Long-Run Beliefs and Decoupled Learning. We now consider long-run beliefs
in the limit model. To illustrate Theorem 1, we first consider a particular choice of F̂ and
F , where F is arbitrary and F̂ crosses F from below at a single point θ∗ = θ∗(ω̂) with
ω̂ ∈ Ω, as shown in the left-hand panel of Figure 2. Example 2 in Section 4.4 provides an
interpretation in terms of underestimation of population heterogeneity. As explained in
Figure 2, starting at any state ω̂1, the ω̂t-process in (1) must converge to the limit belief
ω̂ that corresponds to the crossing point of F̂ and F . Thus, even though, as noted in
Step 1 above, the period-1 belief ω̂1 depends on the true state ω (and indeed is arbitrarily
close to ω when the amount of misperception is small), agents’ long-run belief assigns
probability 1 to the same fixed state ω̂ regardless of the true state ω. Moreover, observe
that by suitably choosing F̂ , both the amount of misperception ‖F̂ − F‖ and the long-run
belief ω̂ ∈ Ω can be arbitrary. Together with the justification of the limit model in Step 3,
these observations will establish Theorem 1.22

To illustrate Theorem 2, we next consider long-run beliefs for arbitrary F and F̂ . Let

SS(F� F̂) :=
{
ω̂∞ ∈ Ω : ω̂∞ = argmin

ω̂∈Ω
KL

(
F

(
θ∗(ω̂∞)

)
� F̂

(
θ∗(ω̂)

))}
(2)

22From this, it is clear that Theorem 1 does not rely on the use of the total variation distance. It remains
valid under any norm on F with the feature that for any ω̂, there are perceptions F̂ that are arbitrarily close
to F but cross F only once from below at θ∗(ω̂). Such norms include the sup norm, all Lp norms, the C1 norm
(‖F̂ − F‖C1 := supθ∈R |F̂(θ)− F(θ)| + supθ∈R |F̂ ′(θ)− F ′(θ)|), etc.



2296 M. FRICK, R. IIJIMA, AND Y. ISHII

denote the set of steady states of process (1). It is easy to show that any steady state ω̂∞
satisfies either F(θ∗(ω̂∞))= F̂(θ∗(ω̂∞)) or ω̂∞ ∈ {ω�ω}; thus, steady states either feature
no discrepancy between the true and perceived fraction of actions 0 or are boundary
points of the state space. Moreover, based on the observation that ω̂t+1 is increasing in
ω̂t for all t, we can show that in any state ω, process (1) converges to some ω̂∞(ω) ∈
SS(F� F̂), where ω̂∞(ω) is weakly increasing in ω. Finally, observe that when F and F̂

are analytic with F̂ �= F , then F and F̂ coincide in at most finitely many points on the
compact interval [θ∗(ω)�θ∗(ω)].23 As a result, SS(F� F̂) is finite; the right-hand panel of
Figure 2 provides an example in which there are three steady states. Thus, process (1)
yields a weakly increasing and finite-ranged map ω̂∞ : Ω → Ω from realized states ω to
limit beliefs ω̂∞(ω) ∈ SS(F� F̂). Together with Step 3, this will establish Theorem 2.

Before proceeding to Step 3, we summarize the key feature driving both Theorems 1
and 2: This is that agents’ learning becomes decoupled from the true state ω in the long
run, as is captured by the fact that the set of steady states in (2) depends on F and F̂ ,
but does not depend on ω. Intuitively, this reflects that, over time, agents’ belief-updating
places less and less weight on own initial private signals and increasingly more weight
on observations of others’ behavior, but (unlike private signals) others’ behavior depends
on the true state only indirectly through others’ beliefs.24 As a result, agents’ long-run in-
ferences are driven entirely by the way in which they interpret observed actions. Under
correct perceptions, decoupling leads to SS(F�F) = Ω; that is, all states are steady states
regardless of ω, but successful information aggregation is nevertheless possible, because
initial private signals determine which steady state long-run beliefs converge to. By con-
trast, when agents even slightly misperceive the type distribution, then as we have seen,
the set of steady states can be very limited, because only few states might allow agents
to reconcile observed actions with their perceptions. Thus, depending on the nature of
misperception, long-run beliefs either depend only coarsely on the true state (as in Theo-
rem 2), or are even fully independent of ω (as in Theorem 1).

As we discuss in Section 4.3, this decoupling mechanism distinguishes our social learn-
ing setting from both the single-agent passive learning benchmark in Section 3.2, as well
as recent models of misspecified single-agent active learning.

Step 3: Justifying the Limit Model. Finally, we return to the original model and sketch
why, in the long run, belief-updating and behavior are approximated by the limit model.
In the original model, each agent’s observations up to period t + 1 consist of a random
sample (a1� � � � � at) of other agents’ actions in periods 1 through t. Belief-updating in this
model is more complicated than adjustment process (1) for two main reasons: first, agents’
inference problem is not time-stationary; second, due to sampling noise, observations
(and hence beliefs) differ across agents.

In Appendix B, we overcome both complications by considering the empirical fre-
quency āt := 1

t

∑t

τ=1 aτ of actions that each agent observes. First, since each agent believes
that his perception F̂ is correct and is shared by everyone, he believes (by Lemma 1)
that the population learns the true state in the long run and that behavior converges to
the corresponding threshold strategy. Based on this, Lemma B.2 shows that for large

23This follows from the principle of permanence for analytic functions; see footnote 53.
24Indeed, in the limit model (though not in our original model), belief-updating becomes decoupled from

the true state starting in period 2, as adjustments from ω̂t−1 to ω̂t in (1) are independent of the realized ω in
all periods t ≥ 2.
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enough t, āt provides an approximate sufficient statistic for each agent’s inferences;
moreover, inferences are approximately time-stationary, in the sense that each agent’s
time t posterior, while having full support, is close to a point-mass belief on the state
argminω̂ KL(1 − āt� F̂(θ

∗(ω̂)) that best explains āt under perception F̂ . Second, most
agents’ observed empirical frequencies āt , and hence their beliefs, are very similar in the
long run. Specifically, let qτ(ω) denote the true action 0 share in the population at time
τ. Then, based on a law of large numbers argument, Lemma B.3 shows that in the long
run, an arbitrarily large fraction of agents observes 1 − āt that is arbitrarily close to the
true time average share q̄t(ω) := 1

t

∑t

τ=1 qτ(ω) of action 0, where q̄t(ω) converges.25

Combining these two observations, Proposition B.1 shows that for large t, most agents’
belief-updating is approximated by the following sequence of commonly held point-mass
beliefs ω̂t and behavior in the population is close to the corresponding threshold strategy:

qt+1(ω) ≈ F
(
θ∗(ω̂t)

)
with ω̂t = argmin

ω̂∈Ω
KL

(
q̄t(ω)� F̂

(
θ∗(ω̂)

))
�

where the approximation “≈” becomes arbitrarily precise as t → ∞. Since q̄t(ω) con-
verges and hence is close to qt(ω) for large t, this yields

ω̂t ≈ argmin
ω̂∈Ω

KL
(
F

(
θ∗(ω̂t−1)

)
� F̂

(
θ∗(ω̂)

))
�

that is, an approximate version of the updating process (1) in the limit model. In particu-
lar, beliefs in the original model must converge to steady states as given by (2).

4.3. Discussion of Theorems 1 and 2

Persistence of Misperceptions. In contrast with the heuristic updating process in the
limit model, agents in our model are Bayesian and assign positive probability to every fi-
nite action sequence; thus, they never encounter any “contradictory” information in finite
time. Nevertheless, one might wonder whether in the limit as agents accumulate infinitely
many observations, they should realize that their perception is incorrect. There is a sense
in which this is not the case. This is because (except for boundary cases) almost all agents’
observed empirical action frequencies limt→∞ 1

t

∑t

τ=1 aτ converge precisely to the predic-
tion 1 − F̂(θ∗(ω̂∞)) under their limit belief.26 This suggests that misperceptions in this
environment can be a relatively persistent phenomenon.

Comparison With Single-Agent Learning. Section 3.2 discussed a benchmark model of
single-agent passive learning. In addition, more recent papers (e.g., Nyarko (1991), Hei-
dhues, Koszegi, and Strack (2018, 2019), He (2018)) study the effect of misspecification
in single-agent environments with active learning, where the agent’s actions influence the
distribution of signals he observes in each period. However, just as the passive learning
benchmark, all aforementioned models again differ from ours in that long-run beliefs
under small enough amounts of misspecification are approximately correct. Below we il-
lustrate that this is due to the fact that, as long as the signal technology satisfies an identifi-
cation assumption, single-agent learning does not become decoupled from the true state.

25Here the law of large numbers applies since, conditional on each state ω, each agent’s action observations
(a1� � � � � at) are independently (although not identically) distributed over time.

26This observation is an analog of Proposition 6 in Heidhues, Koszegi, and Strack (2018).
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At the same time, Section 7.2 points to natural single-agent settings where identification
failures in the signal technology give rise to decoupled learning and shows that this can
lead to similar fragility results as we found above.

To see the idea, consider an abstract model of single-agent active learning: In each pe-
riod t = 1�2� � � �, the agent chooses an action xt ∈ X = [0�1] to maximize his expected
state-dependent payoff given his belief μt ∈ �(Ω) about the state. Assume for simplic-
ity that the optimal action x∗(μ) is unique for each current belief μ ∈ �(Ω), and write
x∗(ω) := x∗(δω). At the end of each period t, the agent observes a signal at ∈ {0�1}, where
the probability q(xt�ω) that at = 0 depends on both the true state ω and his period-t ac-
tion xt .27 Upon observing at , the agent updates his belief about the state. However, in so
doing, he perceives mapping q : X × Ω → (0�1) to be q̂ : X × Ω → (0�1), where q and
q̂ are continuous in both arguments. The passive learning benchmark corresponds to the
special case where q and q̂ do not depend on x.

Assume that q(x�ω) and q̂(x�ω) are strictly decreasing in ω for all x, so that both
true and perceived signal probabilities uniquely identify the state under each action. This
is analogous to our assumption under passive learning that q� q̂ : Ω → (0�1) are strictly
decreasing in ω, and is also satisfied by the aforementioned active learning models. Then,
as in Section 4.2, we can consider a limit model where the agent observes not one, but
infinitely many draws of signals each period, and we can set up a process of point-mass
beliefs analogous to (1).28 As before, the steady states ω̂∞ of this process minimize the
discrepancy between the actual and perceived probabilities of signal 0:

SS(q� q̂) =
{
ω̂∞ ∈ Ω : ω̂∞ ∈ argmin

ω̂∈Ω
KL

(
q
(
x∗(ω̂∞)�ω

)
� q̂

(
x∗(ω̂∞)� ω̂

))}
� (3)

with equality q(x∗(ω̂∞)�ω) = q̂(x∗(ω̂∞)� ω̂∞) at interior steady states. However, the key
difference with (2) is that the set of steady states in (3) depends on the true state ω. This
reflects that belief-updating in this model does not become decoupled from the true state
in the long run, because even asymptotically, the actual signal observations q(x∗(ω̂∞)�ω)
depend directly on ω, providing an “anchor.” In particular, in contrast with our obser-
vation that SS(F�F) = Ω in Section 4.2, the correctly specified case q̂ = q now has the
true state ω as its unique steady state. Under mild regularity conditions which ensure that
the implicit function theorem applies, this implies that small amounts of misperception
continue to yield steady states (and hence long-run beliefs) that are close to the truth; see
Supplemental Appendix E.1 (Frick, Iijima, and Ishii (2020)).

Misperceptions About Signal Distributions. Theorems 1 and 2 have considered misper-
ceptions about the type distribution F , while assuming that agents are correctly specified
about the distributions 	(·|ω) of private signals. Focusing on the limit model in Sec-
tion 4.2, we briefly illustrate that incorporating misperceptions about 	(·|ω) in addition

27We assume that action set X is the unit interval and signals at are binary in order to make this model as
analogous as possible to our model, where x∗(ω̂) corresponds to the aggregate action frequency F(θ∗(ω̂)) and
at to the observation of a random agent j’s action ajt . However, neither assumption is essential for the points
we make.

28Specifically, the agent chooses his first action x∗
1 based on his prior and arrives at a point-mass belief in

the unique state ω̂1 that best explains the observed signal frequency q(x∗
1�ω) given his perception q̂. In all

subsequent periods t, given initial belief ω̂t−1, he chooses action x∗
t = x∗(ω̂t−1), but then faces a discrepancy

between expected and observed signal frequencies q̂(x∗
t � ω̂t−1) and q(x∗

t �ω), to which he responds by updating
his belief to ω̂t = argminω̂∈Ω KL(q(x∗

t �ω)� q̂(x∗
t � ω̂)).
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to misperceptions about F would not affect our results; by contrast, if agents correctly per-
ceive the type distribution and only (commonly) misperceive 	(·|ω) to be some 	̂(·|ω),
then long-run beliefs are approximately correct under small enough amounts of misper-
ception.29 Intuitively, this reflects the fact that long-run inferences are based on observed
behavior rather than initial private signals and hence do not depend on 	̂. Indeed, in the
limit model, 	̂ only affects which belief ω̂1 agents reach at the end of period 1; in all peri-
ods t ≥ 2, behavior follows a threshold strategy with respect to the current belief ω̂t−1, and
hence the perceived type distribution F̂ is all that matters for agents’ inferences. If F̂ = F ,
then agents do not further adjust their period-1 belief ω̂1, and the latter is close to ω when
	̂ is close to 	. If F̂ �= F , then regardless of 	̂, agents’ belief process continues to follow
(1), yielding the same set of steady states SS(F� F̂) as before and leaving Theorems 1 and
2 unaffected.

Interpretation of Discontinuity and Countervailing Forces. While Theorem 1 exhibits a
stark discontinuity of long-run beliefs to small amounts of misperception, our preferred
interpretation of this result places less emphasis on the formal discontinuity than on the
substantive implication that slight misperceptions can have a large negative impact on
social learning. Indeed, below we highlight two countervailing forces that render long-
run beliefs continuous in F̂ , but show that when these forces are weak, this substantive
implication is unaffected:

Repeated private signals. As in much of the social learning literature, we have assumed
that each agent has access to a single private signal about ω, and our results are unaf-
fected if agents receive private signals in finitely many periods.30 On the other hand, if
agents receive private signals in all periods, then one can show that agents’ long-run be-
liefs ω̂∞(ω) depend on the true state ω and vary continuously with F̂ ; intuitively, this
setting is a hybrid of social learning and single-agent passive learning, and as discussed
above, belief dynamics in the latter do not become decoupled from the true state over
time. However, whenever agents’ repeated private signals are sufficiently uninformative,
we obtain an approximate analog of Theorem 1, where for any ω̂ there exist arbitrar-
ily small amounts of misperception F̂ such that agents’ long-run beliefs ω̂∞(ω) in each
state are arbitrarily close to a point mass on ω̂.31 Thus, whenever agents’ dominant source
of information is social learning rather than private signals, the basic insight that slight
misperceptions of others’ characteristics can have a large negative impact on information
aggregation remains valid.32

29Theorems 1–2 are also unaffected if agents have an incorrect common prior Ψ̂ over states, and in this case
information aggregation is successful if F̂ = F .

30If private signals are costly, then agents might choose to acquire only finitely many signals under certain
classes of cost functions (e.g., Ali (2018), Burguet and Vives (2000)).

31More formally, suppose agents receive i.i.d. signal draws from 	(·|ω) in all periods. For any analytic
F , F̂ , similar reasoning as in the proof of Theorem 2 shows that agents’ long-run beliefs are given by state-
dependent point-mass beliefs ω̂∞(ω) ∈ argminω̂ KL(F(θ∗(ω̂∞(ω))� F̂(θ∗(ω̂)))+ KL(	(·|ω)�	(·|ω̂)). Then a
similar logic as for Theorem 1 shows that for any F , ω̂, and ε > 0, there exists F̂ with ‖F̂ − F‖ < ε and δ > 0
such that if ‖	(·|ω)−	(·|ω)‖ < δ, then in all states ω, almost all agents’ beliefs converge to a point mass on
some ω̂∞(ω) ∈ [ω̂− ε� ω̂+ ε].

32Likewise, if some fraction of agents ignore others’ actions and act solely based on their initial private
signals, the same approximate analog of Theorem 1 holds whenever this fraction is small.
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Finite horizon. Following much of the literature on information aggregation, our anal-
ysis focuses on asymptotic beliefs. Given any finite horizon t, it is not difficult to see that
the distribution μω

t of agents’ posteriors is continuous in F̂ . Nevertheless, analogously
to the previous paragraph, Theorem 1 immediately entails that even under arbitrarily
small amounts of misperception, μω

t can be arbitrarily close to a Dirac measure on the
state-independent point mass δω̂ if t is large enough. One implication is that, under mis-
perception, halting agents’ interactions after a certain number of periods may improve ex
ante expected payoffs; this is not the case for correctly specified social learning models
(even in the presence of herding).

4.4. Examples: Nature of Misperception Shapes Long-Run Beliefs

As we have argued, a key implication of Theorem 1 is that information aggregation un-
der misperception should be studied in its own right, without relying on the predictions
of the correctly specified benchmark. In characterizing long-run beliefs under any (ana-
lytic) F and F̂ as steady states SS(F� F̂) of process (1), the proof of Theorem 2 provides a
starting point for studying how the nature of agents’ misperception shapes their long-run
beliefs. In the following, we illustrate this for two natural forms of misperception.

EXAMPLE 1—First-Order Stochastic Dominance and “Fake” Recommenders: We first
consider the possibility that the true type distribution first-order stochastically dominates
agents’ perceptions or vice versa, so that agents systematically under- or overestimate the
share of types above any given level. As discussed in Section 2.4, one natural example
of this is word-of-mouth communication about a new product where agents underesti-
mate the share of “fake” recommenders. Fake recommenders can be modeled as types
θ ≥ θ∗(ω) who take action 1 (“recommend”) irrespective of the true quality of the prod-
uct; underestimating their share then naturally corresponds to F̂ being first-order stochas-
tically dominated by F .33 In the correctly specified model of Section 3.1, the presence of
fake recommenders has no long-run effect, as agents continue to learn the true state.

By contrast, the following result shows that fake recommendations can be a highly ef-
fective tool for manipulating consumers’ beliefs, suggesting a possible rationale for the
prevalence of this marketing strategy: As long as consumers slightly underestimate the
share of such recommendations, their presence can lead to drastic overoptimism about
the quality of the product, in the sense that long-run beliefs are a point mass on the high-
est quality ω, regardless of the true quality ω.

For this result, it is sufficient that F strictly first-order stochastically dominates F̂ on the set
Θ∗ := (θ∗(ω)�θ∗(ω)); that is, F(θ) < F̂(θ) for all θ ∈ Θ∗, which we denote by F 
FOΘ∗ F̂ .
Indeed, all types below θ∗(ω) (resp., above θ∗(ω)) have dominant action 0 (resp., 1), so
that agents’ perceptions about the relative type distributions outside Θ∗ are irrelevant.

COROLLARY 1—Overoptimism/-pessimism: Fix any F� F̂ ∈ F . If F 
FOΘ∗ F̂ (respec-
tively, F̂ 
FOΘ∗ F), then in any state ω, almost all agents’ beliefs converge to a point mass
on ω (respectively, ω).

33Concretely, suppose that the true type distribution F = βP + (1 − β)G is a convex combination of a dis-
tribution P of “promotional” types whose support is contained in [θ∗(ω)�+∞) and a full-support distribution
G of “genuine” types; and suppose that F̂ = β̂P + (1 − β̂)G where β̂ < β.
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FIGURE 3.—Overoptimism under FOSD. When F 
FOΘ∗ F̂ , beliefs in all states converge to a point mass on
ω.

Figure 3 shows the intuition in the limit model. When agents underestimate the share
of types above any given level, then under any belief about the state, they are surprised
by the lower-than-expected frequency of action 0. They respond with continual upward
adjustments to their beliefs about the state, converging eventually to a point mass on the
unique steady state ω.

EXAMPLE 2—Under-/Overestimation of Population Heterogeneity: Another widely
documented form of misperception is that in many contexts, individuals tend to underesti-
mate type heterogeneity in society.34 We capture this by means of the commonly used dis-
persiveness order (Shaked and Shanthikumar (2007)), whereby F is more dispersive than
F̂ if F−1(x) − F−1(y) ≥ F̂−1(x) − F̂−1(y) for all type quantiles x� y ∈ (0�1) with x > y;
we denote this by F �disp F̂ . For example, under Gaussian distributions F ∼ N (μ�σ2),
F̂ ∼ N (μ̂� σ̂2), this takes the simple parametric form that perceived type variance σ̂2 is
lower than actual variance σ2. We rule out the possibility that F 
FOΘ∗ F̂ or F̂ 
FOΘ∗ F , as
this is covered by Corollary 1 above.

The following result shows that underestimation of population heterogeneity leads to
conservative long-run beliefs, in the sense that beliefs in all states converge to a point mass
on an interior state ω̂ ∈ (ω�ω):

COROLLARY 2—Conservative Beliefs: Fix any analytic F� F̂ ∈ F with F̂ �= F such that
F̂ , F are not strictly first-order stochastic dominance ranked on Θ∗. If F �disp F̂ , then there
exists some ω̂ ∈ (ω�ω) such that in any state ω, almost all agents’ beliefs converge to a point
mass on ω̂.

Intuitively, when agents underestimate type heterogeneity, they overestimate the sen-
sitivity of the population action distribution against the state, because in any state, they
expect different agents to take more similar actions than they actually do. As a result,
their belief-updates after observing others’ actions are more “sluggish” than they should
be, leading to conservatism in long-run beliefs. More formally, Figure 4 (left) shows that
Corollary 2 corresponds to a setting where F̂ crosses F from below in a single point
θ∗(ω̂) that corresponds to an interior state ω̂ ∈ (ω�ω). As we saw in the proof sketch

34For example, several studies (e.g., Norton and Ariely (2011), Engelhardt and Wagener (2015)) found
systematic underestimation of wealth inequality in many countries.
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FIGURE 4.—Left: Underestimation of population heterogeneity leads to conservative long-run beliefs.
Right: Overestimation leads to extreme beliefs.

of Theorem 1, this implies SS(F� F̂) = {ω̂}. The same conclusion as in Corollary 2 can
also arise in the context of fake product recommendations, if in addition to the fake pos-
itive recommenders in Example 1, there are fake negative recommenders (modeled as
types θ ≤ θ∗(ω)), and agents underestimate the share of both fake types.35

In other contexts, people are found to overestimate population heterogeneity.36 This
corresponds to F̂ �disp F , where we again assume that F̂ , F are not first-order stochastic
dominance ranked on Θ∗. As illustrated in Figure 4 (right), in this case F̂ crosses F from
above in a single point θ∗(ω̂) with ω̂ ∈ (ω�ω), and the limit model predicts convergence
to the extreme beliefs ω and ω in almost all states ω.37

5. RICH VERSUS COARSE STATE SPACES

In this section, we show that a key determinant of the fragility of information aggre-
gation to misperception is how rich a space of uncertainty agents face. We also discuss
some design implications of this finding. Throughout, we fix some countably infinite set
of states {ω1�ω2� � � �} that is dense in Ω = [ω�ω] and let Ωn := {ω1� � � � �ωn} for each n.

The following result makes two points. First, for any fixed finite state space Ωn (with
arbitrary full-support prior Ψn ∈ �(Ωn)), information aggregation is robust, in the sense
that if the amount of misperception is small enough, agents learn the true state in Ωn. Sec-
ond, however, the larger the state space Ωn, the more sensitive information aggregation is
to small amounts of misperception, and in the limit as n→ ∞, we obtain an approximate
analog of the extreme breakdown of information aggregation in Theorem 1:

THEOREM 3—Finite State Space: Fix any F ∈F .

35Extending footnote 33, suppose the true type distribution is F = βP +γN + (1 −β−γ)G, where N is the
distribution of “negative promotional” types with suppN ⊆ (−∞� θ∗(ω)], while F̂ = β̂P + γ̂N + (1 − β̂− γ̂)G

with β̂ < β, γ̂ < γ. Then F̂ crosses F from below in a single point in Θ∗ provided (β+γ− β̂− γ̂)(G(θ∗(ω))−
G(θ∗(ω))) > γ − γ̂; this holds whenever the genuine type distribution G puts high enough mass on non-
dominant types.

36See, for example, Ahler (2014) in the context of perceived political attitudes.
37Note that, in addition to ω, ω, the set of steady states (2) also includes ω̂. Thus, Theorem 2 only im-

plies that agents’ long-run beliefs in the original model are given by a weakly increasing mapping ω̂∞ : Ω →
{ω�ω̂�ω}. However, steady state ω̂ is unstable under the limit model dynamics, because in almost all states
ω, (1) converges to either ω or ω. Given this, we conjecture that in the original model, ω̂∞(ω) likewise takes
values ω or ω in almost all states ω.
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1. Fix any Ωn. There exists εn > 0 such that under any perception F̂ ∈F with ‖F̂−F‖ < εn

and in any state ω ∈Ωn, almost all agents’ beliefs converge to a point mass on ω.
2. Fix any ω̂ ∈ Ω. For any ε > 0, there exists N and a perception F̂ ∈F with ‖F̂ − F‖< ε

under which for any state space Ωn with n ≥ N and in any state ω ∈ Ωn, almost all
agents’ beliefs converge to a point mass on some ω̂∞(ω) ∈ [ω̂− ε� ω̂+ ε].

The second part of Theorem 3 offers an approximate analog of Theorem 1 in the fol-
lowing sense: For any ω̂, Theorem 1 exhibits arbitrarily small amounts of misperception
such that agents’ long-run belief is a state-independent point mass on ω̂. In the present
setting, agents’ beliefs converge to a point mass on ω̂∞(ω), which may depend on the true
state ω. However, Theorem 3 exhibits arbitrarily small amounts of misperception such
that in all large enough state spaces Ωn, agents’ long-run belief ω̂∞(ω) is arbitrarily close
to a state-independent point mass on ω̂. An immediate implication is that in the first part
of Theorem 3, the amount of misperception εn below which information aggregation is
successful in Ωn shrinks to 0 as n → ∞.

We prove Theorem 3 in Appendix C. To see the intuition for the first part, suppose that
n = 2. Consider the limit model from Section 4.2, whose conclusions can again be shown
to approximate those of the original model in the long run. Just as in the continuous state
setting, after observing the action frequency in the population at the end of period 1, all
agents again commonly believe in some state ω̂1; and as summarized by equation (1),
from period 2 on, agents play threshold strategies according to their current point-mass
beliefs ω̂t and adjust these beliefs at the end of each period to explain the observed action
frequency in that period under their misperception F̂ . Analogously to the continuous state
case, ω̂1 again depends on the true state ω and converges to ω as ‖F̂ − F‖ → 0; in the
binary state setting, this means that ω̂1 in fact equals the true state when F̂ is sufficiently
close to F .

However, the key difference with the continuous state setting concerns belief adjust-
ments from period 2 on. In the continuous setting, whenever F̂(θ∗(ω̂1)) �= F(θ∗(ω̂1)),
then (ignoring boundary cases) agents can find some new point-mass belief ω̂2 that better
explains observed behavior F(θ∗(ω̂1)); that is, even small discrepancies between expected
and observed behavior trigger a sequence of belief adjustments and corresponding adjust-
ments in behavior, as we highlighted in Section 4.2.

By contrast, in the binary state setting, whenever the amount of misperception is suffi-
ciently small, agents do not further adjust their beliefs in period 2 and beyond. To see this,
suppose, say, that ω̂1 = ω1, so that observed behavior in period 2 is F(θ∗(ω1)). Then, even
though expected behavior F̂(θ∗(ω1)) under ω1 does not perfectly match this observed be-
havior, there is only one other possible state ω2, and when ‖F̂ − F‖ is sufficiently small,
expected behavior F̂(θ∗(ω2)) under ω2 will be even farther from F(θ∗(ω1)) than under
ω1. This is illustrated in Figure 5. Thus, the binary state setting is robust to small amounts
of misperception, because small discrepancies between expected and observed behavior
do not trigger adjustments to beliefs about the state. Given the coarseness of the state
space, believing in the true state ω is sustainable, as the behavior this gives rise to cannot
be better explained by any other state.

However, the second part of Theorem 3 implies that as the state space becomes richer,
the amount of misperception ε under which information aggregation remains successful
becomes smaller and smaller. Intuitively, any discrepancy between observed and expected
behavior is more likely to trigger a belief adjustment the more alternative states there
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FIGURE 5.—The limit model with a binary state space Ω = {ω1�ω2}. When ω̂t = ω1, then for small enough
amount of misperception, actual behavior F(θ∗(ω1)) is better explained by expected behavior F̂(θ∗(ω1)) under
the true state ω1 than by expected behavior F̂(θ∗(ω2)) under the only other state ω2.

are that could explain this discrepancy. In the limit as the number of states approaches
infinity, ε shrinks to 0, thus effectively restoring the conclusion of Theorem 1.

Many settings of economic interest naturally feature rich state spaces, from safety levels
of new products to market fundamentals in decentralized trade settings. In such settings,
an important implication of Theorem 3 is that there can be a benefit to “simplifying”
agents’ learning environment, for instance by making their private information or their
payoffs less sensitive to fine details of the fundamentals. The following example illustrates
this point in the context of public news releases.38

EXAMPLE 3—Benefits of Undetailed Public News: Suppose that agents’ period-0 pri-
vate information is obtained in the following manner. Similarly to Myatt and Wallace
(2014), there is a benevolent sender (e.g., a central bank or consumer protection agency)
that acquires and truthfully communicates information about the state of the world (e.g.,
market fundamentals or the safety of a new product) subject to two frictions: first, there
may be limits on the sender’s ability to acquire information; second, there is some “re-
ceiver noise,” in that any given news release might be interpreted differently by different
agents.

This is modeled as follows. First, in each state ω ∈ Ω = [ω�ω], the sender observes
a signal σ(ω) ∈ R, where σ : Ω → R is weakly increasing; here the partition Πσ :=
{σ−1(m) : m ∈ R} of Ω represents the sender’s possibly imperfect information about the
state. Second, the sender communicates his signal σ(ω), but each agent observes this sig-
nal with some idiosyncratic noise; specifically, agent i observes signal si = σ(ω) + ηi,
where ηi is drawn i.i.d. across agents and states from a mean zero distribution with
positive log-concave density on R.39 The induced private signal distributions 	(si|ω) =
Pr(σ(ω) + ηi ≤ si) are measurable with respect to the sender’s partition Πσ . Thus,
a strictly increasing σ (i.e., a perfectly informed sender) corresponds to the continuous
state space setting of Section 2, while if σ has finite range, then the setting is isomorphic
to one with a finite state space where each state corresponds to a cell of Πσ .

38An analogous example can illustrate the benefits of trading “simpler” financial assets; see Example 4 in
the previous working paper version, Frick, Iijima, and Ishii (2019b).

39Log-concave densities of ηi ensure that signal distributions satisfy the monotone likelihood ratio property.
We assume for simplicity that ηi does not vary across different sender signal technologies σ . Introducing such
variation does not affect our conclusions, as long as ηi always has full support.
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If in all subsequent periods t ≥ 1 agents draw inferences from each other’s behavior as
in our model in Section 2, then our analysis implies the following. If agents are correct
about the type distribution F , then the better informed the sender (i.e., the finer Πσ)
the better this is for long-run learning, as agents’ beliefs converge to a point mass on the
correct cell of Πσ ; in particular, if and only if the sender is perfectly informed, agents
always learn the exact state. By contrast, if agents’ perception F̂ is even slightly incorrect,
this gives rise to the following new trade-off: On the one hand, the finer Πσ , the more
precise is agents’ long-run information about the state if aggregation is successful; but
on the other hand, information aggregation is more sensitive to misperception and, at
worst, may break down completely. As a result, worse informed senders (i.e., coarser
partitions Πσ) can be better. Moreover, even if a benevolent sender has access to precise
information about the state, he has a rationale to commit not to fully release it (as might
be achieved, e.g., by central banks establishing a reputation for “vague” or “undetailed”
announcements).40

6. MORE GENERAL PERCEPTIONS

So far, we have assumed that all agents share the same perception F̂ of the type distri-
bution and that this is common certainty among agents. Under this assumption, agents’
first-order beliefs about F may be incorrect, but their higher-order beliefs (about other
agents’ beliefs about F and others’ beliefs about others’ beliefs about F , etc.) are cor-
rect.41 Thus, Theorem 1 highlights that slightly incorrect first-order beliefs are enough to
generate extreme departures from the correctly specified model.

At the same time, an important question in many models featuring agents that are in
some way “non-standard” is how such agents interact with standard and sophisticated
agents, who are aware of the presence of these non-standard agents. In Section 6.1, we
investigate this question in our setting by incorporating a fraction of agents who know
the true type distribution. We show that there are learning externalities between the two
groups of agents that give rise to a new form of non-robustness: Information aggregation
is highly sensitive to sophisticated agents’ second-order beliefs. In addition, Section 6.2
briefly discusses other generalizations of our baseline model of perceptions.

6.1. Interaction Between Correct and Incorrect Agents

Specifically, we now extend our baseline model so that (independently of types) fraction
α ∈ [0�1] of agents (referred to as incorrect agents) misperceive the type distribution to be
F̂ and believe that F̂ is common certainty among all agents. The remaining fraction 1 −α
of agents know the true type distribution F and are aware of the presence of incorrect
agents and their beliefs. However, we allow for the possibility that they may be (slightly)
wrong about the fraction of incorrect agents in the population; specifically, they perceive
this fraction to be α̂. We refer to this second group of agents as correct if α̂= α and quasi-
correct if α̂ �= α. Our baseline model corresponds to the case where α= 1.

We first show that correct agents, who exactly know the fraction of incorrect agents,
are able to learn the true state in the long run. Moreover, correct agents exert a positive

40This rationale for vague communication is complementary to ones based on strategic externalities across
agents (e.g., Morris and Shin (2002)) or between sender and receiver ((e.g., Crawford and Sobel (1982)).

41This setting also has the feature that when F̂ is close to F , then agents’ hierarchy of beliefs is close in
the product topology (as well as the uniform topology with respect to the Prokhorov metric) to the correctly
specified setting where there is common certainty of F .
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externality on the learning of incorrect agents: In contrast with the baseline model, incor-
rect agents are now able to approximately learn the true state as long as their amount of
misperception is sufficiently small.42

PROPOSITION 1: Fix any α̂= α< 1.
1. Fix any F ∈ F . Under any F̂ ∈ F and in any state ω, almost all correct agents’ beliefs

converge to a point mass on ω.
2. Fix any analytic F ∈ F and any δ > 0. There exists ε > 0 such that under any analytic

F̂ ∈F with ‖F̂ −F‖ < ε and in any state ω, almost all incorrect agents’ beliefs converge
to a point mass on some state ω̂∞(ω) with |ω̂∞(ω)−ω|< δ.

However, consider next the case of quasi-correct agents, who slightly misperceive the
fraction of incorrect agents. Then Proposition 1 breaks down, and now it is the incorrect
agents who exert a negative externality on quasi-correct agents’ learning. Specifically, the
following result extends Theorem 1 by showing that the presence of incorrect agents with
an arbitrarily small amount of misperception can lead to state-independent and arbitrary
long-run beliefs among both groups of agents; moreover, for this to occur, the fraction
α > 0 of incorrect agents can be arbitrarily small and quasi-correct agents’ perception α̂
of this fraction can be arbitrarily close to the truth, as long as α̂ �= α.

PROPOSITION 2: Fix any F ∈F , ω̂ ∈ Ω, and α̂�α > 0 with α̂ �= α. For any ε > 0, there ex-
ists F̂ ∈F with ‖F̂ −F‖ < ε such that in any state ω, almost all (quasi-correct and incorrect)
agents’ beliefs converge to a point mass on ω̂.

The proofs of Propositions 1 and 2 appear in Supplemental Appendix D. The intuition
behind Proposition 1 is that since correct agents know the fraction of incorrect agents,
their knowledge of F and F̂ allows them to back out the true state from observed behavior
in the long run, just as in Lemma 1. Given this, the fact that correct agents’ long-run
behavior depends on the true state ω provides an anchor for incorrect agents’ belief-
updating even asymptotically, similar to the discussion of repeated informative private
signals in Section 4.3.

By contrast, in Proposition 2, even if quasi-correct agents are only slightly wrong about
α, then despite knowing the true type distribution and incorrect agents’ misperception,
they too face discrepancies between actual and anticipated behavior. This gives rise to
an analogous belief adjustment process as in Section 4.2. Moreover (ignoring boundary
cases), incorrect and quasi-correct agents’ steady states (ω̂I

∞� ω̂C
∞) under this process must

coincide: Indeed, when α̂ �= α, this is the only way for quasi-correct agents not to face a
discrepancy between the actual action 0 frequency αF(θ∗(ω̂I

∞))+ (1 −α)F(θ∗(ω̂C
∞)) and

their expected frequency α̂F(θ∗(ω̂I
∞)) + (1 − α̂)F(θ∗(ω̂C

∞)). As a result, for any F̂ �= F ,
long-run outcomes are exactly the same as if there were only incorrect agents, yielding the
above generalization of Theorem 1. Theorem 2 can be generalized analogously.

42Note that Lemma 1 follows as a special case of Proposition 1 with α = 0. Note also that Proposition 1
holds for α arbitrarily close to 1. Thus, even an arbitrarily small fraction of sophisticated agents is enough to
enable incorrect agents to approximately learn the state. However, similarly to Theorem 3, it can be shown that
incorrect agents’ learning is more sensitive to misperception the smaller the fraction of sophisticated agents,
so that ε in part (2) shrinks to 0 as α → 1.
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6.2. Other Perceptions

We briefly comment on further extensions of our baseline model of perceptions.

Heterogeneous Perceptions. While our baseline model assumes that agents share the
same misperception F̂ , it might be more realistic to allow each agent i to hold his own
misperception F̂i, in the sense that he believes the true type distribution to be F̂i and (er-
roneously) believes this to be common certainty among the population. For example, the
false-consensus effect (Ross, Greene, and House (1977)) finds a positive association be-
tween people’s own characteristics and their perceptions of others’ characteristics. Gen-
eralizing Theorems 1 and 2 to such heterogeneous perceptions is not difficult, and the
only main difference is that this extension naturally gives rise to heterogeneous long-run
beliefs (i.e., disagreement).43 Notably, even when agents’ perceptions F̂i are on average
correct (i.e., equal to F), their average long-run belief can be highly incorrect (e.g., state-
independent or a coarse function of the state).

Higher-Order Perceptions. A further generalization of the setting in the previous para-
graph is when agents are (partially) aware of the fact that others hold different percep-
tions.44 While the general analysis of this case is beyond the scope of our paper, slight
misspecifications of higher-order perceptions can also lead to discontinuous breakdowns
of information aggregation, as we have demonstrated for the hybrid model with correct
and incorrect perceptions above.

Nondegenerate Perceptions. Finally, as is common in the misspecified learning liter-
ature, we have assumed throughout that agents’ perceptions are point-mass beliefs on
particular distributions F̂ , so that agents do not update their perceived type distributions.
A more general form of misspecification might involve agents holding a (common) prior
belief over some set of type distributions, with support F̂ ⊆ F that does not contain the
true distribution F ; agents then update these beliefs (as well as their beliefs about ω)
over time. A full analysis of this case is again beyond the scope of the current paper,
but it is not difficult to construct arbitrarily small perturbations of the correctly specified
model that feature nondegenerate misperceptions yet yield the same extreme breakdown
of information aggregation as in Theorem 1.

A substantially different setting is when the support F̂ contains the true type distribu-
tion F . In this case, agents are correctly specified (under common priors), which falls out-
side the focus of this paper and rules out such extreme breakdowns of information aggre-
gation as the state-independent point-mass beliefs in Theorem 1. However, medium-run
predictions (at any fixed period t) under this model approximate those in our baseline

43To see this, consider the limit model from Section 4.2. Let λ ∈ �(R × F) denote the joint distribution
over types and perceptions in the population, with marginal marg

R
λ over types given by F . For each F̂ ∈ F

and fraction q ∈ [0�1] of action 0, define ω̂(q; F̂) = argminω̂ KL(q� F̂(θ∗(ω̂))). Then the fraction qt of action
0 in the population evolves according to qt+1 = λ({(θ� F̂) : θ∗(ω̂(qt; F̂)) > θ}) =: g(qt). Note that transition
function g is independent of the realized state; as a result, learning is again decoupled. Since g is increasing, qt

converges to one of the steady states of the system. Generalizing Theorem 1, if g crosses the identity function
at a single point q∗ from above, then limt qt = q∗ regardless of the true state ω, which implies that agents’
(heterogeneous) long-run beliefs are state-independent; and this can occur even when all misperceptions in
the support of λ are arbitrarily close to F . Likewise, coarse information aggregation arises when g crosses the
identity finitely many times on [0�1].

44See Bohren and Hauser (2019) for such a formulation in the context of a sequential social learning model.
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model with common F̂ whenever agents’ prior places sufficiently high probability on a
small neighborhood of F̂ . It is also worth noting that learning in this setting can be sub-
ject to an identification problem, as there are typically many combinations of states and
type distributions that are consistent with the same observed action distributions, leading
to the possibility of incomplete long-run learning.

7. CONCLUDING DISCUSSION

This paper has highlighted a natural learning environment where small amounts of
misperception can lead long-run beliefs and behavior to depart significantly from the
correctly specified benchmark. While we have made this point in the context of a par-
ticular social learning model where agents misperceive others’ characteristics, we view
our results as further motivating the study, both empirically and theoretically, of relevant
misperceptions in other learning environments. To illustrate that our fragility finding and
the decoupling mechanism that drives it are not limited to our specific environment, we
briefly discuss some other settings that can give rise to similar results.

7.1. Beyond Misperceptions of Others’ Characteristics

First, remaining within the social learning model of this paper, agents might misper-
ceive features of the environment other than the type distribution F . While information
aggregation is robust to some such misperceptions (see the discussion of misperceptions
about signal distributions in Section 4.3), others lead to analogous fragility results as in the
current paper. We briefly discuss two examples, focusing on steady states for simplicity.

Misperceptions About Action Sampling Technology. Consider an extension of our
model, in which agents’ probability of observing action 0 in state ω and period t is
given by g(qt(ω)), where qt(ω) denotes the true share of action 0 in the population and
g : (0�1) → (0�1) is a continuous and strictly increasing function that captures a poten-
tially distorted action sampling technology, for instance, due to greater salience of one
of the actions.45 In such a setting, agents might naturally misperceive g to be some other
mapping ĝ : (0�1) → (0�1), for example, because they fail to fully take into account the
sampling distortion. This gives rise to an analogous limit model as in Section 4.2, where
(interior) steady states must again yield no discrepancy between the actual and perceived
shares of action 0 observations, that is,

g
(
F

(
θ∗(ω̂∞)

)) = ĝ
(
F̂

(
θ∗(ω̂∞)

))
�

Based on this, it is easy to see that, even if agents are correct about the type distribution
(F̂ = F), misperceiving the sampling technology leads to analogs of Theorems 1 and 2.
For example, if action 0 is less salient than action 1 but agents even slightly underestimate
the extent to which this is the case (i.e., g(q) < ĝ(q) < q for all q ∈ (0�1)), then long-run
beliefs are a point mass on the highest state ω, regardless of the true state ω.

45Banerjee and Fudenberg (2004) studied such distorted sampling, but assumed that agents are aware of the
distortion.
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Misperceptions About Matching Technology. Consider another extension that incorpo-
rates assortativity into the random matching technology. Formally, the matching technol-
ogy P(·� ·) is given by a symmetric, continuous, and full-support distribution over R × R

whose marginal is the type distribution F , and each period, each agent i of type θi ran-
domly meets an agent j whose type is drawn from the conditional distribution P(·|θi).
We assume that (i) P(·|θ) �FO P(·|θ′) for all θ ≥ θ′, that is, reflecting assortativity, higher
types are more likely than lower types to meet other high types; and (ii) P(θ|θ) is strictly
increasing in θ.46 Our baseline model with independent random matching is the special
case where P = F × F .

In such a setting, it may be natural for agents to misperceive the matching technology
to be some P̂ �= P . Supplemental Appendix E.2 sets up a limit model analogous to Sec-
tion 4.2. The key novelty is that, even if all types share the same perception P̂ , (interior)
steady states are now given by type-dependent point-mass beliefs ω̂θ

∞: Specifically, agents
follow a threshold strategy with a cutoff θ∗

∞ that satisfies P(θ∗
∞|θ∗

∞)= P̂(θ∗
∞|θ∗

∞), and each
type θ’s steady-state belief ω̂θ

∞ ensures that there is no discrepancy between θ’s true and
perceived probability of observing action 0, that is,

P
(
θ∗

∞|θ) = P̂
(
θ∗(ω̂θ

∞
)|θ)

�

If P(θ|θ) and P̂(θ|θ) cross only once, then the cutoff type θ∗
∞ and steady-state beliefs

ω̂θ
∞ are unique; thus, analogous to Theorem 1, long-run beliefs are independent of the

true state, regardless of the amount of agents’ misperception. A natural misperception
that can give rise to this is when agents are correct about the type distribution, but un-
derestimate the extent of assortativity.47 Supplemental Appendix E.2 formalizes this in a
Gaussian setting and shows that it leads the state-independent beliefs ω̂θ

∞ to be increasing
in types, in line with empirical evidence on positive association between agents’ prefer-
ences and beliefs.48

7.2. Single-Agent Active Learning With Identification Failures

In Section 4.3, we illustrated by looking at steady states, that single-agent learning does
not become decoupled when the signal technology satisfies an identification assumption.
Our companion paper, Frick, Iijima, and Ishii (2019c), analyzes learning dynamics in a
general class of misspecified learning environments that nests single-agent active learning
and presents formal belief-convergence results. Just as importantly, however, our com-
panion paper points to natural single-agent settings where, as a result of identification
failures in the signal technology, learning does become decoupled, and we show that this
leads to similar fragility results as in the current paper.

To illustrate, consider the same active learning model as in Section 4.3, but suppose that
for some action x∅, true and perceived signal distributions are completely uninformative,
in the sense that q(x∅�ω) =: q∅ and q̂(x∅�ω) =: q̂∅ are both constant in ω. Moreover,
suppose that whenever the agent’s belief is a point mass on any particular state ω̂, then
his optimal action is x∗(ω̂) = x∅. In Frick, Iijima, and Ishii (2019c), we highlight that such
an identification failure, which we term “non-identification at point-mass beliefs” (NIP),

46This condition is satisfied by many parametric families of P , for example, when P is bivariate Gaussian.
47Frick, Iijima, and Ishii (2019a) studied the implications of such “assortativity neglect” in static coordination

games.
48See, for example, Bullock et al. (2013) in the context of partisan bias in factual beliefs about politics.
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is natural in costly information acquisition settings, where the agent may choose to stop
acquiring information whenever he is confident in any given state. Observe that, under
this identification failure, the set of steady states in (3) becomes

SS(q� q̂) =
{
ω̂∞ ∈ Ω : ω̂∞ ∈ argmin

ω̂∈Ω
KL

(
q
(
x∗(ω̂∞)�ω

)
� q̂

(
x∗(ω̂∞)� ω̂

))}

= {
ω̂∞ ∈ Ω : ω̂∞ ∈ argmin

ω̂∈Ω
KL(q∅� q̂∅)

}
= Ω�

Hence, in contrast with (3) but as in (2), the set of steady states does not depend on
the true state ω. This reflects that under non-identification at point-mass beliefs, single-
agent learning also becomes decoupled, in that long-run observations q(x∗(ω̂∞)�ω) = q∅
are no longer tied to ω. However, there is one important difference with the fragility
mechanism in the current paper: Whereas Theorem 1 relied on misperceptions for which
SS(F� F̂) consists of a single state ω̂, the present identification failure leads SS(q� q̂) to
always include all states in Ω. Thus, determining which steady states beliefs converge to
requires substantially different techniques, which we develop in Frick, Iijima, and Ishii
(2019c). Using these techniques, we show that, similar to Theorem 1, arbitrarily small
amounts of misperception can again lead the agent’s belief to converge to a point mass
on the same fixed state ω̂, regardless of the true state ω (see Section 6.2 of Frick, Iijima,
and Ishii (2019c)).

7.3. Social Learning With Public Action Observations

In the present paper, agents learn by privately observing random other agents’ ac-
tions, analogous to other aforementioned models of social learning through decentralized
random interactions. At the same time, other canonical social learning models feature
learning based on public observations. For example, in sequential social learning models,
a countable sequence of agents each choose one-shot actions after observing all previous
agents’ actions, and in Vives (1993), agents observe a public signal (e.g., a market price)
of the aggregate action frequency qt each period.

The framework in Frick, Iijima, and Ishii (2019c) can also be applied to study the im-
pact of misperceptions in such models. We again show that information aggregation is
highly fragile and that vanishingly small amounts of misperception about others’ charac-
teristics can lead beliefs to converge to a state-independent point mass.49 At the same,
public observations lead to some differences in both the fragility mechanism and quali-
tative predictions. Specifically, just as in the current paper, belief-updating under public
observations becomes decoupled from the true state, because agents’ long-run inferences
are based only on observed actions; however, while in the current paper agents regard
long-run action observations as highly indicative of the state, with public observations
agents view new actions as uninformative in the long run, because asymptotically agents’
actions are based purely on the public belief rather than additional private information.
This gives rise to a similar identification failure as in Section 7.2, as a result of which all
states are steady states. At a qualitative level, we show that under public observations,

49See Section 6.3 of Frick, Iijima, and Ishii (2019c), in the context of sequential social learning. To isolate
the effect of misperception, we again consider a setting where due to rich type heterogeneity, information
aggregation is successful when agents are correctly specified.
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information aggregation is fragile even in finite state spaces, in contrast with our findings
in Section 5.

Finally, we note that these fragility results contrast with Bohren (2016) and Bohren
and Hauser’s (2019) finding that information aggregation is robust to small amounts of
misperception in closely related sequential social learning environments. The difference
stems from their assumption that agents observe repeated exogenous public signals about
the state (or, alternatively, that a fraction of “autarkic” agents act solely based on their pri-
vate signals). Analogous to the discussion of repeated private signals in Section 4.3, this
assumption implies that belief-updating never becomes decoupled from the true state;
however, as long as the public signal is sufficiently uninformative (or the fraction of au-
tarkic agents is sufficiently small), one can again establish approximate analogs of our
fragility results.

APPENDIX: MAIN PROOFS

APPENDIX A: PROOF OF LEMMA 1

We make use of the following additional notation. For any belief H ∈ �(Ω), let θ∗(H)
denote the type that is indifferent between action 0 and 1; that is,

∫
(u(1�ω�θ∗(H)) −

u(0�ω�θ∗(H)))dH(ω) = 0. By the assumptions on u, such a type exists and is unique
and θ∗(H) is continuous in H under the topology of weak convergence. As in the main
text, we let θ∗(ω) denote θ∗(δω). Given any private signal s, let Hs ∈ �(Ω) denote the
Bayesian update of H after observing s. Note that if H is not a Dirac measure, then by
the assumptions on signal distributions 	, Hs strictly first-order stochastically dominates
Hs′ for any s > s′, which implies that θ∗(Hs) < θ∗(Hs′).

In each state ω and at the beginning of each period t ≥ 1, let μω
t ∈ �(�(Ω)) denote

the population distribution of agents’ posteriors. Note that the distribution of posteriors
is independent across types θ. Let qt(ω) denote the fraction of agents choosing action 0
at t and ω, that is,

qt(ω) =
∫

F
(
θ∗(H)

)
dμω

t (H))�

Finally, let μ̄t ∈ �(�(Ω)) denote the hypothetical population distribution of posteriors
when agents update beliefs only based on observing actions and do not take into account
their private signals in period 0. More precisely, each agent observes actions aτ in periods
τ = 1� � � � � t − 1 that are generated according to qτ(ω) defined above, and agents update
their beliefs assuming that aτ is distributed according to qτ . Given this, we can also express
qt as

qt(ω)=
∫ ∫

F
(
θ∗(Hs

))
d	(s|ω)dμ̄ω

t (H)� (4)

A.1. Agents’ Long-Run Behavior

The following four lemmas establish that (on some measure 1 set of states),
limt→∞ qt(ω) exists and is strictly decreasing in ω. The first lemma proves that qt is strictly
decreasing at all finite times.

LEMMA A.1: For each t, qt(ω) is strictly decreasing in ω and satisfies qt(ω) ∈ (0�1).
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PROOF: The claim that qt(ω) ∈ (0�1) is clear from the fact that types above θ∗(ω)
always choose action 1 and types below θ∗(ω) always choose action 0. To show that it
is strictly decreasing in ω, we proceed by induction on t. For t = 1, this follows from
(4) and the fact that μ̄ω

1 = δΨ and 	(·|ω) is strictly increasing in ω with respect to first-
order stochastic dominance. Suppose next that the claim holds for all periods up to and
including t and consider period t + 1.

Let Ψs�at ∈ �(Ω) denote the posterior belief of an agent who observes private signal s
and action sequence at = (a1� � � � � at) ∈ {0�1}t . Note that Ψs�at has full support on Ω, since
qτ(ω) ∈ (0�1) for all τ = 1� � � � � t and all ω (so that at occurs with positive probability
in each state) and by the full-support assumptions on prior Ψ and on private signals.
Consider any ω∗ >ω∗∗. For each k= 2� � � � � t − 2, we have

qt+1

(
ω∗)

=
∫ ∫

F
(
θ∗(Hs

))
d	

(
s|ω∗)dμ̄ω∗

t+1(H)

<

∫ ∫
F

(
θ∗(Hs

))
d	

(
s|ω∗∗)dμ̄ω∗

t+1(H)

=
∫ ∑

at

t∏
τ=1

(
qτ

(
ω∗)(1 − aτ)+ (

1 − qτ

(
ω∗))aτ

)
F

(
θ∗(Ψs�at

))
d	

(
s|ω∗∗)

<

∫ ∑
at

t−1∏
τ=1

(
qτ

(
ω∗)(1 − aτ)+ (

1 − qτ

(
ω∗))aτ

)

× (
qt

(
ω∗∗)(1 − at)+ (

1 − qt

(
ω∗∗))at

)
F

(
θ∗(Ψs�at

))
d	

(
s|ω∗∗)

<

∫ ∑
at

k−1∏
τ=1

(
qτ

(
ω∗)(1 − aτ)+ (

1 − qτ

(
ω∗))aτ

)

×
t∏

τ′=k

(
qτ′

(
ω∗∗)(1 − aτ′)+ (

1 − qτ′
(
ω∗∗))aτ′

)
F

(
θ∗(Ψs�at

))
d	

(
s|ω∗∗)

<

∫ ∫
F

(
θ∗(Hs

))
d	

(
s|ω∗∗)dμ̄ω∗∗

t+1(H) = qt+1

(
ω∗∗)�

Here, the first inequality holds since θ∗(Hs) is strictly decreasing in s for each H in the
support of μ̄ω∗

t+1 and since 	(·|ω∗) strictly first-order stochastically dominates 	(·|ω∗∗).
For the second inequality, note that since qt(ω) is strictly decreasing in ω, Ψs�at−1�1 strictly
first-order stochastically dominates Ψs�at−1�0. Thus, θ∗(Ψ s�at−1�1) < θ∗(Ψ s�at−1�0), which to-
gether with qt(ω

∗) < qt(ω
∗∗) yields the second inequality. Iterating this argument yields

the remaining inequalities. Q.E.D.

To prove that qt remains strictly decreasing in ω in the limit as t → ∞, Lemmas A.2 and
A.3 first consider the limit of the hypothetical belief distribution μ̄ω

t that is based only on
action observations. Using standard arguments, Lemma A.2 shows this limit exists almost
surely:
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LEMMA A.2: There exists a set of states Ω∗ ⊆ Ω such that Ψ(Ω∗) = 1 and the weak con-
vergent limit μ̄ω

∞ := limt μ̄
ω
t exists for all ω ∈ Ω∗.

PROOF: To formalize any agent’s belief-updating based only on observing sequences
of actions (not private signals), consider the probability space (Ω̄�A�P). Here Ω̄ :=
Ω× {0�1}∞ is a Polish space (endowed with the product topology) that encodes the real-
ized state ω ∈ Ω and action sequences a∞ = (a1� a2� � � �) ∈ {0�1}∞, A denotes the corre-
sponding Borel algebra, and measure P satisfies

P
({(

ω�a∞) ∈ Ω̄ :ω ∈E�at1 = x1� � � � � atk = xk

})

=
∫
E

k∏
j=1

((
1 − qtj (ω)

)
xj + qtj (ω)(1 − xj)

)
dΨ(ω)

for every Borel set E ⊆ Ω, t1� � � � � tk ∈ N, and x1� � � � � xk ∈ {0�1}. For each finite action
sequence at ∈ {0�1}t , Bayesian updating based on P induces an agent’s posterior H(·|at) ∈
�(Ω) over states after observing at . Since Ω and {0�1}∞ are both Polish, the posterior
belief H(·|a∞) ∈ �(Ω) conditional on each infinite sequence a∞ ∈ {0�1}∞ is also well-
defined (see Theorem 9.2.2 in Stroock (2010)).

Define the filtration It := σ(a1� � � � � at) ⊆ A that describes an agent’s information at
the end of each period t. Let I∞ := ⋃∞

t=0 It ⊆ A. For each Borel set E ⊆ Ω, Lévy’s
upwards theorem applied to the indicator function on E guarantees that as t → ∞,
H(E|at) = E[1ω∈E|It] → E[1ω∈E|I∞] = H(E|a∞) holds P-almost surely (see Corollary
5.2.4 in Stroock (2010)). By standard arguments, this implies that H(·|at) converges
weakly to H(·|a∞) P-almost surely.

Thus, there is a set of states Ω∗ ⊆ Ω with P(Ω∗ × {0�1}∞) = Ψ(Ω∗) = 1 such that con-
ditional on each ω ∈ Ω∗, H(·|at) converges weakly to H(·|a∞) P-almost surely. Consider
any ω ∈ Ω∗. Since μ̄ω

t ∈ �(�(Ω)) is the distribution of H(·|at) conditional on ω and since,
conditional on ω, H(·|at) converges to H(·|a∞) P-almost surely, this implies that μ̄ω

t con-
verges weakly, with limit μ̄ω

∞ ∈ �(�(Ω)) given by μ̄ω
∞(H) = P[H(·|a∞) ∈ H|ω] for any

Borel set H ⊆ �(Ω). Q.E.D.

For Ω∗ as in Lemma A.2, the following lemma shows that for each ω ∈ Ω∗, μ̄ω
∞ assigns

probability 1 to limit posteriors that contain the true state ω in their support.

LEMMA A.3: For any ω ∈ Ω∗, μ̄ω
∞({H : suppH �ω}) = 1.

PROOF: Fix any ω ∈ Ω∗. It suffices to prove the following claim: For any non-empty
intervals E�E′ ⊆ Ω with E closed in Ω and E′ open in Ω such that either (i) ω ≤ infE <
supE ≤ infE′ or (ii) supE′ ≤ infE < supE ≤ω, we have

μ̄ω
∞

({
H :H(E)= 0 and H

(
E′)> 0

}) = 0�

To see that this claim implies Lemma A.3, note that for each H such that ω /∈ suppH,
we have for some n that either H ∈H+

n := {H ′ :H ′([ω�ω+ 1
n
])= 0 and H ′((ω+ 1

n
�ω]) >

0} or H ∈ H−
n := {H ′ : H ′([ω − 1

n
�ω]) = 0 and H ′([ω�ω − 1

n
)) > 0}. But by the above

claim, μ̄ω�C
∞ (H+

n )= μ̄ω�C
∞ (H−

n )= 0 for all n. Hence, by countable additivity of μ̄ω
∞, μ̄ω

∞({H :
suppH ��ω}) = 0.
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To prove the claim, we only consider case (i); the proof for case (ii) is analogous. Con-
sider any agent and, conditional on realized state ω, let (Ht) denote the process of his
hypothetical posterior beliefs that are based only on observing actions (without taking
into account his private signal). By the proof of Lemma A.2, (Ht) weakly converges with
probability 1, and the limit posterior is distributed according to μ̄ω

∞.
Consider the process Wt := Ht(E

′)/Ht(E), which is well-defined at every t since the
posterior Ht always has full support. We have

E[Wt+1 | It �ω] =
(
qt(ω)

qt

(
E′)

qt(E)
+ (

1 − qt(ω)
)1 − qt

(
E′)

1 − qt(E)

)
Ht

(
E′)

Ht(E)

≤
(
qt(E)

qt

(
E′)

qt(E)
+ (

1 − qt(E)
)1 − qt

(
E′)

1 − qt(E)

)
Ht

(
E′)

Ht(E)
=Wt�

where It denotes the filtration generated by the sequence of actions observed by the
agent, qt(E) :=

∫
E qt (ω

′)dHt(ω
′)

Ht(E)
∈ (0�1) and qt(E

′) :=
∫
E′ qt (ω′)dHt(ω

′)
Ht (E′) ∈ (0�1) denote the prob-

abilities of observing action 0 conditional on events E and E′, and the inequality holds
because qt(ω) > qt(E) > qt(E

′) by the assumption that ω ≤ infE < supE ≤ infE′ and
since qt(ω

′) is strictly decreasing in ω′ (Lemma A.1). Thus, Wt is a nonnegative super-
martingale conditional on ω.

By the martingale convergence theorem, there exists some W∞ ∈ L1 such that condi-
tional on ω, Wt → W∞ almost surely. Since W∞ ∈ L1, W∞ < +∞ almost surely. Thus,
almost surely

lim inf
t→∞

Ht

(
E′)> 0 ⇒ lim sup

t→∞
Ht(E) > 0�

By weak convergence of (Ht) and the Portmanteau theorem, this yields the desired claim.
Q.E.D.

Based on Lemma A.3, we now establish that on Ω∗, qt remains strictly decreasing in the
limit.

LEMMA A.4: For any ω ∈ Ω∗, q∞(ω) := limt qt(ω) exists and is strictly decreasing in ω.

PROOF: Recall from (4) that qt(ω) = ∫ ∫
F(θ∗(Hs))d	(s|ω)dμ̄ω

t (H), where∫
F(θ∗(Hs))d	(s|ω) is continuous and bounded in H. Thus, since μ̄ω

t weakly converges
to μ̄ω

∞ on Ω∗, limt qt(ω) exists for all ω ∈ Ω∗ and is given by

q∞(ω) =
∫ ∫

F
(
θ∗(Hs

))
d	(s|ω)dμ̄ω

∞(H)�

To show that q∞ is strictly decreasing, take any ω∗�ω∗∗ ∈ Ω∗ such that ω∗ > ω∗∗. If
μ̄ω∗

∞ = δδω∗ and μ̄ω∗∗
∞ = δδω∗∗ , then q∞(ω∗) = F(θ∗(ω∗)) < F(θ∗(ω∗∗)) = q∞(ω∗∗). Thus,

suppose that either μ̄ω∗
∞ �= δδω∗ or μ̄ω∗∗

∞ �= δδω∗∗ . We consider the case when μ̄ω∗
∞ �= δδω∗ ; the

other case is analogous.
We have

q∞
(
ω∗) =

∫ ∫
F

(
θ∗(Hs

))
d	

(
s|ω∗)dμ̄ω∗

∞ (H)

<

∫ ∫
F

(
θ∗(Hs

))
d	

(
s|ω∗∗)dμ̄ω∗

∞ (H)
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= lim
t→∞

∫ ∫
F

(
θ∗(Hs

))
d	

(
s|ω∗∗)dμ̄ω∗

t (H)

≤ lim
t→∞

∫ ∫
F

(
θ∗(Hs

))
d	

(
s|ω∗∗)dμ̄ω∗∗

t (H) = q∞
(
ω∗∗)�

For the first inequality, note that since μ̄ω∗
∞ �= δδω∗ , Lemma A.3 implies that μ̄ω∗

∞ as-
signs positive measure to beliefs H that are not Dirac measures. Since for non-
Dirac H, θ∗(Hs) is strictly decreasing in s, the inequality follows from the fact that
	(·|ω∗) strictly first-order stochastically dominates 	(·|ω∗∗). The second inequality
holds because by the proof of Lemma A.1, we have

∫ ∫
F(θ∗(Hs))d	(s|ω∗∗)dμ̄ω∗

t (H) <∫ ∫
F(θ∗(Hs))d	(s|ω∗∗)dμ̄ω∗∗

t (H) for all t. Q.E.D.

A.2. Completing the Proof

To complete the proof, we show that in all states, almost all agents’ beliefs converge to
a point mass on the true state. The next lemma first shows this for states ω ∈ Ω∗.

LEMMA A.5: μ̄ω
∞ = δδω for each ω ∈ Ω∗.

PROOF: Fix any ω ∈ Ω∗ and any interval E′ := [ω−�ω+] �� ω. Consider any agent and let
(Ht) denote the process of his posterior beliefs in state ω when he updates beliefs based
only on observing others’ actions. It suffices to show that Ht(E

′) → 0 almost surely.50

We focus on the case ω<ω− <ω+, as the other case ω− <ω+ <ω is analogous. With-
out loss, we assume that ω− ∈ Ω∗, as otherwise we can expand E′ by selecting a point from
(ω�ω+)∩Ω∗ as the new lower bound of E′. Pick any ω∗ ∈ Ω∗ such that ω<ω∗ <ω− and
let E := [ω�ω∗].

Now consider the process of likelihood ratios Wt := Ht(E
′)

Ht (E)
. As in the proof of

Lemma A.3, this process is a nonnegative supermartingale. Thus, there is an L1-random
variable W∞ such that Wt → W∞ almost surely. For each t, since qt(·) is decreasing
(Lemma A.1), we have

Wt+1

Wt

= qt

(
E′)

qt(E)
≤

sup
ω′∈E′

qt

(
ω′)

inf
ω′∈E

qt

(
ω′) = qt(ω−)

qt

(
ω∗)

if at = 0 and

Wt+1

Wt

= 1 − qt

(
E′)

1 − qt(E)
≥

inf
ω′∈E′ 1 − qt

(
ω′)

sup
ω′∈E

1 − qt

(
ω′) = 1 − qt(ω−)

1 − qt

(
ω∗)

if at = 1. Since limt→∞ qt(ω−) < limt→∞ qt(ω
∗) by Lemma A.4, there exist γ > 0 and T

such that ∣∣∣∣Wt+1

Wt

− 1
∣∣∣∣ ≥ γ

50Indeed, since process (Ht) almost surely weakly converges and its limit is distributed according to μ̄ω
∞, the

Portmanteau theorem then implies that μ̄ω
∞({H : H(Eo) = 0}) = 1, where Eo denotes the interior of E′ in Ω.

In particular, letting H+
n = {H : H((ω + 1

n
�ω]) > 0} and H−

n = {H : H([ω�ω − 1
n
)) > 0}, we have μ̄ω

∞(H+
n ) =

μ̄ω
∞(H−

n ) = 0 for each n. Thus, by countable additivity, μ̄ω
∞({H : H �= δω}) = μ̄ω

∞(
⋃

n(H+
n ∪ H−

n )) = 0, as re-
quired.
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for all t ≥ T at all histories. This ensures that W∞ = 0 almost surely (as otherwise the
convergence Wt → W∞ does not occur). Therefore, Ht(E

′)→ 0 almost surely, as required.
Q.E.D.

Lemma A.5 implies that q∞(ω) = F(θ∗(ω)) and μω
t weakly converges to δδω for any

ω ∈ Ω∗. Now take any ω ∈ Ω \Ω∗. By Lemma A.1, we have the inequalities

F
(
θ∗(ω′)) = lim

t→∞
qt

(
ω′) ≥ lim sup

t→∞
qt(ω) ≥ lim inf

t→∞
qt(ω) ≥ lim

t→∞
qt

(
ω′′) = F

(
θ∗(ω′′))

for any ω′�ω′′ ∈Ω∗ such that ω′ <ω<ω′′. If ω ∈ (ω�ω) is interior, then since Ψ(Ω∗)= 1
and Ψ admits a positive density, we can choose ω′�ω′′ ∈Ω∗ arbitrarily close to ω. Hence,
by continuity of F and θ∗, we have qt(ω) → F(θ∗(ω)). For boundary points ω ∈ {ω�ω},
the same argument shows that lim inft→∞ qt(ω) ≥ F(θ∗(ω)) and lim supt→∞ qt(ω) ≤
F(θ∗(ω)). Since qt(·) ∈ [F(θ∗(ω))�F(θ∗(ω))], this again implies qt(ω) → F(θ∗(ω)) and
qt(ω) → F(θ∗(ω)). Thus, q∞(·) := limt→∞ qt(·)= F(θ∗(·)) exists and is strictly decreasing
on the whole of Ω. Given this, for any ω ∈ Ω \ Ω∗, the same argument as in the proof of
Lemma A.5 shows that μ̄ω

∞ = δδω . Hence, μω
t weakly converges to δδω .

APPENDIX B: PROOFS OF THEOREMS 1 AND 2

We prove Theorems 1 and 2 in Sections B.3 and B.4, respectively. Both proofs follow
from preliminary results on agents’ long-run inferences and beliefs that we establish in
Sections B.1 and B.2, in particular Proposition B.1, which shows that long-run beliefs
are steady states of the limit model belief adjustment process that we considered in Sec-
tion 4.2.

B.1. Agents’ Long-Run Inferences

In this section, we first consider any agent whose perception is given by F̂ and study
his inferences from sequences of observed actions at−1 = (a1� � � � � at−1). The key result is
Lemma B.2, which shows that the average action āt−1 = 1

t−1

∑t−1
τ=1 aτ that the agent observes

up to time t − 1 provides an “approximate” sufficient statistic for the agent’s belief as
t → ∞.

Let q̂t(ω) denote the agent’s perceived fraction of action 0 in each period t and state ω.
Since the agent believes that F̂ is the true type distribution and that F̂ is common certainty
among all agents, Lemma 1 and all lemmas used in its proof in Appendix A apply to
the agent’s perceptions of behavior and beliefs in the population. In particular, Lemma 1
implies that the agent believes that in all states ω, almost all agents’ beliefs converge to a
point mass on the true state ω. Thus, the agent believes that behavior in state ω converges
to a threshold strategy according to θ∗(ω); that is, q̂∞(ω) := limt→∞ q̂t(ω) = F̂(θ∗(ω))
for each ω. Additionally, Lemma A.1 implies that q̂t(·) is strictly decreasing for each t.
Hence, since F̂(θ∗(·)) is continuous on the compact interval Ω = [ω�ω], it follows that
q̂t(·) converges to F̂(θ∗(·)) uniformly.

Let Ht(· | at−1� s) ∈ �(Ω) denote the agent’s posterior belief after observing private
signal s and action history at−1 = (a1� � � � � at−1). Because q̂t(ω) ∈ (0�1) for each t and ω
(Lemma A.1) and by the full-support assumption on private signals, Ht(· | at−1� s) has full
support over Ω with positive density ht(· | at−1� s) for all at−1 and s. For each pair of states
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ω′, ω′′, denote the corresponding log likelihood ratio by

�t
(
ω′�ω′′ | at−1� s

) := log
ht

(
ω′ | at−1� s

)
ht

(
ω′′ | at−1� s

) �
Let �1(ω

′�ω′′) denote the log likelihood ratio based on the prior belief.
Lemma B.1 below will provide a lower bound on the log likelihood ratio that depends

on histories at−1 only through the average action āt−1 and holds uniformly across all pairs
of states. To state this, we first choose some ν∗ > 0 and C < 0 <C such that q̂∞(ω)± ν∗ ∈
(0�1) for all ω and such that, for all ν ∈ (0� ν∗),

C < min
{

log
1 − F̂

(
θ∗(ω)

) − ν

1 − F̂
(
θ∗(ω)

) + ν
� log

F̂
(
θ∗(ω)

) − ν

F̂
(
θ∗(ω)

) + ν

}
< 0

< max
{

log
1 − F̂

(
θ∗(ω)

) − ν

1 − F̂
(
θ∗(ω)

) + ν
� log

F̂
(
θ∗(ω)

) − ν

F̂
(
θ∗(ω)

) + ν

}
<C�

Such values exist since q̂∞(ω) = F̂(θ∗(ω)) ∈ [F̂(θ∗(ω))� F̂(θ∗(ω))] for each ω and 0 <

F̂(θ∗(ω)) < F̂(θ∗(ω)) < 1. Moreover, for any ν ∈ [−ν∗� ν∗], R ∈ [0�1], and R′�R′′ ∈
[F̂(θ∗(ω))� F̂(θ∗(ω))], we define

�ν
(
R�R′�R′′) :=R log

R′ − ν

R′′ + ν
+ (1 −R) log

1 −R′ − ν

1 −R′′ + ν
�

LEMMA B.1: Take any ν ∈ (0� ν∗). There exists some t̂ such that for all t ≥ t̂, all ω′ �= ω′′,
all s, and all at−1,

�t
(
ω′�ω′′ | at−1� s

) ≥ �1

(
ω′�ω′′) + log

φ
(
s |ω′)

φ
(
s |ω′′) + (C −C)(t̂ − 1)

+ (t − t̂)�ν
(
1 − āt−1� q̂∞

(
ω′)� q̂∞

(
ω′′))�

PROOF: Since q̂t converges to q̂∞ uniformly, we can choose t̂ such that for all t ≥ t̂, we
have supω∈Ω |q̂t(ω) − q̂∞(ω)| < ν. Pick any t ≥ t̂, any ω′ �= ω′′, any private signal s, and
any at−1 = (a1� � � � � at−1). Then

�t
(
ω′�ω′′ | at−1� s

) − �1

(
ω′�ω′′) − log

φ
(
s |ω′)

φ
(
s |ω′′)

=
t−1∑
τ=1

(
(1 − aτ) log

q̂τ

(
ω′)

q̂τ

(
ω′′) + aτ log

1 − q̂τ

(
ω′)

1 − q̂τ

(
ω′′)

)

≥ C(t̂ − 1)+
t−1∑
τ=t̂

(
(1 − aτ) log

q̂τ

(
ω′)

q̂τ

(
ω′′) + aτ log

1 − q̂τ

(
ω′)

1 − q̂τ

(
ω′′)

)

≥ C(t̂ − 1)+
t−1∑
τ=t̂

(
(1 − aτ) log

q̂∞
(
ω′) − ν

q̂∞
(
ω′′) + ν

+ aτ log
1 − q̂∞

(
ω′) − ν

1 − q̂∞
(
ω′′) + ν

)
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>C(t̂ − 1)+
t−1∑
τ=1

(
(1 − aτ) log

q̂∞
(
ω′) − ν

q̂∞
(
ω′′) + ν

+ aτ log
1 − q̂∞

(
ω′) − ν

1 − q̂∞
(
ω′′) + ν

)
−C(t̂ − 1)

= (C −C)(t̂ − 1)+ (t − t̂)

((
1 − āt−1

)
log

q̂∞
(
ω′) − ν

q̂∞
(
ω′′) + ν

+ āt−1 log
1 − q̂∞

(
ω′) − ν

1 − q̂∞
(
ω′′) + ν

)

= (C −C)(t̂ − 1)+ (t − t̂)�ν
(
1 − āt−1� q̂∞

(
ω′)� q̂∞

(
ω′′))�

as required. Here, the first inequality holds because by choice of C , we have for all τ =
1� � � � � t̂ − 1 that

(1 − aτ) log
q̂τ

(
ω′)

q̂τ

(
ω′′) + aτ log

1 − q̂τ

(
ω′)

1 − q̂τ

(
ω′′) ≥ min

{
log

F̂
(
θ∗(ω)

)
F̂

(
θ∗(ω)

) � log
1 − F̂

(
θ∗(ω)

)
1 − F̂

(
θ∗(ω)

)
}
>C�

The second inequality holds by choice of t̂. The third inequality holds because, by choice
of C , we have for all τ = 1� � � � � t̂ − 1 that

(1 − aτ) log
q̂∞

(
ω′) − ν

q̂∞
(
ω′′) + ν

+ aτ log
1 − q̂∞

(
ω′) − ν

1 − q̂∞
(
ω′′) + ν

≤ max
{

log
1 − F̂

(
θ∗(w)

) − ν

1 − F̂
(
θ∗(w)

) + ν
� log

F̂
(
θ∗(w)

) − ν

F̂
(
θ∗(w)

) + ν

}
<C�

And the final two equalities hold by definition of āt−1 and �ν . Q.E.D.

Using Lemma B.1, we now show that for large t, the agent’s belief is approximately a
point mass on the state ω̂ = minω̂′ KL(1 − āt−1� q̂∞(ω̂′)) that minimizes KL-divergence
between the observed empirical frequency 1 − āt−1 of action 0 and the agent’s perceived
long-run fraction of action 0.

LEMMA B.2: Fix any s ≤ s and R ∈ (0�1). Let ω̂ := argminω̂′ KL(R� q̂∞(ω̂′)). Then for
every interval E � ω̂ of states with non-empty interior, there exists ε > 0 such that

lim
t→∞

inf
{
Ht

(
E | at−1� s

) : s ∈ [s� s]�1 − āt−1 ∈ [R− ε�R+ ε]} = 1�

PROOF: Note that since the agent’s posterior admits a positive density, Ht(E | at−1� s)=
Ht(E

◦ | at−1� s) for all t, at−1, and s, where E◦ is the interior of the interval E. Since E◦ is
an open interval, E◦ = (α1�α2) for some α1 < α2 with ω ≤ α1 < α2 ≤ ω. Let R1 := q̂∞(α1)
and R2 := q̂∞(α2).

There are three cases to consider:
1. ω̂ ∈ (α1�α2) and R = q̂∞(ω̂),
2. ω̂= α2 = ω and R≤ q̂∞(ω̂),
3. ω̂= α1 = ω and R≥ q̂∞(ω̂).
We illustrate the argument only for case 1 as it translates easily to the other cases.51

Moreover, in case 1, we can assume that ω< α1 < ω̂ < α2 <ω, by restricting to a subset

51In case 2, we choose ξ, ε, ρ > 0 such that q̂∞(ω) < R+ ξ <R1 and

ρ < inf
{
�0(R′�R′′�R′′′) : R′ ∈ [R− ε�R+ ε]�R′′ ∈ [R�R+ ξ]�R′′′ ≥ R1

}
�
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of E if need be. Then we can choose ξ�ε�ρ > 0 such that R2 <R− ξ <R+ ξ <R1 and

ρ < inf
{
�0

(
R′�R′′�R′′′) :R′ ∈ [R− ε�R+ ε]�R′′ ∈ [R− ξ�R]�R′′′ ≤R2

}
�

ρ < inf
{
�0

(
R′�R′′�R′′′) :R′ ∈ [R− ε�R+ ε]�R′′ ∈ [R�R+ ξ]�R′′′ ≥ R1

}
�

By continuity of KL-divergence, there exists some ν ∈ (0� ν∗) such that

ρ < inf
{
�ν

(
R′�R′′�R′′′) :R′ ∈ [R− ε�R+ ε]�R′′ ∈ [R− ξ�R]�R′′′ ≤R2

}
�

ρ < inf
{
�ν

(
R′�R′′�R′′′) :R′ ∈ [R− ε�R+ ε]�R′′ ∈ [R�R+ ξ]�R′′′ ≥ R1

}
�

Take M > 0 such that −M ≤ �1(ω
′�ω′′) + log φ(s|ω′)

φ(s|ω′′) for all ω′�ω′′ ∈ [ω�ω] and all s ∈
[s� s]. Let t̂ be the cutoff given by Lemma B.1. Then for all t ≥ t̂, ω′ ∈ [ω̂� q̂−1

∞ (R − ξ)],
ω′′ ∈ q̂−1

∞ ([0�R2]), s ∈ [s� s], and any at−1 such that 1 − āt−1 ∈ [R− ε�R+ ε], we have

�t
(
ω′�ω′′ | at−1� s

) ≥ �1

(
ω′�ω′′) + log

φ
(
s |ω′)

φ
(
s |ω′′) + (C −C)(t̂ − 1)

+ (t − t̂)�ν
(
1 − āt−1� q̂∞

(
ω′)� q̂∞

(
ω′′))

≥ −M + (C −C)(t̂ − 1)+ (t − t̂)ρ�

where the first inequality holds by Lemma B.1 and the second inequality holds by choice
of ν and M above. Likewise, for all t ≥ t̂, ω′ ∈ [q̂−1

∞ (R+ξ)� ω̂], ω′′ ∈ q̂−1
∞ ([R1�1]), s ∈ [s� s],

and any at−1 such that 1 − āt−1 ∈ [R− ε�R+ ε], we have

�t
(
ω′�ω′′ | at−1� s

) ≥ −M + (C −C)(t̂ − 1)+ (t − t̂)ρ�

As a result, for all t ≥ t̂, s ∈ [s� s], and any at−1 such that 1 − āt−1 ∈ [R − ε�R + ε], we
have

Ht

(
E | at−1� s

)
≥Ht

([
ω̂� q̂−1

∞ (R− ξ)
] | at−1� s

) +Ht

([
q̂−1

∞ (R+ ξ)� ω̂
] | at−1� s

)
≥ e−M+(C−C)(t̂−1)+(t−t̂)ρ

×
(
q̂−1

∞ (R− ξ)− ω̂

ω− α2
Ht

([α2�ω] | at−1� s
) + ω̂− q̂−1

∞ (R+ ξ)

α1 −ω
Ht

([ω�α1] | at−1� s
))

≥Ke−M+(C−C)(t̂−1)+(t−t̂)ρHt

(
Ω \E | at−1� s

)
�

where the second inequality uses the bounds on log likelihood ratios we obtained above,
and in the third line we let K := min{ q̂−1∞ (R−ξ)−ω̂

α1−ω
� ω̂−q̂−1∞ (R+ξ)

ω−α2
}. Since Ht(Ω \ E | at−1� s) =

Finally, in case 3, we choose ξ, ε, ρ > 0 such that R2 <R− ξ < q̂∞(ω) and

ρ < inf
{
�0(R′�R′′�R′′′) :R′ ∈ [R− ε�R+ ε]�R′′ ∈ [R− ξ�R]�R′′′ ≤ R2

}
�

The remaining steps are analogous to case 1.
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1 −Ht(E | at−1� s), this yields

Ht

(
E | at−1� s

) ≥ Ke−M+(C−C)(t̂−1)+(t−t̂)ρ

Ke−M+(C−C)(t̂−1)+(t−t̂)ρ + 1
�

which completes the proof as the right-hand side converges to 1 as t → ∞. Q.E.D.

B.2. Long-Run Beliefs Converge to Steady States

In this section, we fix arbitrary true and perceived type distributions F� F̂ ∈ F and an-
alyze long-run beliefs and behavior. In each state ω, let qt(ω) and q̂t(ω) denote the
corresponding true and perceived fractions of action 0 in period t, and let q̄t(ω) :=
1
t

∑t

τ=1 qτ(ω) denote the true time average of the fraction of action 0 up to period t. Let
Pr(· | ω) denote the probability distribution over observed private signals s and action se-
quences at when signals are distributed according to 	(· | ω) and actions in each period
τ are distributed according to qτ(ω). Define the set of steady states SS(F� F̂) := {ω̂∞ ∈ Ω :
ω̂∞ = argminω̂∈Ω KL(F(θ∗(ω̂∞))� F̂(θ∗(ω̂)))}.

Focusing on the case when SS(F� F̂) is finite, the key result of this section is Propo-
sition B.1, which shows that agents’ long-run beliefs always assign probability 1 to some
steady state. As a preliminary step, the following lemma shows that behavior in each state
converges.

LEMMA B.3: Suppose that SS(F� F̂) is finite. Then R(ω) := limt→∞ q̄t(ω) exists for every
ω and is weakly decreasing in ω.

PROOF: Fix any ω ∈ Ω. Let R̄(ω) := lim supt→∞ q̄t(ω) and R(ω) := lim inft→∞ q̄t(ω).
To show that R(ω) := limt→∞ q̄t(ω) exists, suppose for a contradiction that R(ω) >R(ω).
Since SS(F� F̂) is finite, we can pick some R ∈ (R(ω)�R(ω)) such that q̂−1

∞ (R) /∈ SS(F� F̂).
Let ω̂ := argminω̂′∈Ω KL(R� q̂∞(ω̂′)). Note that R �= F(θ∗(ω̂)), as otherwise q̂−1

∞ (R) is a
steady state. Below we assume that R< F(θ∗(ω̂)), as the remaining case, R> F(θ∗(ω̂)),
is analogous.

Pick R, R such that R(ω) < R < R < R < R̄(ω) and R < F(θ∗(ω̂)). Note that we can
choose a small enough interval E � ω̂ with non-empty interior, a large enough interval
[s� s] of private signals, and a small enough ν > 0, such that for any t, if at least fraction
1 − ν of agents with private signals s ∈ [s� s] hold beliefs such that Ht(E | at−1� s) > 1 − ν,
then qt(ω) > R+ ν.52 By Lemma B.2, there exists ε > 0 and t̂1 such that for all t ≥ t̂1,

inf
{
Ht

(
E | at−1� s

) | s ∈ [s� s]�1 − āt−1 ∈ [R− ε�R+ ε]}> 1 − ν�

Moreover, we can take ε sufficiently small such that R<R− ε <R+ ε <R.
Note that each agent observes a sequence of random actions (a1� a2� � � �) that are inde-

pendent from each other conditional on the realized state ω. Hence, by the weak law of
large numbers for independent (but not necessarily identically distributed) random vari-

52To see this, observe that if all agents’ beliefs assigned probability 1 to ω̂ at t, then qt(ω) = F(θ∗(ω̂)) > R.
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ables (see, e.g., Theorem 1.2.6 in Stroock (2010)), there exists t̂2 such that for all t ≥ t̂2,

Pr
(

1 − āt−1 ∈
[
q̄t−1(ω)− ε

2
� q̄t−1(ω)+ ε

2

]
|ω

)
> 1 − ν�

Let T := {t ≥ max{t̂1� t̂2} : q̄t−1(ω) ∈ [R − ε
2 �R + ε

2 ]}. Then at all times t ∈ T , at least
fraction 1−ν of agents with private signals s ∈ [s� s] hold beliefs such that Ht(E | at−1� s) >
1 − ν. Thus, for all t ∈ T , we have qt(ω) > R̄+ ν.

Since R̄(ω) = lim supt q̄t(ω) > R + ε
2 and R(ω) = lim inft q̄t(ω) < R − ε

2 and |q̄t(ω) −
q̄t−1(ω)| ≤ 1

t
< ε for all large enough t, we must have an infinite sequence of times tk ∈ T

such that

q̄tk−1(ω) ≥R− ε

2
> q̄tk(ω)�

But then, by definition of q̄t , we have q̄tk(ω) = tk−1
tk

q̄tk−1(ω) + 1
tk
qtk(ω) > R − ε

2 , since

qtk(ω) > R + ν > R − ε by construction of T . This is a contradiction. Hence, R(ω) =
limt→∞ q̄t(ω) exists.

Finally, recall that Lemma A.1 applies to agents’ perceived fraction q̂t(ω) of action 0
and implies that q̂t(ω) is strictly decreasing in ω at each t. Given this, a similar induc-
tive argument as in the proof of Lemma A.1 yields that the true action 0 fraction qt(ω)
is strictly decreasing in ω for each t. This implies that R(ω) = limt→∞ q̄t(ω) is weakly
decreasing in ω, as required. Q.E.D.

We now prove that in all states, agents’ long-run beliefs assign probability 1 to some
steady state:

PROPOSITION B.1: Suppose that SS(F� F̂) is finite. Then in all states ω, there exists some
state ω̂∞(ω) ∈ SS(F� F̂) such that almost all agents’ beliefs converge to a point mass on
ω̂∞(ω). Moreover, ω̂∞(ω) is weakly increasing in ω.

PROOF: Fix any ω ∈ Ω and let R(ω) := limt→∞ q̄t(ω), which exists by Lemma B.3. De-
fine

ω̂∞(ω) := argmin
ω̂∈Ω

KL
(
R(ω)� q̂∞(ω̂)

)
�

Note that ω̂∞(ω) is weakly increasing in ω since R(ω) is weakly decreasing and q̂∞ is
strictly decreasing. Consider any interval E � ω̂∞(ω) with non-empty interior and any
s < s. By Lemma B.2, there exists ε > 0 such that

lim
t→∞

inf
{
Ht

(
E | at−1� s

) | s ∈ [s� s]�1 − āt−1 ∈ [
R(ω)− ε�R(ω)+ ε

]} = 1�

As in Lemma B.3, the weak law of large numbers ensures that

lim
t→∞

Pr
(
1 − āt−1 ∈ [

R(ω)− ε�R(ω)+ ε
] |ω) = 1�

Hence, for every ν > 0, we have

lim
t→∞

Pr
(
Ht

(
E | at−1� s

)
> 1 − ν |ω) ≥	

([s� s] |ω)
�



2322 M. FRICK, R. IIJIMA, AND Y. ISHII

Since s and s are arbitrary, the above implies that for every ν > 0 and E � ω̂∞(ω) with
non-empty interior,

lim
t→∞

Pr
(
Ht

(
E | at−1� s

)
> 1 − ν | ω) = 1�

Thus, conditional on state ω, almost all agents’ beliefs converge to a point-mass on
ω̂∞(ω). But then, we have limt→∞ qt(ω) = F(θ∗(ω̂∞(ω))), which implies that R(ω) =
F(θ∗(ω̂∞(ω))). Since we also have q̂∞(·) = F̂(θ∗(·)), this yields ω̂∞(ω) =
argminω̂∈Ω KL(F(θ∗(ω̂∞(ω)))� F̂(θ∗(ω̂))). That is, ω̂∞(ω) ∈ SS(F� F̂). Q.E.D.

B.3. Proof of Theorem 1

Fix any F ∈F , ω̂ ∈ Ω, and ε > 0. We can pick F̂ ∈F such that F̂ crosses F from below in
the single point θ∗(ω̂), as shown in Figure 2; clearly, we can also require that ‖F − F̂‖< ε.
In this case, SS(F� F̂) = {ω̂}. Thus, Proposition B.1 implies that in all states ω, almost all
agents’ beliefs converge to a point mass on ω̂. Q.E.D.

B.4. Proof of Theorem 2

Fix any analytic F� F̂ ∈ F with F̂ �= F . Then the set {θ ∈ [θ∗(ω)�θ∗(ω)] : F(θ) = F̂(θ)}
is finite (possibly empty).53 But this implies that SS(F� F̂) is finite, as every ω̂∞ ∈ SS(F� F̂)
satisfies either F(θ∗(ω̂∞)) = F̂(θ∗(ω̂∞)) or ω̂∞ ∈ {ω�ω}. Thus, Proposition B.1 im-
plies that in every state ω, almost all agents’ beliefs converge to a point mass on a
state ω̂∞(ω) ∈ Ω, where the mapping ω �→ ω̂∞(ω) is weakly increasing and has finite
range. Q.E.D.

APPENDIX C: PROOF OF THEOREM 3

C.1. Theorem 3: Proof of Part 1

Fix any Ωn and any true type distribution F ∈F . For any perception F̂ ∈F , let qt(ω; F̂)
and q̂t(ω; F̂) denote the true and perceived fractions of action in 0 in period t and state
ω ∈ Ωn, and let qt(ω; F̂) := 1

t

∑t

τ=1 qτ(ω; F̂) and q̂t(ω; F̂) := 1
t

∑t

τ=1 q̂τ(ω; F̂) denote the
true and perceived time averages up to period t. Let Ht(ω|s� at−1; F̂) denote the proba-
bility that an agent with perception F̂ assigns to state ω ∈ Ωn following private signal s
and observed action sequence at−1 = (a1� � � � at−1).

Take ν ∈ (0�1) sufficiently small that F(θ∗(ω))± 2ν ∈ (0�1) for each ω ∈ Ωn, and such
that for all pairs of distinct states ω�ω′ ∈Ωn and all R ∈ [F(θ∗(ω))− 2ν�F(θ∗(ω))+ 2ν],

R log
F

(
θ∗(ω)

) − ν

F
(
θ∗(ω′)) + ν

+ (1 −R) log
1 − F

(
θ∗(ω)

) − ν

1 − F
(
θ∗(ω′)) + ν

> ν� (5)

53To see this, suppose for a contradiction that F − F̂ = 0 admits an infinite sequence θ1� θ2� � � � of distinct
solutions in Θ∗ := [θ∗(ω)�θ∗(ω)]. By sequential compactness of Θ∗, restricting to a subsequence if necessary,
we can assume that the sequence converges. Then since F − F̂ is analytic on R, the principle of permanence
implies that F − F̂ is identically zero on R, contradicting F̂ �= F .
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Take C , C such that

C < min
{

log
1 − F

(
θ∗(ω)

) − ν

1 − F
(
θ∗(ω)

) + ν
� log

F
(
θ∗(ω)

) − ν

F
(
θ∗(ω)

) + ν

}
< 0

< max
{

log
1 − F

(
θ∗(ω)

) − ν

1 − F
(
θ∗(ω)

) + ν
� log

F
(
θ∗(ω)

) − ν

F
(
θ∗(ω)

) + ν

}
<C�

Our proof uses the following three lemmas:

LEMMA C.1: There exists ε1 ∈ (0� ν) such that for any ω ∈ Ωn, any t, and any perception F̂

with ‖F − F̂‖ ≤ ε1, if at least fraction 1−ε1 of agents’ posteriors in period t assign probability
at least 1 − ε1 to state ω, then qt+1(ω; F̂)� q̂t+1(ω; F̂) ∈ [F(θ∗(ω))− ν�F(θ∗(ω))+ ν].

PROOF: The result follows from a simple continuity argument based on the continuity
of u and F . Q.E.D.

Throughout the rest of the proof, we fix ε1 as given by Lemma C.1.

LEMMA C.2: Fix any signals s < s, time t̂ > 0, and η ∈ (0�1). There exists a time T1 =
T1(t̂�η� s� s) > t̂ such that for any ω ∈ Ωn, private signal s ∈ [s� s], and t ≥ T1, if perception
F̂ and observed action history at−1 = (a1� � � � � at−1) satisfy

(i) ‖F − F̂‖ ≤ ε1 and qτ(ω
′; F̂) ∈ [F(θ∗(ω′))− ν�F(θ∗(ω′))+ ν] for each τ ∈ {t̂� � � � � t}

and ω′ ∈ Ωn,
(ii) at−1 ∈ [F(θ∗(ω))− 2ν�F(θ∗(ω))+ 2ν],

then the posterior probability Ht(ω|s� at−1; F̂) on state ω is at least η.

PROOF: Pick T1 = T1(t̂�η� s� s) > t̂ sufficiently large that for all s ∈ [s� s] and distinct
ω�ω′ ∈ Ωn, we have (C − C)(t̂ − 1) + (T1 − t̂)ν + �1(ω�ω′) + log φ(s|ω)

φ(s|ω′) ≥ log η

1−η
, where

�1(ω�ω′) denotes the log likelihood ratio of ω versus ω′ according to the prior. Now
consider any ω ∈ Ωn, s ∈ [s� s], t ≥ T1, and F̂ and at−1 satisfying assumptions (i)–(ii). For
any ω′ �=ω, we will show that the log likelihood ratio �t(ω�ω′|s� at−1; F̂) = log Ht(ω|s�at−1;F̂)

Ht (ω′ |s�at−1;F̂)
satisfies �t(ω�ω′|s� at−1; F̂) ≥ log η

1−η
. The argument is analogous to Lemma B.1. Indeed,

we have

�t
(
ω�ω′|at−1� s; F̂) − �1

(
ω�ω′) − log

φ(s|ω)

φ
(
s|ω′)

=
t−1∑
τ=1

(
(1 − aτ) log

q̂τ(ω; F̂)
q̂τ

(
ω′; F̂) + aτ log

1 − q̂τ(ω; F̂)
1 − q̂τ

(
ω′; F̂)

)

≥ C(t̂ − 1)+
t−1∑
τ=t̂

(
(1 − aτ) log

q̂τ(ω; F̂)
q̂τ

(
ω′; F̂) + aτ log

1 − q̂τ(ω; F̂)
1 − q̂τ

(
ω′; F̂)

)

≥ C(t̂ − 1)+
t−1∑
τ=t̂

(
(1 − aτ) log

F
(
θ∗(ω)

) − ν

F
(
θ∗(ω′)) + ν

+ aτ log
1 − F

(
θ∗(ω)

) − ν

1 − F
(
θ∗(ω′)) + ν

)
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≥ C(t̂ − 1)+
t−1∑
τ=1

(
(1 − aτ) log

F
(
θ∗(ω)

) − ν

F
(
θ∗(ω′)) + ν

+ aτ log
1 − F

(
θ∗(ω)

) − ν

1 − F
(
θ∗(ω′)) + ν

)
−C(t̂ − 1)

= (C −C)(t̂ − 1)+ (t − t̂)

((
1 − at

)
log

F
(
θ∗(ω)

) − ν

F
(
θ∗(ω′)) + ν

+ at log
1 − F

(
θ∗(ω)

) − ν

1 − F
(
θ∗(ω′)) + ν

)

≥ (C −C)(t̂ − 1)+ (t − t̂)ν�

Here, the first inequality holds because for all τ, we have (1 − aτ) log q̂τ(ω;F̂)
q̂τ(ω′;F̂) + aτ ×

log 1−q̂τ(ω;F̂)
1−q̂τ(ω′;F̂) ≥ min{log F(θ∗(ω))−ε1

F(θ∗(ω))+ε1
� log 1−F(θ∗(ω))−ε1

1−F̂(θ∗(ω))+ε1
} ≥ C . The second inequality follows

from assumption (i). The third inequality holds because for all τ, we have (1 −
aτ) log F(θ∗(ω))−ν

F(θ∗(ω′))+ν
+ aτ log 1−F(θ∗(ω))−ν

1−F(θ∗(ω′))+ν
≤ max{log F(θ∗(ω))−ν

F(θ∗(ω))+ν
� log 1−F(θ∗(ω))−ν

1−F(θ∗(ω))+ν
} ≤ C . The final in-

equality holds by (5) and assumption (ii).
Thus, by choice of T1, this implies �t(ω�ω′|s� at−1; F̂)≥ log η

1−η
, as claimed. Q.E.D.

LEMMA C.3: For any η ∈ (0�1), there exists T2(η) > 0 such that for any t ≥ T2(η), any
true state ω ∈ Ωn, and any perception F̂ , both the true fraction of agents who observe action
histories with at−1 ∈ [qt(ω; F̂) − ν�qt(ω; F̂) + ν] and the perceived fraction of agents who
observe action histories with at−1 ∈ [q̂t(ω; F̂)− ν� q̂t(ω; F̂)+ ν] are at least η.

PROOF: The result follows from Hoeffding’s inequality since true (resp. perceived) ac-
tion observations a1� a2� � � � are drawn independently across t according to qt(ω; F̂) (resp.
q̂t(ω; F̂)). Q.E.D.

To complete the proof of the first part of Theorem 3, fix any true state ω ∈ Ωn. Take
signals s∗ < s∗ such that 	(s∗|ω) − 	(s∗|ω) ≥ √

1 − ε1. Let T2(
√

1 − ε1) be as given by
Lemma C.3. Note that when F̂ = F , the proof of Lemma 1 continues to ensure almost all
agents’ beliefs converge to δω. Thus, there exists t̂ ≥ T2(

√
1 − ε1) such that for all t ≥ t̂,

we have

qt(ω;F)�qt(ω;F) ∈
[
F

(
θ∗(ω)

) − ν

2
�F

(
θ∗(ω)

) + ν

2

]
�

Let T1(t̂�1 − ε1� s
∗� s∗) be as given by Lemma C.2. Then, by a continuity argument, there

exists ε2 ∈ (0� ε1] such that for all F̂ with ‖F − F̂‖ ≤ ε2 and all t ∈ {t̂� � � � � T1(t̂�1 −
ε1� s

∗� s∗)},
qt(ω; F̂)� qt(ω; F̂)� q̂t(ω; F̂)� q̂t(ω; F̂) ∈ [

F
(
θ∗(ω)

) − ν�F
(
θ∗(ω)

) + ν
]
� (6)

We show by induction that (6) remains valid for all t ≥ T1(t̂�1 − ε1� s
∗� s∗). Fix any F̂ with

‖F − F̂‖ ≤ ε2, and suppose (6) holds up to some t ≥ T1(t̂�1 − ε1� s
∗� s∗). Since t + 1 ≥

T2(
√

1 − ε1), Lemma C.3 implies that both the true and perceived fraction of agents with
observed action frequency at ∈ [F(θ∗(ω)) − 2ν�F(θ∗(ω)) + 2ν] are at least

√
1 − ε1. By

the inductive hypothesis and Lemma C.2, each such agent’s period t + 1 belief assigns
probability at least 1 − ε1 to ω if his private signal was some s ∈ [s∗� s∗]. By choice of s∗,
s∗, the fraction of agents with s ∈ [s∗� s∗] is at least

√
1 − ε1. Thus, fraction at least 1 − ε1

of agents assign probability at least 1 − ε1 to ω in period t + 1. Hence, by Lemma C.1, we
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have qt+1(ω; F̂)� q̂t+1(ω; F̂) ∈ [F(θ∗(ω))− ν�F(θ∗(ω))+ ν], which along with (6) at t also
ensures qt+1(ω; F̂)� q̂t+1(ω; F̂) ∈ [F(θ∗(ω))− ν�F(θ∗(ω))+ ν], as claimed.

Finally, consider any perception F̂ with ‖F − F̂‖ ≤ ε2 and any η ∈ (0�1). Pick signals
s < s such that 	(s|ω) − 	(s|ω) ≥ √

η. Since (6) holds for all t ≥ t̂, Lemma C.3 implies
that for all t ≥ max{t̂� T2(

√
η)}, at least fraction

√
η of agents observe action frequency

at−1 ∈ [F(θ∗(ω)) − 2ν�F(θ∗(ω)) − 2ν]. Therefore, by (6) for t ≥ t̂ and Lemma C.2, any
such agent’s posterior at all t ≥ max{T1(t̂�η� s� s)� t̂� T2(

√
η)} assigns probability at least

η on ω if his private signal s was in [s� s]. Thus, by choice of s, s, fraction at least η of
agents assign probability at least η to ω at all t ≥ max{T1(t̂�η� s� s)� t̂� T2(

√
η)}. Since η

was arbitrary, this completes the proof. Q.E.D.

C.2. Theorem 3: Proof of Part 2

In each state space Ωn, define the set of steady states by

SSn(F� F̂) :=
{
ω̂∞ ∈Ωn : ω̂∞ = argmin

ω̂∈Ωn

KL
(
F

(
θ∗(ω̂∞)

)
� F̂

(
θ∗(ω̂)

))}
�

The proofs in Appendix B.1–B.2 do not rely on the fact that the state space is continu-
ous and the same arguments go through under finite state spaces. In particular, Propo-
sition B.1 remains valid for each Ωn and implies that in every state ω ∈ Ωn, there exists
some state ω̂∞(ω) ∈ SSn(F� F̂) such that almost all agents’ beliefs converge to a point
mass on ω̂∞(ω).

To prove the second part of Theorem 3, fix any F ∈ F , ω̂ ∈ Ω, and ε > 0. Take any
perceived type distribution F̂ ∈ F such that ‖F − F̂‖ < ε and F̂ − F is strictly increasing
with F̂(θ∗(ω̂))−F(θ∗(ω̂)) = 0. Then κ := minω∈Ω\[ω̂−ε�ω̂+ε] |F(θ∗(ω))− F̂(θ∗(ω))| satisfies
κ > 0. Note that F̂(θ∗(ω)) is uniformly continuous in ω by the compactness of Ω. Thus,
there exists γ > 0 such that for any ω′�ω′′ ∈ Ω with |ω′ − ω′′| < γ, we have |F̂(θ∗(ω′)) −
F̂(θ∗(ω′′))| < κ. Moreover, since {ω1�ω2� � � �} is dense in Ω, we can pick N large enough
such that any interval in Ω of length γ contains at least one state from ΩN = {ω1� � � � �ωN}.

Consider any state space Ωn with n ≥ N . We claim that SSn(F� F̂) ⊆ [ω̂ − ε� ω̂ + ε].
Indeed, consider any ω̂∞ ∈ Ωn \ [ω̂− ε� ω̂+ ε]. We focus on the case ω̂∞ < ω̂− ε, as the
case ω̂∞ > ω̂+ ε is analogous. By construction, F(θ∗(ω∞))− F̂(θ∗(ω∞))≥ κ. Moreover,
since n ≥ N , there exists some state ω′ ∈ (ω̂∞� ω̂∞ + γ] ∩ Ωn. By choice of γ, this yields
F(θ∗(ω̂∞)) > F̂(θ∗(ω′)) > F̂(θ∗(ω̂∞)), whence ω̂∞ /∈ SSn(F� F̂). Thus, Proposition B.1
implies that in any state ω ∈ Ωn, almost all agents’ beliefs converge to a point mass on
some state ω̂∞(ω) ∈ SSn(F� F̂)⊆ [ω̂− ε� ω̂+ ε], as claimed. Q.E.D.
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