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Quantum simulation, one of the most promising applications of a quantum computer, is currently
being explored intensely using the variational quantum eigensolver. The feasibility and performance
of this algorithm depend critically on the form of the wavefunction ansatz. Recently in Nat. Com-
mun. 10, 3007 (2019), an algorithm termed ADAPT-VQE was introduced to build system-adapted
ansätze with substantially fewer variational parameters compared to other approaches. This al-
gorithm relies heavily on a predefined operator pool with which it builds the ansatz. However,
Nat. Commun. 10, 3007 (2019) did not provide a prescription for how to select the pool, how
many operators it must contain, or whether the resulting ansatz will succeed in converging to the
ground state. In addition, the pool used in that work leads to state preparation circuits that are too
deep for a practical application on near-term devices. Here, we address all these key outstanding
issues of the algorithm. We present a hardware-efficient variant of ADAPT-VQE that drastically
reduces circuit depths using an operator pool that is guaranteed to contain the operators necessary
to construct exact ansätze. Moreover, we show that the minimal pool size that achieves this scales
linearly with the number of qubits. Through numerical simulations on H4, LiH and H6, we show
that our algorithm (“qubit-ADAPT”) reduces the circuit depth by an order of magnitude while
maintaining the same accuracy as the original ADAPT-VQE. A central result of our approach is
that the additional measurement overhead of qubit-ADAPT compared to fixed-ansatz variational
algorithms scales only linearly with the number of qubits. Our work provides a crucial step forward
in running algorithms on near-term quantum devices.

I. INTRODUCTION

Finding the ground state of a many-body interacting
electronic Hamiltonian is one of the most important prob-
lems in modern quantum chemistry and physics. As the
dimension of the Hamiltonian scales exponentially with
the number of particles, accurate classical simulations
can only be performed for systems with few electrons.
Although many classical computational techniques have
been developed to approximate the ground electronic
state, no classical method is available which can perform
accurately for arbitrary systems with polynomial effort.
While density functional theory (DFT) [1, 2] has been
tremendously useful for unraveling the microscopic de-
tails of weakly correlated molecules and materials, the
most accurate form (Kohn-Sham DFT [1]) relies on a
single Slater determinant wavefunction, which fails to de-
scribe strong correlation with current functionals. Unlike
DFT, whose accuracy relies on a density functional which
is not able to be systematically improved, wavefunction-
based methods such as configuration interaction (CI) or
coupled-cluster (CC) can be used to describe many-body
systems with clear paths to arbitrary accuracy. However,
in the presence of strong correlation such methods incur
an exponential computational cost due to the large num-
ber of Slater determinants involved. Alternatively, meth-
ods based on tensor network states [3–7] (most notably
density matrix renormalization group [8–10]) can exploit
rank sparsity in low-energy states of one-dimensional sys-
tems to simulate strongly correlated systems, with poly-

nomial cost. This polynomial scaling is lost in higher
dimensions, and the computational cost again grows ex-
ponentially. A radically different approach is Feynman’s
proposal to study quantum systems using quantum com-
puters [11]. Recent reviews provide a comprehensive
background and discuss new developments in quantum
simulation with quantum computers [12–14].

The long-term method for simulating chemical systems
with quantum computers is the quantum phase estima-
tion algorithm (PEA) [15, 16], which shows an exponen-
tial speedup over classical algorithms [17, 18]. Since the
number of gates, i.e. unitary operations, involved in this
algorithm is very large, it requires a long coherent evolu-
tion which can only be realized in fault-tolerant quantum
computers [19]. These scalable, error-correcting devices
may take decades to realize experimentally. In the mean-
time, the community is exploring algorithms that can
be applied to existing and near-term processors, namely
noisy intermediate-scale quantum (NISQ) devices [19].

A promising algorithm for NISQ hardware is the vari-
ational quantum eigensolver (VQE) [20, 21]. VQE is
a hybrid method that combines classical computational
power with a quantum processor. Based on the varia-
tional principle in quantum physics, the VQE algorithm
constructs a trial wavefunction by applying gates on a
quantum device and estimates the average energy by
measuring the Hamiltonian on that device. This mea-
sured energy is then minimized by tuning the quantum
circuit. The circuit parameter optimization is performed
by a classical computer, and quantum resources are only
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used for the classically intractable parts (state prepara-
tion and energy evaluation) of the calculation. Compared
to PEA, VQE has much more modest requirements on
the coherence times of the quantum processor, and it
has already been realized on NISQ devices, such as su-
perconducting qubits [22, 23], photons [20], and trapped
ions [24, 25]. The accuracy of VQE is highly dependent
on the explicit form of the wavefunction ansatz and can
only obtain the exact ground state energy if the ansatz
is capable of representing any state in the subspace that
contains the ground state. For example, if symmetries
of the ground state are known, then one can construct
an ansatz that represents any state in the correspond-
ing symmetry subspace [26], guaranteeing that the exact
ground state can be expressed in terms of the ansatz.

One of the commonly used ansätze for VQE is unitary
coupled cluster singles and doubles (UCCSD) [27, 28].
Stemming from the coupled cluster theory used in chem-
istry, this unitary version is more suitable for quantum
circuit implementation. The ‘singles and doubles’ in
UCCSD means only single and double excitation oper-
ators are included in the ansatz, each carrying its own
variational parameter. One drawback of UCCSD is that
including all the singles and doubles operators leads to a
(potentially unnecessarily) deep circuit and a large num-
ber of parameters to optimize. To reduce this complexity,
several alternatives have been proposed which attempt to
keep only the most important operators [29–36]. A sec-
ond drawback is that UCCSD is also generally not exact
and suffers from ambiguities in operator ordering upon
factorization into a product of exponentiated operators
(Trotterization), which is a necessary step in converting
the ansatz to a state preparation circuit [37, 38]. Another
approach to building the ansatz is to use the most ac-
cessible gates in the quantum device, alternating single-
qubit gates and two-qubit gates layer by layer. This is
referred to as a hardware-efficient ansatz [23]. Although
this approach lessens the demands on the quantum pro-
cessor, the resulting wavefunction ansatz can lead to dif-
ficulties in parameter optimization [39]. This problem
was addressed by constructing particle-conserving entan-
gling gates instead of ordinary two-qubit gates [40, 41]
and symmetry-preserving circuits [26]. While these fixed-
ansatz approaches can be applied to any problem and can
reduce the number of variational parameters and circuit
depths, further improvement may still be possible by tai-
loring the ansatz to a given simulation problem.

Recently, a new algorithm that provides a systematic
method to build an ansatz dynamically was introduced.
This algorithm, termed Adaptive Derivative Assembled
Pseudo-Trotter (ADAPT) VQE [29], employs a predeter-
mined pool of operators from which the ansatz is dynam-
ically constructed. The ansatz is grown iteratively, such
that at each step, the operator that affects the energy
the most is added to the ansatz. Using fermionic op-
erators as a pool, Ref. [29] demonstrated that ADAPT-
VQE substantially outperforms UCCSD, in terms of both
number of variational parameters and accuracy. This re-

sult demonstrates the promise of the ADAPT algorithm.
However, due to the gate overhead of the fermion-to-spin
mapping, the operators considered in Ref. [29] translate
to a fairly large number of quantum gates, and, there-
fore, while the number of parameters is very low, the
circuit depth (which is significantly reduced compared to
UCCSD) may still be impractically large, limiting the
applicability of ADAPT-VQE to NISQ devices. Even
more importantly, it is not clear (i) how the operator
pool should be chosen in general, (ii) how many opera-
tors it should contain, and (iii) what guarantees that the
pool is complete, i.e., that it enables convergence to the
ground state.

In this paper, we address these issues by introduc-
ing a hardware-efficient variant of ADAPT-VQE that
substantially reduces both the number of measurements
and the circuit depths needed to achieve convergence.
We term this algorithm qubit-Adaptive Derivative As-
sembled Problem-Tailored (qubit-ADAPT) VQE, in con-
trast with the implementation in Ref. [29], which we
refer to as fermionic-ADAPT in this paper. Through
classical simulations of several different molecules, we
demonstrate that compared to fermionic-ADAPT, qubit-
ADAPT reduces the circuit depth by an order of magni-
tude while maintaining the same accuracy. Moreover, we
introduce a pool completeness criterion that determines
whether a given pool will generate an exact ADAPT
ansatz. We prove that the minimal number of pool oper-
ators that satisfy this condition grows linearly with the
number of qubits. This is much smaller than the quar-
tic scaling originally assumed in fermionic-ADAPT, and
it demonstrates that the additional measurement over-
head of ADAPT-VQE remains modest for larger systems
(increasing only linearly over conventional, fixed-ansatz
VQEs). Our results pave the way toward both practical
and accurate VQE algorithms on NISQ devices.

This paper is organized as follows. First, we briefly re-
view fermionic-ADAPT and estimate the corresponding
circuit depth in Sec. II. In Sec. III, we introduce qubit-
ADAPT and provide a detailed description of the oper-
ator pool. In Sec. III A, we compare the performance of
qubit-ADAPT and fermionic-ADAPT through numerical
simulations of H4, LiH and H6 molecules. We show that
the minimal size of the operator pool for qubit-ADAPT
scales linearly in the number of qubits in Sec. III B. We
conclude in Sec. IV. Details of the estimate for the circuit
depth of fermionic-ADAPT and a constructive proof of
the linear scaling of minimal complete pools are included
in appendices.

II. CIRCUIT DEPTH ESTIMATE FOR
FERMIONIC-ADAPT

The ADAPT ansatz is grown by one operator τ̂i = −τ̂ †i
at each iteration, and after the n-th iteration is given by∣∣∣ψADAPT (~θ)

〉
= eθk τ̂k . . . eθ2τ̂2eθ1τ̂1

∣∣ψHF 〉 , (1)
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where
∣∣ψHF 〉 is the HF state. These operators are se-

lected from an operator pool defined upfront. At each it-
eration, the operator which induces the maximum change
to the energy is selected. This energy response is repre-
sented by the gradient of the energy with respect to the
corresponding parameter, i.e.

∂

∂θi
〈E〉 = 〈ψ| [Ĥ, τ̂i] |ψ〉 , (2)

which can be measured on the quantum device. The
ansatz keeps growing until the norm of the gradient vec-
tor,

||~g|| =

√√√√∑
i

(
∂

∂θi
〈E〉
)2

, (3)

is zero or, in practice, smaller than a chosen threshold,
ε. Compared to ordinary VQE, ADAPT-VQE requires
additional measurements to obtain the gradient at each
iteration; the number of these measurements is roughly
equal to the size of the pool times the number of terms
in the Hamiltonian [42], although the number of mea-
surements needed to compute the mean energy can be
decreased using recently developed techniques [43].

In order to attain a compact circuit for the ADAPT
ansatz, we want to minimize both the number of param-
eters and the circuit depth. While the first requirement
can be satisfied by the general structure of the ADAPT-
VQE algorithm, the second one is not guaranteed and
depends on the chosen pool. Using fermionic operators,
a parameter-efficient operator pool can be constructed
from spin-adapted single excitation operators:

τ̂1 ∝ |↑〉a 〈↑|b + |↓〉a 〈↓|b − h.c., (4)

and double excitation operators:

τ̂2,T ∝ |T, 1〉pq 〈T, 1|rs + |T,−1〉pq 〈T,−1|rs
+ |T, 0〉pq 〈T, 0|rs − h.c.

τ̂2,S ∝ |S, 0〉pq 〈S, 0|rs − h.c.,
(5)

where a, b, p, q, r, s are spatial orbitals and T, S refer to
triplets and singlets formed by p, q or r, s. To implement
ADAPT-VQE on qubits, we have to map these fermionic
operators to Pauli operators, which has the consequence
that a parameter-efficient pool is most likely not gate-
efficient. In this paper, we employ the Jordan-Wigner

(JW) mapping, i.e., âi →
∏i−1
j=0 Zj(Xi − iYi). Adapting

the methods we develop here to other mappings [44–46]
will be the subject of future work.

In the JW mapping, a double excitation operator may
contain more than one fermionic operator a†pa

†
qaras−h.c.,

which is transformed into at most 8 Pauli strings. (A
product of four fermionic operators gives 16 terms in to-
tal, but each symmetric term is cancelled by its Hermi-
tian conjugate [35].) These excitation operators conserve
S2, Sz and particle number by summing a number of

Pauli strings together, which results in a high gate count
per excitation operator.

In order to make a rough estimate of the number of
CNOT gates involved in one operator from the fermionic
pool, we consider the generalized singles-doubles exci-
tation fermionic pool. ‘Generalized’ indicates that the
excitations are not restricted to occur only from occu-
pied to virtual orbitals. Rather, all combinations of ex-
citations are included. To obtain the gate count, we
perform first-order Trotterization of each unitary, i.e.,

eθiτ̂i ≈
∏
j e
θj P̂j , where Pj are the Pauli strings appear-

ing in τ̂i after the JW mapping. For simplicity, we as-
sume only double excitation operators are picked by the
algorithm, which makes this a conservative estimate as
any single excitation included would result in a smaller
CNOT-to-parameter count ratio. The number of CNOTs
needed for a single Pauli string P̂i with length q is 2(q−1)
[48]. Here, the length q is the number of non-identity
Pauli operators in the string. The average number of
CNOTs involved in a spin-adapted double excitation op-
erator is approximately N̄Pauli(6 + 2N̄Z)N̄spin, where
N̄Pauli is the average number of Pauli strings in a dou-
bles operator a†pa

†
qaras − h.c., N̄Z is the average number

of Pauli Z’s in a Pauli string due to the anticommutation
relation of fermionic operators, and N̄spin is the average
number of doubles operators summed in a spin-adapted
operator (Eq.(5)). By Appendix. A, these quantities are
given by

N̄Pauli =
8m(5m− 7)

m(5m− 1)− 8
, (6)

N̄Z =
12m3 − 30m2 + 34m− 20

3(5m2 −m− 8)
, (7)

N̄spin =
5m2 −m− 8

m2 +m
, (8)

where m is the number of spatial orbitals. For large m,
the number of CNOTs in a spin-adapted doubles operator
is approximately 64m.

III. QUBIT-ADAPT

Because the spin-adapted fermionic operators each in-
troduce a large number of CNOTs into the state prepa-
ration circuit, we are motivated to construct a new pool
consisting of operators that involve fewer CNOTs. One
way is to break down the spin-adapted fermionic oper-
ators after the JW mapping and choose the individual
Pauli strings as the operator pool τ̂ = P̂ = i

∏
i pi, pi ∈

{X,Y, Z}. This more hardware-efficient choice effectively
reduces N̄spin and N̄Pauli to 1, while it contains the same
basic elements as the spin-adapted fermionic pool. An
important property of this qubit pool is that it only con-
tains Pauli strings with odd numbers of Y ’s because the
fermionic operators are real, hence P̂ = i

∏
i pi has to

be real. We refer to these as “odd” Pauli strings. The
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FIG. 1. Ground state energy difference between ADAPT and the exact (FCI) result for (a,d) H4 at bond distance 1.5Å, (b,e) LiH
at bond distance 2Å, and (c,f) H6 at bond distance 1.5Å. The bond distances are chosen to ensure that correlation effects are
substantial. All the calculations are performed using an STO-3G basis and start from restricted Hartree-Fock orbitals without
using a frozen-core approximation such that we have 8 spin-orbitals for H4, 12 spin-orbitals for LiH, and 12 spin-orbitals for H6.
Results are shown for qubit-ADAPT (blue), fermionic-ADAPT (orange) and transpiled fermionic-ADAPT (green). Panels (a)-
(c) show the energy difference as a function of ADAPT iterations (which is equal to the number of variational parameters), while
(d)-(f) show it as a function of the number of CNOTs in the corresponding state preparation circuit. All CNOT gate counts
are obtained using the qiskit command count ops. The transpiled counts were obtained using qiskit.transpile [47] with
heavy optimization, which includes canceling back-to-back CNOTs and “commutative cancellation”. Although qubit-ADAPT
requires more variational parameters, it entails significantly fewer CNOTs compared to fermionic-ADAPT.

remaining “even” Pauli strings have no effect on the en-
ergy. This is because Ĥ is symmetric (time-reversal sym-
metry is preserved), and so the expectation value of the
commutator in Eq. (2) will vanish for real |ψ〉 if τ̂i is
symmetric (i.e., even). We can therefore restrict τ̂i to
the odd Pauli strings, which are antisymmetric. Using
such operators in the pool also ensures that the ansatz
remains real throughout the qubit-ADAPT algorithm,
which should be the case when Ĥ is time-reversal sym-
metric. The length of these strings ranges from 2 to n
due to the Pauli Z chain responsible for the fermionic
anticommutation relation. To further reduce gate depth,
we remove these Pauli Z chains from the operators. Nu-
merically, we find that these two pools (with and without

Z chains) perform similarly. The pool without Z chains
gives Pauli strings with maximum length 4. The size
of this pool is much smaller than the full set of Pauli
strings with maximum length 4, as we only pick opera-
tors that already appear in the fermionic pool, which are
capable of transforming

∣∣ψHF 〉 to the ground state. We
refer to this reduced pool as the “qubit pool”. Below, we
demonstrate that this pool produces significantly shal-
lower state preparation circuits compared to fermionic-
ADAPT. We also provide evidence that the size of the
qubit pool can be reduced dramatically down to a size
that scales only linearly in the number of qubits, which
substantially cuts down on the number of measurements
needed to run qubit-ADAPT.
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A. Numerical simulations

We compare the performance of the qubit pool to the
fermionic pool in terms of the number of parameters and
the number of CNOTs for different molecules, H4, LiH
and H6 (Fig. 1). In each case, we choose a bond distance
such that correlation effects are significant: r = 1.5Å for
H4 and H6, and r = 2Å for LiH. All the calculations
are performed using an STO-3G basis and start from re-
stricted Hartree-Fock orbitals without using a frozen-core
approximation such that we have 8 spin-orbitals for H4

and 12 spin-orbitals for each of the other two molecules.
All CNOT gate counts are obtained using the qiskit com-
mand count ops, where we consider the case of all-to-
all qubit connectivity for concreteness. Although these
counts will increase as the connectivity is reduced, we
do not expect the relative performance of the two algo-
rithms to change significantly. In the case of fermionic-
ADAPT, we show gate counts before and after transpi-
lation is used. The counts before transpilation agree well
with the estimates obtained in Sec. A.

It is evident from Fig. 1 that in the case of the
qubit pool, more parameters are used compared to
the fermionic pool. On the other hand, the number
of CNOTs is reduced significantly, by about an order
of magnitude in the case of H6. Switching from the
fermionic pool to the qubit pool increases the number
of parameters in the ansatz, which is the price for com-
pressing the circuit depth. However, the increase in pa-
rameter number only increases the required classical com-
putational power during the classical optimization, while
the decrease in circuit depth reduces the demands on the
quantum processor. For NISQ devices, the number of
CNOTs that can be implemented within the coherence
time is very limited, so the ability of qubit-ADAPT to di-
vert more of the computational cost away from the quan-
tum processor and onto the classical optimizer should be
advantageous overall.

To evaluate the effectiveness of using the gradient as a
means to grow the ADAPT ansatz, we compare the per-
formance of qubit-ADAPT with random operator order-
ings drawn from the same qubit pool. In Fig. 2, we see
that qubit-ADAPT always converges much faster than
the random orderings for both H4 and LiH. When ran-
dom orderings are used for H4, convergence to the ground
state requires 46-78 parameters, compared to only 30 pa-
rameters for qubit-ADAPT. In the case of LiH, the ran-
dom orderings require more than three times as many pa-
rameters as qubit-ADAPT to converge. We can only pro-
vide a lower bound on the number of parameters needed
to converge the random ordering results in Fig. 2(b) due
to the long computational times needed in this case.
These findings suggest that the role of the gradient se-
lection in qubit-ADAPT is crucial for larger problems.

Fig. 3 shows that the performance of qubit-ADAPT
remains essentially the same across different bond dis-
tances. Results are shown for LiH, where the bond dis-
tance is varied from 1Å to 3Å. The fact that the curves
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FIG. 2. The energy error of qubit-ADAPT versus ansätze
with random operator orderings as a function of the number
of iterations for (a) H4 and (b) LiH. The qubit pool is used in
all cases, and the orbital bases and bond distances are chosen
as in Fig. 1.

corresponding to different bond lengths largely overlap
one another shows that the rate of convergence does not
change significantly. Because the amount of correlation
in the ground state depends on the bond distance (more
correlations tend to arise as the bonds are stretched),
this suggests that the convergence of qubit-ADAPT is
not sensitive to the strength of correlations. This finding
indicates that qubit-ADAPT is a promising approach to
studying strongly correlated systems.

B. Operator pool reduction

So far, a drawback of the qubit pool is its large size
compared to the fermionic pool, which in turn leads
to proportionally more measurements at each iteration.
Even though the qubit pool is defined from the fermionic
pool, which is a small subset of the full Pauli group, the
pool size grows quickly with the number of orbitals. How-
ever, many of these operators are redundant in the sense
that eliminating them has no effect on the convergence of
the algorithm. For example, there are pairs of operators
that are related by a global rotation, e.g. X0Y1Y2Y3 and
Y0X1X2X3, so we only need to keep one of them in the
pool; discarding the other does not have any significant
effect on the performance of qubit-ADAPT.
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FIG. 3. qubit-ADAPT and fermionic-ADAPT energy error
of LiH for various bond distances. The bond distance varies
from 1Å to 3Å with darker curves in (a), (b) corresponding to
larger bond distance. The energy error is plotted against (a)
the number of parameters and (b) the number of CNOTs. The
performance remains similar across different bond lengths and
hence across different amounts of correlation in the ground
state. The orbital basis used is the same as in Fig. 1. (c) The
final energies obtained by qubit-ADAPT (points marked by
×) for each bond distance considered are plotted along with
the exact ground state energies (solid curve).

The redundancy in the pool can be illustrated by re-
moving randomly selected operators from the pool and
monitoring the impact on convergence. First we ran-
domly remove 3/4 of the operators in the pool. As shown
in Fig. 4, despite this large reduction of the pool size, the
performance of the algorithm is similar to that with the
original pool. However, as is also evident in Fig. 4, if we
further remove more operators, the pool is sometimes in-
complete, and the energy may not converge to the ground
state energy. We can understand the tolerance of the al-
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FIG. 4. qubit-ADAPT energy error of H4 using the full qubit
pool, and randomly chosen 1/4, 1/16 and 1/32 pools are plot-
ted against the number of iterations. For the 1/4 and 1/16
pools, the algorithm can converge for almost every run. For
the 1/32 pool, most of the runs can only reach an energy error
of 10−3. The orbital basis and bond distance are chosen as in
Fig. 1.

gorithm to the drastic reduction of the pool by studying
the Hilbert space spanned by the pool operators. Start-

ing from the expression for
∣∣∣ψADAPT (~θ)

〉
in Eq. 1 and

using the Baker-Campbell-Hausdorff formula repeatedly,
we obtain ∣∣∣ψADAPT (~θ)

〉
= e

∑
i φiAi

∣∣ψHF 〉 , (9)

where the Ai include all the pool operators and their

commutators, and the φi are functions of ~θ. Therefore,
the Hilbert space spanned by the pool is determined by
the set {Ai}. Note that if the original pool is comprised
of odd Pauli strings, then so is {Ai}. If the operators in
{Ai} can transform the reference state to any real state in
the n-qubit Hilbert space, then the qubit-ADAPT ansatz
is guaranteed to be exact, and it is capable of converging
to the ground state. (Here, the only symmetry we impose
is time-reversal.) Note that if {Ai} includes all the odd
Pauli strings (of which there are 2n−1(2n − 1), which
scales exponentially with the number of qubits), then we
could create an arbitrary orthogonal transformation in
Eq. (9). However, spanning the Hilbert space requires
only a subset of the odd Pauli strings, because only 2n−1
real parameters are required to create an arbitrary real
state. In particular, we need {Ai} to be such that for
an arbitrary state |ψ〉, the states Ai |ψ〉 form a complete
basis. In this case, we refer to {Ai} as a complete basis
of operators.

The problem then is to determine the minimal pools
that produce a complete basis of operators. For a given

pool, we define the overlap matrix as Mij = 〈ψ|A†iAj |ψ〉
where |ψ〉 is an arbitrary real state. If the rank of M
satisfies r(M) ≥ 2n − 1, this pool is called complete. To
determine the smallest complete pools, we randomly gen-
erate many different pools of increasing size and compute



7

0 2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

number of operators in pool

co
m
pl
et
e
po
ol
s
(f
ra
ct
io
n)

FIG. 5. The fraction of pools that are complete as a function
of pool size for two (blue circles), three (yellow squares), four
(green diamonds), and five (red triangles) qubits.

r(M) in each case to test for completeness. We did this
for up to 7 qubits. Our numerical investigations reveal
that, surprisingly, the minimal pool size required for the
overlap matrix to have the required rank of 2n − 1 is
only 2n − 2. This is evident in Fig. 5, which shows the
fraction of pools that are complete for various pool sizes
and numbers of qubits. In each case, complete pools are
found for pool sizes that contain at least 2n − 2 opera-
tors. Note that not only is this much smaller than the
Hilbert space, it is also much smaller than the size of the
fermionic pool, which scales like n4.

Randomly selecting pools of size 2n − 2 and testing
for completeness by computing r(M) is a numerically
intensive process that quickly becomes infeasible as the
number of qubits increases. This is further exacerbated
by the fact that the fraction of complete pools of size
2n − 2 becomes smaller as n increases, as is evident in
Fig. 5, which raises the question of whether complete
pools of size 2n − 2 even exist for large values of n.
In Appendix B, we prove analytically using induction
that complete pools of size 2n − 2 exist for any n. In
fact, the proof is constructive: We present two fami-
lies of minimal pools that are provably complete for any
number of qubits. One of these pools, which we call
{Vj}n where j = 1, . . . , 2n − 2, is defined recursively as
{Vj}n = {Zn{Vk}n−1, iYn, iYn−1}, starting from the pool
for n = 2 qubits: {Vj}2 = {iZ2Y1, iY2}. This pool is
comprised of generators for single-qubit Y rotations and
conditional Y rotations, and it contains operators that
act on up to all n qubits. In Appendix B, we prove that
these operators are sufficient to rotate any real state to
any other real state in the Hilbert space. As shown in
Appendix C, {Vj}n can be mapped to a second family of
minimal complete pools, which we call {Gj}n, that has
a very local structure. This pool contains all two-qubit
operators of the form iZk+1Yk that act on two neighbor-
ing qubits labeled by k and k + 1. There are n− 1 such
operators. {Gj}n also contains all single-qubit Pauli iY
operators except on the first qubit. Therefore, this pool
contains 2n− 2 operators. In Appendix C, we show that
the Gj can be obtained from commutators of the Vj for
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FIG. 6. Energy error curves for three different kinds of min-
imal complete pools versus incomplete pools. Results for 3,
4 and 5-qubit random Hamiltonians are shown in panels (a),
(b) and (c) respectively.

any n, and so the completeness of the former follows from
that of the latter.

To investigate the importance of the pool being com-
plete, we run qubit-ADAPT for random real Hamiltoni-
ans of 3, 4 and 5 qubits with random initial states and
for pools consisting of 2n− 2 operators randomly chosen
from the set of odd Pauli strings. We also run simulations
using the minimal complete pools {Vj}n and {Gj}n. The
operator coefficients in each Hamiltonian (which is taken
to be real and symmetric) are obtained by sampling uni-
formly in the range [−2, 2] with 10 samples for each of
these 3 cases. The corresponding energy error curves are
illustrated in Fig. 6. Each curve is the result for a differ-
ent random Hamiltonian. All of the curves that fail to
converge correspond to incomplete pools. For these cases,
even though the gradient goes to zero the ground state is
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not reached because important operators are never gen-
erated. On the other hand, the runs with complete pools
always converge, highlighting the importance of this cri-
terion. For the cases considered, we find that 20-40% of
pools containing 2n − 2 operators are complete. These
findings shed light on the question of what constitutes a
good operator pool for ADAPT-VQE. These points were
not appreciated in the original paper [29], and moreover,
they suggest that the fermionic pool used in that work
is overcomplete. Furthermore, the fact that the mini-
mal pool size is linearly proportional to n means that
the number of additional measurements needed for each
step of qubit-ADAPT is also linear in n. Thus, the extra
measurement overhead of qubit-ADAPT remains modest
as the problem size increases.

IV. CONCLUSIONS

In conclusion, we introduced a more efficient and
NISQ-compatible version of the ADAPT-VQE algorithm,
called qubit-ADAPT. The basic idea of qubit-ADAPT
is to use a pool consisting of Pauli strings (rather than
fermionic operators) so that the number of CNOT gates
associated with each pool operator is reduced. We es-
tablished a completeness condition that guarantees that
a pool will generate an exact ADAPT ansatz, and we
proved that the smallest possible pool that obeys this cri-
terion scales linearly with the number of qubits. We also
provide a constructive approach to generating minimal
complete pools for an arbitrary number of qubits. These
results remove the ad-hoc elements of the ADAPT algo-
rithm and lead to a substantial reduction in the depths of
state preparation circuits and in the number of measure-
ments needed to run ADAPT-VQE on realistic hardware.
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Appendix A: CNOT estimation

From the structure of the pool operators, we can try
estimating the number of CNOT gates as a function of
the number of variational parameters. These estimates
are described below.

Qubit ADAPT

In order to get a conservative estimate on the CNOT
count, we assume that all operators picked are four-qubit
pauli strings, since exponentiating an n-qubit Pauli string

requires 2(n−1) CNOT gates, the number of CNOT gates
is

N̄CNOT = 6 (A1)

Fermionic ADAPT

In the case of fermionic-ADAPT, the number of
CNOTs used can be estimated as

N̄CNOT = (6 + 2× N̄Z)× N̄Pauli × N̄spin (A2)

where N̄Z is the average number of Pauli-Z used for fix-
ing the antimsymmetry of fermionic operators, N̄spin is
the average number of fermionic operators in each spin-
adapted group and N̄Pauli is the average number of Pauli
strings from each fermionic operators.

N̄spin =
Total # of fermionic terms (a†pa

†
qaras)

Total spin adapted double ops in pool

: # of fermionic terms in a spin adapted op

N̄Pauli =
Total number of Pauli strings after JW

Total fermionic terms
: # of Pauli strings from each fermionic term

N̄Z =
Total length of Pauli Z from all fermionic

Total # of fermionic terms

: increases the length of Pauli strings

(A3)

To compute these total counts, we can first classify the
combination of spatial orbitals in 5 groups:

1. p 6= q 6= r 6= s

2. One of p, q = One of r, s

3. p = q 6= r 6= s

4. p = q = r 6= s

5. p = q 6= r = s.

Since some of them can have both triplet and singlet
while the others can only have singlet. And the number
of fermionic terms in spin adapted grouping also depends
on the combination of spatial orbitals.

For group 1, the triplet operator reads as

τ̂2,T ∝ |T, 1〉pq 〈T, 1|rs + |T,−1〉pq 〈T,−1|rs
+ |T, 0〉pq 〈T, 0|rs − h.c.

= |pq〉 〈rs|+ 1

2
(|pq̄〉+ |p̄q〉) (〈rs̄|+ 〈r̄s|)

+ |p̄q̄〉 〈r̄s̄| − h.c.

→a†pa†qaras +
1

2

(
a†pa
†
q̄aras̄ + a†pa

†
q̄ar̄as

+ a†p̄a
†
qaras̄ + a†p̄a

†
qar̄as

)
+ a†p̄a

†
q̄ar̄as̄ − h.c.,

http://arxiv.org/abs/de-sc/0019199
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so there are 6 terms in total (12 terms including Hermi-
tian conjugate). For the singlet,

τ̂2,S ∝ |S, 0〉pq 〈S, 0|rs − h.c.

=
1

2
(|pq̄〉 − |p̄q〉) (〈rs̄| − 〈r̄s|)− h.c.

→1

2

(
a†pa
†
q̄aras̄ − a†pa

†
q̄ar̄as

− a†p̄a†qaras̄ + a†p̄a
†
qar̄as

)
− h.c.,

so there are 4 terms in total (8 terms including Hermitian
conjugate). For group 2, the triplet operator reads as (for
q = r)

τ̂2,T →a†pa†qaqas +
1

2

(
a†pa
†
q̄aqas̄ + a†pa

†
q̄aq̄as

+ a†p̄a
†
qaqas̄ + a†p̄a

†
qaq̄as

)
+ a†p̄a

†
q̄aq̄as̄ − h.c.,

while the singlet operator is

τ̂2,S →
1

2

(
a†pa
†
q̄aqas̄ − a†pa

†
q̄aq̄as

− a†p̄a†qaqas̄ + a†p̄a
†
qaq̄as

)
− h.c..

For group 3, there is only singlet

τ̂2,S →
1

2

(
a†pa
†
p̄aras̄ − a†pa

†
p̄ar̄as

− a†p̄a†paras̄ + a†p̄a
†
par̄as

)
− h.c.

=a†pa
†
p̄aras̄ + a†pa

†
p̄ar̄as − h.c..

For group 4, there is only singlet

τ̂2,S →
1

2

(
a†pa
†
p̄apas̄ − a†pa

†
p̄ap̄as

− a†p̄a†papas̄ + a†p̄a
†
pap̄as

)
− h.c.

=a†p̄a
†
papas̄ + a†pa

†
p̄ap̄as − h.c..

For group 5, there is only singlet

τ̂2,S →
1

2

(
a†pa
†
p̄arar̄ − a†pa

†
p̄ar̄ar

− a†p̄a†parar̄ + a†p̄a
†
par̄ar

)
− h.c.

=2a†pa
†
p̄arar̄ − h.c..

Then we can perform Jordan-Wigner transformation
to each of these terms. Each anti-Hermitian pair
of fermionic operators having 4 different indices, i.e.

a†ia
†
jakal − h.c., would result in 8 Pauli strings, i.e.

a†ia
†
jakal − h.c. = 2i

∏
n

Zn

(
YiXjXkXl +XiYjXkXl

−XiXjYkXl −XiXjXkYl

−XiYjYkYl − YiXjYkYl

+ YiYjXkYl + YiYjYkXl

)
.

The other case is 2 of the 4 indices are the same,

a†ia
†
jajal − h.c. =

∏
n

Zn(Xi + iYi)Zj(Xl − iYl)− h.c.

= 4i
∏
n

Zn

(
YiZjXl −XiZjYl

)
,

only 2 Pauli strings left. From the expression of the 5
cases’ fermionic operators, we can then determine the
average number of Pauli strings per anti-Hermitian pair
for each case.

Group 1 2 3 4 5
# of fermi ops (T) 6 6 NA NA NA
# of fermi ops (S) 4 4 2 2 1

Average # of Paulis (T) 8 (4×2+2×8)/6=4 NA NA NA
Average # of Paulis (S) 8 (2×2+2×8)/4=5 8 2 8

For the length of Pauli Z, it is equivalent to count the
interval between i and j and between k and l where i ≤
j ≤ k ≤ l, we calculate them for separate cases, for m
spatial orbitals,

1. p 6= q 6= r 6= s:

The total number of Pauli-Z is given by the
sum

1

2

(
4

2

)
× (6 + 4)×

∑
m1<m2<m3<m4

[
(2m4 − 2m3 − 1)

+ (2m2 − 2m1 − 1)
]

=
m

2
(2m4 − 15m3 + 40m2 − 45m+18).

The prefactor 1
2

(
4
2

)
is counting ways we choose

2 of {p, q, r, s} to be in dagger side, while the
prefactor (6 + 4) is from the number of fermionic
operators for each combination. If we have
{i, j, k, l} = {1, 2, 3, 4}, which is in group 5 , the
Jordan-Wigner transformation would bring a Pauli
Z chain Z1Z2Z3 for the creation/annihilation
operator on index 4 and a Pauli Z chain Z1Z2

for operator on index 3, so only Z3 can survive,
but it would combine with the X3 ± iY3 from
the operator on index 3, so there is no Pauli Zs
effectively. Therefore, we should count the number
of integers can be fitted in the intervals 2m4− 2m3

and 2m2 − 2m1, that explains the terms −1 in the
calculation.

In this counting, we treat all the spin or-
bitals to be spin-up (even number indices) even
though each term in |T, 0〉 〈T, 0| and |S, 0〉 〈S, 0|
have 2 spin-down and 2 spin-up operators.
It is because whenever there are terms with
both spin-up and spin-down spin orbitals, there
would be another term with the spin totally
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Group 1 2 3

# of combinations
(
m
2

)(
m−2

2

)
/2 m

(
m−1

2

)
m
(
m−1

2

)
# of spin groups

(
m
2

)(
m−2

2

)
/2 × 2 m

(
m−1

2

)
× 2 m

(
m−1

2

)
# of fermi ops

(
m
2

)(
m−2

2

)
/2 × (6 + 4) m

(
m−1

2

)
× (6 + 4) m

(
m−1

2

)
× 2

# of Pauli strings
(
m
2

)(
m−2

2

)
/2 × (6 + 4) × 8 m

(
m−1

2

)
× (6 × 4 + 4 × 5) m

(
m−1

2

)
× 2 × 8

# of Pauli Z m
2

(2m4 − 15m3 + 40m2 − 45m + 18) 10m
3

(m3 − 4m2 + 5m− 2) 2m
3

(m3 − 4m2 + 5m− 2)

Group 4 5 Total
# of combinations 2

(
m
2

) (
m
2

)
m(m3 + 2m2 −m− 2)/8

# of spin groups 2
(
m
2

) (
m
2

)
m2(m2 − 1)/4

# of fermi ops 2
(
m
2

)
× 2

(
m
2

)
m(5m3 − 6m2 − 7m + 8)/4

# of Pauli strings 2
(
m
2

)
× 2 × 2

(
m
2

)
× 8 2m(5m3 − 15m2 + 14m− 4)

# of Pauli Z 2m
3

(2m2 − 3m + 1) 0 m(6m4 − 21m3 + 32m2 − 27m + 10)/6

TABLE I. For each group, the number of combinations are calculated. For each combination, it has 2 spin group if it has both
tripplet and singlet operators, only 1 spin group if it only has singlet. For each singlet and triplet operator, the number of
fermionic terms are calculated. And then we calculate the number of Paulis in each term. Finally, we counted the length of
Pauli Z.

flipped, so the counting of these two terms
would cancel each other. For example, consider
p < q < r < s, the |T, 0〉 〈T, 0| terms read as
1
2

(
a†pa
†
q̄aras̄ + a†pa

†
q̄ar̄as + a†p̄a

†
qaras̄ + a†p̄a

†
qar̄as

)
- h.c., the first term and the last term are differ-
ent by a total spin flip, the number of Pauli Z
would be 2s + 1 − 2r − 1 + 2q + 1 − 2p − 1 and
2s − (2r + 1) − 1 + 2q − (2p + 1) − 1, so the +1
due to the odd index switches sign by the spin flip.
Therefore, the average number of Pauli Z of this
pair is the 2s − 2r − 1 + 2q − 2p − 1, which is the
number of Pauli Z in the all spin-up term a†pa

†
qaras

(or the all spin-down term).

2. One of p, q = One of r, s

The total number of Pauli-Z is given by the
sum

10×
[ ∑
m1=m2<m3<m4

(2m4 − 2m3 − 1)

+
∑

m1<m2=m3<m4

(2m4 − 2m3 − 1 + 2m3 − 2m1 − 1)

+
∑

m1<m2<m3=m4

(2m2 − 2m1 − 1)
]

=
10m

3
(m3 − 4m2 + 5m− 2).

Here, we don’t have the counting prefactor in group
1 as we already decided that one of the two identical
indices is in the dagger side.

3. p = q 6= r 6= s

The total number of Pauli-Z is given by the

sum

2×
[ ∑
m1=m2<m3<m4

(2m4 − 2m3 − 1)

+
∑

m1<m2=m3<m4

(2m4 − 2m3 − 1 + 2m3 − 2m1 − 1)

+
∑

m1<m2<m3=m4

(2m2 − 2m1 − 1)
]

=
2m

3
(m3 − 4m2 + 5m− 2).

It is only different from case 2 by the prefactor 2
instead of 10 as it has 2 fermionic operators in total.

4. p = q = r 6= s

The total number of Pauli-Z is given by the
sum

2×
[ ∑
m1=m2=m3<m4

(2m4 − 2m1 − 1)

+
∑

m1<m2=m3=m4

(2m4 − 2m1 − 1)
]

=
2m

3
(2m2 − 3m+ 1).

5. p = q 6= r = s.

Since the operators have a form a†pa
†
p̄arar̄,

they don’t have Pauli Z.

Using Eq.(A3) and Table I, the average number can then
be calculated as follow

N̄spin =
5m2 −m− 8

m2 +m
(A4)

N̄Pauli =
8(5m3 − 15m2 + 14m− 4)

5m3 − 6m2 − 7m+ 8
(A5)

N̄Z =
12m3 − 30m2 + 34m− 20

3(8 +m− 5m2)
. (A6)
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We can estimates the CNOTs required for H4 molecule
(m=4) is

NCNOT ≈ Npars ×NPauli × (6 + 2×NZ)×Nspin
= 11×NPauli × (6 + 2×NZ)×Nspin
= 1928.41

which is very close to the number we obtained.

H4 LiH H6
estimated # of CNOT per param 175 303 303

# of param 11 30 91
total estimated # of CNOT 1928 9078 27536

# of CNOT 2208 6824 28632

This estimation is accurate when all the spin orbitals are
evenly explored (H6 and H4), i.e. no ‘core’ orbitals.

Appendix B: Constructive proof of minimal
complete pools

In this appendix, we present a constructive proof that
there exist complete pools for qubit-ADAPT containing
only 2n−2 operators, which we refer to as minimal com-
plete pools. We first prove that the set of operators
{Vi}n=3 = {iZ3Z2Y1, iZ3Y2, iY3, iY2} forms a complete
pool for n = 3 qubits, i.e., using operators of the form∏
k e

θkVk , we can rotate any real state into any other real
state. We then prove that the recursively defined pool,
{Vi}n = {Zn{Vi}n−1, iYn, iYn−1}, is a complete pool for
n qubits, such that

∏
k e

θkVk |ψ〉 = |ϕ〉 for any two real
states |ψ〉 and |ϕ〉 in the Hilbert space.

1. Complete pool for 3 qubits

Here, we prove that
{Vi}n=3={iZ3Z2Y1, iZ3Y2, iY3, iY2} is a minimal
complete pool for three qubits. We will do this by
showing that we can map any state |ψ〉 to |000〉 using
only operators of the form

∏
k e

θkVk .
We begin by decomposing an arbitrary real state |ψ〉

as follows:

|ψ〉 = |0〉3 |ψ0〉21 + |1〉3 |ψ1〉21 . (B1)

The subscripts outside the kets indicate which qubit(s)
the ket belongs to. In general, the two-qubit states |ψ0〉
and |ψ1〉 do not have the same norm: 〈ψ0|ψ0〉 6= 〈ψ1|ψ1〉.
However, we can always perform a rotation eiθY3 on qubit
3 (the left-most qubit) to transform |ψ〉 to the form

|ψ′〉 = eiθY3 |ψ〉 = |0〉3 |ψ
′
0〉21 + |1〉3 |ψ

′
1〉21, (B2)

where

|ψ′0〉 = cos θ |ψ0〉+ sin θ |ψ1〉 , (B3)

|ψ′1〉 = cos θ |ψ1〉 − sin θ |ψ0〉 . (B4)

The norms of these states are

〈ψ′0|ψ′0〉 = cos2 θ 〈ψ0|ψ0〉+ sin2 θ 〈ψ1|ψ1〉
+ sin(2θ) 〈ψ0|ψ1〉 , (B5)

〈ψ′1|ψ′1〉 = cos2 θ 〈ψ1|ψ1〉+ sin2 θ 〈ψ0|ψ0〉
− sin(2θ) 〈ψ0|ψ1〉 . (B6)

We can make these two norms equal by choosing θ such
that

tan(2θ) =
〈ψ1|ψ1〉 − 〈ψ0|ψ0〉

2 〈ψ0|ψ1〉
. (B7)

Note that this procedure works for arbitrary states |ψ0〉
and |ψ1〉, not just for two-qubit states.

The heart of the proof amounts to showing that a state
of the form in Eq. (B2), where 〈ψ′0|ψ′0〉 = 〈ψ′1|ψ′1〉 = 1/2,
can be transformed into a form where qubit 3 has been
factored out:

|ψ′〉 → (|0〉+ |1〉)3 |χ〉21 , (B8)

where |χ〉 is some two-qubit state. We will do this using
the (slightly reduced) set of pool operators {V red

i }3 =
{iZ3Z2Y1, iZ3Y2, iY2}. These are the same as {Vi}3, ex-
cept that iY3 is not included. In the next subsection, we
generalize Eq. (B8) to n qubits and then use it to prove
that {Vi}n is a complete pool.

To prove Eq. (B8), let’s begin by expanding |ψ′〉 as
follows:

|ψ′〉 = |00〉 |ψ′0a〉+|01〉 |ψ′0b〉+|10〉 |ψ′1a〉+|11〉 |ψ′1b〉. (B9)

From this point onward, we suppress the subscripts on
the kets for notational simplicity. Similarly to how we
made the states |ψ′0〉 and |ψ′1〉 have the same norm, here

we can apply the conditional operations eiθ0
1+Z3

2 Y2 and

eiθ1
1−Z3

2 Y2 to make

〈ψ′0a|ψ′0a〉 = 〈ψ′0b|ψ′0b〉 = 〈ψ′1a|ψ′1a〉 = 〈ψ′1b|ψ′1b〉 = 1/4.
(B10)

We assume that this has already been done in Eq. (B9),
and that |ψ′〉 has been redefined accordingly.

Next, we apply the conditional rotation eiφ1Z3Z2Y1 on
qubit 1 to bring the state to

eiφ1Z3Z2Y1 |ψ′〉 = (|00〉+ |01〉) |χ0〉+|10〉 |ψ′′1a〉+|11〉 |ψ′′1b〉.
(B11)

Here, we used the fact that |ψ′0a〉 and |ψ′0b〉 are real single-
qubit states, and thus can be viewed as 2D vectors lying
in the same plane. The conditional rotation eiφ1Z3Z2Y1

rotates these two vectors in opposite directions because
one is conditioned on the state |00〉 and the other on |01〉,
and eventually the two vectors coincide at |χ0〉 for a par-
ticular value of the rotation angle φ1. This operation also
affects the other terms in Eq. (B11) (as indicated with
the extra primes), but their form remains the same. This
conditional operation will be used repeatedly in what fol-
lows.
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The next step is to apply a conditional rotation on
qubit 2 to bring it to the state |0〉 in the first term:

eiφ2
1+Z3

2 Y2eiφ1Z3Z2Y1 |ψ′〉 =
√

2 |00〉 |χ0〉+ |10〉 |ψ′′1a〉
+ |11〉 |ψ′′1b〉. (B12)

We can then apply another conditional operation on
qubit 1 to rotate the states |ψ′′1a〉 and |ψ′′1b〉 into each
other:

eiφ3Z3Z2Y1eiφ2
1+Z3

2 Y2eiφ1Z3Z2Y1 |ψ′〉
=
√

2 |00〉 |χ′0〉+ (|10〉+ |11〉) |χ1〉 . (B13)

This operation brings the two states to some state |χ1〉.
It also changes |χ0〉 to |χ′0〉. Another conditional rotation
on qubit 2 simplifies the second term:

eiφ4
1−Z3

2 Y2eiφ3Z3Z2Y1eiφ2
1+Z3

2 Y2eiφ1Z3Z2Y1 |ψ′〉
=
√

2 |00〉 |χ′0〉+
√

2 |10〉 |χ1〉 . (B14)

We need one more conditional operation on qubit 1 to
bring this to the desired form:

eiφ5Z3Z2Y1eiφ4
1−Z3

2 Y2eiφ3Z3Z2Y1eiφ2
1+Z3

2 Y2eiφ1Z3Z2Y1 |ψ′〉
=
√

2 (|00〉+ |10〉) |χ〉 = (|0〉+ |1〉) |0〉 |χ〉
√

2. (B15)

We have thus proven Eq. (B8). For reasons that will
become clear in the next subsection, it is important to
note that we did this using only the reduced pool {V red

i }3.
All that remains is to show that Eq. (B15) can be

mapped to the state |000〉. This can be done using a
Y3 rotation followed by a conditional operation on qubit
1:

eiφ6Z3Z2Y1ei
π
4 Y3eiφ5Z3Z2Y1eiφ4

1−Z3
2 Y2eiφ3Z3Z2Y1eiφ2

1+Z3
2 Y2

× eiφ1Z3Z2Y1 |ψ′〉 = |000〉 . (B16)

Since we can map any state to |000〉, it follows that we
can map any 3-qubit state to any other 3-qubit state
using only the pool operators. We have thus shown that
{Vi}3 = {iZ3Z2Y1, iZ3Y2, iY3, iY2} is a minimal complete
pool for three qubits.

2. Proof of the complete pool for n qubits

In the previous subsection, we proved that the pool
{Vi}3 is a complete pool for three qubits. A key piece of
this proof is the statement that we can use the reduced
pool {V red

i }3 = {iZ3Z2Y1, iZ3Y2, iY2} to factor out the
3rd qubit Eq. (B8):

|0〉 |ψ′0〉+ |1〉 |ψ′1〉 → (|0〉+ |1〉) |χ〉 , (B17)

where we assume 〈ψ′0|ψ′0〉 = 〈ψ′1|ψ′1〉, and |χ〉 is some 2-
qubit state. We will prove that a similar statement holds
for n qubits:

Theorem: We can factor out the nth qubit from a
generic n-qubit state:

|0〉 |ψ′0〉+ |1〉 |ψ′1〉 → (|0〉+ |1〉) |χ〉 , (B18)

where 〈ψ′0|ψ′0〉 = 〈ψ′1|ψ′1〉, and |χ〉 is some (n − 1)-qubit
state, using only the reduced n-qubit pool:

{V red
i }n = {Zn{Vi}n−1, iYn−1}

= {Zn{V red
i }n−1, iZnYn−1, iYn−1}. (B19)

This pool is defined recursively starting from {V red
i }3,

and it differs from the full pool by only one operator
(iYn):

{Vi}n = {Zn{Vi}n−1, iYn, iYn−1}. (B20)

We will use induction to prove this theorem. We will
assume it holds for n qubits and then show that it also
holds for n+1 qubits. This proof will closely follow what
we did for three qubits above. Thus, we start with the
(n+ 1)-qubit state:

|0〉n+1 |ψ
′
0〉+ |1〉n+1 |ψ

′
1〉, (B21)

where |ψ′0〉 and |ψ′1〉 are n-qubit states that have the
same norm. We want to factor out the left-most
(n + 1)th qubit using only the operators {V red

i }n+1 =
{Zn+1{V red

i }n, iZn+1Yn, iYn}. We decompose the state
further:

|00〉 |ψ′0a〉+ |01〉 |ψ′0b〉+ |10〉 |ψ′1a〉+ |11〉 |ψ′1b〉. (B22)

As before, we can assume that all four states |ψ′0a〉,
|ψ′0b〉, |ψ′1a〉, |ψ′1b〉, have the same norm of 1/4, since this
can be achieved by applying two conditional operations

eiθ0
1+Zn+1

2 Yn and eiθ1
1−Zn+1

2 Yn .
We next apply a conditional operation built from the

operators eφ1Zn+1{V red
i }n to map the state to

(|00〉+ |01〉) |χ0〉+ |10〉 |ψ′′1a〉+ |11〉 |ψ′′1b〉. (B23)

We used the induction hypothesis for n qubits to obtain
this result. Since the left-most qubit is in the state |0〉
in the first two terms, the effect of eφ1Zn+1{V red

i }n is the

same as eφ1{V red
i }n on these terms, and the hypothesis for

n qubits then allows us to bring these two terms into a
factorized form as above. The last two terms also evolve
under this operation, but their general form remains the
same since the n+ 1 qubit remains in the state |1〉 under
this operation. We follow this with a conditional opera-

tion eiφ2
1+Zn+1

2 Yn on the nth qubit to rotate it to |0〉 in
the first term:

√
2 |00〉 |χ0〉+ |10〉 |ψ′′1a〉+ |11〉 |ψ′′1b〉. (B24)

Another application of eφ3Zn+1{V red
i }n can be used to sim-

ilarly factorize the last two terms:

√
2 |00〉 |χ′0〉+ (|10〉+ |11〉) |χ1〉 . (B25)
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Note that the form of the first term remains the same
since this conditional operation does not rotate the (n+
1)th or nth qubits. This is because all the operators in
{V red

i }n have either a Z or a I on the nth qubit. Next

apply eiφ4
1−Zn+1

2 Yn to rotate the nth qubit in the second
term to |0〉:

√
2 |00〉 |χ′0〉+

√
2 |10〉 |χ1〉 . (B26)

Additional applications of eφZn+1{V red
i }n bring this to

√
2 (|0〉+ |1〉) |0〉 |χ〉 , (B27)

as desired. In order to make this final step, we need to
use a slight extension of the theorem in which we fac-
tor out the (n + 1)th qubit instead of the nth qubit.
Do we have all the necessary operators to make this
extension work? Yes. To see this, recall that in or-
der to factor out the nth qubit, we need {V red

i }n =
{Zn{V red

i }n−1, iZnYn−1, iYn−1}. However, here we have

Zn+1{V red
i }n =

{Zn+1Zn{V red
i }n−1, iZn+1ZnYn−1, iZn+1Yn−1}. (B28)

The operators Zn+1Zn{V red
i }n−1 and iZn+1ZnYn−1 pro-

duce exactly the same conditional rotations on the state
in Eq. (B26) as Zn{V red

i }n−1 and iZnYn−1 produce on√
2 |0〉 |χ′0〉 +

√
2 |1〉 |χ1〉. However, the theorem also re-

quires unconditional Yn−1 rotations on |χ′0〉 and |χ1〉.
These can be implemented using the composite opera-
tor

ei
π
4

1−Zn+1
2 YneiφZn+1ZnYn−1ei

π
4

1−Zn+1
2 Yn , (B29)

which first rotates (B26) into a state in which the (n +
1)th and nth qubit states in the two terms have the same

parity before performing the Zn+1ZnYn−1 rotation, so
that |χ′0〉 and |χ1〉 undergo the same rotation. The (n+
1)th and nth qubits are then restored to their original
states by the final rotation in Eq. (B29). Given that we
have already shown that this procedure works for n = 3
qubits, this completes the proof of the theorem.

With the theorem proven, it is easy to prove that
{Vi}n+1 is a complete pool. We already know that a
rotation generated by Yn+1 is enough to bring an arbi-
trary (n+ 1)-qubit state to the form needed to apply the
theorem. As we just saw, we can then use Zn+1{V red

i }n,
iZn+1Yn, and iYn to factor out the (n + 1)th qubit and
arrive at Eq. (B27). If we then apply another Yn+1

rotation to bring the (n+ 1)th qubit to |0〉, we can per-

form the conditional operation eiφ6Zn+1{V red
i }n to rotate√

2 |χ〉 to |0〉⊗n−1
. Thus, we can rotate an arbitrary

(n + 1)-qubit state to |0〉⊗n+1
using only the generators

{Vi}n+1 = {Zn+1{V red
i }n, iZn+1Yn, iYn+1, iYn}. This in

turn implies that we can rotate any (n + 1)-qubit state
to any other (n + 1)-qubit state using the same set of
operators. Therefore, {Vi}n+1 is a complete pool, and it
contains 2n− 2 operators.

Appendix C: Mapping between minimal complete
pools

In this section, we show that the two examples of min-
imal complete pools discussed in the main text can be
mapped into one another. The first example is the pool
{Vi} that is constructed iteratively in Appendix B. The
second example is the pool comprised of operators that
only act on adjacent qubits in a linear array, {Gi}. To
facilitate the following analysis, we order the elements in
these two pools as follows (where we have ignored the
factors of i in the definition of the pool operators for
simplicity):

V1 = ZZ . . . ZY, V2 = ZZ . . . ZY I, V3 = ZZ . . . ZY II, . . . , Vn−1 = ZY II . . . I, Vn = Y II . . . I,

Vn+1 = ZZ . . . ZIY I, Vn+2 = ZZ . . . ZIY II, . . . , V2n−3 = ZIY II . . . I, V2n−2 = IY II . . . I. (C1)

G1 = ZY II . . . I, G2 = IZY II . . . I, G3 = IIZY II . . . I, . . . , Gn−2 = II . . . IZY I, Gn−1 = II . . . IZY,

Gn = Y II . . . I, Gn+1 = IY II . . . I, Gn+2 = IIY II . . . I, . . . , G2n−3 = II . . . IY II, G2n−2 = II . . . IY I.
(C2)

We will show that the Vi can be obtained from commu-
tators of the Gi. This means that the two pools share
the same operator basis, and so completeness of the one
pool implies completeness of the other. Since we have
already proven that the Vi are complete in Appendix B,
this demonstrates that the Gi also form a minimal com-
plete pool for any number n of qubits.

Recall that two Pauli strings do not commute if they

differ by an odd number of Pauli operators, ignoring any
qubits with identity operators in at least one of the two
strings. In this case, the result of the commutator is
proportional to the product of the two Pauli strings. Now



14

notice that we can write the Vi as products of the Gi:

Vn−k ∼ G1

k∏
j=2

GjGj+n−1, k = 2, . . . , n− 1,

Vn−1 = G1,

Vn = Gn,

V2n−k ∼ Gk−1GkVn−k, k = 3, . . . , n− 1,

V2n−2 = Gn+1. (C3)

The operators in the product in the first line should be
ordered such that the operators with the smallest values
of j are on the left and the ones with the largest values

are on the right. Notice that no two adjacent operators in
these products commute. Therefore, we can rewrite them
as nested commutators of the Gi. This proves that the Vi
and Gi produce the same operator basis when all possi-
ble commutators of each pool are computed. We already
showed in Appendix B that the Vi are complete. There-
fore, the Gi also constitute a minimal complete pool.
This pool is particularly useful for quantum processors
containing a linear array of qubits with nearest-neighbor
coupling only. Interestingly, the entangling operators in
the Gi pool are similar to the cross-resonance interaction
in fixed-frequency superconducting qubits, such as those
in the IBM quantum processors [49–51]. This similar-
ity could be exploited to implement qubit-ADAPT with
native hardware operations.

[1] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
[2] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864

(1964).
[3] A. Kovyrshin and M. Reiher, The Jour-

nal of Chemical Physics 147, 214111 (2017),
https://doi.org/10.1063/1.5004693.

[4] K. H. Marti, B. Bauer, M. Reiher, M. Troyer, and F. Ver-
straete, New Journal of Physics 12, 103008 (2010).

[5] V. Murg, F. Verstraete, R. Schneider, P. R. Nagy, and
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