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Symmetric lifting is a common manual material handling strategy
in daily life and is the main cause of low back pain. In the literature,
symmetric lifting is mainly simulated by using two-dimensional
(2D) models because of their simplicity and low computational
cost. In practice, however, symmetric lifting can generate asymmet-
ric kinetics especially when the lifting weight is heavy and sym-
metric lifting based on 2D models misses this important
asymmetric kinetics information. Therefore, three-dimensional
(3D) models are necessary for symmetric lifting simulation to
capture asymmetric kinetics. The purpose of this single-subject
case study is to compare the optimization formulations and simula-
tion results for symmetric lifting by using 2D and 3D human models
and to identify their pros and cons. In this case study, a 10-degrees-
of-freedom (DOFs) 2D skeletal model and a 40-DOFs 3D skeletal
model are employed to predict the symmetric maximum weight
lifting motion, respectively. The lifting problem is formulated as a
multi-objective optimization (MOO) problem to minimize the
dynamic effort and maximize the box weight. An inverse dynamic
optimization approach is used to determine the optimal lifting
motion and the maximum lifting weight considering dynamic joint
strength. Lab experiments are carried out to validate the predicted
motions. The predicted lifting motion, ground reaction forces
(GRFs), and maximum box weight from the 2D and 3D human
models for Subject #8 are compared with the experimental data.
Recommendations are given. [DOI: 10.1115/1.4049217]
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1 Introduction
Despite the advancement in robotics and automation fields,

manual material handling (MMH)-related injuries like hyperexten-
sion and occupational hazards are the most common cause of dis-
ability [1]. Low back pain from hyperextension is the leading
cause for visits to orthopedic surgeons and neurosurgeons and the
second common cause for visits to physicians [2,3]. Symmetric
lifting is one of the most common causes of musculoskeletal disor-
ders (MSDs) like low back pain [4,5]. Therefore, it is necessary to
identify the maximum lifting weight for a person as well as the
reasons behind lifting work-related injuries. In practice, it is difficult
to find the best lifting motion and true maximum lifting weight
through laboratory experiments as it is risky for the participants
[6–8]. An optimization-based biomechanical model can assist in
finding the best lifting motion as well as the maximum lifting
weight.
Over the past decades, many researchers have been working on

human biomechanical modeling. However, only a few researchers
have worked on lifting motion prediction using 3D human
models [9–11]. Many researchers worked on the 2D human
models [12–20]. For example, based on the National Institute of
Occupational Safety and Health (NIOSH) lifting equation, a static
and 2D biomechanical model was proposed to estimate the strength
needed for a specific MMH task [12]. In another study, a five-link
sagittal model was used to predict the optimum lifting motion
using forward dynamic optimization [13]. Another five-link 2D
model was introduced to predict the lifting motion based on the
static joint strength [14]. The dynamic joint strength is a function
of joint angle and angular velocity [21–23] and is more accurate
than the static joint strength. In a study by Gündogdu et al. [16],
a 2D dynamic-joint-strength-based model was presented to
predict the optimal lifting motion using a generic algorithm.
Another 2D human model was proposed to predict the symmetric
maximumweight lifting motion based on the dynamic joint strength
[6,7]. Sreenivasa et al. [20] used a 12-DOF 2D model to study the
influence of hip and lumbar flexibility during lifting motion consid-
ering the dynamic joint strength.
An optimization-based approach is an effective way to solve a

redundant system. As a multi-link human model is a highly redun-
dant system, an optimization-based approach is a preferred tool to
find the optimal lifting motion. However, for optimization-based
approaches, choosing the objective functions plays a vital role in
predicting the lifting motion accurately. A 2D model was developed
based on multi-objective optimization (MOO) to predict the lifting
motion [6]. The MOO approach results in an 18.9% reduction in the
overall joint angle root-mean-square (RMS) error when compared
to the single objective optimization-based lifting motion prediction
[18]. However, 2D models do not give the total scenario of a lifting
motion, as they do not consider lifting unevenly distributed weight
on two sides of a sagittal plane of a human body. A 3D model can
give more insight into the lifting motion [10,11,24]. A 3D skeletal
model was used with four objective functions including spine com-
pression and shear stress to analyze the lifting motion [10]. MOO
was also incorporated in a 3D model to predict the lifting motion
more accurately [11,24].
In the present work, symmetric maximum weight lifting is simu-

lated by using 2D and 3D human models, respectively. The optimi-
zation formulation between the two models is compared. In
addition, the simulation results for the maximum box weight, the
corresponding optimal joint angle, and GRF profiles for Subject
#8 are compared against the experimental data. The pros and cons
of 2D and 3D human models for symmetric lifting are summarized.
It is concluded that the 3D model can predict more accurate kinetics
for symmetric lifting, and the 2D model is a simplified model to
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capture the major biomechanics features. In addition, the 2D model
is computationally more efficient than the 3D human model.

2 Methods
2.1 Two-Dimensional and Three-Dimensional Human

Models. The 2D model has n= 10 degrees-of-freedom (DOFs):
three global DOFs (q1, q2, and q3) and seven human body joints
(q4,…, q10 ) as shown in Fig. 1. The global DOFs include two trans-
lations and one rotation which move the pelvis to the current posi-
tion in inertial Cartesian coordinates, while each human body joint
is represented by a single rotation in 2D. The total DOFs are defined
as q = [q1, . . . , q10]T . Besides the spine joint, since the model is
symmetric in the sagittal plane, only one set of shoulder (q5),
elbow (q6), hip (q7), knee (q8), ankle (q9), and metatarsophalangeal
(q10) joints are modeled. In addition, for these symmetric joints, the
values of joint strength, link mass, and moment of inertia are
doubled.
The 3D skeletal model consists of 40 DOFs, which are expressed

as q = [z1 z2 z3 . . . .. z40]. The model consists of one virtual branch
and five physical branches. The virtual branch includes three rota-
tional DOFs and three translational DOFs, which allows the
model to move in the global space. On the other hand, physical
branches are the spine, right arm, left arm, right leg, and left leg.
There are six DOFs for the spine, seven DOFs for each arm, and
seven DOFs for each leg. Each arm consists of three segments:
upper arm, forearm, and hand. Each leg consists of four segments:
thigh, shank, rear foot, and forefoot.
The anthropometric data of the models are generated in Visual

3D® (C-Motion, Inc., Germantown, MD) software using experi-
mentally measured height, weight, and stature data. The dynamic
joint strength of the models is retrieved from the symmetric
maximum weight lifting experiment [23]. The kinematic chains

are connected using well-developed Denavit–Hartenberg (DH)
representations [25].

2.2 Equations of Motion. The general equations of motion
of these biomechanical models are based on the recursive Lagrang-
ian formulation and can be expressed in matrix form, which
contains forward recursive kinematics and backward recursive
dynamics [26].
Forward recursive kinematics:

Ai = Ai−1Ti (1)

Bi = Ȧi = Bi−1Ti + Ai−1
∂Ti

∂qi
q̇i (2)

Ci = Ḃi = Ci−1Ti + 2Bi−1
∂Ti

∂qi
q̇i + Ai−1

∂2Ti

∂q2i
q̇2i + Ai−1

∂Ti

∂qi
q̈i (3)

where qi is the joint angle variable, Ti is the 4 × 4 Denavit–Harten-
berg link transformation matrix from the (i−1)th link frame to the
ith link frame; Ai, Bi, and Ci are the global recursive kinematics
position, velocity, and acceleration matrices, respectively, and
A0 = [I], B0 = C0 = [0].
Backward recursive dynamics:
Each joint torque is defined by Eq. (4)

τi = tr
∂Ai

∂qi
Di

( )
− gT

∂Ai

∂qi
Ei − fTk

∂Ai

∂qi
Fi −GT

i Ai−1z0 (4)

Di = IiCT
i + Ti+1Di+1 (5)

Ei = miri + Ti+1Ei+1 (6)

Fig. 1 Human models: (a) 10 DOF 2D model and (b) 40 DOF 3D model
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Fi = rkδik + Ti+1Fi+1 (7)

Gi = hkδik +Gi+1 (8)

where tr(·) is the trace of a matrix, Ii is the inertia matrix for link i,
Di is the recursive inertia and Coriolis matrix, Ei is the recursive
vector for gravity torque calculation, Fi is the recursive vector for
external force torque calculation, Gi is the recursive vector for
external moment torque calculation, g is the gravity vector, mi

is the mass of link i, ri is the center of mass of link i, fk is the exter-
nal force applied on link k, rk is the position of the external force in

the local frame k, hk is the external moment applied on link k, z0 =

0 0 1 0
[ ]T

is for a revolute joint, z0 = 0 0 0 0
[ ]T

is
for a prismatic joint, δik is Kronecker delta, and the starting condi-

tions are Dn+1 = [0], En+1 = Fn+1 =Gn+1 = [0]. For 2D model, fk =
0 fky fkz 0

[ ]T
and hk = hx 0 0 0

[ ]T
, whereas for 3D

model fk = fkx fky fkz 0
[ ]T

and hk = hx hy hz 0
[ ]T

.

2.3 Optimization Formulation. For the optimization
problem, the time domain is discretized by using cubic B-spline
functions. With this representation, the control points (P) become
the optimization variables. In this study, the box weight (W ) and
total time duration (T ) are also treated as design variables. Then,
the joint angular velocity (q̇) and acceleration (q̈) can be obtained
from the first- and second-time derivatives of the B-spline discreti-
zation of the joint angle profile, respectively. Therefore, all joint
state variables (q, q̇, q̈) are functions of B-spline control points
(P) and total time duration T. In addition, the joint torque τ(x) is
computed by plugging the joint state variables and box weight
(external load) directly into equations of motion Eq. (4), and this
is the inverse dynamics procedure. The lifting task is formulated
as a general nonlinear programming (NLP) problem:

Find x = PT W T
[ ]T

Minimize the dynamic effort and maximize the lifting weight.
Finally, the combined objective function is defined as [6]

J = w1N ∫
T
0

∑n
i=j

τi(x, t)
τUi − τLi

( )2

dt

[ ]
− w2N[log (W + 10)] (9)

where N[·] is the normalization function, n is the number of DOFs, j
is the first physical joint index: for 2D model j= 4 and for 3D model
j= 7, τLi and τUi are the ith lower and upper dynamic joint torque
limits, respectively; w1 and w2 are weighting coefficients for the
two normalized objective functions where w1= 0.15 and w2=
0.85 [6].

The 2D and 3D symmetric lifting motion optimizations share
some common time-dependent constraints including (1) joint
angle limits, (2) dynamic joint torque limits, (3) foot-contacting
position constraint, (4) dynamic balance constraint, and (5) box col-
lision avoidance constraint (Table 1). The details of these con-
straints are referred in the study by Xiang et al. [6]. There are
additional constraints for the 3D model as detailed below.

2.3.1 Additional Time-Dependent Constraints for
Three-Dimensional Lifting. (6) For grasping the box, hand distance
constraint is imposed to keep the distance between the two wrists in
3D space equal to the box width and is expressed as

∥pright hand(x, t) − pleft hand(x, t)∥2 =wid (10)

where pright hand and pleft hand are the right- and left-hand locations,
respectively, and wid is the width of the box.
(7) The box and ground parallel constraint is necessary to keep

the box parallel to the ground and is imposed by keeping both
hand height at the same level in 3D space.

hright hand(x, t) = hleft hand (x, t) (11)

where hright hand and hleft hand are the right- and left-hand heights,
respectively.
(8) The subject is a righthand dominated person. The load on

right hand could be larger than the load on left hand, and the
range is within 20 N.

0 ≤ Wright hand(x, t) −Wlefthand (x, t) ≤ 20 (12)

(9) Joint angle symmetric constraints with [−0.1, 0.1] radian
limits are applied during the lifting motion as the experimental
lifting motion has almost symmetric kinematics.

2.3.2 Additional Time-Independent Constraints for
Three-Dimensional Lifting. (13) Initial, intermediate, and final ver-
tical ground reaction forces (GRFs) constraints are imposed using
experimental data

|GRFleft(x, t) − GRFE
left(t)| ≤ 40, t = 0,

T

3
,
T

2
,
2T
3
, T (13)

|GRFright(x, t) − GRFE
right(t)| ≤ 40,

t = 0,
T

3
,
T

2
,
2T
3
, T

(14)

where GRFE
left and GRFE

right are the experimental vertical ground
reaction force for the left foot and right foot, respectively.
The optimal lifting motion is solved using the sequential qua-

dratic programming (SQP)-based Sparse Nonlinear OPTimizer
(SNOPT) [27].

2.4 Experimental Data Collection. To evaluate the accuracy
of both models, experimental data of Subject #8 for symmetric

Table 1 Constraints for 2D and 3D symmetric lifting
optimization formulation

2D model 3D model

Time-dependent constraints
(1) Joint angle limit × ×
(2) Dynamic joint torque limits × ×
(3) Foot-contacting position × ×
(4) Dynamic balance × ×
(5) Box collision avoidance × ×
(6) Hand distance constraint ×
(7) Box ground parallel constraint ×
(8) Weight difference on hands ×
(9) Kinematic symmetry for lifting ×

Time-independent constraints
(10) Initial and final box locations × ×
(11) Initial and final static conditions × ×
(12) Initial, mid-time, final joint angles × ×
(13) Initial, intermediate, final GRFs ×

Table 2 Anthropometry data of Subject #8

Subject # 8
Age (years old) 28
Weight (kg) 83.73
Height (m) 1.82
Leg length (m) 0.8128
Knee width (m) 0.11
Ankle width (m) 0.068
Shoulder offset (m) 0.053
Elbow width (m) 0.09
Wrist width (m) 0.059
Hand thickness (m) 0.033
InterASIS distance (m) 0.245
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weight lifting were collected and compared with the simulation
data. Subject #8’s anthropometric data are listed in Table 2. The
participant signed an informed consent form, and the experimental
protocol was approved by the Texas Tech University Institutional
Review Board.
Motion data were collected from 42 reflective markers (9 mm,

spherical) using a 5-camera Vicon® system (Vicon Motion
Systems, Ltd., Oxford, UK) at 100 Hz. GRF data were collected
using two Kistler® force plates (Kistler, Winterthur, Switzerland)
at 2000Hz.
The maximum lifting weight determined in the experiment is the

safe maximum lifting weight, rather than the true maximum weight
a subject can lift. To determine the maximum lifting weight, the par-
ticipant was instructed to lift a box (65 cm× 35 cm× 15 cm) up to
1-meter height. The load on the box was incremented by 2.25 kg
gradually. Once the participant felt that he was uncomfortable with
more weight being added, the load was considered as the safe
maximum lifting load. Once the maximum weight was determined,
the lifting study was initiated. The motion capture data and GRF
data were smoothed in Vicon® software using a Butterworth filter
with cutoff frequencies of 6 Hz and 25 Hz, respectively.
The subject was requested to lift a box (65 cm× 35 cm× 15 cm)

forward for symmetric lifting, in three trials. Because the box did
not have handles, it was placed on top of a weight disk about

2.54 cm on the floor so that the subject could fit his fingers under
the box. The subject then lifted the box in the most comfortable
and natural way and set it down on a 1-m-tall table in front of
him, as shown in Fig. 2. After data collection, the motion data post-
processing was conducted in the motion capture software Vicon
Nexus.

3 Results
The simulation and experimental results are compared in this

section. For model simulations, Subject #8 is used. The strength
(zscore) of the predictive model is 1.05 [23]. For the 3D model, it
takes 72.77 s of central processing unit (CPU) time for a desktop
computer with an Intel (R) Xeon (R) E-2186G CPU @ 3.80 GHz
to solve the nonlinear optimization problem using SNOPT. The pre-
dicted maximum lifting weights on the right and left hands are
124.92 N and 120.45 N, respectively; i.e., the total optimal lifting
weight is 245.37 N, and the optimal lifting time duration is
1.32 s. For the 2D model, it takes 1.75 s of CPU time to obtain
the optimal solution for the same configuration computer and the
optimal lifting weight is 220.15 N, and the optimal lifting time dura-
tion is 1.439 s. The experimental maximum lifting weight is
233.73 N and the lifting time duration is 1.44 s.
Figure 3 shows the simulated symmetric lifting motions for

Subject #8. Figure 4 shows the joint angle comparisons between
the simulation and experimental data (Subject #8). Finally, Fig. 5
shows the comparison of GRFs during lifting for Subject #8.

4 Discussion and Conclusions
In this case study, we reported preliminary results of 2D and 3D

single-subject symmetric lifting models. Nine important joint
angles that play a vital role during symmetric lifting are predicted
using the 2D and 3D human models in Fig. 4. There are minor dif-
ferences between the left and right joint angles for experimental data
of Subject #8, although it is a symmetric lifting task. It is noted that
the initial, mid-time, and final experimental joint angles of Subject
#8 are used as constraints to guide the predicted lifting motion in the
optimization formulation. The 3D model can impose those left and
right experimental joint angle constraints separately to capture the
details of left and right joint angle profiles as shown in Fig. 4. In
contrast, the 2D model only has a single arm and leg in the sagittal
plane. Therefore, the 2D model uses the average experimental value
of the left and right joints to impose joint angle constraints for
Subject #8 at initial, mid-time, and final time points. The 3D
model captures the pattern of the ankle joint angle profile better
than the 2D model. But, in general, both models predict lower
body joint angle profiles well. For the upper body joints, the 3D
model predicts a more accurate pattern and timing of phase
changes than the 2D model, especially for spine flexion. As the
box weight is very heavy, the subject needs to transmit a significant
amount of force through the elbow joints. The elbow is mainly a
hinge joint and the forearm is unsupported. Because of these
factors, it is difficult for the subject to maintain stability during
the lifting of a heavy weight which results in a jerky elbow
motion as shown in Figs. 4(g) and 4(h). This also makes it difficult
for both models to predict the elbow joint angles accurately.
It is interesting to observe that the left and right GRFs are actually

quite different for a symmetric lifting task in the experimental
results and the 3D model results. There are several reasons for
this discrepancy: first, the load on both hands are heavy and high
above the center of mass of the subject. Therefore, small initial
jerks from the experimental left and right elbow angles can result
in big differences on the left and right GRFs. Second, Subject #8
is a righthand dominated person, and the right side joints are
taking more loads than the left-side joints. It can be seen from
Fig. 5 that the peak value of the right GRF of Subject #8 is larger
than that of the left GRF. An important finding from this study is
that the predicted kinetics (GRFs) are different between left and

Fig. 2 Symmetric box lifting experiment

Fig. 3 Snapshots of the predicted symmetric lifting motions:
(a) 2D model and (b) 3D model
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right feet for a symmetric maximum weight lifting task. The 3D
model captures these differences for the individual Subject #8.
The pattern of the predicted right vertical GRF is consistent

with the experimental vertical GRF on the right side up to
60% of lifting time using both models as seen in Fig. 5(b). In
the experimental right GRF profile, there is a trough in the
graph from 60 to 90% of the lifting task. That means the GRF
is moved from the right side to the left side during that
period. As the 2D model does not have the spine, hip, or
shoulder rotation, it fails to capture the changes in GRFs as
well as the left GRF profile. On the other hand, as the 3D
model has rotations for the above-mentioned joints and has the
capability to represent the asymmetric GRFs in its kinematics

and formulation, it captures the major changes of both GRF pro-
files. Therefore, the 3D model predicts better trends and magni-
tudes of both left and right GRFs than the 2D model compared
to the experimental data.
Note that 40 N is used as the limits for the GRF constraints in

Eqs. (13) and (14) for the 3D model. This limit value is determined
based on numerical trial and error considering the convergence
capability of the optimizer and robustness of the predictive
model. The peak experimental value of GRF of Subject #8 is
660 N, so the relative error for the GRF limit is around 6%. Con-
sidering the differences between the mechanical skeletal model
and real human model, this relative error for the GRF limit is
acceptable.
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Fig. 4 Joint angle profiles of the symmetricmaximumweight lifting: (a) left ankle, (b) right ankle, (c) left knee, (d ) right knee,
(e) left hip, ( f ) right hip, (g) left elbow, (h) right elbow, and (i) spine

Journal of Computing and Information Science in Engineering AUGUST 2021, Vol. 21 / 044501-5



For the 3D model, the predicted total lifting weight is
245.37 N, which is 5% higher than the experimental lifting
weight (233.73 N). The reason is that the maximum lifting
weight determined during the experiment is not the true
maximum lifting weight. Instead, it is the maximum weight a
person felt safe to lift, as mentioned in Sec. 2.4. For the 2D
model, the predicted maximum lifting weight is 220.15 N, which
is 5.8% lighter than the experimental weight. It demonstrates that

the 3D model predicts a more accurate maximum box weight for
symmetric lifting.
Figure 3 shows the snapshots of the lifting motion, it is shown

that the 3D model has hip adduction during lifting while the 2D
model can only generate the motion in the sagittal plane. Another
observation is that the 3D model takes more CPU time than the
2D model. This is because the 3D model has more design variables
and constraints than the 2D model.

Fig. 5 GRF profiles of the symmetric maximum weight lifting: (a) left foot and (b) right foot
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Finally, in this case study, we compared the 2D and 3D optimi-
zation formulations for symmetric maximum weight lifting. The
two optimization formulations have similar kinds of design vari-
ables and objective functions and share some common constraints.
The 3D model requires additional constraints to define the lifting
task in 3D space. The simulation results are also compared, and pre-
liminary conclusions are drawn below:

(1) 3D symmetric lifting has asymmetric kinetics.
(2) The 2Dmodel is a simplified model and cannot predict asym-

metric kinetics of the lifting motion.
(3) The 3D model can predict not only the kinematics difference

but also the kinetics difference between the left and right
body.

(4) The 2D model is computational more efficient than the 3D
model.

(5) For lifting motion prediction, the upper body joints (spine
and elbow) are more difficult to predict compared to the
lower body joints (hip, knee, and ankle) for both 2D and
3D models.

(6) For lifting motion prediction, it is necessary to incorporate
some experimental data in the optimization formulation to
predict joint angle profiles and GRFs accurately.

(7) The 3D model is recommended for symmetric maximum
weight lifting prediction due to the existence of asymmetric
kinetics.
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