e Taylor & Francis
Taylor & Francis Groug

5;}%{2@3{%@%{ Engineering Optimization

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/geno20

Multi-objective optimization for two-dimensional
maximum weight lifting prediction considering
dynamic strength

Yujiang Xiang, Jazmin Cruz, Rahid Zaman & James Yang

To cite this article: Yujiang Xiang, Jazmin Cruz, Rahid Zaman & James Yang (2021) Multi-
objective optimization for two-dimensional maximum weight lifting prediction considering dynamic
strength, Engineering Optimization, 53:2, 206-220, DOI: 10.1080/0305215X.2019.1702979

To link to this article: https://doi.org/10.1080/0305215X.2019.1702979

E Published online: 10 Jan 2020.

N
B Submit your article to this journal

I||| Article views: 250

A
& View related articles &'

EEI Citing articles: 2 View citing articles (4

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journallnformation?journalCode=geno20


https://www.tandfonline.com/action/journalInformation?journalCode=geno20
https://www.tandfonline.com/loi/geno20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/0305215X.2019.1702979
https://doi.org/10.1080/0305215X.2019.1702979
https://www.tandfonline.com/action/authorSubmission?journalCode=geno20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=geno20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/0305215X.2019.1702979
https://www.tandfonline.com/doi/mlt/10.1080/0305215X.2019.1702979
http://crossmark.crossref.org/dialog/?doi=10.1080/0305215X.2019.1702979&domain=pdf&date_stamp=2020-01-10
http://crossmark.crossref.org/dialog/?doi=10.1080/0305215X.2019.1702979&domain=pdf&date_stamp=2020-01-10
https://www.tandfonline.com/doi/citedby/10.1080/0305215X.2019.1702979#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/0305215X.2019.1702979#tabModule

ENGINEERING OPTIMIZATION .
2021,VOL. 53, NO. 2, 206-220 e Taylor & Francis

https://doi.org/10.1080/0305215X.2019.1702979 Taylor &Francis Group

M) Check for updm‘

Multi-objective optimization for two-dimensional maximum
weight lifting prediction considering dynamic strength

Yujiang Xiang?, Jazmin Cruz®?, Rahid Zaman? and James Yang®

35chool of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK, USA; "Human-Centric
Design Research Lab, Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, USA

ABSTRACT ARTICLE HISTORY
Manual material handling is common in daily life and is the main cause of ~ Received 7 June 2019
lower back pain. Therefore, it is critical to establish a lifting limit for workers. ~ Accepted 5 December 2019

However, it is difficult to obtain each individual’s maximum lifting weight KEYWORDS

through experi ments. '_I'hls stud){ presents a mt:llt_l-objectl\_fe optimization Dynamic effort; maximum
(MOOQ) for two-dimensional maximum weight lifting prediction. Minimiz- lifting weight; dynamic joint
ing the dynamic effort (joint torque square) and maximizing the box weight strength; inverse dynamics
are the two objective functions. Fourteen human subjects were recruited optimization; multi-objective
to collect motion and ground reaction force data in the laboratory. Twelve optimization

subjects’ data were used to determine cost function weights. The other

two subjects’ data were used to validate the best MOO objective func-

tion weights through the root mean square errors and Pearson coefficients

between the simulated and experimental data. The results show that the

proposed MOO method and the best weighting coefficients could improve

the accuracy of the simulation.

1. Introduction

Lower back injury during lifting is one of the major musculoskeletal disorders in the workplace.
Simulation-based biomechanical models have helped in advancing knowledge of lifting biomechan-
ics and are important tools for assessing injury risks while lifting, as shown in the OpenSim‘I‘D
multi-degree-of-freedom musculoskeletal lifting model (Christophy ef al. 2012) and the Anybody
ergonomic lifting model (Stambolian, Eltoukhy, and Asfour 2016). The musculoskeletal model can
reveal a great deal of information about muscle force, activation and lumbar spine stress, but it is
computationally heavy. In this study, a dynamic-joint-strength-based two-dimensional (2D) skeletal
lifting model is developed to evaluate injury risk in the joint space. The skeletal model is used to pre-
dict the maximum lifting weight governed by the dynamic joint torque limits, which are functions
of joint angle and angular velocity (Xiang et al. 2019). The dynamic joint strengths for major joints
are obtained from the literature through isometric and isokinetic strength tests (Frey-Law ef al. 2012;
Looft 2014; Hussain and Frey-Law 2016). In this study, the ratio of the joint torque to the dynamic
joint strength represents injury risk in the joint space. The proposed skeletal model is computationally
efficient and close to real-time implementation.

It is generally difficult to accurately assess a maximum lifting weight through experimental meth-
ods because of the risk of injury to human subjects. The traditional US National Institute for
Occupational Safety and Health (NIOSH) lifting equation only evaluates a safe lifting weight in the
workplace by setting regulated lifting heights, distances and frequencies (Waters, Putz- Anderson,
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and Garg 1994). Simulation methods have advantages over traditional experimental methods when
predicting the maximum lifting weight, but an accurate subject-specific strength model is required
(Hsiang and Ayoub 1994; Khalaf et al. 1999; Giindogdu, Anderson, and Parnianpour 2005; Chang
et al. 2010; Xiang, Arora, ef al. 2010; Song, Qu, and Chen 2016). It is a challenging task to develop
a full-body strength model (Frey-Law et al. 2012; Looft 2014; Hussain and Frey-Law 2016). Xiang
et al. (2019) developed a 2D full-body dynamic joint strength model for symmetrical lifting. This 2D
strength model will be used in this study to predict maximum lifting weight.

Multi-objective optimization (MOO) can be applied in everyday fields, such as engineering,
economics, automotive, biomechanics, and many others (Marler and Arora 2004; Song, Qu, and
Chen 2016; Gunantara and Hendrantoro 2013; Gunantara and Ai 2018). In the biomechanics lit-
erature, different optimization methods are used when simulating the lifting motion, such as the
computed-muscle-control (CMC) method in OpenSim (Christophy et al. 2012), the forward dynam-
ics optimization method (Huang, Sheth, and Granata 2005), the temporal finite element method
(Eriksson and Nordmark 2010) and the inverse dynamics optimization method (Hsiang and Ayoub
1994; Khalaf ef al. 1999; Chang ef al. 2010; Giindogdu, Anderson, and Parnianpour 2005; Song, Qu,
and Chen 2016; Xiang, Arora, ef al. 2010; Xiang 2019). These approaches have pros and cons in terms
of model complexity, numerical performance, computational reliability and robustness. However,
only a few studies have considered MOO for lifting simulation (Xiang, Arora, ef al. 2010; Song, Qu,
and Chen 2016; Marler, Knake, and Johnson 2011; Ghiasi et al. 2016). Song, Qu, and Chen (2016)
presented a MOO method for 2D symmetrical lifting simulation. The two objective functions were
minimizing dynamic effort and maximizing load motion smoothness. The results showed that the
proposed MOO approach led to accurate predictions compared to the single-objective optimization
(SOO) approach. Xiang, Arora, et al. (2010) conducted three-dimensional (3D) skeletal lifting sim-
ulation using a MOO approach. The two performance criteria were minimizing dynamic effort and
maximizing stability. They concluded from their results that the dynamic effort was a dominating
performance measure for lifting motion prediction and the stability criterion played a minor role.
The MOO showed robustness for lifting motion prediction and tested different human performance
measures (Song, Qu, and Chen 2016; Xiang, Arora, et al. 2010). Marler, Knake, and Johnson (2011)
presented lifting posture prediction for a 3D skeletal model with 113 degrees of freedom (DOFs). The
two objective functions were minimizing the maximum torque and joint angle. Ghiasi ef al. (2016)
predicted lumbar spine muscle forces with a given lifting posture and weight using a 3D musculoskele-
tal model. Two optimization algorithms, vector-evaluated particle swarm optimization (VEPSO) and
non-dominated sorting genetic algorithm (NSGA), were employed to solve the optimization prob-
lem. The two cost functions were minimizing muscle stress and maximizing the spine stability. It was
found that both algorithms predicted consistent muscle activities with the in vivo electromyography
data. Although Ghiasi et al. (2016) successfully compared VEPSO and NSGA, the lifting scenario
was a fixed posture with given weight. Table 1 summarizes the literature for MOO lifting; none of
these studies considered maximum lifting weight as part of the objective function. It is imperative to
further explore MOO lifting in the biomedical field.

In the present work, a MOO-based inverse dynamics optimization formulation is developed to
predict maximum lifting weight and lifting motion. The MOO problem is solved for the maximum
box weight, the corresponding optimal joint angle, joint torque and ground reaction forces (GRF)
profiles. Two objective functions are minimized, namely the dynamic effort and negative logarith-
mic function of the box weight. Dynamic effort is represented as the time integral of the squares
of all the joint torques. The negative logarithmic function transforms the box weight maximization
problem into a minimization problem. In addition, the predicted box weight range is significantly
reduced after applying a logarithmic function on it, which facilitates the normalization process for
the weighted sum method of MOO. The hypothesis of this study is that humans try to use an energy-
efficient way to lift a maximum weight. Mathematically, this means that box weight is maximized
while minimizing an energy-related function. This work is the first study to utilize MOO to pre-
dict maximum weight lifting while considering dynamic strength. Real maximum weight cannot be
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Table 1. Summary of the literature on multi-objective optimization lifting.

Reference Motion/posture Model Objective functions Algorithm

Xiang, Arora, et al. (2010) Motion prediction 3D skeletal with 55 DOFs Min. torque square + max.  SQP
stability

Song, Qu, and Chen (2016)  Motion prediction 2D skeletal with 5 DOFs Min. torque square + max.  SQP
motion smoothness

Ma et al. (2009) Posture prediction 3D skeletal with 28 DOFs Min. fatigue + min. SQP
discomfort

Marler, Knake, and Johnson  Posture prediction 3D skeletal with 113 DOFs ~ Min. maximum torque + SQP

(2011) min. joint angle
Ghiasi et al. (2016) Given posture with muscle 3D musculoskeletal lumbar ~ Min. muscle stress + max.  VEPSO and
force prediction spine with 6 DOFs spine stability NSGA

Note: 3D = three-dimensional; DOFs = degrees of freedom; SQP = sequential quadratic programming; VEPSO = vector-
evaluated particle swarm optimization; NSGA = non-dominated sorting genetic algorithm.

directly measured in experiments; therefore, this study has significance in its ability to predict the
subject-specific maximum lifting weight, which can potentially prevent the risk of injury.

2. Methods
2.1. The 2D human model

The 2D model has n = 10 DOFs: three global DOFs (g1, q2, q3) and seven human body joints
(g4, - - - »q10) as shown in Figure 1. The global DOFs comprise two translations and one rotation,
which move the pelvis to the current position in inertial Cartesian coordinates, while each human
body joint is represented by a single rotation in two dimensions. The total DOFs are defined as
q = [q1,...,q10]". Besides the spine joint, since the model is symmetrical in the sagittal plane, only
one set of shoulder (gs), elbow (gs). hip (g7), knee (gs), ankle (qo) and metatarsophalangeal (g10)
joints is modelled in this study. In addition, for these symmetrical joints, the values of joint strength,
link mass and moment of inertia are doubled. Recursive Lagrangian dynamics is used to set up the
equations of motion for the model (Xiang, Arora, and Abdel-Malek 2009).
Forward recursive kinematics:

A=A T, (1)
. aT; .
Bi=A;=B;_T; + Ai—la_th' @)
qi
. aT; . 3°T; aT; .
Ci=B; = Ci_\T; + 2B;_, a_q:q* +Ai a{q? +Ai a—qqu' ®)

where g; is the joint angle variable; T; is the 4 x 4 Denavit-Hartenberg (DH) link transformation
matrix from the (i — 1)th link frame to the ith link frame; A;, B; and C; are the global recursive
kinematics position, velocity and acceleration matrices, respectively; and A, = [I], B, = C; = [0].

After obtaining all the transformation matrices A;, B; and C;, the global position, velocity and
acceleration of a point in Cartesian coordinates can be calculated as

o 0 o
ri = Airj; °ri = Biry; °r; = Cir; 4

where r; contains the augmented local coordinates of the point in the ith coordinate system.
Backward recursive dynamics:
Each joint torque is defined by Equation (5):

T = tr( ’D,-) —g 3q: Ei —f} Bq: F;— G} Ai_120 (5)
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Figure 1. Two-dimensional human model.
D; = LiC] + Tiy1Dip (6)
E; = mir; + Ti 1 Eiyy (7)
Fi = rdy + TiaFin (8)
G; = hdik + Giga 9)

where tr( - ) is the trace of a matrix; I; is the inertia matrix for link #; D; is the recursive inertia and
Coriolis matrix; E; is the recursive vector for gravity torque calculation; F; is the recursive vector for
external force torque calculation; G; is the recursive vector for external moment torque calculation;
g is the gravity vector; m; is the mass of link i r; is the centre of mass of link i; fy = [0 fiy fiz 0 ]T
is the external force applied on link k; r; is the position of the external force in the local frame k;
hg = [k 000]T is the external moment applied on link k; zo = [0010 1T is for a revolute joint;
Zp=[0000 ]T is for a prismatic joint; 8 is Kronecker delta; and the starting conditions are D, ) =

[0]; Eu+l = Fﬂ+1 = Gﬂ+l = [0]

2.2. MOO formulation considering dynamic strength

For the optimization problem, the time domain is discretized using cubic B-spline functions. Thus, a
joint angle profile g(t) is parameterized as follows:

qi(t,s,P) = Y Ni(t,s)P; 0<t<T (10)
j=0
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where t is the time instant; N;(%, s) are the basis functions; s is the knot vector; and Pjj = {pio, . . . , Pim}
is the control points vector for the ith joint angle profile and m + 1 is the number of control points.
The shape of the joint angle profile can thus be affected by changing the value of the control points.
With this representation, the control points become the optimization variables. In this study, the box
weight (W) is also the design variable, and the knot vector is specified and fixed in the optimization
process. Five control points are used for each DOEF. Thus, there is a total of 5 x n + 1(W) = 51 opti-
mization variables x = [PT - PT w7 in the formulation. Then, the joint angular velocity (q) and
acceleration () can be obtained from the first and second time derivatives of the B-spline discretiza-
tion of the joint angle profile, respectively. Therefore, all joint state variables (q, q, §) are functions of
B-spline control points (P). Next, based on the joint state variables, the DH-based forward recursive
kinematics (Equation 4) is calculated for points of interest in the human model (foot °rg,qt and hand
°fhand)- In addition, the joint torque 7 (x) is computed by plugging the joint state variables and box
weight (external load) directly into equations of motion (Equation 5), and this is the inverse dynam-
ics procedure. The lifting task is formulated as a general nonlinear programming problem: find the
optimal design variables x to minimize a human performance measurement, f (x), subject to physical
constraints, as follows:

Find: X
To minf(x)
St k=0, i=1,..,1 an

g =0, ji=1...,k

where h; are the equality constraints and g; are the inequality constraints. Expressions for f, h; and g;
are given in the following paragraphs.

A new multi-objective function (f) is introduced in this study to minimize the joint torque square
and negative logarithmic function of box weight simultaneously:

T n (xp) \2
f=wN Uﬂ y (%) dt] — wyN[log(W + 10)] (12)
i=4 i

where N[ -] is the normalization function; t} and tV are the ith lower and upper dynamic joint torque
limits, respectively (Xiang et al. 2019); T is the total box lifting time; and w; and w, are weighting
coefficients for the two normalized objective functions, where w; +w, = 1.

The lifting optimization problem is subject to the following constraints: first, joint angle limits:

¢t <qxp<q’ (13)

where qL and qU are the lower and upper joint angle bounds.
Dynamic strength is considered in the simulation and imposed as joint torque limits:

T{L(qf) fi‘i, zSCOl'ea t) S T,'(X, t) S T{U(qf! qf) zSCOrC) t); f: 4) ey 10 (14)

where the lower and upper torque limits are functions of joint angle (g), angular velocity (§), strength
percentile (zscore) and time (£): riL = rf“(q,',q,-, Zscores L) r,vU = riU(q,', Ji» Zscores t); these two functions
are regression equations obtained from isometric and isokinetic strength tests using dynamometers
(Xiang ef al. 2019; Frey-Law ef al. 2012; Looft 2014; Hussain and Frey-Law 2016).

Balance must be considered during the box lifting process. This is the zero moment point (ZMP)
constraint,

Oromp(x, t) € FSR (15)

where °rzyp is the calculated ZMP location (Xiang, Arora, ef al. 2010); and FSR is the foot support
region.
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In addition, feet are fixed on level ground:

c'rfc:’ot(xr )= Drf

oot

(16)

where °ro0t is the calculated global foot position from the 2D human model using Equation (4); and
°ron ¢ is the measured foot position from the experiment.
The initial and final box grasping locations are given based on experimental data:

*rhand (X, 1) = °1E, (1); t=0,T (17)

where °ry,,q is the calculated global hand position using Equation (4); and "rfm is the measured box
handle position from experiments.

Finally, the boundary and mid-time joint angle differences between the model and experiments
are constrained in a small range & = 0.1 rad at the boundary and & = 0.15 rad at mid-time, where g°
is the experimental joint angle for the ith physical joint:

1gi(x, ) — i) <& i=4,...,10; r:o,;r (18)

The time-dependent constraints in Equations (13)-(16) are evaluated not only at the knot time-
point, but also at two additional time-points between any two adjacent distinguished knots. The time-
independent constraints in Equations (17) and (18) are evaluated only at the given specific time-
points. There is a total of 295 nonlinear constraints for the MOO lifting problem. The bounds for the
design variables x are: P;j € [—-10, 10]rad and W € [0, 1000]N. The initial guesses are: P = 0 and
W = 200. The computation is close to real time.

2.3. Experimental data collection

2.3.1. Participants

Twenty-three male subjects aged 20-50 years participated in the laboratory experiments; among
them, four subjects’ motion data were found to be incomplete during the data postprocessing stage
and were therefore discarded. Among the remaining 19, 14 subjects were using a squat lifting strategy
(gender: male; age: 25.50 = 7.22 years; height: 180.64 &+ 5.15 cm; body mass: 82.34 4-10.45 kg, where
+ indicates standard deviation). Therefore, these 14 subjects were used for this study: 12 subjects
for MOO simulation and two subjects for MOO validation. The recruitment criteria were that sub-
jects should be physically and mentally sound, able to perform the scripted task and not be on any
medication that might hamper their performance in the box lifting task. The experimental protocol
was approved by the Institutional Review Board of Texas Tech University and all subjects signed the
consent form.

2.3.2. Experimental protocol
A Vicon Nexus motion-capture system with five cameras (VICON, Oxford, UK) was used to collect
kinematic data at 100 Hz. A plug-in-gait model with added iliac crests, giving 42 markers in total, was
used for the marker protocol (Cloutier, Boothby, and Yang 2011). Two Kistler force plates (Kistler,
Winterthur, Switzerland) were used to collect GRFs at 2000 Hz and each foot was placed on one of
the force plates. For each subject, the following anthropometrics were measured: height, weight, leg
length, ankle width, knee width, wrist width, elbow width, shoulder offset, inter-anterior superior
iliac spine (inter-ASIS) distance and waist circumference (Mital and Kromodihardjo 1986; Schultz
et al. 1982).

During the experiment, each participant was asked to psychophysically test their maximum weight
lifting capability by gradually adding the load until the subject requested that the increase be stopped.
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Figure 2. Box-lifting experiment.

The real maximum weight lifting capacity was not adopted to avoid any injury during the experiment,
i.e. the maximum weight in this study refers to the maximum weight that the participant could lift
safely. Once the maximum lifting weight had been obtained, the participant was ready to perform the
lifting task. The subject was requested to lift a box (65 cm x 35cm x 15 cm) forward, i.e. symmetrical
lifting, in three trials. Because the box did not have handles, it was placed on top of a weight disc,
measuring about 2.54 cm high, on the floor, so that the subject could fit his fingers under the box.
The subject then lifted the box in the most comfortable and natural way and set it down on a 1 m
tall table in front of them, as shown in Figure 2. After data collection, the data postprocessing was
conducted in the motion capture software Vicon Nexus.

2.3.3. Data processing
The first step for data postprocessing was marker labelling. Then, the data were smoothed and con-
verted into a C3D file. Finally, the C3D file was imported into Visual 3D (C-Motion, Germantown,
MD, USA). Within Visual 3D, a skeletal model with 15 segments based on the marker protocol used
in the experiments was created to output coordinates and joint angles. The anthropometric measure-
ments taken for each subject at the beginning of the experiment were used to create distinct and
accurate skeletal models, allowing for more precise calculations.

The measured height and body mass for each subject at the beginning of the experiment were used
to generate their body segments’ lengths, centres of mass and inertial properties using GEBOD™, a
regression-based interactive utility (Cheng, Obergefell, and Rizer 1994). Six joint angles (spine, shoul-
der, elbow, hip, knee and ankle), the box weight obtained from the experiments for each individual
subject and the generated anthropometrics were used to obtain the strength percentile (z;core) for each
subject (Xiang ef al. 2019). Finally, the proposed 2D symmetrical MOOQ inverse dynamics motion sim-
ulation was used to predict motions, GRF and maximum box weights. Note that the MOO algorithm

in this study is an in-house program developed in MATLAB®.
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2.4. Total error for MOO weighting coefficients

In Section 2.2, two weighting coefficients are defined, where w, 4+ w, = 1. For each subject, 21 Pareto
cases (0-20) are established, where the first case has w; = 0.0 for dynamic effort and w, = 1.0 for box
weight. The remaining cases are created by increasing wy by 0.05 and decreasing w, by 0.05 until the
final case set w; = 1.0 and w; = 0.0. A Pareto-optimal analysis, in conjunction with the total error
(ETotal) analysis, is performed to determine the best case (weighting coefficients) for each subject. The
experimental joint angle profiles, GRF profiles and box weight are compared to the simulation data
for all 21 cases. In this study, the total error for each case is defined as

RMSE, RMSE,Gre RMSEjcrr Ew
RM: SEqmax RMSE,GRFmax RMSE}GRFmax Ewmax

Etotal = (19)

where RMSE, is the total root mean square error (RMSE) for the six major joint angle profiles (spine,
shoulder, elbow, hip, knee and ankle); RMSE,ggr is the total RMSE for the vertical GRF profile;
RMSE;,ggr is the total RMSE for the horizontal GRF profile; and Eyy is the error for the box weight
prediction. Note that joint angle and GRF profiles are vectors and box weight is a scalar. The total
error Erq, is normalized by dividing each error by its respective maximum error found among the
21 cases for that specific subject. After identifying the total error for all cases for each of the 12 sub-
jects, an average total error is calculated for each case across all subjects. The Pareto case with the
lowest average total error is chosen as the optimal values for the two weighting coefficients.

2.5. Validation

After identifying the best MOO weighting coefficients for the lifting model through total error analy-
sis, the other two experimental subjects are compared to their respective simulation results with and
without MOO. The error of the predicted box weight and RMSE of each individual joint, vertical GRF
and horizontal GRF profiles are calculated. In addition, Pearson coefficients for each individual joint
and GRF profiles are calculated.

3. Results
3.1. Maximum weight lifting MOO for 12 subjects

As mentioned in Section 2.2, both objective functions are appropriately normalized so that they have
the same absolute magnitudes in the range [0, 1]. The MOO problem is depicted in the criterion space
where the two axes represent two objective functions as shown in Figure 3. For example, the normal-
ized joint torque square and normalized negative logarithmic function of box weight are plotted for
Subject 3. The Pareto-optimal curve is plotted in the criterion space by evaluating the objective func-
tions for 21 cases in Equation (12) by systematically varying weighting coefficients. The dots represent
the Pareto-optimal solution for each case. Similarly, for the other subjects, Pareto-optimal curves are
plotted by evaluating the objective functions for 21 cases in the criterion space as shown in Figure 3.

3.2. Best MOO weighting coefficients for maximum weight lifting

After calculation of the average total error for all Pareto cases of the 12 subjects, Pareto case 3, where
w1 = 0.15 and w; = 0.85, has the lowest average total error, with a value of 2.621. Pareto case 20
has the highest average total error of 3.337. As shown in Figure 4, the further away from case 3, the
higher the average total error value. Next, the maximum weight lifting motions of Subjects 2 and 9
are simulated using the proposed MOO approach with the best weighting coefficients obtained from
the 12 subjects’ simulation pool. The results of MOO are compared with the simulation using a single
maximum weight objective function. The RMSE and Pearson coefficients for simulation with MOO
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Figure 3. Pareto-optimal curves for 12 subjects. Sb = subject; bw = box weight.

and without MOO are presented in Tables 2 and 3, respectively. A visual comparison between the
experimental data and their respective simulations can be seen in Figures 5 and 6.

4. Discussion and conclusions

The basic idea of the proposed MOO is to maximize the box weight while minimizing an energy-
related function, i.e. joint torque square. The weighted sum method of MOO is used to aggregate
the two objective functions. The lifting motions of the 12 subjects are simulated and each one has 21
cases, making a total of 12 x 21 = 252 simulations. Next, the overall average total error for each case
is calculated across the 12 subjects and the case with the minimal error gives the best Pareto-optimal
weighting coefficients. In this study, the identified best weighting coefficients are 0.15 for dynamic
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effort and 0.85 for box weight, as shown in Figure 4. It is seen that the box weight has a larger effect
than the dynamic effort objective function; this is quite reasonable because the goal of the simulation
is to maximize the lifting weight.

In Figure 3, the smooth Pareto-optimal curves are generated for all 12 subjects. These smooth
curves indicate that the numerical performance is stable for the proposed MOO approach. It is noted
that the Pareto-optimal solutions between case 0 (0.0, 1.0) and case 2 (0.1, 0.9) are almost on a hori-
zontal straight line, where the dynamic effort changes substantially but the box weight remains almost
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Figure 4. Average total error (normalized) for each Pareto case.

Table 2. Error results for simulation with multi-objective optimization (MOO) and without MOO.

Subject 2 Subject 9
With MOO Without MOO With MOO Without MOO
RMSE spine 11.497 17.268 7.900 12616
RMSE shoulder 10.424 10.143 16.025 11.176
RMSE elbow 7.167 13.039 8395 20.572
RMSE hip 6.276 7.600 5.050 4.700
RMSE knee 9.743 7.254 6.705 8.2
RMSE ankle 8.244 2703 7.652 2,691
RMSE Q 53.350 58.007 51.727 59.976
RMSE vertical GRF 121.864 122.050 71542 68.891
RMSE horizontal GRF 48.976 59.470 57.580 53.900
Error W 8.536 24.303 19.563 20.429

Note: RMSE Q = root mean square error sum of spine, shoulder, elbow, hip, knee and ankle joints; GRF = ground reaction force;
W = weight.

Table 3. Pearson coefficient (r value) results for simulation with multi-objective optimization (MOQ) and without MOQ.

Subject 2 Subject 9
With MOO Without MOO With MOO Without MOO
Spine 0.928 0593 0.997 0.708
Shoulder 0.980 0.957 0.956 0.865
Elbow 0.986 0.709 0.994 0.780
Hip 0.990 0.989 0.994 0.994
Knee 0.988 0.995 0.998 0.994
Ankle 0914 0.990 0.910 0.994
Vertical GRF 0.334 0.268 0.712 0.674

Note: GRF = ground reaction force.

at a constant value (maximum). Similarly, the optimal solutions between case 20 (1.0, 0.0) and case
18 (0.9, 0.1) are located on a steep vertical line, where the box weight changes substantially but the
dynamic effort does not change much. The Pareto-optimal curve represents the trade-off between the
two objectives. For the maximum weight lifting simulation, it is advantageous to choose cases close to
the horizontal flat portion of the Pareto-optimal curve, where the maximum box weight is achieved
with less dynamic effort. For example, relative to case 2, case 1 represents a substantial increase in
effort for just a small improvement in box weight. Thus, case 2 is preferred over case 1 (Xiang, Arora,
et al. 2010; Marler and Arora 2004; Gunantara and Ai 2018). Note that w = (0.15,0.85) corresponding
to case 3 is identified as the best weighting coefficients to aggregate two objective functions.
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Figure 5. Joint angle and ground reaction force (GRF) profiles validation for subject 2.

The suggested weighting coefficients (0.15, 0.85) from the pool of 12 subjects is used to simulate
the maximum weight lifting motions for the other two subjects: Subjects 2 and 9. Table 2 shows that
both subjects have smaller RMSE Q values (total kinematics error) with MOO than those without
MOQO. Similarly, for the predicted box weight, MOO gives a smaller error than the simulation with-
out MOO. For GRFs, Subject 2 has a smaller error using the MOO method; however, for Subject 9,
MOO generates a relatively large error. This may be due to the inaccuracy of the GRF simulation
in the model, e.g. the initial lifting acceleration that exists in experiments is not incorporated in the
optimization formulation in Section 2.2. Based on the results from Table 2, this demonstrates that
using MOO generally results in smaller simulation errors.

The Pearson coefficient results show that using MOO gives a stronger correlation between simu-
lation and experiment than without MOO. For Subject 2, the r values are larger using MOO, except
for the knee and ankle joints. For Subject 9, the r values are larger using MOO, except for the ankle
joint. The Pearson coefficients (r values) show that the proposed MOO is an effective approach for
simulating maximum weight lifting motion compared to the SOO approach.
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Figure 6. Joint angle and ground reaction force (GRF) profiles validation for subject 9.

Figures 5 and 6 compare the joint angle and GRF profiles for Subjects 2 and 9 between simulation
and experiment. For Subject 2 (Figure 5), it is apparent that using MOO gives more accurate sim-
ulation results than without using MOO, except for the ankle joint. For Subject 9 (Figure 6), MOO
generates better simulations for spine, elbow, hip and knee joints. Overall, MOO has a smaller total
kinematics RMSE value, as seen in Table 2 (RMSE Q).

There are some limitations to this study. First, only 2D symmetrical lifting motion is simulated.
Secondly, there are potential inaccuracies in the dynamic joint strength database from the literature.
Thirdly, three postures from the experiments are imposed as constraints in Equation (18), at the initial
time, mid-time and final time. Based on the authors’ previous study (Xiang, Chung, et al. 2010),
these experimental constraints are necessary to produce more accurate simulations for complicated
whole-body lifting motions.

This study presents a MOO method that predicts a subject-specific maximum lifting weight and
lifting motion while considering the subject’s dynamic strength. This prediction is achieved using
aggregated objective functions and identified weighting coefficients for maximum weight lifting
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simulation. It has been demonstrated that the MOO approach generates more accurate simulations
compared to the cases without MOO. The hypothesis that humans are using energy-efficient ways
to lift the maximum weight has been proven. Future work includes: (1) extending the 2D model to
a 3D lifting simulation using a MOO approach; (2) extending the skeletal model to a musculoskele-
tal model; and (3) conducting a lumbar spine injury study using the proposed MOO approach and
musculoskeletal model.
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