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ABSTRACT 

Corrosion on steel bridge members is one of the most important bridge deficiencies 

that must be carefully monitored by inspectors. Human visual inspection is typically 

conducted first, and additional measures such as tapping bolts and measuring section 

losses can be used to assess the level of corrosion. This process becomes a challenge 

when some of the connections are placed in a location where inspectors have to climb up 

or down the steel members. To assist this inspection process, we developed a computer- 

vision based Unmanned Aerial Vehicle (UAV) system for monitoring the health of crit- 

ical steel bridge connections (bolts, rivets, and pins). We used a UAV to collect im- 

ages from a steel truss bridge. Then we fed the collected datasets into an instance level 

segmentation model using a region-based convolutional neural network to train charac- 

teristics of corrosion shown at steel connections with sets of labeled image data. The 

segmentation model identified locations of the connections in images and efficiently de- 

tected the members with corrosion on them. We evaluated the model based on how 

precisely it can detect rivets, bolts, pins, and corrosion damage on these members. The 

results showed robustness and practicality of our system which can also provide use- 

ful health information to bridge owners for future maintenance. These collected image 

data can be used to quantitatively track temporal changes and to monitor progression of 

damage in aging steel structures. Furthermore, the system can also assist inspectors in 

making decisions for further detailed inspections. 
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INTRODUCTION

Corrosion is one of the most typical bridge deficiencies shown in steel bridge mem-
bers [1–3]. In most cases, visual inspection is typically conducted first. However, where
there is severe corrosion, further assessment may be required, such as tapping the bolts or
measuring section losses to evaluate the severity of corrosion damage. This process be-
comes a challenge when some of the bolts, rivets, or pins are placed in a location where
inspectors have to climb up or down the steel members [4–6]. To assist this inspection
process, we are using a UAV to collect image data and automate the process in identi-
fying critical connecting members and the level of corrosion damage. We collected 80
to 100 images from an large-scale structures lab and a steel truss bridge under service in
Elkhorn, Nebraska. These images were used to train our computer-vision based system
to automatically identify the steel connections and deficiencies within a given image.

Unlike cracks observed in concrete bridge decks, corrosion damage on steel members
and connections are more challenging to detect because the level of corrosion may vary
by the color depending on the deterioration level (light vs severe corrosion). In addition,
the location and area of corrosion spread out on steel members may vary by bridges.
Simple image processing methods or machine learning based detectors trained through
user-defined descriptors do not perform well in such complex conditions. Therefore, in
this paper, we implemented Mask R-CNN [7,8], which can extract rich features without
any human-crafted engineering process.

Many of the current practices in assessing bridge health deficiencies often exclu-
sively rely on qualitative and subjective data provided through human inspections. With
limited budget and resources, it is challenging to monitor the conditions of the corrosion
damage in many of these steel bridges and to track the temporal and spatial change in
damage. Our computer-vision based UAV sensing system can assist the inspection pro-
cess and collect data which can be used later to monitor the progression of damage in
aging steel structures.

INSTANCE SEGMENTATION

Instance segmentation aims to identify meaningful objects in the image which pro-
vides a pixel-wise location and information of each individual instance [7, 9]. However,
detecting every single object from an image is a challenging topic in the computer vi-
sion domain because it requires the correct detection of all objects in one image while
segmenting each instance and the image itself may look very different depending on the
light conditions, present shadows, or the angle the image was taken. The need for iden-
tifying the precise location of each instance has motivated many researchers to develop
instance segmentation models. Mask R-CNN [7] is one of the state-of-the-art algorithms
for conducting instance level segmentation for a given image. Mask R-CNN is an ex-
tended version of Faster R-CNN [10] which can extract features and Region of Interests
(RoIs). In the Mask R-CNN, once the features and RoIs are identified from a given im-
age, network head branches including mask prediction, bounding box regression, and
label classification are performed simultaneously. Algorithm 1 shows the pseudo code
of our Mask R-CNN model for the segmentation process with given image sets.
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Algorithm 1 Mask R-CNN
1: SET CONFIGURATION()
2: if mode = training then

3: CREATE MODEL()
4: LOAD WEIGHTS(wpretrain) . w: weights
5: Dtrain,val LOAD DATASET(train, val) . D: dataset
6: TRAIN(Dtrain,val, ⌘, e) . ⌘: learning rate, e: epoch
7: else if mode = inference then

8: LOAD MODEL()
9: LOAD WEIGHTS(wcheckpoint)

10: Dtest  LOAD DATASET(test)
11: RUN DETECTION(Dtest)
12: end if

13: function LOAD DATASET(data)
14: I, L LOAD IMAGE ANNOTATION FILE(data) . I: raw image, L: labeled data
15: while l in L do . l: label of each image
16: while i in l and not NULL do . i: instance of each label
17: Mask  DRAW MASK(I, ix,y) . ix,y: x,y-coordinate of labels
18: end while

19: D  I,Mask

20: end while

21: return D

22: end function

23: procedure TRAIN(Dtrain,val, ⌘, e)
24: while i < e do

25: Fmap  BACKBONE(Dtrain,val)
26: Gtrain,val REGION PROPOSAL NETWORK(Dtrain,val, Fmap) . G: generator
27: CLASSIFIER(Gtrain,val, Fmap, ⌘)
28: SAVE CHECKPOINTS()
29: end while

30: end procedure

31: function REGION PROPOSAL NETWORK(D)
32: H  GENERATE ANCHORS(D) . H: anchors
33: while i < length(D) do

34: I,GTclass,box,mask LOAD IMAGE GT(D) . GT : ground-truth
35: Hrefined, RPNbox  BUILD RPN TARGET(I,H,GTclass,box)
36: RPNRoIs  GENERATE RANDOM ROIS(I,GTclass,box)
37: RoIs,MRCNNclass,box,mask BUILD DETECTION TARGET(RPNRoIs, GTclass,box,mask)
38: batch I,RoIs,RPNmatch,box, GTclass,box,mask,MRCNNclass,box,mask

39: end while

40: G batch,Hrefined

41: return G

42: end function

43: procedure RUN DETECTION(D)
44: H  GENERATE ANCHORS(D)
45: Hrefined, RPNbox  BUILD RPN TARGET(I,H,GTclass,box) . T : target
46: Hdetect  RUN GRAPH(I,Hrefined, RPNbox)
47: Htop  SORT(Hdetect)
48: CLASSIFIER(Htop)
49: DISPLAY RESULT()
50: end procedure
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Details of the Mask R-CNN used in this paper can be found in reference [8]. We
customized the functions LOAD DATASET and RUN DETECTION tailored to our appli-
cation. To predict the locations of the target objects, the Mask R-CNN extracts features
from the given sets of images with convolutional backbone. The backbone architecture
initially provides the most prominent features from a given set of data during the train-
ing phase. The extracted feature map is shared with the region proposal network (RPN)
and the network head. The RPN produces the expected RoIs for each object by over-
lapping the generated anchors and ground truth regions. The RPN generates random
regions by pooling the image object only to the foreground or background, regardless of
its classes as a bounding box. However, as RPN produces multiple sizes of boxes, this
process induces a problem to the convolutional neural networks based classifiers which
only accepts images with fixed-size. Mask R-CNN mitigates this problem by employing
an interpolation layer which modifies every target box to have an identical size. The
interpolated features are shared with the network head branches which predicts the class
labels, binary masks, and bounding boxes of each RoI. The Mask R-CNN uses losses
for training from each branch as follows:

L = Lcls + Lbox + Lmask

where Lcls indicates the log loss of classification prediction, Lbox indicates the loss of
bounding box refinement, and Lmask indicates the average cross-entropy loss of each
RoI mask.

EXPERIMENTAL RESULTS

Experimental Setup

We collected images as shown in Figure 1 from the bridge site with a quadcopter
UAV manually controlled by two remote pilots. The pairs of collected images and their
labeled masks were carefully prepared with guidance and assistance from domain ex-
perts in Civil Engineering. We fed these data into our Mask R-CNN model. The entire
training procedure was performed as end-to-end training, which does not require any pre
or post-processing for selected labeled datasets. Based on the loss curves of the training
and validation set, we fine-tuned our hyper-parameters such as the backbone architec-
ture, pretrained weights, learning rate, learning momentum, weight decay, anchor scale,
and the anchor size as shown in Table I.

TABLE I. FINE-TUNED HYPER-PARAMETERS
Mask R-CNN
Learning rate 0.01
Number of epochs 300
Minimum confidence 0.6
Backbone architecture ResNet 101 [11]
Pre-trained weights COCO dataset [12]
Loss weights for each branch equal
Number of classes 2� 3
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Figure 1. Example images from the outdoor dataset.

The implemented model was trained on an Ubuntu 16.04.06 LTS with four Tesla
V 100 GPUs with a 16GB memory for each GPU. We used an Intel Xeon E5 � 2698
CPU with v.4 2.2GHz with 256GB LRDIMM DDR4 system memory, which took
around 63sec per epoch for training each dataset.

Dataset

We collected two types of image datasets. For our initial testing, we collected images
from an indoor lab facility. A total number of 80 photos of a steel frame in the Large-
Scale Structures Laboratory of the University of Nebraska-Lincoln were collected to
train our model. The images have steel bolts, nuts, and some light corrosion on the
member. Each image is in a JPG format and contains a three-channel RGB color space.
The dimension of the image is 3, 024 by 4, 032 pixels. Within the guidance of the domain
experts, we tagged each image with polygon shaped labels of two classes: bolt and
corrosion. The camera setup used in collecting the photos had a shutter speed of 1/4sec,
4mm focal length, an ISO value of 125, and an f stop of f/1.8.

After the initial training, we collected our second dataset of outdoor images from an
actual bridge site. We used the DJI Mavic Pro quadcopter UAV to collect the outdoor
images from the bridge site in Elkhorn, Nebraska. On the day of data collection, the
maximum wind speed was 16MPH and the visibility was 10SM . Two certified remote
pilots maneuvered the UAV by standing 3 meters away from the bridge site, and a visual
observer was present during the flight to avoid crashing in data collection. The built-in
camera gimbal on the UAV provides �90 to 30 pitch and 0 to 90 roll degree both in
horizontal and vertical direction. The camera setup used in collecting the photos had an
average shutter speed of 1/516sec, 4.73mm focal length, an ISO value of 100, and an f
stop of f/2.2.

A total number of 100 images directly taken from the bridge site were used to iden-
tify rivets, bolts, and pins members on the steel truss bridge. Each image is in a JPG
format with three-channel RGB color space with an image size of approximately 3, 000
by 4, 000 pixels. For the outdoor experiment dataset, we focused mainly on identifying
locations where severe corrosion and ”bleeding” was observed between the connections
and the main steel member where iron-oxide corrosion rust is dripping down.

Evaluation

The loss curves of training and validation set per epoch for the outdoor dataset is
shown in Figure 2 and the visual segmentation results from the indoor and outdoor
dataset is shown in Figure 3.
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Figure 2. Training and validation loss curves per epoch from the outdoor dataset.

Figure 3. Visual segmentation results from the datasets.

Although the training and validation graphs fluctuate in some epochs in Figure 2,
both graphs reached a plateau with reasonable losses without showing overfitting after
more than 100 epochs. The left image in Figure 3 shows the prediction results of the
indoor dataset with the bolt, and the right image shows the prediction results of the
outdoor dataset with rivets and pins that show rust bleeding. In both images, different
colors indicate that the objects are identified as different instances.

We used an average precision (AP) score for all classes that we defined for both
datasets under a particular Intersection over Union (IoU) threshold to evaluate our model
[13]. The IoU metric quantifies the percent overlap between the target mask and the
prediction outputs. Table II shows performance evaluation results based on the AP scores
with varying IoU thresholds for each dataset.

We observed that the fine-tuned model for the indoor dataset shows better perfor-
mance than the outdoor dataset because the AP score was not decreased with a stricter
IoU threshold. However, the model reveals that it cannot currently detect all instances
with a stricter threshold for the outdoor dataset. This is probably because the indoor
dataset was created in a controlled lighting condition with identifiable hexagon shaped of
the object compared to the bleeding rust products from the outdoor dataset. In addition,
the outdoor dataset suffers from the imbalance between classes since the number of riv-
ets within the image was dominating compared to the number of bolt and pin members.

TABLE II. PERFORMANCE EVALUATION BASED ON AP SCORE.
Dataset AP.50 AP.75

Indoor 0.90 0.90
Outdoor 0.89 0.36
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These results indicate the need for a sufficient and more balanced dataset for outdoor
experiments.

We also used a recall metric based on the confusion matrix to measure the missing
percentage of the target component. In this evaluation, the ratio of each classified in-
stance to the total number of instances within the image is calculated. The performance
evaluation results using the confusion matrix and the recall are shown in Table III. Each
element of the matrix was derived from the average value from all corresponding classes
of each image. The equation used for the recall is as follows:

Recall = 1� ¯FN/( ¯FN + ¯TP )

where ¯FN is the average false negative and ¯TP is the average true negative.
The performance evaluation results demonstrate that our model can predict most of

the target classes for both indoor and outdoor datasets with accuracy above 90%.

CONCLUSION

We implemented the Mask R-CNN model to train our machine to automatically de-
tect steel connection members (bolts, rivets, and pins) and corrosion deficiencies from
a given image. We initially trained our model through an indoor dataset with bolts and
light corrosion on steel members. Then, we collected a second dataset from a bridge site
using a UAV. The experimental results show that our system is capable of identifying
corrosion deficiencies on steel members. However, we need to increase the number and
types of the dataset from field to train our model with better and improved accuracy. We
expect that such computer-vision based UAV inspection may assist the current inspec-
tion process. In addition, the collected image data can be used to track temporal and
spatial changes quantitatively to monitor the progression of any damage in aging steel
structures.
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TABLE III. EVALUATION BASED ON CONFUSION MATRIX AND RECALL.
Actual

RecallPositive Negative

Indoor

Pr
ed

ic
te

d Positive 0.99 0.13
0.96Negative 0.05 0.93

Outdoor Positive 0.91 0.05
0.91Negative 0.09 0.95
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