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Abstract
Wepresent efficient numericalmethods for solving a class of nonlinear Schrödinger equations
involving a nonlocal potential. Such a nonlocal potential is governed byGaussian convolution
of the intensity modeling nonlocal mutual interactions among particles. The method extends
theFastHuygensSweepingMethod (FHSM) thatwedeveloped inLeung et al. (MethodsAppl
Anal 21(1):31–66, 2014) for the linear Schrödinger equation in the semi-classical regime to
the nonlinear case with nonlocal potentials. To apply the methodology of FHSM effectively,
we propose two schemes by using the Lie’s and the Strang’s operator splitting, respectively, so
that one can handle the nonlinear nonlocal interaction term using the fast Fourier transform.
The resulting algorithm can then enjoy the same computational complexity as in the linear
case. Numerical examples demonstrate that the two operator splitting schemes achieve the
expected first-order and second-order accuracy, respectively. We will also give one-, two-
and three-dimensional examples to demonstrate the efficiency of the proposed algorithm.

Keywords Schrodinger equations · Numerical methods for partial differential equations ·
Nonlinear equations · Fast Huygens sweeping methods

1 Introduction

We develop a new fast Huygens sweeping method to compute the highly oscillatory solution
of the following nonlinear Schrödinger equation for interactions governed by a nonlocal
potential,
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(
i�

∂

∂t
− H

)
U ≡ i�Ut + �

2

2m
ΔU − V (x)U − g

(∫
K (x − x ′)|U (x ′, t)|2dx ′

)
U = 0,

(1)

for x ∈ R
d with the initial condition U (x, t0) = U0(x), where g is a constant controlling

the strength of the self-interaction from the wavefunction, K (x − x ′) is the kernel function
governing the nonlocal mutual interactions, V (x) is the real external potential, and

H =
(

�
2

2m
Δ − V (x) − g

∫
K (x − x ′)|U (x ′, t)|2dx ′

)

is the many-body Hamiltonian. This model can describe many phenomena, such as the
thermal self-interaction of beams inside a plasma [37] and the Bose–Einstein condensation
(BEC) with magnetic dipole–dipole forces [12], in which the nonlocal interactions are the
dipole–dipole interactions between the dilute atoms; consequently, it has been studied in
various articles [5,13,26,31,33,36].

If the interactions between the atoms are of short range (small particle density) and only
binary collisions [27] are considered, then the two-body interacting potential K (x − x ′) can
then be described by a singular response; in this case, we may use a Dirac delta function to
model such a response so that the nonlocal effect becomes negligible [6], i.e. K (x − x ′) =
δ(x−x ′). Consequently, Eq. (1) is reduced to the usual cubic nonlinear Schrödinger equation
(or the Gross–Pitaevskii equation)

i�Ut + �
2

2m
ΔU − V (x)U − g|U |2U = 0, (2)

which has a wide range of applications including plasma physics [7], integrated optics [28],
and hydrodynamics [17].

It is known that for BECs modeled by Eq. (2) in high dimensions, collapse occurs so that
after a finite time the solution becomes singular when the total number of particles is above
a critical threshold [3]. This phenomenon has been studied in details in [27] using Eq. (1).
Various analysis has concluded that the nonlocality in Eq. (1) stabilizes the system and
suppresses the collapse for certain choices of nonlocal response interaction potential K (x)
[1,3,37]. There are a number of choices for the form of K as discussed in [1,3,12,27,28,37].
In this work, however, we will simply consider the Gaussian kernel function

K (x) =
(

1

2πε2

)d/2

exp

(
− x2

2ε2

)
, (3)

such that its width depends on the parameter ε [27], where d is the spatial dimension of the
problem. The extent of nonlocality varies with the value of ε. The smaller the magnitude of
ε is, the lower the extent of nonlocality. In the limiting case, when ε → 0, we will then have
limε→0 Kε(x) = δ(x) so that the nonlocal Schrödinger equation (1) will be reduced to the
Gross–Pitaevskii equation (2).

In the semi-classical limit, because of the small value of �, the solutions of Eqs. (1) and (2)
are highly oscillatory so that only a rough numerical solution profile can be obtained given
limited storage and computational resources. Thus it is numerically challenging to compute
the solution of the nonlinear Schrödinger equation with nonlocal potentials. Although there
are many theoretical studies concerning the Gross–Pitaevskii equation in different situations,
numerical algorithms for solving the nonlocal Eq. (1) are not well developed yet. Most
of existing numerical approaches, such as [4,38], require a very small time step such that
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Δt = O(Δx) = O(�), which creates major difficulties in carrying out long-time simulations
of the system. In addition, high dimensional simulations might also be difficult.

Many high-frequency asymptotic methods have been developed for capturing highly
oscillatory phenomena. A popular approach is the Gaussian beam summation method [2,14–
16,18,35], andmany efforts have beenmade to develop both efficient Lagrangian andEulerian
Gaussian beam methods [20–22,24,25,29,30,34]. The first Eulerian Gaussian beam method
has been proposed in [22], which was further developed in [20,21,24]. Efficient Lagrangian
Gaussian beammethods based on fast wavepacket transforms have been proposed in [29] for
Schrödinger equations and in [30] for wave equations.

In this work, we will extend the fast Huygens sweeping method (FHSM) developed in
[19,23] to compute the numerical solutionof the nonlinear, nonlocal Schrödinger equation (1).
Since the method is based on the Huygens secondary-source principle in terms of asymptotic
Green’s functions, we will first decompose the initial condition for the Green’s function
into a superposition of plane waves. Therefore, in order to obtain needed ingredients in the
asymptotic form of Green’s functions, we will solve the following eikonal and transport
equations:

τt + V (x) + 1

2
|∇τ |2 = 0, t > t0,

τ (x, t0; ξ) = x · ξ, (4)

At + ∇τ · ∇A + 1

2
Δτ A = 0, t > t0,

A(x, t0; ξ) = 1, (5)

where ξ ∈ Rd is a parameter, which can be viewed as amomentum variable as corresponding
to x viewed as a position variable. According to the PDE theory of the Hamilton–Jacobi
equation, the eikonal equation (4) has a unique smooth solution for a short period of time;
we denote this short period of time as [t0, t0 + T ], where T > 0 is a constant. The FHSM
incorporates short-time Wentzel–Kramers–Brillouin–Jeffreys (WKBJ) propagators into the
Huygens principle. Even though the WKBJ solution is valid only for a short time period due
to the occurrence of caustics, the Huygens secondary-source principle allows us to construct
the global-in-time semi-classical solution. The method for the linear Schrödinger equation
has a computational complexity of O(N log N ) for each time step, where N is the total
number of sampling points in the d-dimensional position space. In this paper, we propose an
operator splitting approach to separate the nonlinear potential term from the linear part so
that each split component can be handled efficiently. The linear part from the splitting will
be taken care of by the FHSM. The nonlocal potential term will be computed by the fast
Fourier transform (FFT), while the corresponding evolution subproblem has a closed-form
solution. Therefore, the overall algorithm is computationally extremely efficient since the
FHSM allows a large time-marching step given by Δt = O(Δx/�), and each update in the
time direction takes an overall computational complexity O(N log N ).

The rest of the paper is organized as follows. In Sect. 2, we will first give a brief summary
of the fast Huygens sweeping method developed in [23]. Our proposed modification for the
nonlocal equation is given in Sect. 3. We are going to discuss two algorithms based on the
Lie’s splitting and the Strang’s splitting, respectively. We will also discuss several limiting
cases of the model and properties of the numerical schemes. In Sect. 4, we demonstrate
efficiency and effectiveness of the overall algorithm using one-, two- and three-dimensional
examples. A conclusion and some discussions on the future work will be given in Sect. 5.
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2 Fast Huygens SweepingMethod for the Linear Schrödinger
Equations in the Semi-classical Regime

In this section, we will summarize the fast Huygens sweeping method as developed in [23].
We compute the highly oscillatory solution of the Schrödinger equation for a particle with

unity mass given by
(
i� ∂

∂t − H
)
U ≡ i�Ut −V (x)U + �

2

2 ΔU = 0 with the initial condition
U (x, t0) = U0(x). For the details of the numerical algorithm, we refer interested readers to
[23].

The Green’s function G(x, t; x0, t0) of the partial differential equation [23,32] solves the
following homogeneous initial value problem:(

i�
∂

∂t
− H

)
G(x, t; x0, t0) = 0, x ∈ R

d , t > t0,

lim
t→t+0

G(x, t; x0, t0) = δ(x − x0), x ∈ R
d ,

G(x, t; x0, t0) = 0, x ∈ R
d , t < t0,

where (x0, t0) are parameters, and the Hamiltonian H takes the form of kinetic-plus-potential

form: H = −�
2

2
∂2

∂x2
+V (x). Therefore,G(x, t; x0, t0) can be seen as the response at position

x and time t due to a point source at position x0 and time t0. According to the Huygens’
principle, the wavefunction U (x, t) for t > t0 for the Schrödinger equation can be written
as U (x, t) = ∫

Rd G(x, t; x0, t0)U (x0, t0)dx0 for t > t0, which formalizes the fact that the
superposition of waves radiating from each point of an old wave creates a new wave at a later
time, and the Green’s function provides appropriate weighting factors for the superposition.
The above facts are well known in quantum mechanics; see [32].

For the asymptoticGreen’s functionG (without confusion still denoted asG), we assemble
these computed ingredients into the following formula,

G(x, t; x0, t0) =
(

1

2π�

)d ∫
Rd

A(x, t; ξ)e
i(τ (x,t;ξ)−x0 ·ξ)

� dξ.

This G(x, t; x0, t0) satisfies the Schrödinger equation asymptotically in the time period t0 ≤
t ≤ t0+T and satisfies the corresponding point-source initial condition.With the asymptotic
Green’s function at our disposal, we can propagate an arbitrary initial wavefunctionU (x, t0)
for a short period of time,

U (x, t) =
∫

Rd
G(x, t; x0, t0)U (x0, t0)dx0, t0 < t ≤ t0 + T . (6)

Now since the Hamiltonian is time independent, the Green’s function satisfies the following
property, G(x, t; x0, t0) = G(x, t1; x0, t2) if t − t0 = t1 − t2 > 0. This implies that the
short-time-valid Green’s function can be repeatedly used to propagate the wavefunction for
long time,

U (x, t) =
∫

Rd
G(x, t; x0, tn)U (x0, tn)dx0

for tn < t ≤ tn + T , where tn = t0 + (n − 1)T for n = 1, 2, . . .. This way we may sweep
through a long period of time so that we may obtain global-in-time asymptotic solutions for
the Schrödinger equation. For small timeΔt , we can approximate the eikonals and amplitudes
using the Taylor expansion in time:

A(x,Δt; ξ) = 1 + A1(x, ξ)Δt + A2(x, ξ)Δt2 + O(Δt3),
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τ(x,Δt; ξ) = x · ξ + τ1(x, ξ)Δt + τ2(x, ξ)Δt2 + O(Δt3). (7)

SeeAppendix for a recursive derivation of these terms.Theoretically,we can incorporatemore
terms into our algorithm to obtain higher-order approximations. However, for our purpose,
we concentrate on the lower-order case.

Keeping the leading order terms in the expansion, we approximate the asymptotic Green’s
function by

G(x,Δt; x ′, 0) �
(

1

2π�

)d ∫
Rd

e
i
�

[
x ·ξ−

(
V (x)+ 1

2 |ξ |2
)
Δt−x ′·ξ

]
dξ

= 1

(i2π�Δt)d/2 exp

[−i

�
V (x)Δt

]
exp

[
i

2�Δt
|x − x ′|2

]
.

As a result, the integral (6) can be approximated by

U (x,Δt) =
∫

Rd
G(x,Δt; x ′, 0)U (x ′, 0)dx ′

� 1

(i2π�Δt)d/2 exp

[−i

�
V (x)Δt

] ∫
Rd

exp

[
i

2�Δt
|x − x ′|2

]
U (x ′, 0)dx ′.

We can take advantage of the special structure to compute the convolution efficiently using
FFT. For simplicity, we only discuss the numerical procedure in 1D so that it is straight
forward to extend the approach to higher dimensions. We first approximate the integral on a
uniform mesh xi using the Trapezoidal rule, i.e.

U (xi ,Δt) = 1

(i2π�Δt)1/2
exp

[−i

�
ViΔt

]
Δx

∑
j

exp

[
i

2�Δt
|xi − x j |2

]
U (x j , 0). (8)

To write the above summation in the form of matrix-vector multiplication, we introduce a
symmetric Toeplitz matrix W with each entry given by Wi, j = exp

[ i
2�Δt |xi − x j |2

]
.

Numerically, Δt in this approximation cannot be chosen arbitrarily. To resolve the oscil-
lations in the coefficients of Wi, j , we require that the phase difference between W1,N−1 and
W1,N should be less than 2π ; i.e. we require [(N − 1)2 − (N − 2)2]Δx2/(2�Δt) = α2π
for some 0 < α < 1, which implies the following bound on Δt ,

Δt > Δt∗ = (2N − 3)Δx2

4π�
= O

(
Δx

�

)
. (9)

Note that this constraint imposes a lower bound on the marching step size Δt . For a given �

andΔx , the method requires one to pick a large enoughΔt in order to resolve the oscillations
inWi, j . Indeed the larger the value of Δt , the faster we reach the final solution. However, we
have to control the error introduced in the Taylor approximation at the same time. Therefore,
we pick α close to, but smaller than, 1. To relax this lower bound on the time marching step,
we have recently proposed a simple forward-backward step marching approach in [19]. We
refer interested reader to this reference for a more detailed description.
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3 Our Proposed Operator Splitting Approach

3.1 Lie’s SplittingMethod

To solve the nonlocal Schrödinger equation (1), we first discuss the Lie’s scheme [8,10,11].
Let Δt > 0, tk = kΔt , and we obtain for k ≥ 0:Uk → Uk+1/2 → Uk+1 by solving the first
subproblem, {

i�Ut − V (x)U + �
2

2 ΔU = 0 in R
d × (tk, tk+1),

U (tk) = Uk,
(10)

and then we set Uk+1/2 = U (tk+1) to solve the second subproblem,
{
i�Ut − g

(∫
K (x − x ′)|U (x ′, t)|2dx ′)U = 0 in R

d × (tk, tk+1),

U (tk) = Uk+1/2.
(11)

The first subproblem (10) is the same as the linear Schrödinger equation which can be
efficiently solved by the FHSM as developed in [23]. The second subproblem (11) is a
nonlinear nonlocal equation inU . To solve this nonlinear problem, we linearize the nonlinear
potential and replace the term U (x ′, t) by Uk+1/2(x ′). Letting

J (x, tk+1/2) =
∫

Rd
K (x − x ′)

∣∣∣Uk+1/2(x ′)
∣∣∣2 dx ′, (12)

we can obtain the analytical solution to the evolution equation which is given by

Uk+1 = exp

[
− ig

�
J (x, tk+1/2)Δt

]
Uk+1/2. (13)

Numerically, the nonlocal interaction potential in the formula of J (x, tk+1/2) is a convolution
process such that, at each x , we need to integrate over the whole computational domain.
It is well known that implementing a direct sum is numerically very expensive. Instead,
we use the fast Huygens sweeping method, which uses FFT to reduce the complexity of
the computational procedure. To extending the fast Huygens sweeping method for solving
equation (1), we modify the algorithm to numerically compute the convolution of the kernel
function K (x) at each iteration step. Analogous to the fast Huygens sweeping method, here
we assume that the wavefunction is of compact support and our computational domain is
large enough to capture all the nontrivial solution profiles. Prior to each step in the iteration
of the fast Huygens sweeping algorithm, we need to calculate the convolution integral in the
whole computational domain. We approximate the integral (12) by the Trapezoidal rule

J (xi , tk+1/2) ≈ (Δx)d
∑
j

K (xi − x j )
∣∣∣Uk+1/2(x j )

∣∣∣2 , (14)

where d is the spatial dimension of the problem and Uk+1/2 is the intermediate solution
between k and k+1which is approximated by the solution of the linear Schrödinger equation.
In particular, we use the Gaussian kernel assumption (3) for our implementation such that
Eq. (14) becomes

J (xi , tk+1/2) ≈ β(Δx)d
∑
j

exp

( |xi − x j |2
2ε2

) ∣∣∣Uk+1/2(x j )
∣∣∣2 , (15)
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where β = (
1/2πε2

)d/2
is the normalization constant of K (x); this summation can be

written as a matrix-vector product J = β(Δx)dKP, where J = (Ji,k+1/2) ≡ J (xi , tk+1/2),

the matrix K = (Ki, j ) with each element Ki, j = exp
[

1
2ε2

|xi − x j |2
]
, and

P =
[∣∣∣Uk+1/2

1

∣∣∣2
∣∣∣Uk+1/2

2

∣∣∣2 . . .

∣∣∣Uk+1/2
N

∣∣∣2
]T

.

Since thematrixK is Toeplitz and symmetric of size N×N , wemay apply a similar technique
as applying the fast Huygens sweepingmethod to the linear Schrödinger equation.We extend
the N × N symmetric Toeplitz matrixK into a 2N × 2N circulant Toeplitz matrix K̃, which
can be decomposed into Fourier matrices, where K̃ is⎛

⎜⎜⎜⎝
K1,1 K1,2 · · · · · · K1,N 0 K1,N K1,N−1 · · · · · · · · · K1,2

K1,2 K1,1 K1,2 · · · K1,N−1 K1,N 0 K1,N K1,N−1 · · · · · · K1,3

K1,3 K1,2 K1,1 K1,2 · · · K1,N−1 K1,N 0 K1,N K1,N−1 · · · K1,4
...

...
...

...
...

...
...

...
...

...
...

...

⎞
⎟⎟⎟⎠

with the first row given by K̃1. Accordingly, we also extend the vector P to

P̃ =
[∣∣∣Uk+1/2

1

∣∣∣2
∣∣∣Uk+1/2

2

∣∣∣2 . . .

∣∣∣Uk+1/2
N

∣∣∣2 0 . . . 0

]T

∈ R
2N .

Then the product J = β(Δx)dKP is the first N elements of

β(Δx)dF−1
[
F(K̃1)F(P̃)

]
,

where F is the Fourier transform operator and F−1 denotes the inverse Fourier transform
operator. Finally, the wave functionU can be computed using the nonlocal interacting poten-
tial J and

U (xi , tk+1) = αd(Δx)d exp

[
− i

�
gJi,k+1/2Δt

]
Uk+1/2
i , (16)

where αd = (i2π�Δt)−d/2. Notice that all the operations in (16) are pointwise such that the
computational complexity will not be increased significantly.

To end this section, we discuss a stability constraint on the choice of ε for the width of
the Gaussian kernel (3). In order to resolve the kernel for the discrete convolution, the width
parameter ε cannot be arbitrarily chosen. We require that the width parameter be of O(Δx)
in order to allocate enough points for each variance of K (x). Numerically, we require that
ε be of size at least 2.5Δx so that there are at least approximately 5 points to resolve the
Gaussian kernel.

3.2 Strang’s SplittingMethod

It is possible to obtain high-order accurate solutions using higher-order splitting methods. In
this section, we consider the following first form of the Strang’s splitting scheme [9] given
by Uk → Uk+1/2 → U∗ → Uk+1:

– Step 1: Solve{
i�Ut − g

(∫
K (x − x ′)|U (x ′, t)|2dx ′)U = 0 in R

d × (tk, tk+1/2),

U (tk) = Uk .
(17)
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In terms of the numerical implementation, we linearize the equation as in the second
subproblem (11) in the Lie’s splitting algorithm, with the only difference in the time step
size.

– Step 2: Then we set Uk+1/2 = U (tk+1/2) and solve

{
i�Ut − V (x)U + �

2

2 ΔU = 0 in R
d × (tk, tk+1),

U (tk) = Uk+1/2.
(18)

This is the same as the first subproblem (10) in the Lie’s splitting.
– Step 3: We setU∗ = U (tk+1) and repeat the first step for another half time interval from

(tk+1/2, tk+1) with the initial condition U (tk+1/2) = U∗. This implies that

J ∗(x) =
∫

Rd
K (x − x ′)

∣∣U∗(x ′)
∣∣2 dx ′,

Uk+1 = exp

[
− ig

2�
J ∗Δt

]
U∗.

There is another version of the Strang’s symmetrized splitting method by switching these
twooperations so that one solves the linear Schrödinger equation twicewith a smaller timestep
Δt/2 and determines the nonlocal interaction of the wavefunction once with a large timestep
Δt . Numerically, since both approaches involve only several calls of FFT and IFFT, the
overall computational complexity of this algorithm is stillO(N log N ), which is the same as
the version we presented at the beginning of this section. However, due to the lower bound
(9) restricting the time step in solving the linear Schrödinger equation using the FHSM, this
Strang’s splitting approach has an even larger lower bound given by

Δt > 2Δt∗ = (2N − 3)Δx2

2π�
.

Because the error in the operator splitting method depends on the size of Δt , this second
form of the Strang’s splitting is not recommended in the current application. There could
be applications that, on the other hand, we might prefer this form of the Strang’s splitting;
for example, if the nonlocal potential involves more complicated interactions of the position
density, one might want to reduce the number of evaluations associated with the nonlinear
term. We will not explore these applications here but will leave them as a future work.

3.3 Limiting Cases

For the limiting case as ε → 0, the choice of the Gaussian kernel leads to the standard
delta function, i.e. K (x) = δ(x). Therefore, we obtain J (x, t) = |U (x, t)|2 so that the
nonlinear nonlocal Schrödinger equation (1) is reduced to the Gross–Pitaevskii equation (2).
Numerically, one obtains a simple method for Eq. (2) based on the Lie’s splitting method,

{
i�Ut − VU + �

2

2 ΔU = 0 in R
d × (tk, tk+1),

U (tk) = Uk;
Set Uk+1/2 = U (tk+1);
Uk+1 = exp

[
− ig

�

∣∣∣Uk+1/2
∣∣∣2 Δt

]
Uk+1/2;

(19)
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and another one is based on the Strang’s splitting method,

Set Uk+1/2 = exp

[
− ig

2�

∣∣∣Uk
∣∣∣2 Δt

]
Uk;

{
i�Ut − VU + �

2

2 ΔU = 0 in R
d × (tk, tk+1),

U (tk) = Uk+1/2;
Set U∗ = U (tk+1/2);
Set Uk+1 = exp

[
− ig

2�

∣∣U∗∣∣2 Δt

]
U∗.

(20)

On the other hand, as ε → ∞ so that K (x) ∼ C for some constant C , the convolution
integral (12) is reduced to

J (x, t) ∼ C
∫

|U |2dx ≈ C ′

for some constant C ′. Thus the nonlocal potential can be absorbed into the external time-
independent potential V (x) and the solution behavior of (1) is close to the solution of the
linear Schrödinger equation. Numerically, the algorithm reduces back to the original FHSM
as developed in [23].

3.4 TheMass Conservation

Mass conservation is important in physical applications. In this section, we are going to show
that the Lie’s splitting scheme can preserve the mass in the evolution. Similarly, the Strang’s
splitting scheme can be shown to have the same property, and the discussion is omitted here.

To see why mass is conserved by the Lie’s splitting scheme, we notice that both steps
preserve the total mass in the system. The first step of the scheme is one iteration for solving
the linear Schrödinger equation using the FHSM as developed in [23]. We consider one
dimensional cases. Let α = (i2π�Δt)−1/2 so that |α|2 = αᾱ = (2π�Δt)−1. As shown in
the article, the solution in the first iteration satisfies

M =
∫
x

∣∣∣Uk+1/2(x)
∣∣∣2 dx =

∫
x
Uk+1/2(x)Uk+1/2(x)dx

=
∫
x
|α|2

{
exp

[−i

�
V (x)Δt

] ∫
x ′
exp

[
i

2�Δt
|x − x ′|2

]
U (x ′, tk)dx ′

}
{
exp

[
i

�
V (x)Δt

] ∫
y′
exp

[
− i

2�Δt
|x − y′|2

]
U (y′, tk)dy′

}
dx

=
∫∫

x ′×y′
exp

[
i

2�Δt
(|x ′|2 − |y′|2)

]
δ(x ′ − y′)U (x ′, tk)U (y′, tk)dx ′dy′

=
∫
x
|U (x, tk)|2 dx = 1.

The second step in the Lie’s splitting (13) involves only a temporal integral of the wave
function, and it preserves the total mass in the system. To see this, we first multiply the
differential equation byU∗ and integrate the resulting equation over the whole domain. This
gives
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i�
d

dt

(∫
|U |2dx

)
=

∫
g

(∫
K (x − x ′)|U (x ′, t)|2dx ′

)
|U |2dx .

Since the left-hand side of this equation is complex while the right-hand side is real-valued,
the only solution is to have d

dt

∫ |U |2dx equals 0. We linearize the differential equation,
numerically compute the convolution, and then analytically integrate the solution in a point-
wise fashion. The resulting algorithm requires only an update in the complex phase ofUk+1/2,
leaving the magnitude of the wave function unchanged. Therefore, our numerical solution
to the second subproblem will also preserve the total mass in the system. Other numerical
schemes, however, might not be able to preserve the total mass in this subproblem. For exam-
ple, the backward Euler scheme (which does not linearize the evolution) requires solving

[
1 + iΔt

�
G

(∣∣Un+1
∣∣)]Un+1 = Un

forUn+1, where the function G is related to the nonlocal convolution of the position density.
Multiplying this equation by the conjugate of the equation itself, we obtain

[
1 − Δt2

�2
G2 (∣∣Un+1

∣∣)] ∣∣Un+1
∣∣2 = ∣∣Un

∣∣2 .

This implies that the pointwise value of |Un+1| is increasing and the total mass cannot be
preserved.

4 Numerical Examples

In this section, we are going to test both the Lie’s and the Strang’s algorithms on differ-
ent one-, two-, and three-dimensional cases to demonstrate efficiency and accuracy of the
approaches. Even though the computational time involved in the Strang’s splitting method
is slightly longer compared to that by the Lie’s splitting, we are going to show that we can
gain significantly more accurate solutions in various cases.

4.1 One-Dimensional Examples

In this one dimensional example, we consider the Gaussian kernel for the nonlocal interaction
given by Eq. (3). The initial wave function is set to be a Gaussian pulse with the zero initial
momentum given by

U (x, 0) = 1√
σ
√
2π

exp

(−x2

4σ 2

)

with the standard deviation σ = 0.15, with constant g = −1. We compute the solutions up
to the final time T = 2.25 on the computational domain [−6, 6] which is discretized using
four different uniform meshes given by N = 217 + 1, 218 + 1, 219 + 1, and 220 + 1 points.
In this example, we set � = 0.1 and vary ε from 10−1, 10−2 to 10−3. On the coarsest mesh
given by N = 217 + 1, we note that 2.5Δx = 2.2888 × 10−4, which is smaller than the
smallest value of ε in all numerical experiments. This guarantees that the underlying mesh
can well-resolve the Gaussian kernel in the nonlocal potential.
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Fig. 2 (Section 4.1.1) Errors in our proposal schemes with � = 0.1 and ε = 0.01. The least-squares fitting
lines from the Lie’s and the Strang’s splitting schemes are plotted in blue and green solid lines, respectively.
Their slopes are given by 0.987 and 2.093, respectively (Color figure online)

4.1.1 The Zero Potential

We first use the zero potential V = 0 in the simulation. Figure 1 shows the numerical
solutions at different times computed using the Strang’s splitting scheme on different meshes.
We have compared our solutions with the solution to the nonlinear Schrödinger equation
(corresponding to the case when ε approaches 0). We can see from these figures, as we
reduce the size of the Gaussian kernel in the nonlocal potential, the numerical solutions
converge to the one obtained by solving the nonlinear Schrödinger equation.

To demonstrate that the Strang’s splitting scheme gives more accurate solutions, we plot
in Fig. 2 the numerical error in the solutions using different sets of mesh points. Here we
compare the solution at the final time T = 0.25 with the reference solution, Uref, computed
using the Lie’s splitting scheme on a fine mesh given by N = 220. The numerical error is
then defined using E2

2 = ∫
Ω

|U −Uref|2 dx . As expected, the Strang’s splitting gives more
accurate solutions compared to the Lie’s splitting. The slopes of these regression lines are
approximately 1 (given by 0.987) and 2 (given by 2.093) for the Lie’s and the Strang’s
splitting, respectively.

It is also interesting to compare the accuracy of solutions computed by the two versions
of the Strang’s splitting scheme. We implement both versions and compute the errors of both
solutions at t = 0.25. The error from the first version is given by 1.41 × 10−5, while that
from the second version is 5.823 × 10−5. As discussed earlier, since the second version of
the Strang’s splitting scheme requires a larger time step due to the lower bound in the time
step from the FHSM, the corresponding errors from the Taylor expansion and also the overall
scheme will be larger. Therefore, we do not recommend the second version of the Strang’s
splitting, i.e. with the linear Schrödinger equation solved twice in each time marching.

As discussed earlier in Sect. 3.4, both our proposed Lie’s and Strang’s splitting schemes
preserve the mass of the particle in this nonlocal Schrödinger equation. Here, we compute
also numerically the quantity

∫
Ω

|U |2 dx and check whether it is a constant. The deviation
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Table 1 (Section 4.1.1) Error in the conservation of mass at different times by our proposed Lie’s and Strang’s
splitting schemes on the mesh given by N = 220 + 1

Time 0.25 0.5 1 2

Lie’s splitting
(
×10−10

)
2.8509 9.5007 14.902 30.343

Strang’s splitting
(
×10−10

)
2.8415 9.4919 14.9 30.338

from unity at different times is shown in Table 1. The first observation is that both schemes
do preserve mass in general. The error at various times is roughly of O(10−9) throughout the
simulations. Indeed, although the error does increase in time, we argue that this comes from
the numerical error in the Trapezoidal approximation in various integrals from the numerical
scheme. Nevertheless, the growth in the error is only approximately linear in time.

Finally, we comment on the computational efficiency. To compute the solution at the
final time T = 0.25 on the mesh given by N = 217 + 1, our proposed Strang’s method
takes approximately 31 seconds on a typical desktop computer with Intel Core i3-4130.
For the mesh given by N = 218 + 1, 219 + 1, and 220 + 1, the computational times are
71.047s, 496.921s, 1323.723s, respectively. Taking the Strang’s splitting scheme on themesh
N = 220 + 1 as an example, we need a total of 1133 iterations to reach the final time T . This
implies that the CPU time per iteration per mesh point is given by roughly 1.11421× 10−6.
For the Lie’s splitting scheme, using the same setting as the mesh given by N = 218 + 1,
219 + 1, and 220 + 1, the computational times are slightly faster and are given by 47.977s,
345.986s, 1004.560s, respectively.

4.1.2 The Parabolic Potential

To have a slightly more challenging case, we replace the zero potential with a parabolic
potential given by V = 1

2 x
2. Figure 3 shows our solutions at different times obtained by the

Strang’s splitting on a mesh given by N = 217+1. In all these examples, we consider several
parameters in the Gaussian kernel in the nonlocal potential, ranging from 10−1 to 10−3. As
such parameter approaches zero, we recover the nonlinear Schrödinger equation. This obser-
vation is well supported by our numerical solutions. The numerical solution corresponding
to ε = 10−3 (plotted using the red dotted line) is the closest to that of ε = 0 (plotted using
the blue dashed line) obtained by solving the nonlinear Schödinger equation directly.

4.2 Two-Dimensional Cases

In this section, we consider several two-dimensional cases. We consider only the Strang’s
splitting since it provides more accurate numerical solutions.

4.2.1 The Parabolic Potential

In the first case, we consider the evolution of an initial Gaussian profile

U (x, y, 0) = 1√
2πσ 2

exp

(
− x2 + y2

4σ 2

)
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Fig. 4 (Section 4.2.1) Comparison of cross sections of the position density of the wave function at t = 0.5
with � = 0.1 and different ε’s. The smaller graph refers to the difference between solutions with different ε’s
and the non-linear solution in the natural log scale

under the parabolic potential V = x2 + y2 in the computational domain [−6, 6]2, with the
constant g = −1. The parameter σ in the initial Gaussian profile is chosen to be 0.2, while the
parameter ε in the nonlocal Gaussian kernel is chosen to vary from 1 to 0.05. Our proposed
Strang’s splitting scheme on the mesh with N = 210 + 1 (i.e. Δx = 0.01171875) so that our
mesh can well-resolve both the initial Gaussian profile and also the nonlocal kernel for dif-
ferent ε’s. Figure 4 shows the cross-section of the solution along y = 0 with different ε’s. As
we can see from these figures, as one reduces the support of the Gaussian kernel, the solution
from the nonlocal Schrödinger equation converges to that from the nonlinear Schrödinger
equation (plotted using the red dashed line). To demonstrate the computational efficiency of
the numerical approach, we have recorded the CPU times to obtain these solutions. For the
Lie’s splitting scheme and the Strang’s splitting scheme, with the same setting as the mesh
given by N = 210 + 1, the computational time is given by 13.057s and 18.94s, respectively,
for 11 iterations in total to reach the final time T . Taking the Strang’s splitting scheme as an
example, the CPU time per iteration per mesh point is given by 1.638851 × 10−6. This is
comparable with the one dimensional case that we studied above.

To further test the effectiveness of our numerical approach, we consider the following
example to demonstrate the nonlinear interaction of multiple particles under the parabolic
external potential V = 1

2 (x
2 + y2). Here we take 36 particles initially location on a 6-by-6

array mesh, as shown in Fig. 5a. We assign random initial momenta to these particles. We
assume that g = −1 and ε = 0.5. Figure 5b, c shows our numerical solutions at t = 100
and a relatively large final time t = 1000. As we can see, wavefunctions interact with each
other in a nonlinear fashion. For large time evolution, we can see the effect more clearly. To
demonstrate the nonlinear effect, we compare the numerical solutions with those obtained
by the linear Schrödinger equation with the same initial condition. For this linear case, the
evolution of each particle is periodic and is independent of other particles. The corresponding
solutions are plotted in Fig. 5d, e.

One main concern in performing long time simulation is about the conservation of mass.
Figure 6 shows the change in the total mass of the system in time. We test the code using
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Fig. 5 (Section 4.2.1) Solutions computed with � = 1/32 and ε = 0.5. The position density at a t = 0,
b t = 100, and c t = 1000 with the random initial momentum. The corresponding solution of the linear
Schrödinger equation at d t = 100 and e t = 1000 with the same initial random momentum

Fig. 6 (Section 4.2.1) The total mass of the system computed with different meshes (N = 210 and N = 211).
We take � = 1/32, tF = 100, ε = 0.5 and g = −1. The smaller graph shows the total mass computed on a
mesh with N = 211 for time up to tF = 1000

a coarser mesh with N = 210, and a finer mesh with N = 211. For the time interval up to
t = 100, both meshes give good conservation. The coarse mesh can already preserve 99.95%
of the total mass in the system. For the more challenging case where the final time is given
by t = 1000, however, the mass loss is slightly more obvious even for the finer mesh. Having
said that, the mass loss is still less than 3% which is reasonable and well under control.
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Fig. 7 (Section 4.2.2) The position density of the wavefunction with � = 0.5 and ε = 0.1. The position
density at time a t = 0.5, b t = 1 and c t = 1.5. The cross session of the position density along the x-axis at
d t = 0.5, e t = 1 and f t = 1.5

4.2.2 The Cosine Potential

This example considers a radially symmetric potential given by V = cos(x2 + y2). Both the
initial condition and the computational mesh are the same as in the previous case. Since the
potential is not strictly increasing aswemove away from theorigin but is oscillatory,we expect
that there will be more non-trivial self-interaction in the wavefunction. Figure 7 shows the
numerical solutions at different times computed using the proposed Strang’s splitting scheme.
Since the potential is oscillatory, we observe that the position density of the wavefunction
behaves similarly and it tends to create a peak near regions when the potential attends its
minimum. Figure 8 shows the cross-section of the intensities for various ε’s. Similar to all the
examples above, we observe that the solutions converge to the one obtained by the nonlinear
Schrödinger equation as we reduce the parameter in the nonlocal kernel.

4.2.3 The Gaussian Potential

To have a more non-trivial interaction between the wavefunction and the external potential,
we consider a moving Gaussian heading to a Gaussian potential. The initial condition is
a Gaussian profile centered at (−1.5,−1.5) and is moving in the (1, 1) direction with the
magnitude of the momentum given by 1. The Gaussian potential is given by

V (x, y) = exp

(
− x2 + y2

2σ 2
v

)
.

Figure 9 shows both the position density and the real part of the computed wavefunction at
different times using our proposed Strang’s splitting method. The interaction between the
wavefunction and the Gaussian hump can be clearly observed.

123



   54 Page 18 of 26 Journal of Scientific Computing            (2021) 88:54 

Fig. 8 (Section 4.2.2) Comparison of the cross section of the position density of the wavefunction at t = 1.5
with � = 0.5 and different ε’s. The smaller graph refers to the difference between solution with different ε’s
and the non-linear solution in the natural log-scale

Fig. 9 (Section 4.2.3) The position density of the wavefunction with � = 1/64 and ε = 1. The position density
at time a t = 1.6, b t = 2 and c t = 2.4. The real part of the wavefunction at d t = 1.6, e t = 2 and f t = 2.4

4.2.4 Scattering Effects

In this example, we consider nonlocal interactions of multiple wavefunctions. We consider
the evolution of the summation of two initial Gaussians given by U (x, y, 0) = U+(x, y) +
U−(x, y) under the zero potential V = 0, where

U±(x, y)
1√
2πσ 2

exp

(
− (x − x±)2 + (y − y±)2

4σ 2

)
exp

(
i p± · x

�

)
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Fig. 10 (Section 4.2.4 with (x+, y+) = (1.5, 1.8) and ε = 0.3) The position density at time a t = 2, b t = 2.5
and c t = 3. As a comparison, we show also the position density of linear Schrödinger equation at time d
t = 2, e t = 2.5 and f t = 3. The blue solid lines and the red solid lines denote the trajectory of the particle
with the initial condition U+ and U−, respectively, in the linear case (Color figure online)

with � = 1/64, σ = 0.15, and g = −1. The wavefunctionU+, for example, corresponds to a
Gaussian profile centered at (x+, y+) moving with an initial momentum given by p+. In this
setup, we assign p± = (∓1,∓1) and the centers (x±, y±) are not simultaneously located
along the diagonal line x = y. Therefore, the initial profiles are moving towards each other
but will not have a head-on collision. For simplicity, we consider (x+, y+) = −(x−, y−) and
y+ > x+ > 0. In the case when we have the linear Schrödinger equation, these two Gaussian
wavefunctions will move along a straight line without any interaction and interference. The
perpendicular distance of the two straight trajectories is given by δ = √

2 (y+ − x+). In the
section, all computations are done on the domain [−2.5, 2.5]2 discretized using a mesh of
N = 210+1.We are going to investigate the scattering effect as we vary different parameters
in the model.

First, we compare the solutions with different δ’s, governing the distance between two
Gaussians. As we increase the magnitude of δ, the interaction between two Gaussian wave-
functions is reduced, and therefore the evolution is more like a standard two-dimensional
Gaussian with an initial momentum traveling under the zero external potential. Figures 10
and 11 show the position density at different times with the initial configurations given by
(x+, y+) = (1.5, 1.8) and (1.5, 2.0), respectively, corresponding to δ = 0.3

√
2 and 0.5

√
2,

respectively. Since the nonlocal kernel has a support of roughly 5ε, the nonlocal potential
has no effect on the particle trajectory if δ is greater than approximately 2.5ε ≈ 0.53

√
2.

Therefore, we expect that the effect of the nonlocal kernel due to a different Gaussian is quite
small in the second case.

In all figures, we added two solid lines denoting the trajectories of the center of mass of a
single particle traveling under the linear Schrödinger equation. The blue solid line represents
the trajectory of the particle corresponding to the initial condition U+ traveling towards the
bottom left corner, while the red solid line represents the corresponding initial condition
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Fig. 11 (Section 4.2.4 with (x+, y+) = (1.5, 2.0) and ε = 0.3) The position density at time a t = 2, b t = 2.5
and c t = 3. We show also the position density of linear Schrödinger equation at time d t = 2, e t = 2.5 and f
t = 3. The blue solid lines and the red solid lines denote the trajectory of the particle with the initial condition
U+ and U−, respectively, in the linear case (Color figure online)

given by U− traveling to the upper right corner of the computational domain, as shown in
(d)–(f) in these two figures. As we can see, the two Gaussian profiles in both figures have
significantly scattered off from the solid lines, indicating that the nonlocal potential has
induced an attractive force to pull the wavefunction together. As we increase the value of δ

(from 0.3
√
2 in Fig. 10 to 0.5

√
2 in Fig. 11), the strength of the scattering is reduced, and

therefore the final center of mass is located closer toward their corresponding trajectory as in
the linear evolution. To better demonstrate the effect of how the scattering distance depends
on the parameter δ, we have shown in Fig. 12 the scattering distance at the time t = 2.5 as
we vary δ. If the closest distance between the two wave packets is too far (comparing to the
support of the nonlocal convolution kernel), there is no scattering and the wave packets will
move along a straight trajectory as in the case of the linear Schrödinger equation.

Next, we consider the influence of ε (the support of the Gaussian kernel in the nonlocal
potential) on the scattering effect. In Fig. 13, we have shown the computed position density
at time t = 1.75 with different values of ε’s. The parameter δ is chosen to be δ = 1/

√
2. For

ε roughly greater than δ/5 ≈ 0.141 so that the support of two Gaussian kernels overlaps,
the two wavepackets will start to interact with each other through the nonlocal convolution.
For ε greater than δ/5 ≈ 0.141, we see that the interaction becomes more significant at the
beginning, as demonstrated in Fig. 14. For ε getting bigger and bigger, on the other hand,
the effect of the nonlinearity drops. As discussed in Sect. 3.3, the nonlocal Schrödinger
equation reduces back to the linear Schrödinger equation. Therefore, the scattering effect
will be gradually reduced as shown in Fig. 13 for ε larger than roughly 0.4.

123



Journal of Scientific Computing            (2021) 88:54 Page 21 of 26    54 

Fig. 12 (Section 4.2.4) The scattering distance computed with different value of δ’s. We take � = 1/64,
T = 2.5, ε = 0.3 and g = −1

Fig. 13 (Section 4.2.4 with (x+, y+) = (1.5, 1.9) and under the zero potential) The position density at the
time t = 3 computed with � = 1/64 and a ε = 0.3, b ε = 0.35, c ε = 0.4, d ε = 0.75, e ε = 1 and f the
linear Schrödinger equation (i.e. ε → ∞)

4.2.5 Repulsive Interactions

In the above examples, we consider the cases for g < 0 representing attractive interactions
betweenBosons. It is straightforward to simulate the repulsive case.We consider the evolution
of the summation of the two initial Gaussians given by U (x, y, 0) = U+(x, y) + U−(x, y)
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Fig. 14 (Section 4.2.4) The scattering distance computed with different value of ε’s. We take � = 1/32,
t = 1.75, δ = 1/

√
2 and g = −1

Fig. 15 (Section 4.2.5 Scattering distance against g) The scattering distance computed with different value of
g’s. We take � = 1/256, T = 2 and ε = 0.3

under the zero potential V = 0, where

U±(x, y)
1√
2πσ 2

exp

(
− (x − x±)2 + (y − y±)2

4σ 2

)
exp

(
i p± · x

�

)

with (x±, y±) = ±(1.3, 1.5), � = 1/256, and σ = 0.15. Once again, we assign
p± = ∓(1, 1). In this simulation, we consider various positive values of g and measure
the corresponding change in the scattering distance at the time t = 2. Figure 15 shows that
the scattering distance is roughly linear in the magnitude of g.
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Fig. 17 (Section 4.3 moving Gaussian with the Gaussian potential) Solutions computed with � = 1/64 and
ε = 0.6. The position density at time a t = 0.7, b t = 1 and c t = 1.3. The real part of the wavefunctions at
time d t = 0.7, e t = 1 and f t = 1.3

4.3 Three-Dimensional Examples

In this section, we consider some three-dimensional examples. Extending those correspond-
ing examples in the one- and two-dimensional cases, we consider the evolution of the initial
Gaussian

U (x, y, z, 0) = 1

(2π)3/4σ 3/2 exp

(
− x2 + y2 + z2

4σ 2

)

with σ = 0.1 under the parabolic potential V = 1
2

(
x2 + y2 + z2

)
, where the constant g =

−1. We discretize the computational domain [−1.5, 1.5]3 using the mesh with N = 27 + 1.
The support of the Gaussian kernel in the nonlocal potential is chosen so that ε = 1. Since
2.5Δx is approximately 0.0585, our mesh can well-resolve the kernel in the computation.
The numerical solution at the final time T = 0.3 is given in Fig. 16. Our proposed Strang’s
operator splitting method has marched 27 iterations to reach the final time T and it has taken
approximately 222.01s. For each time iteration, the approach needs 8.22259s. Since the total
number of grid points is different from the one- and two-dimensional cases, it is difficult
to have a direct comparison with respect to the computational time. Instead, we repeated
the test with N = 26 + 1. This test now took 14 iterations to reach the final time. The total
computational time is reduced to 9.422s which amounts to 0.673s per iteration. This matches
roughly with the complexity O(N 3 log N ) per iteration.

We have also considered a moving Gaussian, where the potential is given by the Gaussian
V = exp

[−r2/(2σ 2
v )

]
, where r = √

x2 + y2 + z2 and σv = 0.1. The initial condition is
given by a moving Gaussian packet along the (1, 1, 1) direction with the magnitude of the
momentum given by 0.5. Our numerical solutions up to the final time T = 1.3 are given
in Fig. 17. The complex nonlocal self-interaction of the packet with the Gaussian hump is
clearly observed.
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5 Conclusion

In this paper, we have developed an efficient numericalmethod for solving a class of nonlinear
Schrödinger equation involving nonlocal interactions of wave functions. The idea is to apply
the operator splitting step to construct the nonlocal potential using the FFT and then integrate
the numerical potential with the FHSM developed in [23]. The resulting numerical algorithm
can take a large time step in the simulation and, therefore, is ideal for long time simulations
of a nonlinear system.

The datasets generated during and/or analysed during the current study are available from
the corresponding author upon a reasonable request.
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