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Abstract—Existing static and kinematic models of concentric
tube robots are based on the ordinary differential equations
of a static Cosserat rod. In this paper, we provide the first
dynamic model for concentric tube continuum robots by adapting
the partial differential equations of a dynamic Cosserat rod to
describe the coupled inertial dynamics of precurved concentric
tubes. This generates an initial-boundary-value problem that can
capture robot vibrations over time. We solve this model numer-
ically at high time resolutions using implicit finite differences in
time and arc length. This approach is capable of resolving the
high-frequency torsional dynamics that occur during unstable
“snapping” motions and provides a simulation tool that can track
the true robot configuration through such transitions. Further, it
can track slower oscillations associated with bending and torsion
as a robot interacts with tissue at real-time speeds. Experimental
verification of the model shows that this wide range of effects is
captured efficiently and accurately.

I. INTRODUCTION

Concentric tube robots (CTRs) are needle-sized continuum
robots consisting of nested, precurved elastic tubular structures
[1]. When these concentric structures are rotated and translated
relative to one another, their curvatures interact elastically
to control the shape and pose of the robot. These robots
are scalable and customizable, since elastic tubes comprise
the entire robot, and such tubes are available at a variety
of diameters and can even be 3D printed in custom shapes
[2]. These features have led to promising proof of concept
demonstrations in a variety of minimally invasive surgical
applications [3], [4], [1] where CTRs are primarily used
either as steerable needles (see e.g. [5], [6], [7]) or miniature
manipulators (see e.g. [8], [9], [10], [11]).

To enable effective use of CTRs, models of these robots
have rapidly advanced in the last decade. While some alternate
approaches have been proposed, such as finite shell element
modeling [12], a large majority of this work has been based
on the equations of a static Cosserat rod, describing the
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Fig. 1. A rendering of our model solution showing the concentric tube robot
undergoing an elastic instability. The dynamic model in this paper describes
the robots oscillations during this motion for the first time.

internal bending and torsion of component tubes [13], [14],
[15] (for a review see [1]). In general, a system of differential
equations in arc length is created by writing the rod equation
for each component tube and enforcing a shared centerline
constraint such that the tubes conform to the same curvature
as a function of arc length. The result of this constraint is
a set of differential equations and boundary conditions, the
solution to which yields the axial tube angles and the position
and orientation along the robot as a function of arc length,
for a given set of tube base angular and linear positions
(i.e., the variables commanded by actuators). External loading
can naturally be incorporated into this model through the
Cosserat rod equations [15], [16]. When normalized with
respect to arc length, resulting accuracy has been shown to be
as high as 1% to 3% of total arc length [15], [13]. The static
model framework can be used to formulate and solve forward
kinematics [15], [13], inverse kinematics [17], [18], control
[10], [19], and sensing [20], [4] problems. Shooting methods
and efficient linearization can increase computational speed
[21], [10]. While the field has been able to make substantial
progress with quasistatic models, dynamic models have yet to
be developed, and will enable CTRs to advance in a number
of important ways.

First, a dynamic model can help describe interactions be-
tween the robot and objects in its environment that can be
dynamically modeled, such as tissue in surgery. Transitions
between contact states (e.g. if a robot is holding an object



and suddenly releases it, or pulling on a piece of tissue to
cut resulting in elastic energy release) may induce significant
robot vibration. We experimentally validate our model in this
type of scenario in Section V. A dynamic model provides a
basis for a dynamic controller that could mitigate the bending
vibrations that occur when the robot is manipulating tissue.

Second, since a dynamic model deals with the time history
of the entire robot state, it provides a framework in which it is
feasible to incorporate possible hysteresis phenomena such as
friction. Concentric-tube friction is only just beginning to be
studied and has so far been handled using lumped parameter
approaches [22], or assuming uni-directional actuation histo-
ries [23]. In this paper, we investigate a simple Coulomb plus
viscous friction model, using assumptions similar to [22] but
in a new dynamic context.

Third, concentric tube robots exhibit elastic instabilities in
which the robot snaps from one configuration to another,
rapidly releasing stored strain energy [24], [25], as illustrated
in Figure 1. While usually something to be avoided, it has
been shown that snapping can be harnessed beneficially under
certain conditions [26]. This event entails a highly dynamic
transition between two different static states. While unstable
regimes can be predicted [24], [25] and avoided by design
([271, [28], [29], [30], [18]), path planning ([31], [32]), and
control ([17], [33]), the transition behavior itself has never
been modeled, and quasi-static models fail to appropriately
resolve the instability as shown in Figure 2. Modeling the robot
state during the dynamic snap transition can provide insights
about the severity of the snap (e.g. velocities, displacement
overshoot). This simulation capability is potentially useful to
analyze the design space of CTRs and expand it to include
robots that have relatively benign snapping behavior (i.e some
snapping instabilities may be very gentle and acceptable in
practice). Further, one could intentionally design a robot such
that its open-loop snapping behavior naturally delivers a de-
sired velocity in a given puncture task. A dynamic simulation
tool is necessary to give knowledge to the designer in both
cases.

A. Contributions and Prior Work

In prior work, we have used the partial differential equations
of a dynamic Cosserat rod to derive tendon-actuated robot
models [34], and we have recently proposed a new implicit
method for solving the dynamic single-rod equations effi-
ciently in real-time [35] and applied this method to pneumatic,
parallel-rod, and tendon-actuated robots in [36]. However,
concentric-tube robots have a fundamentally different struc-
ture with multiple precurved tubes constrained concentrically
with independent torsional degrees of freedom. While static
models of concentric tube robots exist [13], [15], the inertial
dynamics of a concentric precurved tube system have never
been derived, despite recent experimental characterizations
[26]. In this paper, we work out the implications of the
concentric-tube kinematic constraints in a dynamic context
for the first time. The model accommodates any number
of tubes with arbitrary pre-curvature functions and external
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Fig. 2. A quasi-static model is incapable of properly tracking the trajectory of
a CTR when transitioning through an elastic snap. The behavior is incorrectly
resolved as an instantaneous jump discontinuity, and convergence is difficult
across the discontinuity. In contrast, the dynamic model predicts the smooth
transition across the unstable point and the following oscillations.

loading and considers the dynamic effects of tube inertia (both
linear and rotational), material damping, Coulomb and viscous
friction, and the inertia of a rigid body held at the robot’s
tip. We validate the model with experiments measuring the
dynamic behavior of the device during an elastic instability,
(as illustrated graphically in Figure 1) and also during tissue

grasping.
II. DERIVATION OF CONCENTRIC TUBE PDES

Following the Cosserat rod model in [37], a tube or rod
with negligible shear and extension (i.e. a Kirchhoff rod) is
governed by the following set of nonlinear, hyperbolic, partial
differential equations [15],

p,s = Ries, p;,=Riq,
R,s=Ru;, R;,;=Rb;
Nis = piAib;y — F; = pidiRi (©ig; + ;)
= piR; (WiJjw; + Jiwi ) — D; sni — Ui

—Fi 0

m; s

)

q;, s = —U;q; +w;es

58

Wis = Wit — UiWi,

)

where all variables are functions of time ¢ and reference
arc length s, and additional constitutive laws are used to
relate the internal forces to the kinematic variables. Note
that throughout the paper, we will follow the standard PDE
notational convention of using subscripts s and ¢ to denote
partial derivatives with respect to s and t respectively (i.e.
Dis = aaps ), while a numerical subscript or ¢ subscript is used
to denote a variable belonging to a particular tube in a multi-
tube collection. The physical meanings of all the variables in
the equations above are summarized in Table I. The goal of
this section is to derive the dynamic equations of motion for
concentric tubes by starting from the dynamics of a single




rod (1) and applying the kinematic constraints that enforce
multiple tubes to be concentric.

A. Assumptions

For the reader’s convenience, we here collect and summarize
the assumptions underlying the model presented in this section.

e Assumptions associated with the general Cosserat rod
framework: tube cross sections remain planar and main-
tain their shape during tube deformation.

e Additional assumptions associated with Kirchhoff rods:
the tubes cannot stretch axially (inextensible) or shear in
transverse directions. This means that the only allowed
modes of deformation are bending and torsion.

e Perfect concentricity of tubes is assumed. Thus all tubes
share a common centerline and tangent at any arc length.

o Inextensibility and concentricity together imply that any
actuator-dictated translations of tube bases are instantly
transferred along the length of the tubes.

e We assume that the robot’s actuators dictate the position
and angle of each tube’s base; i.e. we decouple any
dynamics associated with the motors or drivetrain and
assume the interface at the base of each tube is rigid.

e As explained below, we assume the speed and acceler-
ation of the translational actuators is small enough to
be considered quasi-static. This is reasonable because
typical actuation bandwidth is much lower than the
natural frequencies of the flexible robot structure. Note
that the linear velocity of points along the robot are still
included with appropriate Coriolis effects arising from
the rotating reference frame.

e Frictional energy dissipation is described by a conven-
tional Coulomb-plus-viscous model applied at points
where tubes abruptly change curvature or terminate.

e A linear constitutive law is assumed to relate internal
moment to the curvature and torsion variables; however,
the overall model is still geometrically nonlinear, and a
nonlinear material law could easily be accommodated in
the framework.

B. arc length Kinematics

Let there be N inextensible tubes. As shown in Figure 3,
the arc length parameter s is defined so that p,(¢,0) = 0 is the
fixed location of a constraining baseplate hole through which
all tubes pass. An actuator translation 3; is defined so that the
global position of the i*” tube base is [0 0 3;()]T. Note that
B; will be a negative number since the actuators are behind
the baseplate. Each tube has a total length of ;.

Note that our convention of prescribing s = 0 at the
baseplate means that a particular value of the parameter s
will describe different material tube points over time since the
tubes can slide in and out of the base plate as they are actuated.
This choice departs slightly from a conventional Cosserat rod
framework where s would correspond to a material point, but
it is consistent with prior concentric-tube robot models and is
more convenient for formulating the kinematics. To reduce the
complexity of the derivation, we assume the insertion speed

TABLE I
NOTATION AND DEFINITIONS

Symbol Units | Definition
s m Reference arclength
t S Time
p m Global position in Cartesian coordinates
R none Rotation matrix of material orientation
h none Quaternion for the material orientation
n N Internal force in the global frame
m Nm Internal moment in the global frame
f N/m Distributed force in the global frame
l Nm/m | Distributed moment in the global frame
u 1/m Curvature vector in the local frame
0; rad Angle between tube ¢ and tube 1
R.(0,) none Matrix for rotation by 6; about z-axis,
either R — SO(3) or R — SO(2)
Yi rad/s Relative angular velocity, y; := 6; ;
q m/s Velocity in the local frame
w 1/s Angular velocity in the local frame
A m? Cross-sectional area
p kg/m® | Material density
J m* Second moment of area tensor
u” 1/m pre-curvature vector
For a straight rod u* = 0.
K Nm? Stiffness matrix for bending and twisting
El, 0 0
K = 0 El,, 0
0 0 GlI..
E Pa Young’s modulus
G Pa Shear modulus
B Nm?s | Damping matrix for bending and twisting
g m/s? Gravitational acceleration vector
mg kg Point mass at tip of tube ¢
H; kg m? | Rigid-body inertia matrix coupled to tip
of tube ¢
Bi m Distance along z-axis from the baseplate
to actuator i. 3; < 0.
l; m Length of tube %
es none | Unit vector; e3 = [0 0 I}T
Ci 11t Implicit difference coefficient for a state
at t — it
Yy misc. General ODE state vector
(-)° Local-frame representation of variable,
e.g. n"=R'n
b
) History dependent part of
discretized time derivative,
e.g. q, =~ coq —|—th]
T oor ()N Mapping from R? to se(3),
0 — U, Uy
eg. U= | U, 0 —uy
—Uy  Ug 0
()Y Mapping from se(3) to R, 4" = u

and acceleration of the translational actuators are relatively
small so that 3;; ~ fB;+ ~ 0. While this assumption is
a limitation of our model, it is reasonable in practice for
applications in which actuator insertion motions occur at much
slower frequencies than the natural frequencies of the flexible
robot structure itself. In the case of teleoperation for example,
typical human hand motion (and thus actuator motion) would
not contain frequency content above 5 Hz [38] and can be
low-pass filtered even further if desired, while the vibrations



exhibited in our torsional experiments in this paper occur on
the order of 2000 Hz.

The tube indices are ordered so that a larger index corre-
sponds to a larger cross section, i.e. tube 1 is the innermost
tube and tube 2 is the second innermost tube. We restrict our
attention to configurations where 3; < §; and 3;+1; > B;+1;
for ¢+ < j so that transition points are always caused by the
termination of the outermost tube. The concentric constraint
is that all tubes have the same centerline, which is expressed
by the equation

pi(t,s) =pi(t,s) Vse[B Bi+li] 2

This equation may be differentiated with respect to arc length
(s) to obtain the constraint that the tube tangents must be
aligned

Rieg = R163. (3)

This implies that the tube rotation matrices only differ by a
rotation about their common z-axes. Thus we define an angle
0; such that

Ri, = Rle(ei)a

where
cosf; —sinf; O
R.(0;) = [sinf; cosf; O
0 0 1

and 67 = 0 by definition. Substituting this relationship into
the definition of the curvature of the it tube results in

Y

The third component of the above equation defines the arc
length derivative of 6; as the difference between the tube
torsional strains:

ei,s = Uj,z — UL 2- (5)

where the subscript z denotes the third (z-axis) component
of a vector expressed in the body frame throughout the paper.
The above description of the arc length kinematics is common
to the prior static models of concentric tube robots, and more
detail can be found in [15].

C. Time Kinematics and Compatibility Equations

Moving into the realm of dynamics, we begin by defining
variables to represent various time-derivative quantities. For
tube ¢, at arc length s, the body-frame linear velocity q; and
angular velocity w; are defined as

p;.. = Riq;, Ri;=R;
Comparing the arc length derivatives of the above equations
to the time derivatives of the analogous arc length kinematic
equations in (1) allows us to derive the following compatibility
equations (which are also stated in (1):

q;, , = —u;q; +w;es3 Wis = Uit — Uiy, (6)

)

The concentric constraint (2) implies that all tubes have
the same global linear velocity p;, and acceleration p; 4.

Analogous to (4), since the tube rotation matrices share the
same z-axis, the body-frame angular velocities are related by

T v T
wi= (R[Riy) =R (0w +0ies ()
the third component of which is

0it = Wi, — Wiz

)

For convenience, and to eventually arrive at a first-order
system of PDE’s, we define a new state variable v; := 6, ;
(representing the difference between the z-axis angular veloc-
ities of tube 7 and tube 1 such that (8) is written as

w; = R} (6;)w + vies. ®)

To get the arc length derivative of ;, we differentiate (5) with
respect to time:

Yi,s = Wizt — UL,z t- )

D. Forces and Inertial Dynamics

Next, we consider the dynamic equilibrium of internal
forces and moments carried by the tubes. We introduce a
variable for the concentric tube robot’s total internal force,
which is the sum of the global-frame internal force vectors n;
carried by each tube:

N
n = E n;.
i=1

The third line of (1) is obtained by differentiating the con-
ditions of dynamic equilibrium (Newton’s second law) and
defines the arc length derivative of n; for each tube, allowing
us to re-write 1 as

N
ns = ZPzAszt - .fiv
i=1

where p; and A; are the density and cross sectional area of
tube 4, and f, is a global external distributed force applied to
tube 7. The concentric constraint with the assumption of quasi-
static actuator motion implies p; ,, = p; 4 (all tubes share
the same linear acceleration in the global frame), and we can
differentiate the kinematics to find p; ,, = Ry (@1q1 + ‘h,t)
(which is also stated in (1). Thus we can write

ns = —f + Ry (D1q; +q,,) (pA),

where (pA) := Zfil pid; and f := Zf\; f; is the total
external distributed load applied to the robot.

Turning now to moments, we seek a differential equation
governing the axial (body-frame z) component of each tube’s
moment vector (the torsional moment) and an additional
equation governing the transverse (body-frame xy) component
of the total moment carried by the robot. Defining m! as the
internal moment of tube ¢, expressed in the body-frame of tube
i, we have

(10)

b T b =~ b T
m; =R, m; and m;/,=—-um;+ R, m,;
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Fig. 3. A concentric tube robot sketch is annotated to describe the PDE boundary value problem. A main contribution of this paper is deriving the equations
of motion for a concentric tube collection (13), and a simplified set of PDEs (18) is obtained under the assumption that tubes are held straight below the base.

since RIS = fﬁiRiT. Now substituting in m; , from (1),
selecting only the third (z-axis) component of mfys, and
neglecting any external distributed moments 1,;, we write

3m1- z
: T~ b T~
5s = €3 Wi + pieg (WiJiw; + Jiw;y),

where we have used the properties a'a@ = 0 and (Ra)" =
RaR' for a € R? and R € SO(3) from [39] to reveal that
(33TRZ‘T p; sni = 0. Additional simplifications are gained by
recognizing that J; is the second moment of area tensor of
the i*" tube cross section expressed in the body-frame:

Ipwi O 0
Ji=] 0 Iy:; O
0 0 I,

The terms in J; can be calculated for a circular tube with
inner diameter I D; and outer diameter OD; as

1
Yy,i — §]zz,i
This then implies p;eq @;J;w; = 0 so that using (8) we can
write

Lei =1, = I, = 7(OD} — ID})/64.

8mi P
> T~ b
95— €3 Uim; +pil Wizt

(11
T~ b
=—esu;m; +2p;l; (Wi 2+ + Vi)
Finally, to derive equations for the transverse components
of the total moment, we first define the concentric tube robot’s
total internal moment, which is the sum of the global frame

internal force vectors m,; carried by each tube:

N
m = Z m;.
i=1
Using the fourth line of (1), which is the arc length derivative

of a dynamic moment balance on each tube, and again
neglecting I;, we have

N
ms =Y piR; (@i iwi + Jiwiy) — P i
=1

Now define m? as the total internal moment, written in the
body frame of tube 1 (the innermost tube), such that

m’=R/m and m’=—-am’+ R/ m,.
Now rewriting p;, , using the concentric constraint (3) we have
~ A A -~ T
pi’sni = (Ri€3) n;, = (Rleg) n;, = R1€3R1 n;.
b

Using this we rewrite m as

b_ =0 5 pT
m,=—um —eR/n

N
+ ) piR.(0:) [©iTiwi + Jiwi]
i=1

The terms in the summation are simplified again because
the structure of J; for circular tubes implies R, (6;)J; =
J;R.(0;), and the product product @;J;w; simplifies to

Ii 0 0 Wi,y
Wip; |0 I 0| w;=pliw, |—wiaz
0 0 2I; 0

After a few more algebraic steps, we can finally extract the x
and y components of m? as

8mg R N
Yy — {—ulmb — €3R1|—'I’L + (pI)wl,t}

0s
N
+ [ YLy ] sz’[i(wl,z + i),

TWe] i

Yy

(12)

where (pI) = Zf\il pil;.

E. Summary of Concentric-Tube PDEs

Pulling together all the results in this section, we can
succinctly state the set of PDEs for a concentric-tube system
in the form of a first-order vector system

Ys = f (yvyt) )

where the state vector y contains state variables p, R, q, w,

n, mgy, mb ., and mgz, 0;, and ~; for i € [2 N], as shown



in Figure (3). The full system can be summarized:

ps = Rie3
R, = Riu,,
qs = —U1q; +D1e3
Wi,s = Ut — U 1wy
n,= — f+ Ry (©1q, + q,,) (pA)
omb

ry = {—'ﬂlmb — €3R1rn + (pl)wlt}

0s xy (13)

N
Wi,y T
; [_MJ (oD + 3" pili)

i=1
om
1,2 T~ b
65’ =—ezu;m; +2p;1; (wiz++ Vit)
ei,s = Ui,z — UL,z
Yi,s = Uizt — Ul 2 t-

This system is analogous to the classical PDE’s for a single-rod
in (1), but it accounts for multiple concentric tubes. The system
also represents a dynamic generalization of well-established
static models for concentric-tube robots [13], [14], [15]. Sim-
ply setting all velocity-associated variables to zero recovers
the conventional static model. Thus, this model’s prediction
of snapping points will be identical to those predicted by
the static models in [24], [25], but the dynamics model can
provide additional information to characterize the motions of
the robot during the snap transition itself. Note that like these
previous static models, this model can incorporate arbitrary
precurved tube shapes and different numbers of segments.
Boundary conditions at segment transitions are discussed in
Section III-C.

Note that it is possible to choose a different set of state
variables in which to express this model, such as the body-
frame curvature components instead of the global-frame mo-
ment components [15], but one advantage of the choice made
here is that the total internal moment is continuous along
the robot length, which simplifies numerical integration across
transitions in pre-curvature or the end of a tube.

As in (1), in order to solve the PDE system (13), we will
need to implement a specific constitutive stress-strain law, as
well as a strategy for numerical discretization and solution of
the resulting discretized equations. These two additions are
developed together in the next section.

III. NUMERICAL SOLUTION OF CONCENTRIC-TUBE PDES

In this section we discuss the details of numerical solution
of the concentric-tube PDEs stated in (13) subject to a specific
constitutive law.

A. Constitutive Laws

To obtain a complete set of equations for the dynamics
of a concentric-tube system, we must postulate a material
constitutive law that relates the kinematic variables u; to the

body-frame internal moments m,;. We adopt a linear visco-
elastic law with material damping [40] such that

where
E, 0 0
0 0 G

and B, is a damping coefficient matrix with axisymmetric
diagonal coefficients, that is

Bg: 0 0
B,=| 0 Bp; 0
0 0 By

The total internal moment in the tube 1 body frame is then
expressed as

Note that this is a differential equation in w;, which was
not originally included as a state variable; however, the time
discretization strategy in the next section converts this visco-
elastic constitutive law into an algebraic equation which allows
us to compute u; from existing state variables.

B. Implicit Time Discretization

It is well known that conventional explicit integration rou-
tines (e.g. Forward Euler or explicit Runge-Kutta methods) in
time perform poorly for systems with stiff dynamics because
the Courant-Friedrichs-Lewy (CFL) condition limits the max-
imum time step that can be stably executed [41]. To avoid
this limitation, we adopt a fully implicit method to discretize
the time derivatives [42]. This creates an ordinary differential
equation, in the arc length variable s, which can be solved at
each time step subject to boundary conditions at the proximal
and distal ends of the robot, following [35], [36], [43], [44],
[45]. The structure of the spatial boundary value problem thus
created is similar to conventional static models (e.g. [13], [15])
and can be solved by similar methods such as shooting, finite-
difference, or finite-element methods, as we discuss in Section
1I-F.

Many implicit finite difference schemes, such as the back-
ward Euler, BDF-2, trapezoidal rule, and BDF-« [46] methods,
fit the form

yt(t‘ ~ COy + ch'y i— j + djyt( i— j) (15)

j=1
For example, for a discrete time step of At, backward Euler
has ¢y = At_l, c1 = —At_l, cj = 0 Vj > 1, and dj =0 V]
We can abstract the details of the specific scheme by using a
single variable to represent all history dependent terms, that is

yi(ti) = coy(ts) + 9(t).

Applying such an implicit discretization to the differential
equation, defined by our constitutive law, allows us to solve for



each tube’s independent w; , in terms of its torsional moment
mi

b * b
m; , + GiJiu; , — Bi 2 .
Ui » =

” G;J; + coBi -

Applying the discretization to the total internal moment, we
obtain

(16)

N
mb — ZRz(ei) {Ki(ui —u}) + B;(cou; + &z)} )
i=1

We can then apply (4) and solve for u; ;, as

mb, — BuyUi oy + S Ro(0;)Eiliul,,
Zij\il EzIz + COBi,zy

)

UL, zy =

where B, = Zfil B; +y and we have overloaded the symbol
R (0;) to include its 2 x 2 version, understood by context.

Replacing all time derivatives on the right hand side of
the PDEs in (13) with the discretization in (15), effectively
converts the PDEs into a set of ODEs, in arc length, of the
form

Yy, = f(y).

All terms on the right hand side of (13) can now be computed
from existing state variables through the algebraic equations
(16), (17), (4), and (14).

C. Boundary Conditions

The inputs to the robot are the actuator positions (;(t)
and angles «;. Below the base we assume the tubes are held
straight, which results in simplifications to the equations of
motion. We use an absolute angle v; to describe the rotation of
each tube below the base. The PDE system describing angular
rotation and torque is

1/%‘,5 = U4, 2
wi,ts
b

m; s = (pIzz)ﬂ;[}i,tty

(18)

= Uj,z,t

where u; , is calculated as previously described. There is an
unknown reaction torque on each actuator m, ,(t, 5;). At the
base, there is an unknown reaction force n(¢, 0) and transverse
moment 1, (t,0). The baseplate is stationary and arbitrarily
defined at the origin so that p(¢,0) = ¢q(¢,0) = 0. While
we have neglected insertion speed, we still account for the
axial angular velocity of the tube bases — only the transverse
angular velocities are zero at the base, w1 ;,(¢,0) = 0. The
main system is coupled to the system below the base so that

Ry(t,0) = R:[¢ (¢, 0)]
wi,2(t,0) = 91.4(¢,0)
0:(t,0) = ¥i(t,0) — ¥1(t, 0)
Yi(t,0) = 1 (t,0) — th14(¢,0).
At distal tube ends, we can use boundary conditions to pre-

scribe external point forces and moments as well as coupling
to the rigid body dynamics of external objects the robot is

19)

manipulating. For example, suppose that at the end of tube @
(s = B; +1;) the tube is subjected to an external force F' and
moment M and coupled to a rigid body with mass m; and
mass moment of inertia H;:

H; 0 0 0
H, = 0 H; 4y 0
0 0 Hi,zz

A force and moment balance on the attached rigid body in the
body frame of tube 1 then gives

F(t,s)+n(t,sT) —n(t,s") = m;p, (20)

M?;y(s) + mla):y(s+) - mgy(s_) = (Hiw;; + w;H,w;, )xy

Mz(t) - m/l;’z(tv Bi + lz) = Hi,zzwi,z,ta

where for convenience we have defined @; := R’ (6;)w;. The
termination of the final tube requires the entire distal wrench
be balanced, that is

F(t) —n(t, p1 + 1) = mipy
M°(t) —mP(t, 81+ 1)) = Hiw, + OH w.
D. Modeling Friction

In static models for concentric-tube robots, friction has
usually been neglected; however, some efforts have been
made to describe the frictional torque between tubes using a
Coulomb friction model [22], [23]. For our initial investigation
into friction in dynamic CTR models, we follow the approach
in [22] which modeled friction as a set of point torques at
locations where the precurvature is discontinuous or where a
tube leaves another tube (i.e. wherever the internal moment
is discontinuous). Lumping all friction into point moments at
these discontinuities is justified in [22] by the observation that
as the clearance between tubes becomes small, the distributed
normal force between the tubes can be approximated by a pair
of large point forces separated by a small axial distance at
points of curvature discontinuity or the end of a tube. When
a conventional Coulomb friction model is applied, the axial
distance gets absorbed into the unknown frictional coefficient,
so that the friction moment is proportional to the magnitude
of the discontinuity in internal moment.

For generality, we also include a standard viscous damping
term in addition to Coulomb (sliding) friction. If an internal
moment discontinuity occurs at arc length s, the total dissipa-
tive torque between tube 1 and tube 2 is then given by

2L

Tf(S) = /.L/ ||Amll),£y(5)|} Slg(rYQ(S)) + V’Y?(S)v (22)

where Am} . (s) :==m} , (s) —m}  (s7) is the discon-
tinuous change in the internal moment of tube 1 at s, p is
the generalized friction coefficient as described in [22], v is
a viscous friction coefficient, and “sig” is a sigmoid function
sig(y) = v/+/7? + €2 which is approximately equal to the
sign of « but is continuous at v = 0. Note that € should be
chosen to be smaller than the typical tube angular velocities

expected to be seen in the system. The friction torque between



tube 1 and tube 2 is then applied to each tube in opposite
directions leading to the following transition conditions at s:

m?,z(s-i_) = mI{,z(S—) —Tf

b

23
b (s) = mb (s7) + 7. @y

To apply friction at the point where the outer tube terminates,
the boundary condition in (20) is re-written as

Mz(t) - mg,z(tv B2 + 12) —Tf = H2,zzw2,z,t
mf (Bo+12)T) =ml (B2 +12)7) — 7.

Friction also occurs at the point where the outer tube passes
through a hole in the base plate (see Figure 3). This introduces
another frictional torque on the outer tube, given by

Thase = /J‘g)ase ng:y (O)H sig(w2z(0)) + Vpasew22(0)

(24)
mg,z(0+) = mg,z(o_) + Tf(O) + Thase-

Note that frictional forces between the tubes may also
be present in the axial direction. While these forces are
significant, they do not significantly affect the robot shape
because of the axial stiffness of the tubes and their concentric
constraints. No shape hysteresis is observed when translating
the tubes relative to one another.

E. Orientation as Quaternions

We have used rotation matrices in our model development,
but in our numerical implementation, we represent orientation
using non-unit quaternions as in [47] to avoid degradation
of orthogonality in the rotation matrices due to numerical
approximation. Our quaternion follows the convention h :=
ho + hii + hoj + hsk. Rather than the differential equation
for Rs, we now have an equation

0 —UuU; —Uz —U3
h :1 (VA1 0 us —U2 h
s 2 (us2 —us 0 (51 ’
us (%) —U1 0

The orientation at the base is now given by

h(t,0) = [cos (241 (£,0)) 0 0 sin (¢ (£,0)] "

Other calculations involving R can be left unchanged, and the
orthonormal rotation matrix is obtained from the quaternion by

—h3—h2  haohg—hah1 haha+hshy
hohz+hshi  —h3—h3 hzha—hohy

2
R(h) =T+ ——
h hohs—hshy hsha+hohy 7h§7h§

F. Spatial BVP Solution

Applying the above semi-discretization in time creates a set
of ordinary differential equations in s with boundary condi-
tions at both ends. In the continuum robot literature, shooting
methods are often used to solve such problems efficiently (e.g.
in statics models, [10] and our prior dynamics work [35],
[36]). This approach is efficient because the computational
effort grows only linearly with the spatial resolution, and
we employ shooting in our experimental validation of robot
vibrations during tissue grasping in Section V. To describe the

fast torsional dynamics of the snap-through motion (occurring
over an interval of about 1ms [26]), we need to take very small
time steps, and the shooting problem becomes numerically
sensitive. Thus, for the snapping experiments in Section IV,
we use a finite difference strategy to solve the BVP in s as
described below.

Consider a general state variable g(s) € RM with an ODE
Y, = f(s,9). Let the domain be discretized into N grid points
s1 through sy, and let the approximate state at these points
be denoted by y, := y(s;). Using the midpoint rule one can
write a finite difference equation

Yir1 —Yi f(Sz‘ +Sit1 Yi tYir
Si+1 — Si 2 ’ 2

).

Let the states over the whole grid be joined in a state
T

vector defined as Y = [y{ g yN| . then a vector

containing the residual errors of the differential equations may

be expressed as

Y2—Y1 f(51+52 y1+y2)

S9—S1 2 ? 2
Ys—Ys _ f(5242r537 yz‘gys)

S83—S82

E(Y) = (25)

fog;:__ll _ f(SN—12+SN 7 yN_12+yN)
The boundary conditions are strongly satisfied so that some
elements of y are specified. Note that the the concentric tube
problem involves the concatenation of systems (1), (13), and
(18), as shown in Figure 3. We use a Levenberg-Marquardt
algorithm to solve the nonlinear system so that || E||* < 109,
using standard SI units for all variables. The time discretization
is implemented using BDF2 [48] which, in the context of (15),
has non-zero coefficients ¢g = 3/(2At), ¢y = —2/At, and
¢o = 1/(2At). The Jacobian of the above system is sparse (in
fact, tridiagonal), so we use sparse matrix data structures and
sparse linear solving routines implemented in C++ using the
matrix library Eigen [49]. The Jacobian is calculated by first
order finite differences with appropriately chosen increments
for the magnitudes of the variables. Note that the accuracy of
this Jacobian approximation does not affect the accuracy of
the model, only the convergence of the iterative solution.

IV. SIMULATION AND EXPERIMENTAL VERIFICATION OF
THE SNAPPING PHENOMENON

To illuminate the discussion here and facilitate future work,
an example simulation of a snap-through bifurcation is pro-
vided at codeocean.com/capsule/1121798. Our experimental
setup (Figure 5) consists of a two-tube robot with the outer
tube rigidly attached to the baseplate as shown in Figure 4.
A Phantom® v310 high-speed camera (Vision Research, Inc.,
Wayne, NJ, USA) was used to study the robot as it was actu-
ated through an elastic instability, followed by oscillations. The
high-speed camera collected data at 50,000FPS (At = 20 us)
with a resolution of 256x128 pixels. Disk-shaped markers were
affixed to each tube at its tip, so that the relative angle, 0y
between the tubes, could be easily reconstructed from video
data.
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Fig. 4. The validation was performed using a two-tube robot as in [26].
The outer tube was rigidly attached to the baseplate, and the inner tube was
rotated at a distance from the baseplate 3; which is constant for any given
trial and varied between trials.
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Fig. 5. The experimental setup is shown. The snapping bifurcation was
captured on a high-speed camera. Tube markers were affixed to the tip of
each tube allowing the relative angle 6 to be visually reconstructed.

We assume roll and pitch of the tip are negligible so that 6
is calculated assuming the markers are parallel to the camera
plane, which is a reasonable assumption based on the model
solution for tip orientation.

A. Measured and Approximate Parameters

The CTR tubes used in these experiments are shown in
Fig. 6. The inner tube was made from Nitinol and the outer
from stainless steel. The tubes have precurved sections of
constant curvature. The precurved section of the outer tube
extends all the way to its tip, while the inner tube has a
short straight segment at the tip after the precurved section.
The precurvature functions were fit from images of the tubes.
A description of parameters and their measured, calibrated,
or known values is given in Table II. Because the inner
tube properties can have a significant effect on the dynamic
response, the Young’s modulus was experimentally calibrated

Fig. 6. Component tubes used for two tube robot in validation study before
assembly. (a) outer stainless steel tube. (b) inner Nitinol tube (which is a solid
circular rod).

TABLE II
MODEL PARAMETERS FOR SNAPPING EXPERIMENT

NAME DESCRIPTION METHOD VALUE
Ti1 Inner radius Data Sheet 0 mm
To1 Outer radius Data Sheet 0.508 mm
E, Young's modulus Deflection test 81.97 GPa
p1 | Density Mass/Volume 6493 kg/m?
B1 Exp. 1 location of actuator Chosen -112.0 mm
B1 Exp. 2 location of actuator Chosen -162.8 mm
B1 Exp. 3 location of actuator Chosen -213.6 mm
Lis Exp. 1 Initial straight length | Fit from image 121.1 mm
Lis Exp. 2 Initial straight length | Fit from image 171.9 mm
Lis | Exp. 3 Initial straight length | Fit from image 222.7 mm
Lic | Length of curved section Fit from image 34 mm

Lismp | Straight length to tip Fit from image 12 mm
uj, | Precurvature Fit from image 388 m1
Tz | Inner radius Data Sheet 0.62 mm
To2 | Outer radius Data Sheet 1.055 mm
E, Young's modulus Data Sheet 210 GPa
p2 | Density Data Sheet 8000 kg/m?
B2 Location of actuator Fixed to base 0 mm
Lps | Initial straight length Fit from image 8.1 mm
Ly | Length of curved section Fit from image 45 mm
uy, | Precurvature Fit from image 8.7 m1
my Marker 1 mass Measured 0.0278 g
Ty1 | Marker 1 radius Measured 2.73 mm
ty,1 | Marker 1 thickness Measured 1.13 mm
m; | Marker 2 mass Measured 0.0714 g
Tuz | Marker 2 radius Measured 4.46 mm
tyz | Marker 2 thickness Measured 1.09 mm
mg Glue mass Measured 0.02g
B. All mat. damping coeffs Chosen 0 Nm?s

v Vicious friction coeff Calibrated 1.16 x 1077 %
w Coulomb friction coeff Calibrated 0.00323
£ Sigmoid Parameter Chosen 250 rad/s

in a separate static cantilever deflection test. The density was
determined by dividing the measured tube mass by the volume
calculated from the tube dimensions.

Preliminary simulation results showed that the inertia of the
tracking markers attached to the tube tips was not negligible,
so we modeled the markers by implementing the rigid body
coupling boundary conditions described in our model equa-
tions above. The markers were circular disks with holes to fit
around the tubes, so that the inertia components are given by

Hi oo = Hiyy = mi(?’(r?w,i +r2,) +t3)/12

Hi,zz = mi(rJZ\J,i + 7"371‘)/27

where 75/, is the marker outer radius, r,; is the tube outer
radius which is also the marker inner radius, and tps; is the
marker thickness. Super glue was used to attach the markers
to the tubes. Weighing a single drop to be 0.02 g, we added
this amount to each marker mass.

The simulation time step is At = 10 ps. While our overall
approach is capable of running stably at large time steps and
capturing slower bending dynamics at real-time rates [35] (as
we show in the next section), the small time steps required to
resolve the detailed torsional elastic instability dynamics entail
non-real-time simulation speeds.
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Fig. 7. Each transmission length was tested in four trials to ensure that the

robot motion was repeatable. Each of the four trials is plotted simultaneously
in the three plots above. The responses are visually identical on a millisecond
time scale.
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Fig. 8.  The base actuation angle was recorded for each trial, and the

steady-state tip angles before and after snapping are extracted from the data.
Simulated “S-curves” are compared with the experimental behavior. The S-
curves pass to the left of the observed initial snapping angles, which is likely
due to friction.

B. Experimental Protocol

Experimental validation of this simulation consisted of
actuating a concentric-tube robot through an elastic instability
transition. This was preformed for three different robot setups
where the initial straight length of the inner tube L ; (transmis-
sion length) was varied and the overlapping region of the outer
and inner tube curvatures was kept the same. Increasing this
transmission length also increases the potential of the robot
to store elastic energy, resulting in a more forceful bifurcation
[26]. The transmission lengths and the actuator locations for
the three experimental configurations can be viewed in Table
1L

In each configuration, the inner tube tip was extended L),
= 2mm out of the outer tube. The rotary dial was slowly
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Fig. 9. The model-predicted tip angle is compared with the experimentally

observed tip angle using a calibrated Coulomb and viscous friction coeffi-
cients.

rotated by hand to induce an elastic instability and video was
collected at 50,000 frames per second. To verify repeatability
of the data with this procedure, we conducted 4 trials for
each transmission length configuration. A comparison of every
outcome is overlaid in Figure 7, illustrating that the dynamics
introduced by this procedure are highly repeatable and are
invariant to very small changes in initial conditions.

C. Calibration and Results

We first verify the static robot parameters by comparing
the experimental snap angles to the well-known CTR “S-
curve”, Figure 8, which uses the static model solution to
express the relationship between the relative base angle 6,
and the tip angle 0; between the tubes [13]. The majority
of the model parameters were either read from data sheets,
measured directly, or determined from a separate experiment.
The Coulomb and viscous friction coefficients are more dif-
ficult to directly measure, so u’ and v were calibrated to
the first experimental data set (Transmission Length 1) and
subsequently tested on the other two data sets. Since the outer



tube was rigidly fixed to the base plate instead of passing
through a hole, friction at the base plate (24) is not present.
We performed a least-squares fit of the model prediction to
the experimental data, using the height of the first peak, first
trough, and final peak of the data set. The sigmoid parameter
“e” was chosen to be 250 rad/s since typical angular velocities
seen in this system are on the order of 8000 rad/s. All material
damping parameters were assigned a value of zero because,
according to the data for Nitinol in [50], we calculated that
material damping could be responsible for an amplitude decay
rate of approximately 1% per cycle. Since the experimental
data shows a much larger decay rate than this, the dissipation is
probably dominated by frictional effects instead; however, we
note that material damping could be significant for non-metal
concentric-tube robots, such as those made by 3D printing [2].

The calibrated parameters are listed in Table II, and the
resulting model solution for #; is compared to the exper-
imental data sets in Figure 9. Note that we synchronized
camera time with simulation time by setting the time datum
t = 0 at the location of the first peak. The results show
that the dynamic model predicts the main features of the
experimental data set reasonably well, especially the rise curve
when the tube is transitioning through the snap. The overshoot
behavior, period of vibration, and subsequent peak heights
are also captured well, although an unknown effect around
1 ms creates an abnormally long period in the data, which
then creates a phase shift in subsequent data. Applying a
Fast Fourier Transform on the experimental data reveals two
dominant frequencies (averaging 1.82 MHz and 2.56 MHz)
for all three data sets, while the model solution possesses a
single dominant frequency of 1.93 MHz. Thus, the model is
appropriately capturing the dominant modal behavior present
in the experiments. Although significantly more testing and
modeling would be necessary to discover why the 2.56 MHz
frequency content is missing from the simulation, possible
reasons include tube clearance effects, nonlinear friction, and
unmodeled dynamics of the interfaces at the tube bases and
the actuator drivetrains.

V. APPLICATION TO TISSUE MANIPULATION

In addition to the high-speed snap dynamics validated in
the previous section, we also tested the model’s ability to
describe slower bending dynamics that could potentially arise
in scenarios where the robot end-effector is coupled to an
external body with its own dynamics. To do this we emulated
a tissue manipulation task where the robot grasps and pulls
on a piece of tissue which is suddenly cut and released from
the surrounding tissue, resulting in a release of stored elastic
energy, and significant dynamic motion. We track the dynamic
motion of the tip position for comparison between model and
experiment.

A. Experimental Design

The setup consists of a two-tube robot design with the outer
tube passing through an acrylic base plate. Both tubes were
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Fig. 10.  The experimental setup for the tissue manipulation consists of a
two-tube concentric tube robot grasping a mass of bovine tissue. A tensioned
string simulating attachment to surrounding tissue is suddenly cut, releasing
stored elastic energy and generating a dynamic response. A magnetic tracker
measures the dynamic tip trajectory.

TABLE III
MODEL PARAMETERS FOR TISSUE EXPERIMENT
NAME DESCRIPTION METHOD VALUE
Ti1 Inner radius Datasheet 0.514 mm
To1 Outer radius Datasheet 0.622 mm
Eq Young's modulus Deflection test 52 GPa
B1 Location of actuator Chosen -252.1 mm
Lis Initial straight length Fit from image 301 mm
Lic | Length of curved section Fit from image 97.1 mm
uj, | Precurvature Fit from image 9.174 m1
Ti2 Inner radius Datasheet 0.800 mm
To2 Outer radius Datasheet 1.03 mm
E, Young's modulus Deflection test 75 GPa
B2 Location of actuator Chosen -197.7 mm
Ls Initial straight length Fit from image 200.0 mm
Lc Length of curved section Fit from image 84.5 mm
uj, | Precurvature Fit from image 10.075 m™*
p1= p2 | Density Datasheet 6493 kg/m?
B, All mat. damping coeffs Chosen 0 Nm?s
v Vicious friction coeff Calibrated prior | 1.16 x 1077 %
o Coulomb friction coeff Calibrated prior 0.00323
Mhase | Baseplate Coulomb coeff Calibrated 1.09
Vhase | Baseplate Viscous coeff Calibrated 739 %1077 %
£ Sigmoid Parameter Chosen 15rad/s

made of Nitinol. The measured and calibrated parameters for
the robot are listed in Table III.

The grasped tissue was a spherical mass of bovine muscle
having a mass of 8.0 g and a radius of 24.7 mm. The tip of the
robot coincided with the center of the sphere. To simulate the
grasped tissue’s attachment to surrounding tissue, a fishing
line was tied behind the mass, at 33.6 mm from the tip of
the robot, and a weight of 60.0 g was first hung from the
line and then suddenly cut, releasing stored elastic energy
and generating a dynamic response. The tip motion of the
robot, after cutting the fishing line, was measured with 40 Hz
resolution by an Aurora magnetic tracking system (Northern
Digital Inc., Waterloo, ON, CAN), where the 5 mm long



tracking marker was flush with the robot tip so that the marker
was centered 2.5 mm from the tip. The tubes were actuated at
angles of ay(f1) = aa(B2) = 7/2 so that, absent the effects
of weight, the robot would lie in a plane orthogonal to the
direction of gravity. The combined weight of the grasped tissue
and the hung weight induced significant bending in the robot.
This experimental set up can be seen in Figure 10.

For a secondary validation, a similar experiment was pre-
formed with the same robot in the same configuration; how-
ever, to test whether the calibrated parameters accurately
predict the response under a different set of conditions, and
to test whether or not tissue properties themselves play a
significant role, a rigid sphere made of Grey Pro resin (Form-
Labs, Somerville, MA, USA) of a different size and mass was
attached to the tip. The sphere had a mass of 16.3 g and a
radius of 15.0 mm. The fishing line was attached 15.0 mm
from the tip of the robot and was tensioned with a hung mass
of 30.0 g.

B. Simulation

These tissue manipulation experiments are a complemen-
tary dataset to our previous high-speed snapping experiments
because the dynamic behavior involved is several orders of
magnitude slower, due to the coupling to an external dynamic
system. These slower dynamics also provide an opportunity to
demonstrate a key benefit of our numerical method, namely
the ability to take arbitrarily large time steps stably due to the
implicit time discretization strategy, as discussed in [36]. Thus,
an appropriate time step in this case is 3 ms, which provides
ample temporal resolution and results in faster computation
times relative to the speed of the physical processes involved.
In fact, as we detail in the next section, in this case we can
computationally simulate the dynamics faster than the actual
physical system evolves (our definition of “real-time”). This
larger time step also creates an ODE system in the spatial
dimension which is less numerically sensitive, allowing us to
solve it with a more efficient shooting method (as in [35],
[36]) instead of the spatial finite difference system described
in (25).

C. Parameters and Calibration

For this simulation, the BDF-a method with o = 0.45 and
At = 3 ms were used for time discretization, and 400 spatial
nodes were distributed along the robot length (integrated with
fourth-order Runge Kutta).

The robot parameters are listed in Table III along with
how each was determined. We set the inter-tube friction
coefficients (Coulomb and viscous) equal to the values that
were calibrated from the snapping experiments in the previous
section; however, there is an additional source of energy
dissipation due to friction between the outer tube and the hole
in the acrylic base plate through which it passes (this interface
was not present in the snapping experiment). This interface is
modeled by Equation (24), and separate frictional parameters
need to be determined. A least-squares fit of the height of
the first 5 peaks and troughs of the displacement magnitude
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Fig. 11. To simulate resecting a tissue mass, bovine muscle was attached to
the tip of the robot and a secondary mass was attached with a fishing line to
simulate tissue forces. The displacement of the robot tip was measured relative
to the initial static position when the secondary mass is attached. At ¢t = 0,
the fishing line is cut, releasing the grasped tissue from its surroundings and
causing the the robot tip to oscillate. The robot axes are aligned such that
the z axis is orthogonal to the base plate and the y axis is in the direction
opposite of gravity.

was performed to calibrate the effective Coulomb and viscous
friction parameters at the baseplate, shown in Table III. Note
that we do not necessarily expect these values to be similar to
those that model the inter-tube friction because they describe
a different material interface with a different clearance. The
sigmoid parameter e, in the friction model, was chosen to be
15 rad/s which is appropriate given the typical angular speeds
exhibited in this experiment.

D. Results

The results of the calibrated model are shown in Figure
11. The data presented is the measured tip displacement from
its initial static position in 3D space (the z axis is along
the robot axis at the base and gravity acts in the negative y
direction). The datum ¢ = 0 is aligned with the time the fishing
line is cut. We can see that the decay rate of the peaks was
matched well by the calibrated base friction parameters. As
with the snapping tests, the initial few peaks match very well.
The main manifestation of error is a slight difference in the
frequency (which is mainly influenced by inertial and stiffness
parameters) that results in a phase shift over time. We can also
see the effects of a small amount of geometric registration
error of the tracker coordinate system, which causes the z and
x displacement amplitudes to appear relatively larger (rigidly
rotating the dataset by a few degrees eliminates much of this
error).

The calibrated friction coefficients were further tested by
applying them to the secondary data set obtained from the



Rigid Sphere Weight Release Experiment

10
IS
E
x
-10 1 1 f 1 1 1
-0.5 0 0.5 1 1.5 2 25 3
50 T T T T T T
40 E
. 30r
£
E 20
> ThP TN
10 1
) — —Model
----- Experiment
-10 1 1 f L 1 1
-0.5 0 0.5 1 1.5 2 25 3
10 T T T T T
E A ‘\\ AN ~ a~ - _
\E, o) E— MW\&W‘MM
N
-10 1 1 1 ) 1 1
-0.5 0 0.5 1 1.5 2 25 3
t(s)
Fig. 12.  To validate the calibrated friction parameters, a second experiment

was done using a rigid sphere attached to the tip and a different mass attached
to the fishing line. The displacement of the robot tip was measured relative to
the initial static position when the secondary mass is attached. At ¢ = 0, the
fishing line is cut, causing the the robot tip to oscillate. The axes are aligned
such that the z axis is orthogonal to the base plate and the y axis is in the
direction opposite of gravity.

rigid sphere experiments. This is shown in Figure 12, which
shows similarly accurate results in terms of decay rate and
frequency. We believe the steady-state error can be attributed
to small errors in base-frame registration, the elastic constants
in the model parameters, and imperfect model assumptions
such as zero tube clearance. Note that the accuracy of the
tissue manipulation experiment depends more heavily on these
model parameters than the data in the snap-through experiment
does, since it measures position of the tip instead of the relative
angle between the tubes. The average of root-mean-squared
position errors over the two tissue manipulation experiments
was 9.5% of the robot length, from the base plate to the end
effector, which is comparable to previous reports of accuracy
in static models [15], [13].

E. Numerical Analysis

We also demonstrate that the numerical methods used for
these experiments can run in real-time. That is, the model
calculations necessary to simulate one second of robot mo-
tion can be completed in less than one second, so that the
simulation keeps up with the physics. To quantify this, we
report the real-time performance ratio (time-span simulated
over required computation time) in Figure 13 for the motions
executed in the tissue grasping experiment. Since large time
steps can be taken, the method is highly efficient; every
solution represented on the plot is real-time. Decreasing the
number of spatial points used also decreases the computation
time by the expected linear amount (i.e. doubling the number
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Fig. 13.  This plot demonstrates the real-time performance of our model
solution in the tissue experiment. The real-time performance ratio is the time
span simulated divided by the wall-clock time spent running the simulation.
All simulations represented in the figure were executed in real time. This ratio
is affected by both time step size and spatial step size.

of points doubles the computation time).

The spatial node spacing also affects solution accuracy.
Figure 14 shows the RMS difference in tip displacement over
3 seconds of motion between a benchmark numerical solution
with high resolution (RK4 with time step of 3 ms and a spatial
step of 0.02 mm) and solutions using a coarser step size.
As expected, using RK4 in the spatial dimension significantly
increases the accuracy over Ist order Euler method, at the cost
of more computation time, but the trade-off is worthwhile, i.e.
at time steps that require equivalent computational times, RK4
is over an order of magnitude more accurate.

VI. CONCLUSIONS

We have presented the first dynamic model for concentric
tube robots by adapting the dynamic Cosserat rod PDEs to a
collection of concentric precurved tubes. The model is able
to capture dynamic transition behavior during the complex
phenomenon of an elastic instability and the associated re-
lease of stored elastic energy. In particular, the swing-through
velocity profile and overshoot behavior are captured well. It is
also capable of capturing slower bending oscillations during
tissue grasping in real time. This model paves the way for
better understanding of dynamic effects in the future as well
as the incorporation of more detailed frictional models. All of
these advancements may improve the design of concentric tube
robots in demanding applications. One lesson learned from
our experimental analysis is that the snap-through transient
dynamics are somewhat affected by mass attached to the tip of
the robot. Changes in tip mass on the order of 0.02 grams were
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Fig. 14.  RMS error with respect to a high-resolution benchmark solution

is plotted as a function of spatial step size As, where all simulations were
performed with the same time step At = 3 ms. This plot illustrates that
performing spatial integration with a high order method such as RK4 offers a
much better time/accuracy trade-off. The two annotated points have equivalent
computation times.

enough to change the frequency of oscillation a noticeable
amount.

The decaying oscillations after the snap-through transition
are not perfectly described by the model, and future work
could attempt to improve model accuracy by incorporating
additional effects such as clearance between tubes, a dis-
tributed friction model, or actuator/drivetrain dynamics. One
limitation of our model that may be addressed in future work
is that the linear velocities and accelerations of the actuator
insertions, at the base of the tubes, were assumed to be
negligible. This seems to be a reasonable assumption for
most teleoperation scenarios, especially if the snap-through
dynamics are of primary interest, but it may be less accurate
under very aggressive motion plans or with slower dynamics
when manipulating tissue. Introducing these terms would be
nontrivial, but could lead to a more accurate model in specific
situations. Future work could also expand the validation of
this model on CTR’s with more than two tubes.
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