




rod (1) and applying the kinematic constraints that enforce

multiple tubes to be concentric.

A. Assumptions

For the reader’s convenience, we here collect and summarize

the assumptions underlying the model presented in this section.

• Assumptions associated with the general Cosserat rod

framework: tube cross sections remain planar and main-

tain their shape during tube deformation.

• Additional assumptions associated with Kirchhoff rods:

the tubes cannot stretch axially (inextensible) or shear in

transverse directions. This means that the only allowed

modes of deformation are bending and torsion.

• Perfect concentricity of tubes is assumed. Thus all tubes

share a common centerline and tangent at any arc length.

• Inextensibility and concentricity together imply that any

actuator-dictated translations of tube bases are instantly

transferred along the length of the tubes.

• We assume that the robot’s actuators dictate the position

and angle of each tube’s base; i.e. we decouple any

dynamics associated with the motors or drivetrain and

assume the interface at the base of each tube is rigid.

• As explained below, we assume the speed and acceler-

ation of the translational actuators is small enough to

be considered quasi-static. This is reasonable because

typical actuation bandwidth is much lower than the

natural frequencies of the flexible robot structure. Note

that the linear velocity of points along the robot are still

included with appropriate Coriolis effects arising from

the rotating reference frame.

• Frictional energy dissipation is described by a conven-

tional Coulomb-plus-viscous model applied at points

where tubes abruptly change curvature or terminate.

• A linear constitutive law is assumed to relate internal

moment to the curvature and torsion variables; however,

the overall model is still geometrically nonlinear, and a

nonlinear material law could easily be accommodated in

the framework.

B. arc length Kinematics

Let there be N inextensible tubes. As shown in Figure 3,

the arc length parameter s is defined so that pi(t, 0) = 0 is the

fixed location of a constraining baseplate hole through which

all tubes pass. An actuator translation βi is defined so that the

global position of the ith tube base is [0 0 βi(t)]
>. Note that

βi will be a negative number since the actuators are behind

the baseplate. Each tube has a total length of li.
Note that our convention of prescribing s = 0 at the

baseplate means that a particular value of the parameter s
will describe different material tube points over time since the

tubes can slide in and out of the base plate as they are actuated.

This choice departs slightly from a conventional Cosserat rod

framework where s would correspond to a material point, but

it is consistent with prior concentric-tube robot models and is

more convenient for formulating the kinematics. To reduce the

complexity of the derivation, we assume the insertion speed

TABLE I
NOTATION AND DEFINITIONS

Symbol Units Definition

s m Reference arclength
t s Time
p m Global position in Cartesian coordinates
R none Rotation matrix of material orientation
h none Quaternion for the material orientation
n N Internal force in the global frame
m Nm Internal moment in the global frame
f N/m Distributed force in the global frame
l Nm/m Distributed moment in the global frame
u 1/m Curvature vector in the local frame
θi rad Angle between tube i and tube 1

Rz(θi) none Matrix for rotation by θi about z-axis,
either R 7→ SO(3) or R 7→ SO(2)

γi rad/s Relative angular velocity, γi := θi,t
q m/s Velocity in the local frame
ω 1/s Angular velocity in the local frame

A m2 Cross-sectional area

ρ kg/m3 Material density

J m4 Second moment of area tensor
u∗ 1/m pre-curvature vector

For a straight rod u∗ = 0.

K Nm2 Stiffness matrix for bending and twisting

K =




EIxx 0 0
0 EIyy 0
0 0 GIzz





E Pa Young’s modulus
G Pa Shear modulus

B Nm2s Damping matrix for bending and twisting

g m/s2 Gravitational acceleration vector
mi kg Point mass at tip of tube i

Hi kg m2 Rigid-body inertia matrix coupled to tip
of tube i

βi m Distance along z-axis from the baseplate
to actuator i. βi ≤ 0.

li m Length of tube i

e3 none Unit vector; e3 =
[
0 0 1

]>
ci 1/t Implicit difference coefficient for a state

at t− iδt
y misc. General ODE state vector

(·)b Local-frame representation of variable,

e.g. nb = R>n
h

(·) History dependent part of
discretized time derivative,

e.g. qt ≈ c0q +
h

q

·̂ or (·)∧ Mapping from R
3 to se(3),

e.g. û =




0 −uz uy

uz 0 −ux

−uy ux 0





(·)∨ Mapping from se(3) to R
3, û

∨ = u

and acceleration of the translational actuators are relatively

small so that βi,t ≈ βi,tt ≈ 0. While this assumption is

a limitation of our model, it is reasonable in practice for

applications in which actuator insertion motions occur at much

slower frequencies than the natural frequencies of the flexible

robot structure itself. In the case of teleoperation for example,

typical human hand motion (and thus actuator motion) would

not contain frequency content above 5 Hz [38] and can be

low-pass filtered even further if desired, while the vibrations
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exhibited in our torsional experiments in this paper occur on

the order of 2000 Hz.

The tube indices are ordered so that a larger index corre-

sponds to a larger cross section, i.e. tube 1 is the innermost

tube and tube 2 is the second innermost tube. We restrict our

attention to configurations where βi < βj and βi+li > βj+lj
for i < j so that transition points are always caused by the

termination of the outermost tube. The concentric constraint

is that all tubes have the same centerline, which is expressed

by the equation

pi(t, s) = p1(t, s) ∀s ∈ [βi βi + li]. (2)

This equation may be differentiated with respect to arc length

(s) to obtain the constraint that the tube tangents must be

aligned

Rie3 = R1e3. (3)

This implies that the tube rotation matrices only differ by a

rotation about their common z-axes. Thus we define an angle

θi such that

Ri = R1Rz(θi),

where

Rz(θi) =



cos θi − sin θi 0
sin θi cos θi 0
0 0 1


 .

and θ1 = 0 by definition. Substituting this relationship into

the definition of the curvature of the ith tube results in

ui =
(
R>

i Ri,s

)∨

= R>
z (θi)u1 + θi,se3. (4)

The third component of the above equation defines the arc

length derivative of θi as the difference between the tube

torsional strains:

θi,s = ui,z − u1,z. (5)

where the subscript z denotes the third (z-axis) component

of a vector expressed in the body frame throughout the paper.

The above description of the arc length kinematics is common

to the prior static models of concentric tube robots, and more

detail can be found in [15].

C. Time Kinematics and Compatibility Equations

Moving into the realm of dynamics, we begin by defining

variables to represent various time-derivative quantities. For

tube i, at arc length s, the body-frame linear velocity qi and

angular velocity ωi are defined as

pi,t = Riqi, Ri,t = Riω̂i

Comparing the arc length derivatives of the above equations

to the time derivatives of the analogous arc length kinematic

equations in (1) allows us to derive the following compatibility

equations (which are also stated in (1):

qi,s = −ûiqi + ω̂ie3 ωi,s = ui,t − ûiωi, (6)

The concentric constraint (2) implies that all tubes have

the same global linear velocity pi,t and acceleration pi,tt.

Analogous to (4), since the tube rotation matrices share the

same z-axis, the body-frame angular velocities are related by

ωi =
(
R>

i Ri,t

)∨

= R>
z (θi)ω1 + θi,te3 (7)

the third component of which is

θi,t = ωi,z − ω1,z.

For convenience, and to eventually arrive at a first-order

system of PDE’s, we define a new state variable γi := θi,t
(representing the difference between the z-axis angular veloc-

ities of tube i and tube 1 such that (8) is written as

ωi = R>
z (θi)ω1 + γie3. (8)

To get the arc length derivative of γi, we differentiate (5) with

respect to time:

γi,s = ui,z,t − u1,z,t. (9)

D. Forces and Inertial Dynamics

Next, we consider the dynamic equilibrium of internal

forces and moments carried by the tubes. We introduce a

variable for the concentric tube robot’s total internal force,

which is the sum of the global-frame internal force vectors ni

carried by each tube:

n :=

N∑

i=1

ni.

The third line of (1) is obtained by differentiating the con-

ditions of dynamic equilibrium (Newton’s second law) and

defines the arc length derivative of ni for each tube, allowing

us to re-write ns as

ns =
N∑

i=1

ρiAipi,tt − f i,

where ρi and Ai are the density and cross sectional area of

tube i, and f i is a global external distributed force applied to

tube i. The concentric constraint with the assumption of quasi-

static actuator motion implies pi,tt = p1,tt (all tubes share

the same linear acceleration in the global frame), and we can

differentiate the kinematics to find p1,tt = R1

(
ω̂1q1 + q1,t

)

(which is also stated in (1). Thus we can write

ns = −f +R1

(
ω̂1q1 + q1,t

)
(ρA), (10)

where (ρA) :=
∑N

i=1
ρiAi and f :=

∑N

i=1
f i is the total

external distributed load applied to the robot.

Turning now to moments, we seek a differential equation

governing the axial (body-frame z) component of each tube’s

moment vector (the torsional moment) and an additional

equation governing the transverse (body-frame xy) component

of the total moment carried by the robot. Defining mb
i as the

internal moment of tube i, expressed in the body-frame of tube

i, we have

mb
i = R>

i mi and mb
i,s = −ûim

b
i +R>

i mi,s
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Fig. 3. A concentric tube robot sketch is annotated to describe the PDE boundary value problem. A main contribution of this paper is deriving the equations
of motion for a concentric tube collection (13), and a simplified set of PDEs (18) is obtained under the assumption that tubes are held straight below the base.

since R>
i,s = −ûiR

>
i . Now substituting in mi,s from (1),

selecting only the third (z-axis) component of mb
i,s, and

neglecting any external distributed moments li, we write

∂mi,z

∂s
= −e>3 ûim

b
i + ρie

>
3 (ω̂iJ iωi + J iωi,t) ,

where we have used the properties a>â = 0 and (Ra)
∧
=

RâR> for a ∈ R
3 and R ∈ SO(3) from [39] to reveal that

e>3 R
>
i p̂i,sni = 0. Additional simplifications are gained by

recognizing that J i is the second moment of area tensor of

the ith tube cross section expressed in the body-frame:

J i =



Ixx,i 0 0
0 Iyy,i 0
0 0 Izz,i


 .

The terms in J i can be calculated for a circular tube with

inner diameter IDi and outer diameter ODi as

Ixx,i = Iyy,i =
1

2
Izz,i = Ii = π(OD4

i − ID4
i )/64.

This then implies ρie
>
3 ω̂iJ iωi = 0 so that using (8) we can

write

∂mi,z

∂s
=− e>3 ûim

b
i + ρiIzz,iωi,z,t

=− e>3 ûim
b
i + 2ρiIi (ω1,z,t + γi,t)

(11)

Finally, to derive equations for the transverse components

of the total moment, we first define the concentric tube robot’s

total internal moment, which is the sum of the global frame

internal force vectors mi carried by each tube:

m :=

N∑

i=1

mi.

Using the fourth line of (1), which is the arc length derivative

of a dynamic moment balance on each tube, and again

neglecting li, we have

ms =

N∑

i=1

ρiRi (ω̂iJ iωi + J iωi,t)− p̂i,sni.

Now define mb as the total internal moment, written in the

body frame of tube 1 (the innermost tube), such that

mb = R>
1 m and mb

s = −û1m
b +R>

1 ms.

Now rewriting p̂i,s using the concentric constraint (3) we have

p̂i,sni = (Rie3)
∧
ni = (R1e3)

∧
ni = R1ê3R

>
1 ni.

Using this we rewrite mb
s as

mb
s =− û1m

b − ê3R
>
1 n

+
N∑

i=1

ρiRz(θi) [ω̂iJ iωi + J iωi,t] .

The terms in the summation are simplified again because

the structure of J i for circular tubes implies Rz(θi)J i =
J iRz(θi), and the product product ω̂iJ iωi simplifies to

ω̂iρi



Ii 0 0
0 Ii 0
0 0 2Ii


ωi = ρiIiωi,z



ωi,y

−ωi,x

0


 .

After a few more algebraic steps, we can finally extract the x
and y components of mb

s as

∂mb
xy

∂s
=
{
−û1m

b − ê3R
>
1 n+ (ρI)ω1,t

}
xy

+

[
ω1,y

−ω1,x

] N∑

i=1

ρiIi(ω1,z + γi),

(12)

where (ρI) =
∑N

i=1
ρiIi.

E. Summary of Concentric-Tube PDEs

Pulling together all the results in this section, we can

succinctly state the set of PDEs for a concentric-tube system

in the form of a first-order vector system

ys = f (y,yt) ,

where the state vector y contains state variables p, R, q, ω,

n, mb
xy , mb

1,z , and mb
i,z , θi, and γi for i ∈ [2 N ], as shown
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in Figure (3). The full system can be summarized:

ps = R1e3

R1,s = R1û1,

q1,s = − û1q1 + ω̂1e3

ω1,s = u1,t − û1ω1

ns = − f +R1

(
ω̂1q1 + q1,t

)
(ρA)

∂mb
xy

∂s
=

{
−û1m

b − ê3R
>
1 n+ (ρI)ω1,t

}
xy

+

[
ω1,y

−ω1,x

]
((ρI)ω1,z +

N∑

i=1

ρiIiγi)

∂mb
i,z

∂s
=− e>3 ûim

b
i + 2ρiIi (ω1,z,t + γi,t)

θi,s = ui,z − u1,z

γi,s = ui,z,t − u1,z,t.

(13)

This system is analogous to the classical PDE’s for a single-rod

in (1), but it accounts for multiple concentric tubes. The system

also represents a dynamic generalization of well-established

static models for concentric-tube robots [13], [14], [15]. Sim-

ply setting all velocity-associated variables to zero recovers

the conventional static model. Thus, this model’s prediction

of snapping points will be identical to those predicted by

the static models in [24], [25], but the dynamics model can

provide additional information to characterize the motions of

the robot during the snap transition itself. Note that like these

previous static models, this model can incorporate arbitrary

precurved tube shapes and different numbers of segments.

Boundary conditions at segment transitions are discussed in

Section III-C.

Note that it is possible to choose a different set of state

variables in which to express this model, such as the body-

frame curvature components instead of the global-frame mo-

ment components [15], but one advantage of the choice made

here is that the total internal moment is continuous along

the robot length, which simplifies numerical integration across

transitions in pre-curvature or the end of a tube.

As in (1), in order to solve the PDE system (13), we will

need to implement a specific constitutive stress-strain law, as

well as a strategy for numerical discretization and solution of

the resulting discretized equations. These two additions are

developed together in the next section.

III. NUMERICAL SOLUTION OF CONCENTRIC-TUBE PDES

In this section we discuss the details of numerical solution

of the concentric-tube PDEs stated in (13) subject to a specific

constitutive law.

A. Constitutive Laws

To obtain a complete set of equations for the dynamics

of a concentric-tube system, we must postulate a material

constitutive law that relates the kinematic variables ui to the

body-frame internal moments mi. We adopt a linear visco-

elastic law with material damping [40] such that

mb
i = Ki(ui − u∗

i ) +Biui,t, (14)

where

Ki =



Ei 0 0
0 Ei 0
0 0 Gi


J i,

and Bi is a damping coefficient matrix with axisymmetric

diagonal coefficients, that is

Bi =



BB,i 0 0
0 BB,i 0
0 0 BT,i


 .

The total internal moment in the tube 1 body frame is then

expressed as

mb =

N∑

i=1

Rz(θi) [Ki(ui − u∗
i ) +Biui,t] .

Note that this is a differential equation in ui, which was

not originally included as a state variable; however, the time

discretization strategy in the next section converts this visco-

elastic constitutive law into an algebraic equation which allows

us to compute ui from existing state variables.

B. Implicit Time Discretization

It is well known that conventional explicit integration rou-

tines (e.g. Forward Euler or explicit Runge-Kutta methods) in

time perform poorly for systems with stiff dynamics because

the Courant-Friedrichs-Lewy (CFL) condition limits the max-

imum time step that can be stably executed [41]. To avoid

this limitation, we adopt a fully implicit method to discretize

the time derivatives [42]. This creates an ordinary differential

equation, in the arc length variable s, which can be solved at

each time step subject to boundary conditions at the proximal

and distal ends of the robot, following [35], [36], [43], [44],

[45]. The structure of the spatial boundary value problem thus

created is similar to conventional static models (e.g. [13], [15])

and can be solved by similar methods such as shooting, finite-

difference, or finite-element methods, as we discuss in Section

III-F.

Many implicit finite difference schemes, such as the back-

ward Euler, BDF-2, trapezoidal rule, and BDF-α [46] methods,

fit the form

yt(ti) ≈ c0y(ti) +
∞∑

j=1

cjy(ti−j) + djyt(ti−j). (15)

For example, for a discrete time step of ∆t, backward Euler

has c0 = ∆t−1, c1 = −∆t−1, cj = 0 ∀j > 1, and dj = 0 ∀j.
We can abstract the details of the specific scheme by using a

single variable to represent all history dependent terms, that is

yt(ti) ≈ c0y(ti) +
h

y(ti).

Applying such an implicit discretization to the differential

equation, defined by our constitutive law, allows us to solve for
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each tube’s independent ui,z in terms of its torsional moment

mi,z

ui,z =
mb

i,z +GiJiu
∗
i,z −Bi,z

h

ui,z

GiJi + c0Bi,z

. (16)

Applying the discretization to the total internal moment, we

obtain

mb =

N∑

i=1

Rz(θi)
[
Ki(ui − u∗

i ) +Bi(c0ui +
h

ui)
]
.

We can then apply (4) and solve for u1,xy as

u1,xy =
mb

xy −Bxy

h

u1,xy +
∑N

i=1
Rz(θi)EiIiu

∗
i,xy∑N

i=1
EiIi + c0Bi,xy

, (17)

where Bxy =
∑N

i=1
Bi,xy and we have overloaded the symbol

Rz(θi) to include its 2× 2 version, understood by context.

Replacing all time derivatives on the right hand side of

the PDEs in (13) with the discretization in (15), effectively

converts the PDEs into a set of ODEs, in arc length, of the

form

ys = f(y).

All terms on the right hand side of (13) can now be computed

from existing state variables through the algebraic equations

(16), (17), (4), and (14).

C. Boundary Conditions

The inputs to the robot are the actuator positions βi(t)
and angles αi. Below the base we assume the tubes are held

straight, which results in simplifications to the equations of

motion. We use an absolute angle ψi to describe the rotation of

each tube below the base. The PDE system describing angular

rotation and torque is

ψi,s = ui,z

ψi,ts = ui,z,t

mb
i,z,s = (ρIzz)iψi,tt,

(18)

where ui,z is calculated as previously described. There is an

unknown reaction torque on each actuator mi,z(t, βi). At the

base, there is an unknown reaction force n(t, 0) and transverse

moment mxy(t, 0). The baseplate is stationary and arbitrarily

defined at the origin so that p(t, 0) = q(t, 0) = 0. While

we have neglected insertion speed, we still account for the

axial angular velocity of the tube bases – only the transverse

angular velocities are zero at the base, ω1,xy(t, 0) = 0. The

main system is coupled to the system below the base so that

R1(t, 0) = Rz[ψ1(t, 0)]

ω1,z(t, 0) = ψ1,t(t, 0)

θi(t, 0) = ψi(t, 0)− ψ1(t, 0)

γi(t, 0) = ψi,t(t, 0)− ψ1,t(t, 0).

(19)

At distal tube ends, we can use boundary conditions to pre-

scribe external point forces and moments as well as coupling

to the rigid body dynamics of external objects the robot is

manipulating. For example, suppose that at the end of tube i
(s = βi + li) the tube is subjected to an external force F and

moment M and coupled to a rigid body with mass mi and

mass moment of inertia Hi:

Hi =



Hi,xx 0 0
0 Hi,yy 0
0 0 Hi,zz


 .

A force and moment balance on the attached rigid body in the

body frame of tube 1 then gives

F (t, s) + n(t, s+)− n(t, s−) = miptt (20)

M b
xy(s) +mb

xy(s
+)−mb

xy(s
−) =

(
Hiω̄i,t + ̂̄ωiHiω̄i,

)
xy

Mz(t)−mb
i,z(t, βi + li) = Hi,zzωi,z,t,

where for convenience we have defined ω̄i := RT
z (θi)ωi. The

termination of the final tube requires the entire distal wrench

be balanced, that is

F (t)− n(t, β1 + l1) = m1ptt

M b(t)−mb(t, β1 + l1) = H1ωt + ω̂H1ω.
(21)

D. Modeling Friction

In static models for concentric-tube robots, friction has

usually been neglected; however, some efforts have been

made to describe the frictional torque between tubes using a

Coulomb friction model [22], [23]. For our initial investigation

into friction in dynamic CTR models, we follow the approach

in [22] which modeled friction as a set of point torques at

locations where the precurvature is discontinuous or where a

tube leaves another tube (i.e. wherever the internal moment

is discontinuous). Lumping all friction into point moments at

these discontinuities is justified in [22] by the observation that

as the clearance between tubes becomes small, the distributed

normal force between the tubes can be approximated by a pair

of large point forces separated by a small axial distance at

points of curvature discontinuity or the end of a tube. When

a conventional Coulomb friction model is applied, the axial

distance gets absorbed into the unknown frictional coefficient,

so that the friction moment is proportional to the magnitude

of the discontinuity in internal moment.

For generality, we also include a standard viscous damping

term in addition to Coulomb (sliding) friction. If an internal

moment discontinuity occurs at arc length s, the total dissipa-

tive torque between tube 1 and tube 2 is then given by

τf (s) = µ′
∥∥∆mb

1,xy(s)
∥∥ sig(γ2(s)) + νγ2(s), (22)

where ∆mb
1,xy(s) := mb

1,xy(s
+)−mb

1,xy(s
−) is the discon-

tinuous change in the internal moment of tube 1 at s, µ′ is

the generalized friction coefficient as described in [22], ν is

a viscous friction coefficient, and “sig” is a sigmoid function

sig(γ) = γ/
√
γ2 + ε2 which is approximately equal to the

sign of γ but is continuous at γ = 0. Note that ε should be

chosen to be smaller than the typical tube angular velocities

expected to be seen in the system. The friction torque between

7



tube 1 and tube 2 is then applied to each tube in opposite

directions leading to the following transition conditions at s:

mb
1,z(s

+) = mb
1,z(s

−)− τf

mb
2,z(s

+) = mb
2,z(s

−) + τf .
(23)

To apply friction at the point where the outer tube terminates,

the boundary condition in (20) is re-written as

Mz(t)−mb
2,z(t, β2 + l2)− τf = H2,zzω2,z,t

mb
1,z((β2 + l2)

+) = mb
1,z((β2 + l2)

−)− τf .

Friction also occurs at the point where the outer tube passes

through a hole in the base plate (see Figure 3). This introduces

another frictional torque on the outer tube, given by

τbase = µ′
base

∥∥mb
xy(0)

∥∥ sig(ω2z(0)) + νbaseω2z(0)

mb
2,z(0

+) = mb
2,z(0

−) + τf (0) + τbase.
(24)

Note that frictional forces between the tubes may also

be present in the axial direction. While these forces are

significant, they do not significantly affect the robot shape

because of the axial stiffness of the tubes and their concentric

constraints. No shape hysteresis is observed when translating

the tubes relative to one another.

E. Orientation as Quaternions

We have used rotation matrices in our model development,

but in our numerical implementation, we represent orientation

using non-unit quaternions as in [47] to avoid degradation

of orthogonality in the rotation matrices due to numerical

approximation. Our quaternion follows the convention h :=
h0 + h1i + h2j + h3k. Rather than the differential equation

for Rs, we now have an equation

hs =
1

2




0 −u1 −u2 −u3
u1 0 u3 −u2
u2 −u3 0 u1
u3 u2 −u1 0


h.

The orientation at the base is now given by

h(t, 0) =
[
cos

(
1

2
ψ1(t, 0)

)
0 0 sin

(
1

2
ψ1(t, 0)

)]>
.

Other calculations involving R can be left unchanged, and the

orthonormal rotation matrix is obtained from the quaternion by

R(h) = I +
2

h>h

[
−h2

3
−h2

4
h2h3−h4h1 h2h4+h3h1

h2h3+h4h1 −h2

2
−h2

4
h3h4−h2h1

h2h4−h3h1 h3h4+h2h1 −h2

2
−h2

3

]
.

F. Spatial BVP Solution

Applying the above semi-discretization in time creates a set

of ordinary differential equations in s with boundary condi-

tions at both ends. In the continuum robot literature, shooting

methods are often used to solve such problems efficiently (e.g.

in statics models, [10] and our prior dynamics work [35],

[36]). This approach is efficient because the computational

effort grows only linearly with the spatial resolution, and

we employ shooting in our experimental validation of robot

vibrations during tissue grasping in Section V. To describe the

fast torsional dynamics of the snap-through motion (occurring

over an interval of about 1ms [26]), we need to take very small

time steps, and the shooting problem becomes numerically

sensitive. Thus, for the snapping experiments in Section IV,

we use a finite difference strategy to solve the BVP in s as

described below.

Consider a general state variable ȳ(s) ∈ R
M with an ODE

ȳs = f(s, ȳ). Let the domain be discretized into N grid points

s1 through sN , and let the approximate state at these points

be denoted by yi := y(si). Using the midpoint rule one can

write a finite difference equation

yi+1 − yi

si+1 − si
≈ f(

si + si+1

2
,
yi + yi+1

2
).

Let the states over the whole grid be joined in a state

vector defined as Y =
[
y>
1 y>

2 ... y>
N

]>
, then a vector

containing the residual errors of the differential equations may

be expressed as

E(Y ) =




y
2
−y

1

s2−s1
− f( s1+s2

2
, y1

+y
2

2
)

y
3
−y

2

s3−s2
− f( s2+s3

2
, y2

+y
3

2
)

...
y
N
−y

N−1

sN−sN−1

− f( sN−1+sN
2

,
y
N−1

+y
N

2
)



. (25)

The boundary conditions are strongly satisfied so that some

elements of y are specified. Note that the the concentric tube

problem involves the concatenation of systems (1), (13), and

(18), as shown in Figure 3. We use a Levenberg-Marquardt

algorithm to solve the nonlinear system so that ‖E‖
2
< 10−9,

using standard SI units for all variables. The time discretization

is implemented using BDF2 [48] which, in the context of (15),

has non-zero coefficients c0 = 3/(2∆t), c1 = −2/∆t, and

c2 = 1/(2∆t). The Jacobian of the above system is sparse (in

fact, tridiagonal), so we use sparse matrix data structures and

sparse linear solving routines implemented in C++ using the

matrix library Eigen [49]. The Jacobian is calculated by first

order finite differences with appropriately chosen increments

for the magnitudes of the variables. Note that the accuracy of

this Jacobian approximation does not affect the accuracy of

the model, only the convergence of the iterative solution.

IV. SIMULATION AND EXPERIMENTAL VERIFICATION OF

THE SNAPPING PHENOMENON

To illuminate the discussion here and facilitate future work,

an example simulation of a snap-through bifurcation is pro-

vided at codeocean.com/capsule/1121798. Our experimental

setup (Figure 5) consists of a two-tube robot with the outer

tube rigidly attached to the baseplate as shown in Figure 4.

A Phantom R© v310 high-speed camera (Vision Research, Inc.,

Wayne, NJ, USA) was used to study the robot as it was actu-

ated through an elastic instability, followed by oscillations. The

high-speed camera collected data at 50,000FPS (∆t = 20 µs)

with a resolution of 256x128 pixels. Disk-shaped markers were

affixed to each tube at its tip, so that the relative angle, θf
between the tubes, could be easily reconstructed from video

data.
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