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A Sliding-rod Variable-strain Model for Concentric Tube Robots

Federico Renda1, Conor Messer2, Caleb Rucker3, and Frederic Boyer4

Abstract—In this work, the Piecewise Variable-strain (PVS)
approach is applied to the case of Concentric Tube Robots
(CTRs) and extended to include the tubes’ sliding motion. In
particular, the currently accepted continuous Cosserat rod model
is discretized onto a finite set of strain basis functions. At the
same time, the insertion and rotation motions of the tubes
are included as generalized coordinates instead of boundary
kinematic conditions. Doing so, we obtain a minimum set of
closed-form algebraic equations that can be solved not only for
the shape variables but also for the actuation forces and torques
for the first time. This new approach opens the way to torque-
controlled CTRs, which is poised to enhance elastic stability and
improve interaction forces’ control at the end-effector.

Index Terms—Modeling, Control, and Learning for Soft
Robots; Surgical Robotics: Steerable Catheters/Needles.

I. INTRODUCTION

C
ONTINUUM robots can be considered a class of soft

manipulators, particularly suited for Minimally Invasive

Surgery (MIS) [1]. One of the most promising continuum

robotic systems developed so far is the Concentric Tube Robot

(CTR), a collection of nested millimeters tubes whose elastic

interaction is used to control the system’s overall shape and the

iteration force at the end-effector for surgical intervention [2].

CTRs have demonstrated promising results in a variety of MIS

applications. For a thorough survey of the clinical applications

of CTRs, see [3] and the references therein.

The development of CTRs has been made possible thanks

to rapid advancement in modeling these kinds of complex

non-linear systems. These research efforts have converged on a

select type of Cosserat rods model with a particular kinematic

structure representing the internal tubes’ additional rotational

motion [4], [5]. Although this Cosserat approach has been

improved over the years to include tubes’ clearance, friction

[6], and inertial dynamics [7], it has been essentially maintained

as initially proposed [8]. Here, we refer to it as the standard

CTR model, and we briefly recall it in section II.

On the other hand, a general soft robot is composed of

flexible and rigid elements arranged in a parallel or serial

fashion and capable of locomoting in the environment. A novel
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coordinate system has been proposed to model these kinds of

systems, which discretizes the continuous Cosserat model of the

flexible components onto a finite set of strain basis functions

[9], [10]. This Piecewise Variable-strain (PVS) approach is a

generalization of traditional robotics’ geometric model [11]

to the case of highly flexible or soft robots [12]. Thus, it

provides the theoretical framework for applying traditional

control strategies to the field of soft robots. One of the aims of

the present work is to apply the PVS approach to CTR systems.

In this way, we further extend the general PVS approach

to this essential soft robotic technology. At the same time,

we open new prospects for the control design of CTRs. In

particular, the PVS model provides the equilibrium equations

as a minimum set of closed-form algebraic equations, which

may be easier to handle for control, design optimization, and

stability assessment.

Furthermore, in this work, we tackle one of the main

limitations of the standard CTR model concerned with the

sliding structure problem, also known as the spaghetti problem

[13]. In the standard model, the tube rotations and insertions

dictate the boundary conditions and locations of the section

domains. While the rotational actuator torques are easily

computed from the model solution, the insertion forces are

not present in the model equations. The recent extension to

dynamics also does not model the insertion forces and assumes

negligible insertion velocity and acceleration [7]. Here we relax

this assumption, although still in a static setting, which allows

calculation of the actuation insertion forces required for the

equilibrium for the first time. The spaghetti problem appears in

the planar models of animal locomotion [14], structural stability

[15], and finite element analysis [16]. Thus, to the authors’

knowledge, it is also the first time the spaghetti problem is

tackled in three dimensions and with an additional relative

rotation.

II. MODEL PRELIMINARIES

Before applying the PVS approach to solve the CTR

equilibrium, we revise the standard CTR model [4], [5] using

geometric notation. For simplicity, we will present the case of

fully overlapping tubes here. Note that additional details about

the CTR kinematics will be provided for the more general

cases analyzed in section III. Furthermore, a new kinematic

model that includes the sliding and rotation of the the bases

of the tubes as generalized coordinates of the system will be

introduced in section IV.

A. Kinematics

Each tube of a concentric tube system can be modeled as

a Cosserat rod, a continuous set of rigid cross sections of

infinitesimal thickness along a material curvilinear abscissa

X ∈ [0, L] where L is the total length of the rod. Identifying
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each rigid cross-section with the moving frame rigidly attached

to it, the configuration of the tube j is completely defined

by a curve gj(·) : X 7→ gj(X) ∈ SE(3) represented by the

homogeneous matrix:

gj(X) =

(
Rj(X) rj(X)
0T 1

)
, (1)

where rj(X) ∈ R
3 is the position vector of the origin of the

moving frame and Rj(X) ∈ SO(3) is the rotation matrix

representing its orientation with respect to the spatial frame.

The high aspect ratio and material property of the conven-

tional CTR allow assuming inextensibility and shearless defor-

mation (Kirchhoff-Love kinematics). Furthermore, neglecting

tube clearance, the rods are perfectly concentric. Thus, their

centerlines must be the same at any configuration. Then, it

follows that an inner tube j differs from its outer tube j − 1
only by a rotation around the tangent vector to the centerline

[5], defined by:

gθj (X) =




1 0 0 0
0 cos(θj(X)) − sin(θj(X)) 0
0 sin(θj(X)) cos(θj(X)) 0
0 0 0 1


 , (2)

where θj(X) is the rotation angle and we have assumed a local

coordinate frame as shown in Figure 1. Thus, for an ordered

set of tubes we obtain:

g1(X) = g1(X)

gj(X) = gj−1(X)gθj (X), (j = 2, ..., N)
(3)

where N is the total number of tubes and the outer tube is

numbered with 1. A pictorial representation of this kinematics

is shown in Figure 1. Note that in this model, the concentric

tubes share the same material abscissa X .

Let’s obtain the time (∂/∂t = ˙ ) and space (∂/∂X = ′ )

derivative of the tubes configuration g with the Lie algebra

se(3). Starting with tube 1 we get:

(
g−1
1 (X)ġ1(X)

)∨
= η1(X) =

(
w

T
1 , v

T
1

)T
∈ R

6 (4)

(
g−1
1 (X)g′

1(X)
)∨

= ξ1(X) =
(
k
T
1 ,u

T
1

)T
∈ R

6. (5)

where v(X), u(X) ∈ R
3 represent the linear strains and

velocity respectively, while w(X), k(X) ∈ R
3 are the angular

strains and velocity respectively. All the quantities are defined

in the local frame at X . To indicate the angular strain in the

reference stress-free configuration, we use the notation k
∗.

Finally, the superscript ∨ indicates the isomorphism between

the Lie algebra se(3) and R
6 [11] (∧ will be used in the

opposite direction).

Equating the mixed partial derivatives of the tube configura-

tion, we obtain a compatibility equation between the velocity

and strain twists.

∂

∂t
g′

1 =
∂

∂X
ġ1 =⇒ η′

1 = ξ̇1 − adξ1
η1 . (6)

As shown in [9], integrating (6) with respect to space yields

the following useful relation:

η1(X) = Ad−1
g1(X)

∫ X

0

Adg1
ξ̇1ds , (7)

where the operator Ad is the Adjoint map in SE(3) defined

in Appendix A.

For what concerns the inner tubes, first we define the

derivatives of the relative rotation gθj .

(
g−1
θj

(X)ġθj (X)
)∨

= ηθj (X) =
[
θ̇j(X) 0 0 0 0 0

]T
(8)

(
g−1
θj

(X)g′

θj
(X)

)∨
= ξθj (X) =

[
θ′j(X) 0 0 0 0 0

]T
. (9)

The same procedure that led to equation (7), in this case yields:

ηθj (X) =

∫ X

0

ξ̇θjds , (10)

Finally, the chain rule together with (4), (5), (8), and (9) yields,
for a general tube j:

(

g
−1
j ġj

)∨

= ηj(X) =

2
∏

i=j

(

Ad−1
gθi

η1

)

(X) +

j
∑

i=2

ηθi(X) (11)

(

g
−1
j g

′

j

)∨

= ξj(X) =

2
∏

i=j

(

Ad−1
gθi

ξ1

)

(X) +

j
∑

i=2

ξθi(X). (12)

B. Statics

In this work, we focus our attention on the static equilibrium

of concentric tubes with no external applied force (except for

the actuation in section IV) to get more neat results. However,

it should be noted that there are no particular impediments

that would prevent extending the approach to the general

dynamic case. We have also neglected friction forces and

torques interaction between the tubes as usually done with the

standard model.

The static equilibrium of a Cosserat rod in a concentric tube

setting can be derived from Hamilton’s principle (see [17] for

a derivation) with the addition of the constraints forces due to

the concentricity constraint. Thus, for a tube j we obtain:

F
′

ij
+ ad∗ξj

F ij +Fλj
= 0, (j = 1, ..., N) , (13)

where F ij (X) =
(
M

T
ij
(X),NT

ij
(X)

)T
∈ R

6 is the vector

of internal moment and force, Fλj
(X) ∈ R

6 is the vector

of distributed constraint force, and ad∗ is the co-adjoint map

in SE(3) defined in Appendix A. Note that the value of the

internal force Nij is unknown due to the inextensibility and

shearless constraints. On the other hand, the internal moment’s

value can be computed from a constitutive law that we assume

linear for simplicity (Hooke’s law).

Mij (X) = Σj

(
kj(X)− k

∗

j (X)
)
, (14)

where Σ = diag(GJ,EI,EI) ∈ R
3×3 is the elasticity matrix,

E is the Young modulus, G the shear modulus, and J , I are,

respectively, the polar and bending second moment of area

of the circular cross-section. For what concerns the constraint

contact force, although its value is also unknown, its basis can

be obtained from the virtual constraints equations that enforce

the concentricity constraint. These equations can be written in

the form

jj · (δrj(X)− δrj−1(X)) = 0, (j = 2, ..., N)

kj · (δrj(X)− δrj−1(X)) = 0, (j = 2, ..., N) ,
(15)
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where jj and kj point in the y−, and z−axis directions of

tube j at X (see Fig. 1) , and δ is a virtual displacement.

Equation (15) says that the distributed constraint force is equal

and opposite between two consecutive tubes and that it takes

the form:

Fλj
(X) =

[
0 0 0 0 λyj

(X) λzj (X)
]T

−

Ad∗gθj+1

[
0 0 0 0 λyj+1

(X) λzj+1
(X)

]T
,

(16)

where λy(X) and λz(X) are Lagrange multipliers, and Ad∗

is the co-Adjoint map in SE(3) defined in Appendix A.

The static equilibrium of a collection of tubes imposes the

following boundary conditions on equation (13) [5].

N∑

j=1

j∏

k=1

(
Ad∗gθk

Mij

)
(X̄−) =

N∑

j=1

j∏

k=1

(
Ad∗gθk

Mij

)
(X̄+).

(17)

Note that (17) also holds at discontinuity points X̄ where the

tubes stop to overlap (in that case, the upper limit of the sum

on the RHS will be smaller). Furthermore, since the concentric

tubes can not transmit axial torque to one another, the following

condition holds for each tube [5].

i ·Mi(X̄
−) = i ·Mi(X̄

+) , (18)

where i points in the x−axis direction, tangent to the midline

(see Fig. 1).

III. VARIABLE-STRAIN CTR MODEL

In [9], [10], a novel variable-strain approach has been

presented to model soft manipulators driven by tendons and

pneumatic chambers. This section aims to apply this technique

to CTRs to obtain a minimum set of closed-form equations

describing the system equilibrium.

According to the PVS approach, the configuration gj of

the collection of tubes is represented by the strain fields ξ1
and ξθj . In particular, the infinite dimensional strain fields are

discretized on a finite set of basis functions as follows.

ξ1(X) = B1(X)p1 + ξ , (19)

ξθj (X) = Bθj (X)pθj , (20)

where B1(X) ∈ R
6×n1 and Bθj (X) ∈ R

6×nθj are matrix

functions whose columns form the basis for the strain field

ξ1 and ξθj , respectively, while p1 ∈ R
n1 and pθj ∈ R

nθj are

the vectors of coordinates. Note that, due to the assumptions

made in section II, ξ is equal to [0 0 0 1 0 0], while the last

three rows of B1(X) and the last five rows of Bθj (X) are all

equal to zero. Then, the set of generalized coordinates become

q = (p1, pθ2 , . . . , pθN ), and the configuration gj(q) can be

reconstructed through the integration of equations (5), (9) and

the recursive formula given by (3).

The differential relation between configuration and general-

ized coordinates is obtained by replacing equations (19), (20)

in the velocity equations (7), (10), which yields

η1(X) =

[
Ad−1

g1

∫ X

0

Adg1
B1ds

]
ṗ1 = S1(X)ṗ1 , (21)

ηθj (X) =

[∫ X

0

Bθjds

]
ṗθj = Jθj (X)ṗθj , (22)

and, in turn, replacing the result in the velocity equation (11).

Finally, we obtain:

ηj(X) =




2∏

i=j

Ad−1
gθi

S1(X)


 ṗ1 +

j∑

i=2

Jθi(X)ṗθi

= Jj(X)ṗ1 +

j∑

i=2

Jθi(X)ṗθi .

(23)

Note that Jθi(X) is an analytical function that can be computed

offline given the choice of basis Bθi . The differential equation

(23) provides the required Jacobians to project the static equi-

librium (13) by d’Alembert’s principle. In particular, equation

(13) is projected with
∫ L

0
JT
j (·) dX and

∫ L

0
JT
θi
(·) dX for all

j and i. The results are then summed over all j from 1 to

N to obtain as much algebraic equilibrium equation as the

dimension of q. This procedure is shown in detail for the case

of two fully overlapping tubes in the next section. The general

case of multiple non-overlapping tubes with straight actuation,

as shown in Figure 3, will be illustrated in the following.

A. Single overlapping sections

Let us consider the case of two fully overlapping tubes.

Applying d’Alembert’s principle as described above yields:

2∑

j=1

∫ L

0

JT
j

(
F

′

ij
+ ad∗ξj

F ij +Fλj

)
dX = 0

∫ L

0

JT
θ2

(
F

′

i2
+ ad∗ξ2

F i2 +Fλ2

)
dX = 0.

(24)

Considering the form of the constraint force (16) and the

identity F
′

ij
+ ad∗ξj

F ij = Ad∗
g
−1

j

(
Ad∗gj

F ij

)′
, we get (note

that AdTg = Ad∗g−1 ):

2∑

j=1

∫ L

0

(∫ X

0

BT
1 AdTg1

ds

)
(
Adgj

F ij

)′
dX = 0

∫ L

0

(∫ X

0

BT
θ2
ds

)
Ad∗

g
−1

2

(Adg2
F i2)

′
dX = 0.

(25)

Finally, integrating by part we obtain:
∫ L

0

BT
1

(
F i1 +Ad∗gθ2

F i2

)
dX = 0

∫ L

0

BT
θ2
F i2dX =

∫ L

0

JT
θ2
ad∗ξ1

Ad∗gθ2
F i2dX ,

(26)

where we have used the strain equation (12), the identity

JT
θ2
ad∗ξθ2

F i2 = 0 and the boundary conditions (17), (18) at L.

Note that, since the generalized coordinates q are independent,

the unknown constraint forces Fλj
cancel out as expected.

Equation (26) can be solved numerically for the unknowns

p1 and pθ2 that appear in F ij , ξ1, and gθ2 through equations

(19), (20), (14), and the integration of (9). This integration

becomes simple in this case, since the rotation angle θ of (2)

can be obtained by:

θ2(X) = α2 + (Jθ2(X)pθ2)x , (27)

where ()x extracts the first rotational element of a vector

and α2 is the rotation of the tube imposed at the base by
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Fig. 2: Equilibrium configurations computed with the variable-strain model
for two concentric tubes with constant pre-curvature. The inner tube is rotated
by 180

◦. The result of the variable-strain model match well with the one off
the standard CTR model [21].

of (33). The resulting model takes the form of a nonlinear

algebraic system of equations that can be solved numerically

with the MATLAB© fsolve function. We chose a linear non-

homogeneous base for the strains involved in the first section,

i.e.: k1, and θ′2. Then, we have

B1 =




1 X 0 0 0 0
0 0 1 X 0 0
0 0 0 0 1 X
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



, Bθ2 =




1 X
0 0
0 0
0 0
0 0
0 0



,

(34)

For the second section, since it is unloaded, we use the reference

strain k
∗

2 as a basis for the strain k2, which gives p2 = 1.

TABLE I: Physical Properties of Tubes

Outer tube Inner tube

Young’s Modulus (GPa) 58 58

Shear Modulus (GPa) 21.5 21.5

Inner diameter (mm) 2.01 0

Outer diameter (mm) 2.39 1.6

Reference curvature (mm−1) 0.0099 0.0138

As illustrated in [21], the CTR has three equilibrium

configurations. The solution to which the solver converges

depends on the initial guess. Figure 2 illustrates the equilibrium

configurations obtained with the variable-strain model. Com-

paring the Cartesian tip positions with respect to the standard

model, we find a maximum error of 1.17mm, and a mean

error of 7.8∗10−1mm, which correspond to 0.58% and 0.39%

of the backbone length, respectively. Furthermore, the inner

tube’s rotation with respect to the outer tube at the end of the

overlapping section is equal to θ2(L1) = ±85.5◦, which is

only 1.3% bigger than the value reported in [21] (±84.4◦).

C. Complete CTR system

The CTR systems considered so far only include the tubes’

portions that follow the insertion orifice, assuming that the

rotation input α was applied there (see equation (27)). However,

a complete CTR system is also composed of a straight portion

that precedes the insertion point and terminates with an

actuation system responsible for applying the input angle and

insertion motion. To include this part, we place the 0 of the

system domain X at the innermost tube base. Then, we divide

the system domain into several sections corresponding to the

different discontinuities. Those include a change in the number

of overlapping tubes (as before), the insertion orifice, and,

eventually, a reference strain jump. For instance, the straight

portion is usually obtained by letting the tube be originally

straight at the proximal end and curved toward the distal end.

Finally, we constrain the straight portion by choosing only a

torsional strain basis for these proximal sections. Note that this

method applies to fully curved tubes as well, where external

constraints enforce the straightness condition.

For example, let us consider the two tubes CTR sys-

tem shown in Figure 3, where each tube has a straight

proximal reference strain of length Ljs as indicated. There

are five sections in this example indicated with an addi-

tional subscript in the following. Define D1, D2 to be the

distance between the insertion orifice and the outer and

inner tube base, respectively, and ∆D = D2 − D1. Then,

the equilibrium equations for the generalized coordinates

q =
(
pθ21

, p12 , pθ22
, p13 , pθ23

, p14 , pθ24
, p25

)
are given

by:

∫ ∆D

0

B
T
θ21

F i2dX = J
T
θ21

(∆D)

(
∫ L2s

D2

ad∗

ξ1
Ad∗

gθ2s
F i2dX+

∫ ∆D+L1

L2s

ad∗

ξ1
Ad∗

gθ2s
F i2dX

)

− − − − − − − − − − − − − − − − − − − −

∫ D2

∆D

B
T
12

(F i1 +F i2) dX = 0

∫ D2

∆D

B
T
θ22

F i2dX = J
T
θ22

(D2)

(
∫ L2s

D2

ad∗

ξ1
Ad∗

gθ2s
F i2dX+

∫ ∆D+L1

L2s

ad∗

ξ1
Ad∗

gθ2s
F i2dX

)

− − − − − − − − − − − − − − − − − − − −

∫ L2s

D2

B
T
13

(

F i1 +Ad∗

gθ2s
F i2

)

dX = 0

∫ L2s

D2

B
T
θ23

F i2dX =

∫ L2s

D2

J
T
θ23

ad∗

ξ1
Ad∗

gθ2s
F i2dX+

J
T
θ23

(L2s)

(

∫ L2

L2s

ad∗

ξ1
Ad∗

gθ2s
F i2dX

)

− − − − − − − − − − − − − − − − − − − −

∫ ∆D+L1

L2s

B
T
14

(

F i1 +Ad∗

gθ2s
F i2

)

dX = 0

∫ ∆D+L1

L2s

B
T
θ24

F i2dX =

∫ ∆D+L1

L2s

J
T
θ24

ad∗

ξ1
Ad∗

gθ2s
F i2dX

− − − − − − − − − − − − − − − − − − − −

∫ L2

∆D+L1

B
T
25
F i2dX = 0.

(35)

In developing the equilibrium equation (35), we have used the
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Observe the differences with equation (7) and (10) used so far.

To keep track of the potentially varying boundaries, in the

following, we replace the notation g(b) with g([a, b]).

A. Complete CTR system with actuation forces and torques

Let us consider, without loss of generality, two non-

overlapping concentric tubes constrained to be straight before

the insertion orifice, as shown in Figure 3. We removed the

reference strain discontinuity here for simplicity, reducing the

number of required sections to four. First, we define two

material abscissas respectively for the outer tube X1 = [0, L1],
and the inner tube X2 = [0, L2]. Overlapping cross-sections

are then related by:

X1(∆D) = X2 −∆D , (38)

where D1 and D2 are generalized coordinates now. In this

example, the full set of generalized coordinates is q =(
D1, D2, α1, α2, pθ21

, p12 , pθ22
, p13 , pθ23

, p24

)
.

Contrary to section III-C, we fix the spatial frame on the

insertion orifice. Then, the tubes’ sections’ kinematics can be

expressed with equation (32) after being pre-multiplied by a

translational homogeneous matrix gt, which depends on the

insertions D1 and D2. Let us focus on the overlapping section

immediately after the insertion orifice. The kinematics there

can be written as:

g1s(X1) = gt([D1, 0])g12([0, D1])g13([D1, X1])

g2s(X2) = gt([D1, 0])g12([0, D1])g13([D1, X1(∆D)])

gθ21 ([0,∆D])gθ22 ([∆D,D2])gθ23 ([D2, X2], X1(∆D)) ,
(39)

where, for the inner tube, X1 is given by (38). The last

term gθ23 ([D2, X2], X1(∆D)) indicates the relative rotation

between X1(∆D) of the outer tube and X2 of the inner tube

accumulated in the last section starting from D2.

Using the general formula (37) and the discretizations (19),

and (20), we obtain the differential kinematics of the section.

η1s(X1) = Ad−1
g13

(X1)

[
Bαα̇1 − ξ̄k1

(D+
1 )Ḋ1 + S12(D

+
1 )ṗ12

]

+ J13(X1)ṗ13

η2s(X2) = Ad−1
gθ2s

(X2)
η1s(X1) +Bαα̇2 + Jθ21

(∆D)ṗθ21
+

Jθ22
(D2)ṗθ22

+ Jθ23
(X2)ṗθ23

− ξ̄k2
(X2)∆Ḋ ,

(40)

where Bα = [1 0 0 0 0 0]T , and ξ̄k = [0 (k)y (k)z 1 0 0]T .

Note that the variable upper boundary of gθ23 is due to

X1(∆D). Thus, its variation has to be taken with X2 fixed.

Equation (40) provides the additional Jacobians correspond-

ing to the input motions. Similar equations can be obtained

for the other three sections. Projecting the differential equation

(13) by d’Alembert’s principle using these additional Jacobians

yields the equilibrium equations for the insertion and rotation

input forces τD1
, τD2

, and torques τα1
, τα2

.

τD1
= EJ1

[(

ξ
T
k1

(ξk1
− ξ

∗

k1
)
)

(

D
+
1

)

]

+ EJ2

[

1

2

(

ξ
T
k1
ξk1

)

(

D
+
2

)

+

∫ L1+∆D

D2

(

ξ
′

k1
+ adξ1 ξ̄k1

)T
Adgθ2s

ξ
∗

k2
dX+

(

ξ
T
k1

(

1

2
ξk1

−Adgθ2s
ξ
∗

k2

))

(

L1 +∆D
−
)

−

(

ξ
T
k2

(ξk2
− ξ

∗

k2
)
)

(

L1 +∆D
+
)

]

τD2
= EJ2

[(

ξ
T
k1

(

1

2
ξk1

−Adgθ2s
ξ
∗

k2

))

(

D
+
2

)

−

∫ L1+∆D

D2

(

ξ
′

k1
+ adξ1 ξ̄k1

)T
Adgθ2s

ξ
∗

k2
dX−

(

ξ
T
k1

(

1

2
ξk1

−Adgθ2s
ξ
∗

k2

))

(

L1 +∆D
−
)

+

(

ξ
T
k2

(ξk2
− ξ

∗

k2
)
)

(

L1 +∆D
+
)

]

τα1
= −τα2

τα2
= −B

T
α

∫ L1+∆D

D2

ad∗

ξ1
Ad∗

gθ2s
F i2dX

(41)

where ξk = [0 (k)y (k)z 0 0 0]T . To obtain (41) we have

also used the following boundary conditions.

ξ̄TF i1(0) = −τD1
, BT

αF i1(0) = −τα1

ξ̄TF i2(0) = −τD2
, BT

αF i2(0) = −τα2

(42)

According to the Newton law of conservation of momentum,

the input forces’ and torques’ sums have to be zero. It is an

excellent verification to check if equation (41) satisfies these

conditions. For the input torques, the third equation of (41)

ensures that the actuation torques are equal and opposite. For

what concerns the input forces, we have:

τD1
+ τD2

= EJ1
[(
ξTk1

(
ξk1

− ξ∗k1

)) (
D+

1

)]
+

EJ2

[(
ξTk1

(
ξk1

−Adgθ2s
ξ∗k2

)) (
D+

2

)]
,

τD1
+ τD2

=
(
ξTk1

(
F i1 +Ad∗gθ2s

F i2

)) (
D+

2

)
= 0

(43)

where the last identity, which states that the internal stress

is null on the cross-section immediately after the orifice, is

justified by the fact that no external forces act on the system

from that point onward. Thus, also the input forces are equal

and opposite as required.

B. Simulation tests

Some simulation tests are presented in this section to explore

the behavior of the actuation forces and torques. We consider

six configurations (three planar and three out-of-plane) of two

concentric tubes with physical properties as for Table I. In all

the cases, we consider linear non-homogeneous (or constant)

pre-curvatures. The linear and non-homogeneous pre-curvature

coefficients are varied to study the effect on the actuation forces

and torques. In the out-of-plane cases, the inner tube is rotated

by 90◦ with respect to the outer tube. Table II reports the exact

values of the non-homogeneous and linear coefficients and the

calculated values of the actuation inputs.

The following observations can be made. For case a), the

insertion motions D1 and D2 do not influence the actuation

inputs value. In case b), while the insertion of the inner tube D2
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TABLE II: Sliding-rod test results

Outer tube Inner tube Actuation

α2 constant linear constant linear τD2
τα2

[rad/m] [rad/m2] [rad/m] [rad/m2] [N] [Nm]

a) 0◦ 10 0 30 0 0 0

b) 0◦ 30 -80 30 0 3.65 0

c) 0◦ 30 0 50 80 6.71 0

d) 90◦ 20 0 10 0 0.28 0.118

e) 90◦ 20 40 10 0 -1.45 0.122

f) 90◦ 20 0 10 40 1.89 0.129

is still irrelevant, the force input absolute value |τD| increase

with the outer tube’s insertion and curvature. In c), the force

input absolute value |τD| increase with the insertion of the outer

tube and the retraction of the inner tube. For the out-of-plane

cases, in general, the absolute value |τD| increases with the

rotation angle α2 up to 90◦, and it is symmetric with respect

to clockwise or counterclockwise rotations. In particular, the

linear coefficients of e) and f) have an opposite contribution

to the actuation force τD2
. In case e), τD2

decreases with the

increment of the linear coefficient until it becomes negative,

as reported in Table II. In case f), the opposite applies.

C. Benefits of the sliding-rod PVS model for CTR

The sliding-rod PVS model presented here proposes a

growing (non-material) approach, which allows extending the

PVS model to include the tubes’ sliding motion without the

need of calculating the unknown interaction forces. This new

model may be used to control the CTR motion through the

actuation force and torques instead of the insertion and rotation

kinematics. Torque-controlled CTR can provide a new way to

enhance elastic stability and improve interaction forces’ control

at the end-effector, currently a major concern in the design of

CTR [23]. In the present form, the base force equations (41)

can also be used to improve the fast kinematic controllers of

[24], which is based on actuation load sensing.

V. CONCLUSIONS

In this paper, the recently proposed piecewise variable-

strain approach for modeling highly deformable rods has been

adjusted and applied to the case of concentric tube robots.

The performances of the new approach have been compared

with analytic, simulated, and experimental data available in

the literature. Furthermore, the PVS approach has been further

extended to include the tubes’ insertion motion for the first

time, which opens new unexplored possibilities for controlling

these kinds of systems.

Future works include experimental validations of the sliding-

rod PVS model, the addition of external forces, and the

extension to dynamics.

APPENDIX A

ADJOINT REPRESENTATIONS

Adg =

(
R 03×3

r̃R R

)
, Ad∗g =

(
R r̃R

03×3 R

)
,

adξ,η =

(
k̃, w̃ 03×3

ũ, ṽ k̃, w̃

)
,ad∗ξ,η =

(
k̃, w̃ ũ, ṽ

03×3 k̃, w̃

)
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