
Practical Random Access
to SLP-Compressed Texts

Travis Gagie1(B) , Tomohiro I2 , Giovanni Manzini3 , Gonzalo Navarro4 ,
Hiroshi Sakamoto2 , Louisa Seelbach Benkner5 ,

and Yoshimasa Takabatake2

1 Dalhousie University, Halifax, Canada
travis.gagie@dal.ca

2 Kyushu Institute of Technology, Fukuoka, Japan
3 University of Eastern Piedmont, Alessandria, Italy
4 CeBiB & DCC, University of Chile, Santiago, Chile

5 University of Siegen, Siegen, Germany

Abstract. Grammar-based compression is a popular and powerful app-
roach to compressing repetitive texts but until recently its relatively
poor time-space trade-offs during real-life construction made it imprac-
tical for truly massive datasets such as genomic databases. In a recent
paper (SPIRE 2019) we showed how simple pre-processing can dramati-
cally improve those trade-offs, and in this paper we turn our attention to
one of the features that make grammar-based compression so attractive:
the possibility of supporting fast random access. This is an essential
primitive in many algorithms that process grammar-compressed texts
without decompressing them and so many theoretical bounds have been
published about it, but experimentation has lagged behind. We give a
new encoding of grammars that is about as small as the practical state
of the art (Maruyama et al., SPIRE 2013) but with significantly faster
queries.

1 Background

It is widely acknowledged that we now have more data than we can properly
handle, and one possible solution is to compress it in such a way that we can
later process it quickly without decompressing it. Since many of our largest
and most important datasets—such as genomic databases—are highly repeti-
tive texts, grammar-based schemes offer excellent compression ratios while still
admitting algorithms for many natural problems that run in times polynomial
in the sizes of the compressed representations.

Probably the most popular such schemes are those producing straight-line
programs (SLPs), which are context-free grammars in Chomsky normal form
that each generate exactly one string; we refer the reader to Lohrey’s [23] and
Navarro’s [25] surveys for more details of SLPs, SLP algorithmics, SLP-based
data structures, and related techniques. Since many algorithms that process
SLPs depend on random access to the compressed texts as a primitive operation,
c© Springer Nature Switzerland AG 2020
C. Boucher and S. V. Thankachan (Eds.): SPIRE 2020, LNCS 12303, pp. 221–231, 2020.
https://doi.org/10.1007/978-3-030-59212-7_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59212-7_16&domain=pdf
http://orcid.org/0000-0003-3689-327X
http://orcid.org/0000-0001-9106-6192
http://orcid.org/0000-0002-5047-0196
http://orcid.org/0000-0002-2286-741X
http://orcid.org/0000-0002-3470-9187
http://orcid.org/0000-0002-3204-3801
http://orcid.org/0000-0002-4566-8974
https://doi.org/10.1007/978-3-030-59212-7_16

222 T. Gagie et al.

there have been several important theoretical papers written about supporting
it, which we review in Appendix A.

Unfortunately, there have not been as many breakthroughs about supporting
random access to SLP-compressed texts in practice. Block trees [3] are practical,
and resemble SLPs in many ways with similar theoretical bounds, but they
are not SLPs nor even context-free grammars and so researchers studying SLP
algorithmics may wish to avoid them. Variant call format [8] and relative Lempel-
Ziv [21] are also practical but even less like SLPs.

In the real world, users still rely on Larsson and Moffat’s [22] RePair algo-
rithm, even though the SLPs it produces are not optimal in the worst case and it
is not known if they are even always close to optimal.1 Similarly, users who need
random access to SLP-compressed strings often just augment the SLPs produced
by RePair and näıvely encode them even though, as far as we are aware, there
are no good bounds on their heights and thus no good bounds on the access
times (unless we modify the SLPs at the risk of making them impractical). The
best encoding we know of is due to Maruyama et al. [24], which is significantly
smaller than the näıve encoding but also significantly slower.

Practitioners’ main concern about RePair seems to be the large constants in
its time-space trade-offs for construction. For example, Navarro’s implementation
of RePair2 compresses a 3.0 GB file containing copies of human chromosome 19
from 50 distinct genomes into 23 MB and a 5.9 GB file containing copies from
100 genomes into 24 MB, but on a commodity computer it takes 84 min and 11
GB of workspace for the former and 11 hours and 18 GB of workspace for the
latter [13]. Although several alternatives have been proposed [4,11,16,26,30],
until recently the most practical option for files of more than a few gigabytes
was SOLCA [33], which compresses the 3.0 GB file into 40 MB using 11 min and
310 MB of workspace, and the 5.9 GB file into 45 MB using 22 min and 310 MB of
workspace, respectively. In addition to achieving noticeably worse compression
than RePair, even SOLCA took over 3.6 h to compress a 59 GB file containing
copies of chromosome 19 from 1000 genomes, although it used only 783 MB of
workspace and produced an SLP of only 129 MB.

In a recent paper [13] we showed how simple pre-processing with context-
triggered piecewise hashing (CTPH) can dramatically improve the trade-offs for
both RePair and SOLCA. For CTPH, we run a relatively short sliding win-
dow over the text and insert a phrase break whenever the Karp-Rabin hash
of the window’s contents is 0 modulo some parameter p.3 Although it works
poorly in the worst case even on repetitive texts—for example, the string an is
either parsed into a single phrase or into nearly n of them—in practice on most
1 RePair is probably most commonly used in natural-language processing, where it is

viewed as an implementation of Gage’s [12] byte-pair encoding and used for word
segmentation in neural machine translation [31]; we refer readers to Gallé’s [14]
recent survey for more discussion.

2 https://users.dcc.uchile.cl/∼gnavarro/software/repair.tgz.
3 We realized after [13] went to press that the worst-case approximation ratios in

Theorems 1 and 2 should be multiplied by the length of the sliding window, but this
does not affect our approach’s correctness or practicality.

https://users.dcc.uchile.cl/~gnavarro/software/repair.tgz

Practical Random Access to SLP-Compressed Texts 223

repetitive texts CTPH produces a dictionary of distinct phrases and a parse that
are, together, much smaller than the text. We note in passing the similarity of
the high-level ideas behind prefix-free parsing and string synchronizing sets [19],
which have good worst-case bounds and seem practical for small files [9] but may
not scale as easily to tens or hundreds of gigabytes.

We first experimented with CTPH for building Burrows-Wheeler Transforms
(BWT) for massive texts [6,20], because we can quickly build the run-length
compressed BWT from the dictionary and the parse in workspace bounded in
terms of their combined size. It then occurred to us that, if we build SLPs for the
dictionary and the parse, with the SLP for the dictionary restricted such that
each phrase is the complete expansion of some non-terminal, then we can easily
combine those SLPs to obtain an SLP for the text: we replace each terminal
in the SLP for the parse—which is a phrase identifier—by the non-terminal in
the SLP for the dictionary whose expansion is that phrase. For example, on the
same commodity computer, applying RePair to the dictionary and parse of the
59 GB file containing 1000 copies of chromosome 19, compressed it by a factor
of 1000 in 21 min using 7.0 GB of workspace, and applying SOLCA compressed
it by a factor of over 400 in 44 min using only 4.6 MB of workspace.

Now that grammar-based compression itself is reasonably scalable, it is time
to turn our attention to making SLP algorithmics practical, and an obvious
starting place is improving the practicality of random access.

2 Design of the New Grammar Encoding

Random access to an SLP-compressed text works by descending the parse tree
and computing the expansion sizes of the non-terminals we visit. In particular,
at each non-terminal, we compute the expansion sizes of its children, in order to
know to which we should descend. The main idea of our new encoding is that
symbols’ expansion sizes can tell us a lot about their identities, so we should
tightly integrate how we encode these two kinds of information.

If the non-terminals (excluding the start symbol, unless it expands to two
symbols in one step) in an SLP have d distinct expansion sizes, then we build
a minimal perfect hash function (MPHF) h that maps those sizes bijectively to
the numbers in [0, d− 1]. In this paper we use Esposito, Graf and Vigna’s recent
RecSplit [10] MPHF implementation, which occupies only about 1.56d bits. We
note that we cannot recover the d sizes from the MPHF—given any other size, it
will still return a hash value in the range [0, d − 1]—so in our algorithm we will
be careful to query the MPHF only with numbers we know are non-terminals’
expansion sizes in our SLP.

We group the non-terminals by their expansion sizes; sort the groups by the
hash values of the expansion sizes of the non-terminals in them; and replace each
non-terminal by a triple consisting of the expansion size of its left child, and the
offsets of its children in their groups (or, if they are terminals, their offsets in
the alphabet). If the start symbol expands to more than one symbol in one step,
then we store a bitvector indicating the lengths of the expansions of the symbols

224 T. Gagie et al.

V

A T

G

W

Z

X

T A

V

A T

G

W A

V

A T

C

Y $

V

A T

G

W

Z

X

T A

A

V

A T

G

W

V

A T

C

Y

S S → ZWAY$ZYAW
Z → WX
Y → CV
X → TA
W → GV
V → AT

Fig. 1. An SLP (right) for GATTAGATACAT$GATTACATAGAT and its parse tree
(left).

it expands to in one step, and we store the offset of each of those symbols in its
group (or its offset in the alphabet if it is a terminal).

The random access to the input text T works as follows. Suppose we know
T [i] is the jth character in the expansion of the kth non-terminal, say X, in the
group of non-terminals with expansion size �. Using some small auxiliary data
structures, we can

1. look up X’s left child’s expansion size �′;
2. compute X’s right child’s expansion size �′′ = � − �′;
3. look up X’s left child’s offset k′ in the group of non-terminals with expansion

size �′ (or its offset in the alphabet if �′ = 1 so it is a terminal);
4. look up X’s right child’s offset k′′ in the group of non-terminals with expan-

sion size �′′ (or its offset in the alphabet if �′′ = 1 so it is a terminal);
5. if j ≤ �′ then set j′ = j and recursively find the j′th character in the expansion

of the k′th non-terminal in the group of non-terminals with expansion size �′

(or just return the character if it is a terminal);
6. otherwise, j > �′ and we set j′′ = j−�′ and recursively find the j′′th character

in the expansion of the k′′th non-terminal in the group of non-terminals with
expansion size �′′ (or just return the character if it is a terminal).

Since T [i] is the (i + 1)st character in the expansion of the only non-terminal
with expansion size n, we can descend down the parse tree in time proportional
to its height. If we push the offsets and expansion sizes on a stack as we do
so, then we can traverse the parse tree starting from the (i + 1)st leaf and thus
extract subsequent characters of T in constant amortized time per character.

Encoding Example. Consider the SLP for GATTAGATACAT$GATTACATA-
GAT that is shown with its parse tree in Fig. 1. The 3 distinct sizes of the non-
terminals’ expansions (excluding S) are 5 (for Z), 3 (for W and Y) and 2 (for
V and X). If we use an MPHF h with h(5) = 1, h(3) = 2 and h(2) = 0, then
we can sort the non-terminals into the order V, X; Z; W, Y, with semicolons
showing the divisions between the groups.

Assuming the alphabet is {$,A,C,G,T}, we replace the non-terminals by
the triples (1, 1, 4), (1, 4, 1); (3, 0, 1); (1, 3, 0), (1, 2, 0), with the semicolons again
showing the divisions between the groups. For example non-terminal V is rep-
resented by (1, 1, 4) since its left child, the terminal A, has expansion size 1,
and its offset among the terminals is 1, while the second child, the terminal T,
has offset 4. Finally, we encode the rule involving the initial symbol S as the

Practical Random Access to SLP-Compressed Texts 225

bitvector 0000100110011000010011001, which is the concatenation of the unary
representations of the expansion sizes of the symbols on the rule’s right-hand
side, and the sequence 0, 0, 1, 1, 0, 0, 1, 1, 0 giving the offset of each symbol in its
group.

To extract the 17th character of the text, we start by performing a rank
query and two select queries on the bitvector for S, which together tell us that
the 17th character is the 4th character in the expansion of the 6th symbol on
the right-hand side of the rule for S, and that symbol expands into 5 characters.
Checking the sequence for S, we see that the 6th symbol on the right-hand side of
the rule for S has rank 0 among all the non-terminals that expand to 5 characters
(note there is only one such non-terminal, Z).

We compute h(5) = 1 and check the triple with rank 0 in the group with rank
1—i.e., (3, 0, 1)—which tells us that Z’s left child expands into 3 characters, so
its right child X expands into 2 characters and the 4th character in the expansion
of Z is the 1st character in the expansion of X, and that X has rank 1 among
the non-terminals that expand into 2 characters. Note that we never actually
learn or use the identifiers Z or X in the actual data structure: we use them here
just to ease the presentation. We compute h(2) = 0 and check the triple with
rank 1 in the group with rank 0—i.e., (1, 4, 1)—which tells us that X’s left child
expands into 1 character, so it is a terminal, and it has rank 4 in the alphabet,
meaning it is a T.

Admittedly, for this small example we do not save space compared to the
näıve encoding, but our experiments show that it pays to carefully integrate our
encodings of the symbols in the parse and its shape.

3 Experiments

We compared our encoding with the näıve encoding and the state-of-the-art
encoding by Maruyama et al. [24]; we refer to these as OURS, NAIVE and MTSS,
respectively. For the näıve encoding of an SLP for a string of length n with r
rules, we store the following information in plain arrays:

1. the right-hand sides of rules in 2r lg(r + σ) bits,
2. the expansion length for every non-terminal in r lg n bits.

To support random access to the triples in our encoding and to store the bitvec-
tor for the start rule, we used SD bitvectors from the SDSL 2.0 library4. Our
experiments ran on a Xeon E5-1650V3 (6core/12thread 3.5 GHz) machine with
32 GB memory.

In this section we describe only our main experimental results; additional
results can be found in AppendixB. For our main experiments, we used the
same 59 GB file containing 1000 copies of chromosome 19 that we used in our
previous work [13], downloaded from the 1000 Genomes Project [34]; the effective
alphabet size was 5. When we compress the dictionary and parse with Navarro’s

4 https://github.com/simongog/sdsl-lite.

https://github.com/simongog/sdsl-lite

226 T. Gagie et al.

Table 1. Extraction times in microseconds with the three encodings and various sub-
string length.

substring length NAIVE (217 MB) MTSS (86 MB) OURS (81 MB)

1 1.8 25.9 6.9

10 2.2 29.6 9.3

100 5.2 63.5 31.7

1000 31.6 394.6 249.6

implementation of RePair combined with CTPH, as described in Sect. 1, the
resulting 59 MB SLP contains almost 13 million rules with almost 120 000 dis-
tinct expansion lengths and almost 4.5 million symbols on the right-hand side
of the start rule; the height of the parse tree is 43.

Table 1 shows our main experimental results: for each of the given substring
lengths and each of the encodings, we extracted that many consecutive charac-
ters from 10000 pseudo-randomly chosen positions in the compressed file and
averaged the extraction times. The näıve encoding is obviously the largest but
also the fastest: it takes 217 MB, access to a single character taking 1.8µs, and
access to ten consecutive characters taking 2.2µs. Maruyama et al.’s encoding
takes 86 MB—much closer to the size of the unaugmented SLP—but access
to one character takes 26µs and access to ten takes 30µs. We encode the aug-
mented grammar in 81 MB—even less than Maruyama et al.—with access to one
character taking 6.9µs and access to ten taking 9.3µs. Although our encoding
is still significantly slower than the näıve encoding, it is only a little more than
a third of the size. The size difference is particularly pronounced if we compare
how much larger the näıve encoding and ours are than the unaugmented SLP:
217/59 ≈ 3.7 versus 81/59 ≈ 1.4. Building our encoding is also reasonably fast,
taking only 18 seconds with the source code we have made publicly available at
https://github.com/itomomoti/ShapedSlp.

For some applications, we are interested in processing many queries at once,
which offers us the opportunity to exploit parallelism. Figure 2 shows the average
speedup using up to 8 threads. Since the scale makes it difficult to discern the
height of the rightmost points, we note that NAIVE, MTSS and OURS with 8
threads use 0.38, 6.56 and 1.41µs for length 1; 0.41, 7.01 and 1.86 for length 10;
and 0.78, 13.47 and 7.07 for length 100.

Acknowledgements. TG was partly funded by NSERC RGPIN-2020-07185, Canada,
and Basal Funds FB0001, Chile. TI, HS and YT were partly funded by JSPS KAKENHI
grants 19K20213, 17H01791 and 18K18111, respectively. GM was partly funded by
MIUR-PRIN grant 2017WR7SHH. GN was partly funded by Basal Funds FB0001 and
Fondecyt grant 1-200038, Chile. LSB was partly funded by DFG project LO 748/10-2
(QUANT-KOMP) and received travel funds from the EU’s Horizon 2020 MSC RISE
program (grant 690941).

https://github.com/itomomoti/ShapedSlp

Practical Random Access to SLP-Compressed Texts 227

A Theoretical Bounds

Charikar et al. [7] and Rytter [28,29] independently showed how, given a text T of
length n over an alphabet of size σ whose smallest SLP has g∗ rules, in O(n log σ)
time we can build an SLP for T with O(g∗ log(n/g∗)) rules and height O(log n).
We can augment the non-terminals of this SLP with the sizes of their expansions
to obtain an O(g∗ log(n/g∗))-space data structure supporting access to any �
consecutive characters of T in O(log n+�) time. Bille et al. [5] showed how we can
take any SLP for T with g rules, regardless of height, and build a data structure
of size O(g) (measured in words of bit length log n) that also supports access
to any � consecutive characters in O(log n + �) time, while Verbin and Yu [35]
proved we generally cannot support O(log1−ε n)-time random access to T with a
poly(g)-space data structure. Belazzougui et al. [2] showed how we can support
O(log n/ log log n)-time random access to T with an O(g logε n)-space grammar.
Prezza [27] sidestepped Verbin and Yu’s lower bound to obtain constant-time
random access to T with an O(gnε)-space grammar (after Belazzougui et al. [3]
achieved that tradeoff with block trees). Recently, Ganardi, Jeż and Lohrey [15]
showed how we can turn any SLP for T with g rules into an SLP for T with
O(g) rules and height O(log n), thus simplifying many previous proofs.

Regarding SLPs produced with RePair, Charikar et al. [7] showed they can
be an Ω(log1/2 n) factor larger than the smallest possible SLPs, and Hucke, Jeż
and Lohrey [1,18] improved that lower bound to Ω(log n/ log log n). Charikar
et al. showed they are always within an O((n/ log n)2/3)-factor of the smallest
SLPs and this is still the best upper bound known, although Hucke [17] showed
they are within a log2 3-factor for unary strings.

B Additional experimental results

We are mainly interested in compressing human DNA but we performed experi-
ments with other datasets to check our approach’s robustness: 11264 Salmonella
genomes (salx11264) from the GenomeTrakr project [32], and two repetitive files
from the Pizza & Chili corpus5 (einstein.en.txt and kernel).

As can be seen from Tables 2 and 3 below and comparing Fig. 2 to Fig. 3, our
results are not as good for the other datasets as for chr19x1000 but our general
conclusions are supported: MTSS and OURS are about the same size and several
times smaller than NAIVE; NAIVE is by far the fastest to build, with MTSS
slower by almost an order of magnitude and OURS slower even than that by a
factor of 4 to 7; NAIVE is also the fastest to answer queries, followed by OURS
and then MTSS. Since the scale again makes it difficult to discern the height of
the rightmost points, we note that NAIVE, MTSS and OURS with 8 threads use
0.53, 9.34 and 3.76µs for salx11264; 0.15, 6.16 and 1.84 for einstein.en.txt; and
0.53, 22.18 and 12.84 for kernel.

5 http://pizzachili.dcc.uchile.cl/.

http://pizzachili.dcc.uchile.cl/

228 T. Gagie et al.

Fig. 2. Average time to answer an expansion query using multiple threads.

Table 2. Statistics of our datasets: name, alphabet size, length (in bytes), number of
symbols on the right-hand side of the start rule, number of rules, number of distinct
expansion lengths, and height of the grammar.

dataset σ n s r d h

chr19x1000 5 59125115010 4495360 12898128 118889 43

salx11264 4 57033515255 32579379 199121788 332808 18658

einstein.en.txt 139 467626544 62473 100611 17343 1353

kernel 160 257961616 69427 1057914 48453 5820

Table 3. Sizes of the encodings and construction times.

Dataset Size (bytes) Construction time (ms)

NAIVE MTSS OURS NAIVE MTSS OURS

chr19x1000 217418909
(0.37%)

86362255
(0.15%)

80629662
(0.14%)

524 4576 17649

salx11264 2896264885
(5.1%)

799395665
(1.4%)

956575138
(1.7%)

5457 53147 370175

einstein.en.txt 1896040
(0.41%)

674979
(0.14%)

631698
(0.14%)

3 22 92

kernel 12964629
(5.0%)

4473636
(1.7%)

5044020
(2.0%)

30 158 866

Fig. 3. Average time to answer an expansion query with expansion length 10 using
multiple threads.

Practical Random Access to SLP-Compressed Texts 229

References

1. Bannai, H., et al.: The smallest grammar problem revisited. CoRR, abs/1908.06428
(2019)

2. Belazzougui, D., Cording, P.H., Puglisi, S.J., Tabei, Y.: Access, rank, and select in
grammar-compressed strings. In: Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS,
vol. 9294, pp. 142–154. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48350-3 13

3. Belazzougui, D., et al.: Queries on LZ-bounded encodings. In: 2015 Data Compres-
sion Conference, pp. 83–92. IEEE (2015)

4. Bille, P., Li Gørtz, I., Prezza, N.: Space-efficient re-pair compression. In: 2017 Data
Compression Conference (DCC), pp. 171–180. IEEE (2017)

5. Bille, P., Landau, G.M., Raman, R., Sadakane, K., Satti, S.R., Weimann, O.: Ran-
dom access to grammar-compressed strings and trees. SIAM J. Comput. 44(3),
513–539 (2015)

6. Boucher, C., Gagie, T., Kuhnle, A., Langmead, B., Manzini, G., Mun, T.: Prefix-
free parsing for building big BWTs. Algorithms Mol. Biol. 14(1), 13 (2019).
https://doi.org/10.1186/s13015-019-0148-5

7. Charikar, M., et al.: The smallest grammar problem. IEEE Trans. Inf. Theory
51(7), 2554–2576 (2005)

8. Danecek, P., et al.: The variant call format and VCFtools. Bioinformatics 27(15),
2156–2158 (2011)

9. Dinklage, P., Fischer, J., Herlez, A., Kociumaka, T., Kurpicz, F.: Practical perfor-
mance of space efficient data structures for longest common extensions. In: Pro-
ceedings of the Twenty-Eighth European Symposium on Algorithms (ESA) (2020,
to appear)

10. Esposito, E., Graf, T.M., Vigna, S.: RecSplit: minimal perfect hashing via recur-
sive splitting. In: 2020 Proceedings of the Twenty-Second Workshop on Algorithm
Engineering and Experiments (ALENEX), pp. 175–185. SIAM (2020)

11. Furuya, I., Takagi, T., Nakashima, Y., Inenaga, S., Bannai, H., Kida, T.: MR-
RePair: grammar compression based on maximal repeats. In: Data Compression
Conference. DCC 2019, Snowbird, UT, USA, 26–29 March 2019, pp. 508–517 (2019)

12. Gage, P.: A new algorithm for data compression. C Users J. 12(2), 23–38 (1994)
13. Gagie, T., I, T., Manzini, G., Navarro, G., Sakamoto, H., Takabatake, Y.: Rpair:

rescaling RePair with Rsync. In: Brisaboa, N.R., Puglisi, S.J. (eds.) SPIRE 2019.
LNCS, vol. 11811, pp. 35–44. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-32686-9 3

14. Gallé, M.: Investigating the effectiveness of BPE: the power of shorter sequences.
In: Inui, K., Jiang, J., Ng, V., Wan, X. (eds.) Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong
Kong, China, 3–7 November 2019, pp. 1375–1381. Association for Computational
Linguistics (2019)

15. Ganardi, M., Jeż, A., Lohrey, M.: Balancing straight-line programs. In: 60th IEEE
Annual Symposium on Foundations of Computer Science. FOCS 2019, Baltimore,
Maryland, USA, 9–12 November 2019, pp. 1169–1183 (2019)

16. Gańczorz, M., Jeż, A.: Improvements on re-pair grammar compressor. In: 2017
Data Compression Conference (DCC), pp. 181–190. IEEE (2017)

17. Hucke, D.: Approximation ratios of RePair, LongestMatch and Greedy on unary
strings. In: Brisaboa, N.R., Puglisi, S.J. (eds.) SPIRE 2019. LNCS, vol. 11811, pp.
3–15. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32686-9 1

https://doi.org/10.1007/978-3-662-48350-3_13
https://doi.org/10.1007/978-3-662-48350-3_13
https://doi.org/10.1186/s13015-019-0148-5
https://doi.org/10.1007/978-3-030-32686-9_3
https://doi.org/10.1007/978-3-030-32686-9_3
https://doi.org/10.1007/978-3-030-32686-9_1

230 T. Gagie et al.

18. Hucke, D., Jeż, A., Lohrey, M.: Approximation ratio of RePair. CoRR,
abs/1703.06061 (2017)

19. Kempa, D., Kociumaka, T.: String synchronizing sets: sublinear-time BWT con-
struction and optimal LCE data structure. In: Proceedings of the 51st Annual
ACM SIGACT Symposium on Theory of Computing, pp. 756–767 (2019)

20. Kuhnle, A., Mun, T., Boucher, C., Gagie, T., Langmead, B., Manzini, G.: Efficient
construction of a complete index for pan-genomics read alignment. In: Cowen, L.J.
(ed.) RECOMB 2019. LNCS, vol. 11467, pp. 158–173. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17083-7 10

21. Kuruppu, S., Puglisi, S.J., Zobel, J.: Relative Lempel-Ziv compression of genomes
for large-scale storage and retrieval. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010.
LNCS, vol. 6393, pp. 201–206. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-16321-0 20

22. Jesper Larsson, N., Moffat, A.: Offline dictionary-based compression. In: Data
Compression Conference. DCC 1999, Snowbird, Utah, USA, 29–31 March 1999,
pp. 296–305 (1999)

23. Lohrey, M.: Algorithmics on SLP-compressed strings: a survey. Groups Complex.
Cryptol. 4(2), 241–299 (2012)

24. Maruyama, S., Tabei, Y., Sakamoto, H., Sadakane, K.: Fully-online grammar com-
pression. In: Kurland, O., Lewenstein, M., Porat, E. (eds.) SPIRE 2013. LNCS,
vol. 8214, pp. 218–229. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-
02432-5 25

25. Navarro, G.: Indexing highly repetitive string collections. CoRR, abs/2004.02781
(2020)

26. Ohno, T., Goto, K., Takabatake, Y., I, T., Sakamoto, H.: LZ-ABT: a practical
algorithm for α-balanced grammar compression. In: Iliopoulos, C., Leong, H.W.,
Sung, W.-K. (eds.) IWOCA 2018. LNCS, vol. 10979, pp. 323–335. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-94667-2 27

27. Prezza, N.: Optimal rank and select queries on dictionary-compressed text. In:
Pisanti, N., Pissis, S.P. (eds.) 30th Annual Symposium on Combinatorial Pattern
Matching. CPM 2019, volume 128 of LIPIcs, Pisa, Italy, 18–20 June 2019, pp.
4:1–4:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)

28. Rytter, W.: Application of Lempel-Ziv factorization to the approximation of
grammar-based compression. Theoret. Comput. Sci. 302(1–3), 211–222 (2003)

29. Rytter, W.: Grammar compression, LZ-encodings, and string algorithms with
implicit input. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP
2004. LNCS, vol. 3142, pp. 15–27. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-27836-8 5

30. Sakai, K., Ohno, T., Goto, K., Takabatake, Y., I, T., Sakamoto, H.: RePair in
compressed space and time. In: 2019 Data Compression Conference (DCC), pp.
518–527. IEEE (2019)

31. Sennrich, R., Haddow, B., Birch, A.: Neural machine translation of rare words with
subword units. In: Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics. ACL 2016. Volume 1: Long Papers, Berlin, Germany,
7–12 August 2016. The Association for Computer Linguistics (2016)

32. Stevens, E.L., et al.: The public health impact of a publically available, environ-
mental database of microbial genomes. Front. Microbiol. 8, 808 (2017)

33. Takabatake, Y., I, T., Sakamoto, H.: A space-optimal grammar compression. In:
25th Annual European Symposium on Algorithms. ESA 2017, Vienna, Austria,
4–6 September 2017, pp. 67:1–67:15 (2017)

https://doi.org/10.1007/978-3-030-17083-7_10
https://doi.org/10.1007/978-3-642-16321-0_20
https://doi.org/10.1007/978-3-642-16321-0_20
https://doi.org/10.1007/978-3-319-02432-5_25
https://doi.org/10.1007/978-3-319-02432-5_25
https://doi.org/10.1007/978-3-319-94667-2_27
https://doi.org/10.1007/978-3-540-27836-8_5
https://doi.org/10.1007/978-3-540-27836-8_5

Practical Random Access to SLP-Compressed Texts 231

34. The 1000 Genomes Project Consortium: A global reference for human genetic
variation. Nature 526, 68–74 (2015)

35. Verbin, E., Yu, W.: Data structure lower bounds on random access to grammar-
compressed strings. In: Fischer, J., Sanders, P. (eds.) CPM 2013. LNCS, vol.
7922, pp. 247–258. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38905-4 24

https://doi.org/10.1007/978-3-642-38905-4_24
https://doi.org/10.1007/978-3-642-38905-4_24

	Practical Random Access to SLP-Compressed Texts
	1 Background
	2 Design of the New Grammar Encoding
	3 Experiments
	A Theoretical Bounds
	B Additional experimental results
	References

