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ABSTRACT

Thermal plasma of solar atmosphere includes a wide range of temperatures. This plasma is often
quantified, both in observations and models, by a differential emission measure (DEM). DEM is a
distribution of the thermal electron density square over temperature. In observations, the DEM is
computed along a line of sight, while in the modeling—over an elementary volume element (voxel).
This description of the multi-thermal plasma is convenient and widely used in the analysis and modeling
of extreme ultraviolet emission (EUV), which has an optically thin character. However, there is no
corresponding treatment in the radio domain, where optical depth of emission can be large, more than
one emission mechanism are involved, and plasma effects are important. Here, we extend the theory of
the thermal gyroresonance and free-free radio emissions in the classical mono-temperature Maxwellian
plasma to the case of a multi-temperature plasma. The free-free component is computed using the
DEM and temperature-dependent ionization states of coronal ions, contributions from collisions of
electrons with neutral atoms, exact Gaunt factor, and the magnetic field effect. For the gyroresonant
component, another measure of the multi-temperature plasma is used which describes the distribution
of the thermal electron density over temperature. We give representative examples demonstrating
important changes in the emission intensity and polarization due to considered effects. The theory is
implemented in available computer code.

Keywords: Active sun (18), Solar radio emission (1522), Solar coronal radio emission (1993),
Solar magnetic fields (1503), Solar abundances (1474), Quiet sun (1322)

1. INTRODUCTION

Quiescent, slowly varying radio emission from the
Sun is formed by two distinct emission processes:
free-free emission (bremsstrahlung) due to collisions
of thermal electrons with plasma ions or atoms and
gyro emission due to thermal electron gyration in the
ambient magnetic field. Theoretically, these mecha-
nisms are well understood at both classical and quan-
tum levels: emission from a plasma with given elec-
tron density n., temperature 7', chemical composi-
tion, and magnetic field B can be computed pre-
cisely.

However, application of the theory to numerical
modeling of a realistic, nonuniform solar or stellar
atmosphere requires that the volume resolution ele-
ments (voxels) represent uniform volume(s) with sin-
gle, well-defined values of n., T, and B. In principle,
this can be achieved by devising very-high-resolution
models with a very small voxel size, which is the case

of some full-fledged MHD models (Gudiksen et al.
2011; Carlsson et al. 2016). Such generic models are
limited to a relatively small region of the atmosphere
and cannot encompass the entire active region or a
combination of them.

In contrast, data-constrained or data-driven mod-
els have typically much lower spatial resolution; in
particular, because the input data used to build
such models are lower resolution. In such cases,
each individual voxel represents a nonuniform vol-
ume that contains components with different tem-
peratures and densities distributed over the voxel.
Having these distributions we can compute their
moments to derive averaged values—mean density,
mean squared density, and mean temperature in the
voxel. However, in a general case, emission computed
using those averaged values will differ from emis-
sion computed from the truly nonuniform volume.
This is broadly recognized in the analysis and mod-
eling of the optically thin extreme ultraviolet (EUV)
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and soft X-ray (SXR) data sensitive to the square
of the electron number density—emission measure
(EM), where explicit account of the plasma nonuni-
formity is crucial. This nonuniformity is typically ac-
counted in the form of the differential emission mea-
sure (DEM)—a distribution of the plasma over the
temperature (see below for the quantitative view).

No similar framework is available to compute radio
emission, although it is demanded for analysis and
modeling the currently available data and needed to
fairly combine SXR, EUV, and radio models. Ex-
tending the theory of the free-free and gyro emission
from a uniform to a nonuniform voxel in the radio
domain is challenging because they involve both opti-
cally thin and thick regimes unlike EUV/SXR, emis-
sions, which are optically thin. In addition, while
the free-free emission (mainly) depends on the EM
(square of the density)—same as EUV and SXR, the
gyro emission depends on the density itself. Thus,
an additional measure, which we call the differen-
tial density metrics (DDM), is needed to compute
it. Free-free emission also requires some additional
information about the plasma ionization because col-
lisions between electrons and ions depend on the ion
charge. Thus, precise computation of the free-free
emission from a solar or stellar atmosphere requires
accurate information about the heavy ions and simi-
larly accurate treatment of other factors affecting the
free-free emission—the Gaunt factor (Coulomb log-
arithm) and the factor accounting for the ambient
magnetic field effect. In this paper we develop the
theory that accounts for all these mentioned effects
in a multi-thermal plasma of a solar or stellar atmo-
sphere and implement this theory in the computer
codes that solve for the radiation transfer numeri-
cally.

2. RADIATION TRANSFER IN A
MULTI-TEMPERATURE PLASMA

The equation of the radiation transfer without
scattering has the form:

o
D - ngien. )
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where J7 (r,t) [ergem™? s~ Hz ' Sr™'] is the radi-
ation intensity of either ordinary (O; o = 1) or ex-
traordinary (X; o = —1) wave mode for a given ra-
diation direction, j§(r,t) and 57(r,t) are the cor-
responding emissivity and absorption coefficient for
this direction, % = % + ”Zair is the full derivative
over time, v = dw/0k is the group velocity differ-
ent for the eigen-modes (Fleishman et al. 2002). A

numerical solution of this equation relies on repre-
sentation of the line of sight (LOS) as a sequence of
(quasi-)uniform volume elements (voxels). The so-
lution of the radiation transfer equation through a
single voxel is

jo’
Tfn = Tfn-1exp(=77) + L (1= exp(=77).
n

[erg em ™25~ Hz 1Sr~1], (2)

where J7,_ and Jf, are the emission intensities
entering and exiting voxel #n, 77 = »JAr is the
optical depth of the voxel at a given frequency, and
Ar is the voxel length along the LOS. The final re-
sult of the transfer of the radiation through a LOS
composed of N voxels, J7, is obtained with sequen-
tial use of Eq.(2) N times starting from n = 1 and
ending at n = N.

For practical applications we convert the radia-
tion intensity J¢ to two other widely used physi-
cal measures—the brightness temperature 7'g of the
o-mode emission

2
j; = 2f—2kBTg [erg Cmizsileilsril]v (3)
C

such as
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and the radio flux from a source at the Sun lo-
cated at R=1AU=1.496 x 103 cm from the observer
expressed in solar flux units (sfu; 1sfu = 10* Jy=
107 ¥erg s~ tem 2 Hz 1)

7= 1019%@“ [sful, (5)
where A/R? is the solid angle subtended by a
source with visible area A. The Stokes I mea-
sures represent the sums of those for the two modes:
Jr = ij + JIQ and Sy = Sf + S}). Accord-
ingly, although temperature is an intensive property
(see, e.g., Fleishman & Toptygin 2013), the bright-
ness temperature is defined here as an extensive
(additive) property Tp = Tx + Tg . In particular,
for the unpolarized optically thick emission from a
Maxwellian plasma with the temperature 7" we have
Tg=Tand T =T§ =T)2.

If the numerical grid is reasonably fine, then each
voxel can be considered as a truly uniform, single-
temperature, volume so that the GR and free-free
emissivity and absorption coefficient computed for a
uniform single-temperature Maxwellian plasma ap-
ply. In practice, however, the voxel size might



be much larger than the typical size of a single-
temperature volume. Thus, we are to compute the
radio emission from a voxel, which might contain
multi-temperature plasma, even though it could be
treated as a uniform volume from all (most of the)
other perspectives. We assume that each voxel can
be considered as a “statistically uniform” volume,
such as the thermal properties of each macroscopic
fraction of the voxel are the same as those of the en-
tire voxel. In this case we can safely use the uniform-
source solution

Tfn = TFn—rexp(={17))+ (1 —exp(=(77)))

(6)
of radiative transfer equation (1), where < j7n> and

7} are the emissivity and the absorption coeffi-

cients averaged over the voxel volume, and (77) =
(%) Ar is the volume-averaged optical depth of the
voxel.

(»

3. DESCRIPTION OF MULTI-TEMPERATURE
PLASMA

Various ingredients of the emissivities and the ab-
sorption coefficients, described in detail below, can
depend either on n. or n2, so we need to define dis-
tributions of those two quant1t1es over the voxel vol-
ume. We start from a frequently used value n?, which
is directly linked to a well-known plasma emission
measure. To make our quantities independent of the
voxel volume V', we adopt a volume-normalized def-
inition for the EM, which, in this case, is equivalent
to the volume-averaged square of the electron density

(ne):

EM = (n2) = % / n2(r)dV, [em°.  (7)

It is customary to replace the integral over the voxel
volume by the integration over the range of temper-
atures available in the volume such as

V/ —dT /5 )dT, [cm™°],
(8)

where
g = "D ok ()

is the differential emission measure (DEM). Note
that this definition differs from the standard DEM
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definition by the volume normalization. The average
square of the electron density is related to the DEM

by
- [e@ar. (10)
and the DEM-averaged temperature (T%) is given by

JTeg(T
<n2>

Similarly, we define the mean density

(Tz) = (11)

1
()= [neav. fem), (2
of the thermal electrons in the voxel. Using again

the integration over the range of temperatures, we
obtain

WJ:%/%@%%ﬁz/mﬂw,@f?)
13

ne(T)dV
VdT

is a new metrics that describes distribution of the
electron number density over the temperature in the
given voxel, which we will call the differential density
metrics (DDM) for short. Hence the DDM-averaged
temperature (T7) is given by

v(T) = , [em™3 K (14)

f Tv(T)dT
<ne> .

We note that the DDM- and DEM-averaged electron
densities and temperatures are different from each
other in a general case.

Figure 1 shows an example of DDM and DEM dis-
tributions obtained from an updated EBTEL code
(courtesy of J. Klimchuk; private communication; for
the original EBTEL code see Klimchuk et al. 2008;
Cargill et al. 2012a, and references therein); these
distributions will be used below (in Sections 6.1 and
6.2) to compute the model emission spectra. The
corresponding distribution moments (averaged val-
ues of the density and temperature for the DDM and
DEM distributions, respectively) are printed in the
panels; the values inferred from DEM are slightly
higher than those inferred from DDM.

(Ih) = (15)

4. FREE-FREE EMISSION FROM
MAXWELLIAN DISTRIBUTIONS

Free-free emission from the ionized Maxwellian
plasma is described by the following equations (e.g.,
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Section 10.1.1 in Fleishman & Toptygin 2013) for the
emissivity!
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and the absorption coefficient

8Z2%e%nen; In Ag;

%M o _ Z
) —~ 3V2mngcf2(mkpT)3/?’

[em™1],

(17)
where e and m are the electron charge and mass, n. is
the number density of free electrons, T is their tem-
perature, c is the speed of light, kp is the Boltzman
constant, n, is the refraction index of either ordinary
or extraordinary wave mode, see Appendix A, the
summation is performed over ions with the charge Z;
and their number density n; in the ambient plasma.
These expressions obey Kirchhoff’s law as needed
for the thermal emissions. Here, the Coulomb loga-
rithm, In Ag;, which originates in the classical treat-
ment of the emission, can be expressed via the quan-
tum mechanical Gaunt (1930) factor G;(T, f). The
Gaunt factor depends on temperature T, frequency
f, and the ion charge Z;:

lnACi = Gi(T, f) (18)

3
Nz
Separating the factors that depend or not on the ion
charge, we obtain the free-free emissivity and absorp-
tion coefficient due to collisions of thermal electrons
with positive ions in the arbitrarily ionized plasma

1 Note a typo—(2m)3/2 instead of (27)/2 in the denomi-
nator of Eqn. (10.4) of Fleishman & Toptygin (2013).
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Model DDM and DEM distributions (courtesy of Jim Klimchuk) used in the simulations.

(the e-ions contribution):

Mo 8eSn, In Ac
Jrfr = 3v2m(mc2)3/2 (kpT) 12"

Z gZZ ni, (19)

Mo 8ebln Ac
= 1Z ng, (20)
s 3V2mnscf2(mkgT) 3/2 Zg

where In A¢ = In A¢q is the Coulomb logarithm for
singly-ionized ions; g; = G;/G is the Gaunt factor
for the ion with charge Z; normalized by that for the
singly ionized ion Gj.

In natural plasmas, the Hydrogen is the most
abundant element. For this case, we transform the
above equations to a convenient form, where the con-
tribution from all ions (but H) are described by a cor-
rection smaller than one. Due to plasma neutrality,

we have
N
Ne = Z Zlnz (21)
i=1

Now we can express the sum in Eqns (19) and (20)
as the electron number density (n.) and a correction
as follows:

N N N
> Zini=ne+ Y giZini— Y Zm; =
i=1 i—1 =1

ne (1+¢(T, f))
(22)

N
e (1 + Z Zi(9:Zi — 1)%) =
i=2 ¢

where

(0.5 =Y ZilgZi-D2  (23)



This expression depends on the temperature T' due to
the temperature-dependent ionization and the Gaunt
factor and on the frequency f due to the Gaunt fac-
tor. This implies, that this value has to be tabulated
as a function of two variables—7" and f.

Inserting Eqn. (22) into Eqns. (19) and (20):

Mo 8¢e5n, nZlnAc
be = 1 T
‘]f;. f 3 /2ﬂ_(m02)3/2 (kBT)1/2 ( + C( 7f))5
(24)
M.o 8eb nZlnAc
7 = 1+ ((T, f)),
Hrp 3v2mngcf2(m)3/? (kpT)3/2 ( (T, 1))
(25)

we obtain equations suitable for the extension to the
DEM treatment, which requires knowledge of the
Coulomb logarithm and ¢ function. It is important
to note that this treatment applies equally to plasma
in ionization equilibrium as well as out of equilib-
rium, provided that the electron velocity distribution
is Maxwellian.

4.1. Treatment of the Gaunt factor

There is a controversy in the semi-classical forms of
the Coulomb logarithm (proportional to the Gaunt
factor) in the literature. A consistent way of comput-
ing the Coulomb logarithm is via direct integration
of the single-particle equations over the Maxwellian
distribution. The results of this treatment are given
by Zheleznyakov (1997) (Section 11.1). The low-
temperature asymptote is

. B (2kpT)?/?
7= [m] e

while the high-temperature one is

IHAC =

7 o [4kpT
TG n=m|$2] e

where § = ¢, C =~ 0.577 is the Euler constant, and h
is the Planck constant. The low-temperature asymp-
tote depends on Z;; thus, the boundary temperature
separating the asymptotic regimes depends on Z; as
well. For Z; = 1, the boundary temperature, where
the asymptotes intersect, is Ty =~ 0.89125 MK. Of-
ten, numeric equations equivalent to (26) and (27)
are used, where all constants are substituted by their
numerical values, which yields:

IHAC =

WA — ) 17718414+ Wn(T%?/Z)) —Inf, T <T.
“ 7 24.569056+InT —Inf, T >T..

(28)
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It is worthwhile to note that there are other forms
of the Coulomb logarithm. In particular, Dulk
(1985) used an approximation of a single-particle
value with the thermal velocity v = +/kgT/m,
rather than integration over velocities, for InAg,
which yielded different equations (Eqns 18 and 19
in his paper) for In A¢ compared with Eqns. (26)
and (27). This simplified Dulk (1985) approach re-
sults in the terms 17.54 (instead of 17.718414) and
24.5 (instead of 24.569056) in Eqn. (28). These exact
and approximate numbers are consistent with each
other. However, in the numerical estimate, Dulk
(1985) used 18.2 (instead of 17.54), which was noted
and criticized by Wedemeyer et al. (2016), while the
boundary temperature was incorrectly assigned to
0.2 MK (instead of 0.89125MK). Those wrong num-
bers propagated to many publications and textbooks
including Fleishman & Toptygin (2013). This intro-
duces an error of ~ 3%.

Here, we employ the treatment of the Gaunt factor
by van Hoof et al. (2014) for nonrelativistic plasma
(T < 5 x 10?K), which is an extension of results
by Karzas & Latter (1961). The Gaunt factors were
computed for a point charge, so they are explicitly
valid for the corresponding bare nuclei (fully ionized
element), but widely used for other ions with the
same charge. The approximation that the Gaunt fac-
tor is the same for each ion with the same charge re-
gardless of the element is a rather good one. Indeed,
far collisions are mainly responsible for radio emis-
sion; thus, the approximation of any ion as a point
charge is a rather good one in the radio domain even
for ions that are not fully ionized.

We do not consider the relativistic case (van Hoof et al.

2015) for the following reasons:

e That hot (relativistic) plasma is not expected
in the solar corona.

e Available hydro codes (e.g., EBTEL; Klimchuk et al.

2008; Cargill et al. 2012a,b) do not typi-
cally provide DEM at temperatures above a
fewx 108 K.

e At the relativistic regime, the non-dipole emis-
sion due to electron-electron collisions will be-
come non-negligible, which is anyway ignored.

Figure2 shows the Gaunt factor, tabulated by
van Hoof et al. (2014), as a function of the temper-
ature T'= 10* — 3.16 x 108 K on panel (a), of the ion
charge Z = 1—30 on panel (b), and of the frequency
f = 0.01 — 100GHz on panel (c). Panel (d) shows
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an example of the Gaunt factor normalized by that
for a proton.

Figure 2a also shows the asymptotes of the Gaunt
factor obtained using Eqn. (28) for Z =1 and Z = 30
by the dashed and dotted lines. Direct compar-
ison between the dashed/dotted and solid curves
shows that the asymptotic expressions work well ev-
erywhere, except, perhaps, a narrow region around
their intersection. Although the asymptotic expres-
sions might be sufficient for most practical applica-
tions, here we employ the most accurate treatment
by van Hoof et al. (2014).

4.2. Contribution of highly ionized ions

In the hot corona, many ions are in high ioniza-
tion states. Given that the free-free emissivity and
absorption coefficient are proportional to ZZ, where
Z; is the ion charge, even relatively minor ions, such
as O, Fe, C can give a significant contribution to the
free-free emission; >1-3% each.

In Equns. (24) and (25) the cumulative effect of all
ions with Z; > 2 is included in the term ((T), f),
where (a rather weak) dependence on frequency f ap-
pears due to the Gaunt factor. The ((7, f) function
depends both on the elemental abundances and on
each element’s ionization state, which are different in
equilibrium and non-equilibrium conditions. In this
work, we will provide the (T, f) function calculated
under the assumption of ionization equilibrium using
the CHIANTI spectral code (Dere et al. 1997, 2019),
as detailed below. In this framework it is straight-
forward to users to replace the CHIANTI values for
the equilibrium ion fractions by their own values cal-
culated under non-equilibrium conditions, depending
on the physical process they model. We carried out
the calculations for the plasma element abundances
typical of the solar corona (Feldman 1992), as well
as for two abundance models obtained for the solar
photosphere (Caffau et al. 2011; Scott et al. 2015).
The main difference between these models is that in
the solar corona all elements with low First Ioniza-
tion Potential (FIP) are overabundant by a factor
of about four over their photospheric abundances.
However, this overabundance factor is somewhat
uncertain—while it has been extensively used in the
field, its value has been suggested to be variable with
time (Widing & Feldman 2001) and also within the
same active region; also, the absolute correction of
the abundances has been disputed, as some stud-
ies suggest that the FIP effect affects both low-FIP
and high-FIP ions (Schmelz et al. 2012). Further-
more, solar abundances can be different from those

of other stars, both in the photosphere and in the
corona, even to the point that some stars exhibit an
inverse FIP effect (Laming 2015). So, the software
we implemented to carry out the calculations allows
the user to interactively select an abundance data
set that is best suited for the star or the solar region
under consideration.

In order to utilize the data in the CHIANTI spec-
tral code, the dependence of the ((T,f) on the
plasma elemental and ionic composition was made
explicit, by developing the n;/n. ratio as

n; _ n(X;) n(X) n(H)

ne n(X) n(H) ne (29)

where n(X;)/n(X) is the fraction of the element X
in the ¢ ionization stage, n(X)/n(H) is the abun-
dance of element X relative to the abundance of H,
and n(H)/n. is the ratio between Hydrogen (regard-
less of its ionization stage) to the density of the free
electrons. Using this expression, the ((T', f) function
can be rewritten as a double sum over both elements
(¢) and ions (m):

(T, f) =
. n(X;.m) n(X;) n(H)
n(X;) n(H) ne |’
(30)
where the summation extends to all elements from
He (i = 2) to Zn (i = 30), and to all ions with
(Zm > 2) including the bare nuclei (m = i); here,
clearly, the charge Z,, of the ion with m electrons
removed from the atom is Z,, = m. By making
the dependence on the ion fraction n(X;.m)/n(X;)
and on the element abundance n(X;)/n(H) explicit,
users can easily plug in their values that better rep-
resent the plasma they are considering.

As an example, for the assumptions adopted
above, we tabulated ((T), f) function for a range of
frequencies between 10 MHz and 100 GHz. Figure 3
shows this function in a broad range of temperatures,
where ((T, f) varies between 0 and ~ 0.3. This is
consistent with an intuitive expectation that at low
temperatures the atoms are at most singly ionized,
while there are mostly bare nuclei at the highest tem-
peratures. The difference between the photospheric
and coronal cases is quite significant and caused by
the coronal low-FIP element enhancement; primar-
ily, iron ions. This is due to the fact that the most
abundant high-FIP ions, namely He, C, N, O, Ne,
have very similar abundance values in both data sets,
and at temperatures larger than 1 MK have very few

[Zm(gm(Ta Zm —1)

N
=2 m

=2
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Figure 2. Dependence of the Gaunt factor on the involved parameters: plasma temperature (a), ion charge (b),

and frequency (c).

Panel (a) also shows the high- and low-temperature asymptotes (28) by dashed and dotted lines,

respectively. Panel (d) shows the Gaunt factor for a given ion Z; normalized by that for the proton Gaunt factor Gi:

gi = Gz/Gl

ions surviving under equilibrium conditions; on the
contrary, at those temperatures the most abundant
low-FIP elements (Mg, Si, Fe) are distributed among
many stages of ionization, providing a larger number
of terms to the ¢ function. The dependence of the (
function on the emission frequency is very weak.
Figure4 illustrates the effect of the plasma com-
position and ionization on the dependence of the
e-ions free-free emissivity on the plasma temper-
ature.  Note that dependence of the logarith-
mic Gaunt factor on the temperature is often ne-
glected and the dependence j;; o T~'/? is used
(cf. Zhang et al. 2001), while in other cases an
approximation such as a power law is used (e.g.,
Jrr oc T7935 Landi & Chiuderi Drago 2003). In
contrast, Figure4 shows that the true emissivity
does not follow any power-law. At low temperatures
the dependence is approximately a power-law with

an index —0.37. Then, between 60 kK and 100kK
the emissivity displays a plateau, where the term
o T~1/2 is almost balanced by the increase of the
¢ factor due to the second ionization of the singly
ionized He ions. At higher energies the emissivity
does not follow a power law, but can approximately
be represented as jpy oc 7041,

Figure 5 illustrates the effect of the heavy ele-
ment abundances and their ionization states at var-
ious high temperatures on the free-free emission (at
these high temperatures, there are no neutral atoms;
thus, only the e-ions contribution is considered; the
electron-neutral collisions become important for a
colder plasma; see Section 4.3). As expected, at rel-
atively low temperatures (10° K) both coronal and
photospheric abundance models provide nearly the
same free-free radio emission spectra, while at higher
temperatures, the plasma with the coronal abun-
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Figure 4. Dependence of the free-free emission emissiv-
ity at 1 GHz on temperature: green line shows the result
for a hydrogen plasma with the account of exact form of
the Gaunt factor, while the blue line also accounts for the
¢ function computed for coronal abundances in ionization
equilibrium. For comparison, the dotted line shows the
T7%5 dependence, cf. Eqn. (19).

dances provides a measurably higher emission in-
tensity in the optically thin range than the plasma
with the photospheric abundances does for the same
reason discussed above for the 7 function; the dif-
ference is about 5% at the temperature of ~ 107
K. For comparison, we plot the emission spectra
obtained using the approximate formulae by Dulk
(1985) for a hydrogen-helium plasma with typical
solar abundance and the (incorrect) expressions for
the Coulomb logarithm discussed in Section 4.1. Al-

107 108

though these formulae provide a surprisingly good
agreement with the more accurate treatment (for the
coronal abundances) for T ~ 10° K, they overes-
timate the emission intensity at lower temperatures
(by up to ~ 20% at T ~ 10° K) and underestimate it
at higher temperatures (by up to ~ 10% at T ~ 107
K and the coronal abundance model).

4.3. Contribution of neutrals

In contrast to the corona, the chromosphere is rel-
atively cool, so there are numerous neutral atoms,
primarily H and He. Stallcop (1974a) reported an
accurate expression for the absorption coefficient due
to collisions of thermal electrons with neutral hydro-
gen, often called the H™ absorption, which we repro-
duce here with a correction for the refraction index
Ng:

oH_  12873/2 aal (Eg 2 Q
7 = ——T¢ k T— -
1y 3n, | HIRBL TR\ Gy

where ny is the number density of neutral hydro-
gen, a = e%/(hc) is the fine structure constant, ag =
h%/(me?) is the Bohr radius, Eg = e?/(2ap) is the
ionization energy of hydrogen, kr = (kgT/Ex)"/?,
Q@ is the temperature-dependent electron-hydrogen
momentum transfer cross-section. Stallcop (1974a)
provided an analytical approximation of the cross-



1.2 1 U ]

i - —~ ]

5 1.0F b
A |
= 0.8 Coronal ]
o2 [ - 7}Photospheric i
- o06p J ]
= : — — Dulk (1985) |
o [ ]
9 0.4 N
£ I ]
0.2 7=10" K -

1 10
Frequency, f [GHz]

O
O

Lg i Photospheric 1
el ]
= | ]
2 4t ]
S L i
) E 4
s F i

20 T=10° K

1 10

=

Frequency, f [GHz]

(@]
(@]

Intensity, /, [sfu]
o~
o

mmm\umm\\mmmhmum\mmm/\ Ll

30
20 ”
T7=10" K
10 ‘
1 10
(c) Frequency, f [GHz]
Figure 5. Effect of abundance on the e-ions com-

ponent of the free-free emission. The spectra are com-
puted for isothermal plasma and homogeneous source,
using the new code with (-function and exact Coulomb
logarithm. Solid lines correspond to the coronal abun-
dance by Feldman (1992), and the dark gray stripes
correspond to the photospheric abundances within the
range reported by Caffau et al. (2011) (dashed lines) and
Scott et al. (2015) (dotted lines). For comparison, the
spectra computed according to the formulae of Dulk
(1985) are plotted, too (with long-dashed lines). Sim-
ulation parameters: source area S = 10%° c¢cm?, electron
number density n. = 10° cm ™2, no magnetic field. Three
different temperatures are considered; the source depths
are: L =2x10° cm for T = 10° K, L = 4 x 10'° cm
for T =10° K, and L = 8 x 10" cm for T = 107 K; the
depths are chosen to provide the spectral peak always at
about 10 GHz.
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section @ in the form Q = Qqexp(—¢), where Qp =
65 and

€ = 4.862k7 (1 — 0.2096 k7 4 0.0170 k% — 0.00968 k3.);
(32)
this approximation is valid in the range of tempera-
tures of 2500 < T < 50000 K.
Substituting some of the constants in Eq.(31),
Stallecop (1974a) reduces it to the form

2
o H= _ 5 1451976x 10~20 "< HIkBT (EH) exp(=¢)

s e hf kr
(33)
which can be further simplified as follows
o, H— _ nenHI(kBT)l/Q
271 =1.0840 x 1077 Texp(—@.
(34)

Stallcop (1974b) provided a similar treatment for
atoms of several noble gases, of which we only ex-
plore the results for helium, because even the con-
tribution to the opacity from the most abundant
neutral helium does not exceed a few percent. As-
suming hf < 2kgT, which is always valid for solar
atmosphere temperatures in the radio domain, and
adding a correction for the refraction index, Egs. (7)
and (11) from Stallcop (1974b) reduce to

LoHe— _ nengerkpT (En
I - Ny hf

where the function &g (T") can be approximated (in
the range of temperatures of 2500 < T < 25000 K)
by an analytical expression

)25H6<T>, (35)

10730
Sae = —— (1868 + 7415kr — 22.56k7 + 15.59k3.).
T
(36)
The corresponding emissivities (j) are linked to the
absorption coefficients (¢) by the Kirchhoff law (see,
e.g., Fleishman & Toptygin 2013)

2 42
j= el ke, (37)
c

It is interesting to note that these emissivities are
not dependent on frequency. In the chromosphere,
where the collisions with neutrals are important, the
concept of the DEM is not typically used. In fact,
it would be difficult to consistently use this concept,
because the emissivity and absorption coefficient de-
pend on a product nengy or nenper, rather than on
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n?, and it is difficult to express one via the other. Of-
ten, chromospheric models (see, e.g., Fontenla et al.
2009, 2014) supply the user with number densities
of the neutral and ionized hydrogen, which might
deviate from the local thermodynamic equilibrium
(non-LTE). If such non-LTE number densities are
provided, our codes explicitly take them into account
to compute free-free emission. If only the total num-
ber density is provided, the code will use the Saha
equation to compute equilibrium ionization of hydro-
gen for the temperatures below 0.1 MK. In contrast,
non-LTE helium ionization is typically not provided
by models; thus, to compute helium ionization states
at low temperatures, we use Saha equation. At low
temperatures, when the Saha equation predicts lit-
erally zero ionization fraction, our code assumes the
ionization fraction of 10~3 due to easily ionized met-
als, which ensures a non-zero free-free emission even
for those relatively low temperatures.

Figure 6 shows the free-free emissivity and char-
acteristic absorption length due to collisions of ther-
mal electrons with ions (the e-ions component) and
neutrals (the e-neutrals, H~ and He™ components).
These quantities are computed for a range of param-
eters typical for the solar chromosphere (see, e.g.,
Loukitcheva et al. 2017, and references therein). For
the considered here temperature of 5,000 K, relative
contributions of these two components depend on the
total Hydrogen number density ng. For a relatively
low density, ng = 10'3cm™3, the contributions are
comparable to each other; the e-ions contribution
dominates at lower frequencies, while the e-neutrals
one at the higher frequency, because the latter does
not decrease with frequency unlike the former one.
For the higher densities, the e-neutral contribution
dominates, because the ionization fraction is rela-
tively low under the considered conditions. The right
panel indicates that both contributions to the effec-
tive absorption length are important and have to be
taken into account when the plasma temperature is
in the range of a few thousand K.

4.4. Effect of ambient magnetic field on the
free-free emission

So far, we have not explicitly considered the effect
of the ambient magnetic field of the free-free opacity,
other than accounting for the refractive index n,,
which differs for the ordinary and extraordinary wave
modes (see Appendix A). The expressions discussed
above have the form », = sff0/ns, where g0
is the free-free absorption coefficient for B = 0 and
ne = 1. This approach is valid at frequencies much

larger than the gyro frequency. In stellar coronae the
gyro frequencies are not necessarily small enough to
justify this simplified treatment, so we employ a more
accurate treatment of Zlotnik (1968, Eqn. 14)?

5 = ”ﬁf—iﬁFa (38)
where
Fo—2 ov/D [usin® 6 + 2(1 — v)?] — u? sin429,
ovD [2(1 —v) — usin? 0 + a\/ﬁ}
(39)
D = u?sin* 0 + 4u(1 — v)? cos® 6, (40)

(5 ()

fBe = eB/(2mmc) is the gyro frequency, fpe =
ey/Ne/(mme) is the electron plasma frequency, 6 is
the angle between the line of sight (LOS) and the
magnetic field, o = +1 for O(X) modes. According
to Kirchhoff’s law, Eq. (37), the same F,, factor has
to be applied to the emissivity.

Figure 7 gives an example of the F, factors com-
puted for modest magnetic field and electron den-
sity. While this factor does not change the ordinary
mode opacity by more than 50%, for the extraordi-
nary mode it can be as large as ~ 10. The emissiv-
ity and absorption of the X-mode increase because
electrons rotate in the magnetic field in the same
direction as the electric field vector in the X-mode
waves resulting in a stronger coupling between them
compared with the case of zero magnetic field. That
large enhancement of the free-free opacity takes place
at the range of lowest harmonics (s < 3) of the gyro
frequency, where the total opacity of the plasma is
typically dominated by the GR process considered in
the next section. However, as follows from Eq. (42),
the GR opacity contains a factor sin*~2 6, and thus,
it is zero along the magnetic field. In fact, there is a
finite GR ‘transparency window’ around this direc-
tion, where the free-free opacity dominates. Figure 7
further shows that the polarization factors are no-
ticeably different from the asymptotic value 1 up to
rather high frequencies even for the adopted mod-
erate value of the magnetic field B = 700 G. Thus,
the account of this factor is important in the radio
domain. In the modeling of the free-free component
we can safely apply this factor to the total free-free

2 Note that Eqn. (17) in Zlotnik (1968) contains a typo.
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Figure 6. The free-free plasma radio emissivities (a) and absorption lengths (b) in a cool plasma with chromospheric
parameters. The e-ions and e-neutrals (H™ and He™) contributions are shown by the dotted and dashed lines, respectively,
while the total free-free emissivities are shown by solid lines. The emissivities are computed for isothermal plasma using
the new code with (-function (photospheric abundance model by Caffau et al. 2011) and exact Coulomb logarithm.
Simulation parameters: plasma temperature 7 = 5000 K, no magnetic field (j; = jf = jfo). Three different gas
densities no are considered; the electron and neutral number densities are computed using the Saha equation, which
provides ne o~ 2.15 x 101 cm*?’7 nu ~ 9.21 x 10*2 cm*?’7 and nyge ~ 7.8 x 10 cm ™2 for ng = 103 cmfs7 ne ~ 1.31 x 10**
cm73, nu ~ 9.22x10"3 cm73, and nue ~ 7.8x10"2 cm ™2 for no = 10 cm73, and ne ~ 1.05x 102 cm73, nu ~ 9.22x 10"

010{1737 and npe ~ 7.8 x 10™ cm~2 for ng = 10*® cm 3.
opacity (and the same factor to the emissivity) of the
given voxel.

Figure 8 shows the free-free emission in the pres-
ence of ambient magnetic field. The increase of mag-
netic field strengths results in a noticeable increase
of the free-free opacity of the X-mode; thus, the tran-
sition from the optically thick to thin regime occurs
at a higher frequency. Therefore, the total inten-
sity of the free-free emission goes up above the X-
mode cutoff frequency f.x (see Appendix A), where
the degree of polarization can be rather large in the
X-mode sense. At the frequencies below the cutoff
frequency f < fe.x, the X-mode cannot propagate;
thus, the free-free emission is 100% O-mode polar-
ized. This is why the total brightness at these low
frequencies is only one half of the free-free emission
brightness without magnetic field.

5. GYRORESONANCE EMISSION FROM
MAXWELLIAN DISTRIBUTIONS

Classical theory of the GR radiation from a

Maxwellian plasma (Zheleznyakov 1962; Kakinuma & Swarup

1962; Zheleznyakov 1997) yields the optical depth
of the s-th gyro layer—a narrow surface where
a given frequency matches a small integer multi-
ple s of the gyro frequency fp. = eB/(2mmc)—
by integrating the absorption coeflicient along the
line of sight (for the derivation and notations, see
Fleishman & Kuznetsov 2014, and Appendix A):

oo
Mo — / Mo (2)dz =
— 00

-1 3. oe_
me3n, <kBT>S s2n2~3sin?" "2 ¢

fme \ mc? 25-1gl(1+T2)

(42)
and, accordingly, the emissivity along the line of
sight:

J}\f[s’a = / j}\f[s’a(z)dz =
me’nef (kT \® s**n2s~1 sin?*72¢
251s1(1 +T2)

c mc?

(43)

Lg[T, cos 0+ L, sin 0+1]2,

L[T, cos O+L, sin 0+1]2,
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same functions over a narrower y-range, while extended range of the frequencies.

where T, and L, are the components of the polariza-
tion ellipse of either ordinary or extraordinary wave
mode (Appendix A), s is an integer number of gyro
harmonics. Here, the spatially nonuniform magnetic
field has been expanded into a series in the gyro layer
and its vicinity, from which only the linear term is
kept

B(z) ~ By (1+i), (44)
Lp
where By = 27 fmc/se is the resonant value of the
magnetic field for the frequency f at the harmonic
s, z is the spatial coordinate along the line of sight
with z =0 at B = By, and

b ()" 5

Thus, the equation of GR radiation transfer
through a given (sth) narrow gyro layer takes the
form

o

: J7
(T = (T7 )™ exp(—7)+ 2

(46)
where («7}7,5)0“) and (Jf")s)("ut) are the radiation in-
tensities entering and exiting the gyro layer, re-
spectively; the gyro layer is characterized by inte-
grated measures, which simplifies the theory greatly.
Egs. (42) and (43) are explicitly suitable for the ex-
tension to the DDM treatment.

(1 - eXp(—T;T)) )

6. RADIO EMISSION FROM A
MULTI-TEMPERATURE PLASMA

6.1. Free-free emission from DEM and DDM

The e-ions component of the free-free emission de-
pends on both DEM and DDM. The dependence on
the DDM enters only via the plasma dispersion and
polarization. The dependence on the DEM is more
substantial. Averaging the temperature dependent
factors in Eqn. (24) and (25) over voxel volume, we

obtain
> / T 1n Ac

nZlnAc
<W( +¢(T)) dT,
a=1/2or 3/2. (47)

Thus, the expressions for the e-ions emissivity and
absorption coefficient take the forms

88e°ny )InAe

§(T
321 mc23/2/ le/2

(1+¢(T))dT
(48)

Jfrf =

o ln Ac

gt 3\/_ngcf2 )3/2 /gk T)3/2 (1+(T))dT
(49)
Figure 9 shows an example of the free-free emission
spectrum computed for the DEM and DDM distri-
butions shown in Figure 1; at the considered tem-
peratures, plasma is fully ionized and hence the free-
free emission is produced entirely due to the e-ions

collisions. For comparison, the spectra computed
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Figure 8. Effect of the magnetic field on the free-

free emission. The spectra are computed for isothermal
plasma and homogeneous source, using the new code
with (-function (coronal abundance model) and exact
Coulomb logarithm. Simulation parameters: source area
S = 10%° cm?, source depth L = 4 x 10° cm, plasma
temperature T = 10° K, the electron number density
ne = 10" cm™3, the viewing angle § = 30°; four dif-
ferent magnetic field values are indicated in the panels.
Note that in the brightness temperature plot (panel (c)),
the frequency range is different from that in two other
panels.
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with the new code employing the exact Gaunt fac-
tor and the {-function for isothermal plasma with ei-
ther DDM-based or DEM-based mean electron den-
sity and temperature are plotted. Not surprisingly,
the DEM-based isothermal approximation is notice-
ably closer to the exact result than the DDM-based
isothermal approximation. Still, the exact result em-
ploying the DEM/DDM distributions differs notice-
ably from that in the DEM-based isothermal ap-
proximation. In the optically thin (thick) range, the
full DEM/DDM model provides higher (lower) emis-
sion intensity and brightness temperature than the
isothermal models do. Qualitatively, the effect of the
DEM/DDM on the free-free emission is similar to
that of the k-distribution (Fleishman & Kuznetsov
2014); however, in the numerically defined DEM
and DDM distribution we cannot find an analytical
generalization of the Kirchhoff’s law unlike the k-
distribution (cf. Eq. 48 in Fleishman & Kuznetsov
2014)

6.2. Gyroresonant emission from DDM

GR emissivity and optical depth depend on prod-
ucts n.T*, where index a depends on the number of
the gyroharmonics. Averaging of this products over
the voxel volume is straightforward using the DDM

Vo = (T = %/ne(T)Ta;l—;dT = /V(T)T‘ZdT),
50

Thus, the optical depth 77 of the gyro layer is:

g

95— 15I(1 + 12)

LBX

—1 _3 . _
7T€2 kB s S2sn25 3 SIH2S 2 0
Ts

fme \ ' mc?

[T, cosf + Lysinf + 1]% x vy_1, (51)
and, accordingly, the emissivity along the line of
sight J7  is:

LBX

go me?f (kg \® s¥*n2* " sin®* 24
P ™ e \me? 25111+ T2)

[T, cosf + Ly sin@ + 1] x vg. (52)

The refraction index n, and the components of the
polarization vector T, and L, are computed for the
mean plasma density defined by Eqn. (13).

Figure 10 shows an example of the gyroresonance
emission for the DDM distribution shown in Figure
1; a linear magnetic field profile is used, while all
other source parameters are assumed uniform along
the line of sight. The computation also accounts for
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models are given in Figure 1.

the contribution of the free-free emission using the
corresponding DEM and DDM distributions. The
contribution of this emission mechanism is negligible
at low frequencies, while becomes significant (or even
dominant) at f 2 10 GHz, or s 2 6. For comparison,
the spectra computed with classical isothermal GR
equations with either DEM-based or DDM-based n
and T are shown. For the multithermal DDM model,
the emission intensity and the brightness tempera-
ture are higher than those for the isothermal models.
This is because electrons with above-average energies
make a relatively larger contribution to the GR opac-
ity. The degree of polarization can be either larger or
smaller than for the isothermal plasma, because the
X- and O-mode emissions at various gyro harmonics
are affected by the electron temperature distribution
dissimilarly. Overall, the emission properties differ
measurably depending on the way the emission is
computed, which justifies the use of a more advanced
multithermal DEM/DDM treatment.

7. FREE-FREE EMISSION FROM LOS DEM

The volume-averaged definition of the DEM,
Eq.(9), is convenient for the modeling, when the
modeled DEM pertains to a given voxel. In prac-
tice, DEMs (above ~0.1MK) are often obtained
from analysis of optically thin observations, e.g.,
EUV and/or SXR, integrated along the line-of-sight
(LOS). It is customary to compare optically thin
radio emission computed from a model employing a
DEM derived from UV and/or SXR data with the
observed one (e.g., Zhang et al. 2001, and references
therein). For example, Zhang et al. (2001) demon-

strated that (without the ¢ factor introduced in our
study) the synthetic and observed radio emission are
off by a noticeable factor, which they attributed to
an incorrect coronal abundance of the iron. Taking
the ¢ factor into account would further increase this
mismatch.

In this section we estimate the free-free compo-
nent of radio emission from the LOS DEM obtained
from some (non-radio) optically thin observations.
We note, that computation of the radio emission,
which can be optically thin or thick depending on
the frequency, is not possible from the LOS DEM
without additional assumptions (Alissandrakis et al.
2019), because the exact solution depends on how
exactly the thermal plasma is distributed along the
LOS. For the same reason, computation of the GR
component of radio emission from the LOS DEM is
not possible either.

A reasonable estimate of the free-free emission can
be obtained if we assume that the plasma is statis-
tically uniform along the LOS such as various small
portions of the LOS are characterized by the same
DEM per the unit length. In this case, we can apply
a uniform source solution of the transport equation
with the LOS-integrated emissivity and the total op-
tical depth obtained by LOS integration of Eqns (48)
and (49):

o0

i = /j?ff(z)dzz

— 00

866 / fl (T) In AC
3v/2m(mc?)3/2 (kpT)1/?

(14¢(T))dT, (53)
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Figure 10. Comparison of the full DDM/DEM treat-
ment (solid lines) and isothermal DDM-based (dashed
lines) and DEM-based (dotted lines) approximations for
the gyroresonance and free-free emission. Simulation pa-
rameters: source area S = 10'® cm?, magnetic field de-
creases linearly from 1000 to 300 G over the distance
of 2 x 10° cm, viewing angle (constant) § = 120°, the
DDM and DEM distribution are the same in all voxels.
The DDM and DEM distribution and the correspond-
ing (constant) electron densities and temperatures in the
isothermal models are presented in Figure 1. The har-
monic numbers s printed in the panels correspond to the
magnetic field strength at the farther boundary of the
emission source, 1000 G.
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7= [ s =
8¢° T)InA
3\/ch2(m)3/2/€l(§€B)T)3/2c (L4¢(T))dT, (54)

where

4@ =n2@E . [em K.

z
aT’
The LOS-integrated DEM ¢ is related to the volume-
averaged DEM ¢ introduced above as & = &/L,
where L is the depth of the source along the LOS.
Here we adopted n, = 1, because neither the num-
ber density nor the magnetic field is constrained by
the data (only the LOS data are available). Thus,
for both X and O modes we obtain:

(55)

Jirr
o (L—exp(=7y5)),
Ir
and the total intensity (Stokes I, Jr sr) is equal to
Jr.55 = 2J7 ¢4 Ean. (56) yields exact solution in the
optically thin regime, while an estimate of the free-
free emission intensity at the optically thick regime.
To illustrate the link between the EUV-derived
DEM and the free-free emission in the radio do-
main, we employ data from the LMSAL “Sun Today”
site (http://suntoday.lmsal.com). This site supplies
EUV images obtained with SDO/ATA (Lemen et al.
2012) at various passbands and 2D maps of emis-
sion measures, binned over 18 temperature ranges,
derived from these EUV images using Cheung et al.
(2015) algorithm. We convert these EMs to LOS-
integrated DEMs as §;; = EM,;/AT;, where AT; is
the width of ith temperature bin. Then we com-
pute the corresponding volume-averaged DEMs as
& = &)L, where L = 10'° cm as described above
(in fact, the depth L can be chosen arbitrarily as it
cancels out within this single-voxel model). Finally,
for each image pixel, the free-free emission is com-
puted using the new numerical code (Section 8) from
which both images and spectra are created. Figure
11 demonstrates the total LOS-integrated emission
measures [cm~°] and average DEM-derived temper-
atures [K]. Figure 12a shows the 2D map of the free-
free radio emission at 1 GHz computed with the new
code based on this DEM. We also computed a simi-
lar map for purely hydrogen plasma (¢ = 0), which
looks morphologically similar to that in Figure 12a
and, thus, not shown. Instead, Figure 12b shows a
difference image of those two maps. This difference
image displays rather strong mismatch between the

Tfsr = (56)
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maps; especially, where the coronal plasma is dense
and hot, e.g., in active regions and the jet-like off
limb feature. Panels (c,d) show spectra from three
selected disk and limb locations indicated in panel
(a) by numbered arrows 1-3, which are presented in
both logarithmic (c) and linear (d) scales to demon-
strate the spectral behavior at both large and small
brightness temperatures. Note that the brightness
temperature computed with the new code is larger
than the old one (by up to 10%) in both optically
thin and thick regimes. This increase of the bright-
ness temperature at the optically thick regime hap-
pens entirely due to the ¢ factor in Eqns. (53) and
(54.) We note that in this Section the model does
not account for the gyroresonance emission. At low
frequencies (< 1 GHz), the free-free emission from
active regions can be optically thick and, thus, pro-
vide brightness temperatures of up to a few MK, i.e.,
similar to the observed ones, although the gyrores-
onance emission can alter the shape of the emission
sources strongly. The free-free emission brightness
tends to decrease rapidly with frequency; hence, at
2> 3 GHz the gyroresonance emission (not accounted
here) is typically the dominant radio emission mech-
anism in solar active regions.

Comparisons of the simulated and observed ra-
dio brightness are important for diagnostics of
solar atmosphere; in particular, to constrain so-
lar abundances (e.g., Zhang et al. 2001) or to de-
rive the LOS DEM in a broad temperature range
(Landi & Chiuderi Drago 2003, 2008). Note that
corrections to the free-free emission introduced in
this study may require revisiting those comparisons,
because, as we have demonstrated, the free-free emis-
sion itself depends on the elemental abundances in
contrast to the assumption made by Zhang et al.
(2001). Moreover, DEM reconstructions at low tem-
peratures (Landi & Chiuderi Drago 2008) may also
require account of the electron collisions with neutral
H and He atoms described in Section 4.3

8. CODE IMPLEMENTATION

We implemented the theory of radio emission from
the multithermal multicomponent plasma described
above in the computer code available on GitHub?;
version 1.0.0 is archived in Zenodo (Kuznetsov et al.
2021). The code computes radio emission from a sub-
set of LOSs at a range of frequencies at once, using
the supplied source parameters, including the DEM
and DDM distributions, specified in each voxel along

3 https://github.com/kuznetsov-radio/ GRFF.

each LOS. For each LOS the code numerically solves
for the radiation transfer as described in Section 2,
with the account of frequency-dependent mode cou-
pling, which affects the polarization of emission while
crossing quasi-transverse (QT) magnetic field regions
(Cohen 1960; Zheleznyakov & Zlotnik 1964); this is
performed similarly to previous versions of our codes
(Fleishman & Kuznetsov 2010, 2014).

Inside each voxel, the way how the radiation is
computed depends on what information is provided
by the user. If the DEM/DDM information is pro-
vided, it is used to compute emission by default, al-
though the user can instruct the code to use either
DDM-based or DEM-based moments instead. For
the voxels without the DEM/DDM information, the
classical approach based on the single values of the
number density and temperature is used; in this case,
the number densities of electrons, neutral hydrogen
and neutral helium can be either provided explicitly
by the user (e.g., following a non-LTE model), or
computed by the code using the provided total num-
ber density of the gas within the equilibrium ioniza-
tion model, as prescribed by the Saha equations®.
At low temperatures, T' < 50000 K, the contribution
due to electron collisions with neutrals is taken into
account.

The calling conventions, the input parameter def-
initions, and their format are set up such as to be
seamlessly integrated into the 3D modeling and sim-
ulation tool, GX Simulator (Nita et al. 2015, 2018).
However, the new code can be used as a stand-
alone application provided that the user follows the
adopted calling conventions. The code utilizes the
most recent values of the fundamental physical con-
stants by the Bureau International des Poids and
Mesures (the 2018 revision of the International Sys-
tem of Units)®.

9. DISCUSSION AND CONCLUSIONS

Here we have developed a theory of radio emission
in a plasma with an arbitrary set of temperatures
described by a combination of the DEM and DDM
distributions. This theory offers a more exact treat-
ment of the radio emission from a multi-temperature
plasma. This improvement in the accuracy of the ra-
dio emission computation due to account of the ac-
tual DEM/DDM distribution called for comparably

4 The Saha equations are used at the temperatures of T' <
10° K only, because at higher temperatures the plasma does
not contain neutral particles.

5 https://www.bipm.org/en/publications/si-brochure/
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Figure 11. Maps of the total LOS-integrated emission measure (a) and average temperature (b) obtained from DEM
maps available at the LMSAL Sun Today site, http://suntoday.lmsal.com. The DEM maps were inferred from the
SDO/AIA EUV observations on 11 July 2012. The color bars correspond to logarithmic (a) or linear (b) scales.

precise account of other ingredients affecting the ra-
dio emission. Particularly, we take into account (i)
elemental abundances; (ii) temperature-dependent
ionization of the elements composing the plasma; (iii)
exact Gaunt factor values; (iv) contribution to the
emission due to collisions of the thermal electrons
with neutral Hydrogen and Helium; (v) effect of the
magnetic field on the free-free opacity; (vi) contri-
bution of GR mechanism; and (vii) the frequency-
dependent mode coupling in the QT layers. While re-
fining the theory, we have identified and fixed several
errors (or typos) including those in the Gaunt fac-
tor form (e.g., Dulk 1985) that propagated to other
literature sources (e.g., Fleishman & Toptygin 2013;
Nindos 2020)

The theory has been implemented in a flexible
computer code (Kuznetsov et al. 2021), which can
be used to compute intensity and polarization of the
radio emission from any solar or stellar atmosphere
provided that the plasma remains non-relativistic.
This code contains a precomputed lookup tables of
the Gaunt factor and the ionization correction ¢
for standard coronal and photospheric abundances
in equilibrium, temperature-dependent, ionization
states.

We presented several examples of radio emission
computed with the new code and demonstrated that
the results are generally measurably different from
those obtained with the standard “classical” the-

ory. The difference can be from a few percent to
a factor of a few. This finding calls for revisiting
comparisons between EUV-constrained and radio-
constrained DEM in the solar atmosphere (e.g.,
Zhang et al. 2001; Landi & Chiuderi Drago 2003,
2008).

A potential application of the new theory and the
associated new code is very broad. It can be used
to compute emission from a 3D model encompass-
ing a portion of the solar/stellar atmosphere or for
the entire atmosphere at a wide range of frequen-
cies, because the code accounts for all involved phys-
ical processes at the entire range of temperatures
typical for the stellar atmospheres. This new ap-
proach is needed to perform multiwavelength mod-
eling and data analysis combining the radio data
with the EUV and SXR data, where the DEM treat-
ment is routinely employed. Now, with the new the-
ory and the new code, the radio emission can be
computed from exactly same 3D model as used to
compute the EUV/SXR emission; thus, the thermal
structure of the modeled solar atmosphere can be
constrained more stringently than before. Detailed
modeling with the GX Simulator will be published
elsewhere.

The authors are thankful to our colleagues Dale
Gary, Jim Klimchuk, Maria Loukitcheva, Gelu Nita
for discussions and advises. This work was sup-
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Figure 12. (a) Synthetic map of the free-free radio emission at 1 GHz computed from the LOS DEMs visualized
in Figure 11, for the coronal abundance model (Feldman 1992). (b) Synthetic difference radio map: emission for the
coronal abundance model minus the emission for a purely hydrogen plasma (¢ = 0). (c-d) Emission spectra from three
representative pixels marked by arrows in panel (a), for the coronal abundance model (red lines) and for a purely hydrogen
plasma (blue lines); the selected pixels correspond to a bright active region AR 11520 near the central meridian (#1,
solid lines), a bright source above the limb corresponding to the departed AR 11513 (#2, dashed lines), and a quiet Sun
area (#3, dotted lines). Note that panels (c) and (d) have different brightness temperature scales and frequency ranges.
The spectra show that the coronal free-free emission at 1 GHz can be optically thick in active regions but optically thin
in the quiet Sun.
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APPENDIX
A. DISPERSION OF THE MAGNETOIONIC MODES

In the cold plasma approximation, and for the frequencies far exceeding the ion plasma and cyclotron fre-
quencies, the refraction index of an electromagnetic wave in plasma is given by (e.g., Zheleznyakov 1997;

Fleishman & Toptygin 2013)

o _ . 20(1 —v)
e =1 2(1 —v) —usin?0 + ovVD’ (A1)
where
D = u?sin? 0 + 4u(1 — v)? cos? 4, (A2)
u=(fee/)?  v=(fpe/f)% (A3)

f is the wave frequency, fpe = €y/ne/(mm) is the electron plasma frequency, fg. = eB/(2mmc) is the electron
cyclotron frequency, n. is the number density of free electrons, and B is the magnetic field strength. For

X-mode, 0 = —1; for O-mode, o = +1.

The polarization vector of the wave, in the reference frame with z-axes along the magnetic field and the

wave-vector k in the (zz)-plane, has the form

(T, cos + L,siné,i,—T,sin @ + L, cos0)

e, = (A4)
1+ T2+ 12
with the parameters T, and L, defined as
2 1-— 0
T, = 2/l Zvjcosh (A5)
usin?0 — ov/D
LU:v usin @ + T,uwvsin 6 cos 0 (A6)

1—u—v+uvcos?f

Electromagnetic wave can propagate in plasma (i.e., Equation (A1) has a real solution corresponding to the
considered wave mode) if its frequency exceeds the cutoff frequency, f > f.,, where

ch:fpm ,ch

2
ooy e (A7)
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