
  

  

Abstract— Musculoskeletal modeling is a new computational 
tool to reverse engineer human control systems, which require 
efficient algorithms running in real-time. Human hand 
pronation-supination movement is accomplished by movement 
of  the  radius  and  ulna  bones  relative  to  each  other  via  the 
complex proximal and distal radioulnar joints, each with 
multiple degrees of freedom (DOFs). Here, we report two 
simplified  models  of  this  complex  kinematic  transformation 
implemented  as  a  part  of  a  20  DOF  model  of  the  hand  and 
forearm. The pronation/supination DOF was implemented as a 
single rotation joint either within the forearm segment or 
separating  proximal  and  distal  parts  of  the  forearm  segment. 
Torques  produced  by  the  inverse  dynamic  simulations  with 
anatomical architecture of the forearm (OpenSim model) were 
used  as  the  “gold  standard”  in  the  comparison  of  two  simple 
models. Joint placement was iteratively optimized to achieve the 
closest representation of torques during realistic hand 
movements. The model with a split forearm segment performed 
better than the model with a solid forearm segment in simulating  
pronation/supination torques. We conclude that simplifying 
pronation/supination DOF as a single-axis rotation between arm 
segments is a viable strategy to reduce the complexity of multi-
DOF dynamic simulations. 

I. INTRODUCTION 

Musculoskeletal  models  are  useful  tools  in  bottom-up 
descriptions of body mechanics for theoretical and 
engineering applications. A detailed biomechanical dynamic 
model  of  the  human  upper  extremity  was  developed  in 
OpenSim by Saul et al. [1], [2]. This and similar arm models 
have  been  used  in  human-machine  interfaces  [3]–[6]  and 
biomimetic control systems for prosthetics [7]–[9]. This 
promising  application embeds  musculoskeletal models  in 
closed-loop  control  systems,  which  can  be  implemented  in 
Matlab (MathWorks, Inc.) with OpenSim application 
programming  interface.  Such  hybrid  control  systems  have 
been successfully implemented using both forward and 
inverse dynamic simulations [10]. However, each additional 
mechanical degree of freedom (DOF) in these models 
requires additional differential equations for simulating 
segmental dynamics. Solving these equations in real-time for 
closed-loop  control of  complex  human  anatomy remains 
challenging  [11],  [12].  For  example,  the  human  hand  and 
forearm are comprised of 17 complex joints with at least 30 
DOFs. Therefore, reducing the number of simulated DOFs is 
a practical means to simplify the implementation of 
biomimetic  algorithms  in  closed-loop  control  systems.  For 
example,  pronation/supination  of  the  wrist  results  from  the 
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rotation  of  both  the  ulna  and  radius  along  their  respective 
longitudinal axes (2 DOFs). However, the resulting motion of 
the hand can be described as a single DOF about the forearm. 
Thus, it is possible to simulate the pronation/supination of the 
hand as a single-DOF revolute joint, reducing the number of 
differential equations that must be solved in real-time. The 
questions  addressed  in  this  study  are    how  to  define  this 
hand/forearm simplification relative to the underlying 
anatomy and whether to model the forearm as one segment, 
as implemented in [13], or as two segments. These 
simplifications, however, still need to reflect accurately the 
joint moments produced by muscles. Body anatomy is 
embedded  in  the  neural  control  signals  [14],  [15]  and  any 
mismatch  between  the  intended  biological  and  simulated 
forces will degrade the performance of a biomimetic system. 
Moreover,  inverse  simulations  aimed  at  estimating  muscle 
activity patterns and neural control signals from joint 
moments would be similarly affected by inaccuracies caused 
by  model  simplifications.  In  this  study,  we  quantified  the 
errors  in predicting joint moments with inverse simulations 
that are caused by the simplification of pronation/supination 
as a single-DOF joint and developed a solution which reduced 
these errors. 

II. METHODOLOGY  

A. OpenSim Model 

We  used  a  published  model  of  an  arm  with  3  joints  and  7 
DOFs  that  was  implemented  in  OpenSim  4.1[1],  [2].  The 
pronation/supination  DOF  was  defined  as a  rotation  of  the 
radius about the ulna and the joint torque was measured about 
an axis parallel to the ulna segment (Fig. 1). To represent the 
variability of hand forces during naturalistic human 
movements we extended the model to articulate the hand with 
16 DOFs, bringing the total number of DOFs to 20 as reported 
in [16]. The kinematic chain of hand segments was organized  
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Figure 1. OpenSim model illustrating the  anatomy of the forearm and hand 
segments. The pronation/supination is accomplished by radius rotating 

around the ulna. 

 
Figure 2. Two simplified models. A. Solid forearm Simulink model. Axes 

show a local coordinate system of the forearm segment. B. Segmented 
forearm Simulink model. Axes show a local coordinate system of the distal 

forearm segment. 

from proximal segment (parent) to distal segment (child), i.e., 
from metacarpals, proximal phalanges, middle phalanges, and 
to  distal  phalanges.  The  segments  of  the  hand  that  include 
carpal and metacarpal bones were modeled as a single rigid 
body with the inertia matrix of a rectangular prism (Fig. 2). 
The segments of digits were modeled as cylinders. The center 
of  mass  was  placed  in  the  center  of  each  segment.  The 
dimensions and inertial parameters of segments were based on 
published anthropometric data for humans of varied body sizes 
from 5% to 50% (average) to 95% of normal range [17], [18].  

The joints were modeled as ideal joints with zero stiffness 
and viscosity.  The  carpometacarpal  joint  was  modeled  with 
two DOFs (thumb flexion/extension and 
abduction/adduction),  and  each  of  the  rest  of  the  14  finger 
joints was modelled as hinge joints with one DOF (phalangeal 
flexion/extension).  Local  coordinate  systems  of  bodies  and 
joints were selected so that flexion was positive in all hand 
DOFs, and thumb abduction was positive. 

B. Simulink Model 

We developed two equivalent upper extremity models in 
Simulink (MathWorks, Inc). Both Simulink models matched 
the OpenSim model in all inertial and morphometric 
parameters  with  the  exception  of  the  forearm  segment  and 
pronation/supination joint. In the first Simulink model, 
referred to as solid forearm model, the forearm segment was a 
single cylinder with inertial parameters closely matched to the 
geometric  sum  of  radius  and  ulna  bodies  of  the  OpenSim 
model (Fig. 2A). The center of mass was placed in the center 
of the forearm segment. The pronation/supination torque was 
measured  between  the  humerus  segment  fixed  in  the  world 
reference frame and the forearm segment about the Z axis in 
Fig. 2A. In the second Simulink model, referred to as 
segmented forearm model, the forearm segment from the first 
model was split into two cylinders (Fig. 2B). The 
pronation/supination torque was measured between the 

proximal  and  distal  compartments  of  the  forearm  segment 
about the Z axis in Fig. 2B. The center of mass was placed in 
the center of each segment. 

C.  Inverse Dynamics 

Movements of the hand were simulated to mimic 
characteristic  point-to-point  human  movement  with  a  bell-
shaped velocity profile  [19].  A total of 65 movements were 
simulated representing 13 hand movements each repeated at 
0º,  45º,  or  90º  elbow  flexion  or  with  concurrent  flexion  or 
extension  of  elbow  through  0º  -  130º  range. The  simulated 
hand movements were as follows: 1) wrist pronation, 2) wrist 
supination, 3) wrist flexion and adduction, 4) wrist extension 
and abduction, 5) closing the hand, 6) opening the hand, 7) 
closing the hand and wrist pronation, 8) opening the hand and 
wrist pronation, 9) closing the hand and wrist supination, 10) 
opening the hand and wrist supination, 11) while in supination, 
closing the hand and flexing the wrist, 12) while in pronation, 
opening  the  hand  and  extending  the  wrist,  and  13)  hand 
opening while the thumb is flexing. The angular kinematics of 
each moving DOF for a given movement was approximated as 
a symmetrical sigmoidal trajectory in time lasting 0.5 seconds 
(Fig  3A).  The  trajectory  was  scaled  in  amplitude  to the 
appropriate range for each movement. In most movements, the 
starting posture for all DOFs was a neutral, i.e., the half-way 
angle between the maximal and minimal range of the 
corresponding  DOF.  The  stopping  angle  was  at  45%  of 
maximal or minimal range derived from published ergonomic 
data [18]. The polynomial coefficients of the scaled trajectory 
were  then  differentiated  to  calculate  angular  velocity  and 
differentiated  again  to  calculate  angular  acceleration.  The 
angular  position  of  the  non-moving  DOFs  were  set  to  the 
required  posture  (neutral  posture,  elbow  at  0º,  45º,  or  90º 
flexion  angle,  or  full  pronation  or  supination)  with  zero 
velocity and acceleration. 

We computed  applied joint torques for all models using 
inverse dynamics driven by angular kinematics of each of the 
65 movements. Simulations with the OpenSim model were run 
using the inverse dynamics tool of OpenSim MATLAB API. 
The torques were low-pass filtered at 6 Hz. Simulations with 
the  Simulink models  were  ran  using 4th order Runge-Kutta 
solver with a fixed 1 ms timestep. Simulations with models of 
different  body  sizes  were  ran  to  test  the  generality  of  our 
conclusions for the analysis of kinematic data from individuals 
of different sizes. The OpenSim and Simulink joint torques 
were compared by calculating root-mean-squared-error 
(RMSE) for each DOF for all movements. The RMSE values 
were normalized to the torque range of the OpenSim model 
per DOF per movement. 

III. RESULTS 

Applied torques calculated with inverse dynamics were on 
similar scale across all models for all movements. The mean 
RMSEs were below 5% of peak-to-peak torque for most DOFs 
across all movements. This shows that the inverse dynamic 
calculations in OpenSim API and Simulink are similar despite 
any differences in their respective algorithms. The differences 
between  models  were,  as  expected,  primarily  in  pronation-
supination torques. 

The applied torque about the pronation/supination DOF of 
the segmented model was the most similar to that produced by 
anatomical joints simulated in OpenSim (Fig. 3B). The  

752

Authorized licensed use limited to: West Virginia University. Downloaded on July 21,2021 at 15:28:10 UTC from IEEE Xplore.  Restrictions apply. 



  

 
Figure 3. Trajectories for pronation/supination DOF from inverse dynamic 
simulation of a movement 1) as described in methods with elbow at 90º. A. 
Angular kinematics that served as input into the simulation (acceleration is 

not shown). B. Applied torque, the output of the simulations with the 
OpenSim and two Simulink models (solid and segmented) scaled to the 

average body size (50th  percentile of normal range). C & D. Same as B for 
models scaled to the small and tall body size respectively (5th  and 95th 

percentiles respectively). 

Figure 4. Torque errors between solid and segmented Simulink models and 
OpenSim model. A-E: Errors for torques about individual joints. Black lines 
connect RMSE values for corresponding movements, red lines are averages 

with shaded rectangles indicating interquartile range. Pro-Sup indicated 
pronation and supination; F-E indicated flexion and extension; Ab-Ad 

indicates abduction and adduction; nu indicated normalized units. 
 

forearm architecture had a generally small effect on the torque 
accuracy across all movement and DOFs (Fig. 4). As expected, 
the largest effects of forearm architecture on torque accuracy 

across all movements was at pronation/supination and elbow 
DOFs  (Fig.  4A  &  B).  These errors  were  driven  by the 
differences in offset, as illustrated in Fig. 3B, or in profiles that 
affected  the  peak  values  of  applied  torques  and  sometimes 
both. This shows that simulations with solid forearm models 
could be wrong by up to 15% in estimating the amplitude of 
postural and propulsion-related muscle forces.   

Torque profiles obtained for the models of short and tall 
human body sizes varied in scale, but not profiles (Fig. 3C & 
D).  The  errors between  the  corresponding  OpenSim  and 
segmented  models  generally  increased  with  body  size  but 
remained mostly below 15% of peak-to-peak torque (Fig. 5). 
The scaling of errors with body size was the most prominent 
in torques about the wrist and finger joints in movements with 
concurrent elbow motion. This is likely due to the cumulative 
effect  of  numerical  errors  that  propagate  from  proximal  to 
distal joints and have a larger effect on smaller distal torques. 

 

 
Figure 5. Torque errors between segmented Simulink model and the 

corresponding OpenSim model scaled to short (5%), average (50%), and 
tall (95%) body sizes. Formatting as in Figure 4. 

IV. DISCUSSION AND CONCLUSION 

Despite known difficulties in obtaining consistent 
solutions across platforms [20], we have achieved very close 
inverse  simulation  results  between  OpenSim  and  Simulink 
models. Even the model with extremely simplified 
pronation/supination joint placed in the cylindrical solid 
forearm  segment  produced  joint  torques  that  were  closely 
matched  to  those  of  a  model  with  separate  ulna  segment 
rotating  about  the  radius  segment  through  complex  joints 
(Fig. 4). These errors were mostly below 10% of peak-to-peak 
torques  across  all  simulated  joints  and  movements,  with 
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pronation/supination being the most adversely affected DOF. 
Our  results  have  shown  that  when  the  accuracy  of  muscle 
moments about the wrist is not crucial, a simplified 
pronation/supination  joint  with  a  single DOF  placed  in  the 
elbow can provide reasonable approximations for biomedical 
applications. 

The segmented forearm model in Simulink performs with 
high precision across all tested movements. The errors were 
within the range of perceptual errors in joint position measured 
in  psychometric  human  studies  [21].  The  uneven  split  into 
proximal and distal cylindrical segments closely matches the 
moments of inertia of the radius segment rotating about the 
ulna segment  and results in  the  smallest  errors between 
OpenSim  and  Simulink  models  (Fig.  4).  This  model  still 
simulates pronation/supination as a single DOF about an axis 
parallel to both compartments of the forearm segment, 
providing the benefit of a simplified dynamic simulation. This 
result has direct implications for neuroprostheses. The 
myoelectric control of actuated hand prostheses in transradial 
amputees  may  be  improved  by  embedding  the  segmented 
model  into  the decoding  algorithm.  Such  a  model  could  be 
more accurate in predicting the intended motion from 
contractions  of  residual  muscles  involved  in  pronation  and 
supination,  such  as  pronator teres,  supinator,  biceps,  and 
extensor and flexor carpi radialis and ulnaris muscles. 

 The accuracy of simulations with movement of the elbow 
were sensitive to body size. In these movements, the errors 
scaled with model size by less than 1% on average, the worst 
single-movement simulation showing 15% errors about finger 
joints (Fig. 5E). This cannot be explained by the change in 
body  inertia  because  RMSE  values  were  normalized  to  the 
peak-to-peak torque, which scaled with body size. This 
normalization  did  not  remove  the  trend,  indicating  that  the 
errors in numerical methods for solving differential equations 
may be the culprit. Our results show that the cumulative effect 
of  these  numerical  errors  in  simulations  with  movement  of 
proximal joints  is the largest at distal joints.  

In  conclusion,  both  the  solid  and  segmented  forearm 
models  performed  well  in  simulating  applied  joint  torques 
during  naturalistic  human  movements,  below  5%  errors  on 
average. The  segmented  model  is  preferred  for  applications 
where accuracy in the muscle moments driving pronation or 
supination is important. This performance is good enough for 
dynamic  real-time  simulations,  for  example,  in  biomimetic 
controllers. Both types of models can be scaled for individual 
body size with minimal reduction in the accuracy of dynamic 
simulations. 
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