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A segmented forearm model of hand pronation-supination
approximates joint moments for real time applications®

Matthew G. Yough, Russell L. Hardesty, Sergiy Yakovenko, and Valeriya Gritsenko

Abstract— Musculoskeletal modeling is a new computational
tool to reverse engineer human control systems, which require
efficient algorithms running in real-time. Human hand
pronation-supination movement is accomplished by movement
of the radius and ulna bones relative to each other via the
complex proximal and distal radioulnar joints, each with
multiple degrees of freedom (DOFs). Here, we report two
simplified models of this complex kinematic transformation
implemented as a part of a 20 DOF model of the hand and
forearm. The pronation/supination DOF was implemented as a
single rotation joint either within the forearm segment or
separating proximal and distal parts of the forearm segment.
Torques produced by the inverse dynamic simulations with
anatomical architecture of the forearm (OpenSim model) were
used as the “gold standard” in the comparison of two simple
models. Joint placement was iteratively optimized to achieve the
closest representation of torques during realistic hand
movements. The model with a split forearm segment performed
better than the model with a solid forearm segment in simulating
pronation/supination torques. We conclude that simplifying
pronation/supination DOF as a single-axis rotation between arm
segments is a viable strategy to reduce the complexity of multi-
DOF dynamic simulations.

I. INTRODUCTION

Musculoskeletal models are useful tools in bottom-up
descriptions of body mechanics for theoretical and
engineering applications. A detailed biomechanical dynamic
model of the human upper extremity was developed in
OpenSim by Saul et al. [1], [2]. This and similar arm models
have been used in human-machine interfaces [3]-[6] and
biomimetic control systems for prosthetics [7]-[9]. This
promising application embeds musculoskeletal models in
closed-loop control systems, which can be implemented in
Matlab (MathWorks, Inc.) with OpenSim application
programming interface. Such hybrid control systems have
been successfully implemented using both forward and
inverse dynamic simulations [10]. However, each additional
mechanical degree of freedom (DOF) in these models
requires additional differential equations for simulating
segmental dynamics. Solving these equations in real-time for
closed-loop control of complex human anatomy remains
challenging [11], [12]. For example, the human hand and
forearm are comprised of 17 complex joints with at least 30
DOFs. Therefore, reducing the number of simulated DOFs is
a practical means to simplify the implementation of
biomimetic algorithms in closed-loop control systems. For
example, pronation/supination of the wrist results from the
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rotation of both the ulna and radius along their respective
longitudinal axes (2 DOFs). However, the resulting motion of
the hand can be described as a single DOF about the forearm.
Thus, it is possible to simulate the pronation/supination of the
hand as a single-DOF revolute joint, reducing the number of
differential equations that must be solved in real-time. The
questions addressed in this study are how to define this
hand/forearm simplification relative to the underlying
anatomy and whether to model the forearm as one segment,
as implemented in [13], or as two segments. These
simplifications, however, still need to reflect accurately the
joint moments produced by muscles. Body anatomy is
embedded in the neural control signals [14], [15] and any
mismatch between the intended biological and simulated
forces will degrade the performance of a biomimetic system.
Moreover, inverse simulations aimed at estimating muscle
activity patterns and neural control signals from joint
moments would be similarly affected by inaccuracies caused
by model simplifications. In this study, we quantified the
errors in predicting joint moments with inverse simulations
that are caused by the simplification of pronation/supination
as a single-DOF joint and developed a solution which reduced
these errors.

II. METHODOLOGY

A. OpenSim Model

We used a published model of an arm with 3 joints and 7
DOFs that was implemented in OpenSim 4.1[1], [2]. The
pronation/supination DOF was defined as a rotation of the
radius about the ulna and the joint torque was measured about
an axis parallel to the ulna segment (Fig. 1). To represent the
variability of hand forces during naturalistic human
movements we extended the model to articulate the hand with
16 DOFs, bringing the total number of DOFs to 20 as reported
in [16]. The kinematic chain of hand segments was organized
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Figure 1. OpenSim model illustrating the anatomy of the forearm and hand
segments. The pronation/supination is accomplished by radius rotating
around the ulna.

Figure 2. Two simplified models. A. Solid forearm Simulink model. Axes
show a local coordinate system of the forearm segment. B. Segmented
forearm Simulink model. Axes show a local coordinate system of the distal
forearm segment.

from proximal segment (parent) to distal segment (child), i.e.,
from metacarpals, proximal phalanges, middle phalanges, and
to distal phalanges. The segments of the hand that include
carpal and metacarpal bones were modeled as a single rigid
body with the inertia matrix of a rectangular prism (Fig. 2).
The segments of digits were modeled as cylinders. The center
of mass was placed in the center of each segment. The
dimensions and inertial parameters of segments were based on
published anthropometric data for humans of varied body sizes
from 5% to 50% (average) to 95% of normal range [17], [18].

The joints were modeled as ideal joints with zero stiffness
and viscosity. The carpometacarpal joint was modeled with
two DOFs (thumb flexion/extension and
abduction/adduction), and each of the rest of the 14 finger
joints was modelled as hinge joints with one DOF (phalangeal
flexion/extension). Local coordinate systems of bodies and
joints were selected so that flexion was positive in all hand
DOFs, and thumb abduction was positive.

B. Simulink Model

We developed two equivalent upper extremity models in
Simulink (MathWorks, Inc). Both Simulink models matched
the OpenSim model in all inertial and morphometric
parameters with the exception of the forearm segment and
pronation/supination joint. In the first Simulink model,
referred to as solid forearm model, the forearm segment was a
single cylinder with inertial parameters closely matched to the
geometric sum of radius and ulna bodies of the OpenSim
model (Fig. 2A). The center of mass was placed in the center
of the forearm segment. The pronation/supination torque was
measured between the humerus segment fixed in the world
reference frame and the forearm segment about the Z axis in
Fig. 2A. In the second Simulink model, referred to as
segmented forearm model, the forearm segment from the first
model was split into two cylinders (Fig. 2B). The
pronation/supination torque was measured between the
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proximal and distal compartments of the forearm segment
about the Z axis in Fig. 2B. The center of mass was placed in
the center of each segment.

C. Inverse Dynamics

Movements of the hand were simulated to mimic
characteristic point-to-point human movement with a bell-
shaped velocity profile [19]. A total of 65 movements were
simulated representing 13 hand movements each repeated at
0°, 45° or 90° elbow flexion or with concurrent flexion or
extension of elbow through 0° - 130° range. The simulated
hand movements were as follows: 1) wrist pronation, 2) wrist
supination, 3) wrist flexion and adduction, 4) wrist extension
and abduction, 5) closing the hand, 6) opening the hand, 7)
closing the hand and wrist pronation, 8) opening the hand and
wrist pronation, 9) closing the hand and wrist supination, 10)
opening the hand and wrist supination, 11) while in supination,
closing the hand and flexing the wrist, 12) while in pronation,
opening the hand and extending the wrist, and 13) hand
opening while the thumb is flexing. The angular kinematics of
each moving DOF for a given movement was approximated as
a symmetrical sigmoidal trajectory in time lasting 0.5 seconds
(Fig 3A). The trajectory was scaled in amplitude to the
appropriate range for each movement. In most movements, the
starting posture for all DOFs was a neutral, i.e., the half-way
angle between the maximal and minimal range of the
corresponding DOF. The stopping angle was at 45% of
maximal or minimal range derived from published ergonomic
data [18]. The polynomial coefficients of the scaled trajectory
were then differentiated to calculate angular velocity and
differentiated again to calculate angular acceleration. The
angular position of the non-moving DOFs were set to the
required posture (neutral posture, elbow at 0°, 45°, or 90°
flexion angle, or full pronation or supination) with zero
velocity and acceleration.

We computed applied joint torques for all models using
inverse dynamics driven by angular kinematics of each of the
65 movements. Simulations with the OpenSim model were run
using the inverse dynamics tool of OpenSim MATLAB API.
The torques were low-pass filtered at 6 Hz. Simulations with
the Simulink models were ran using 4" order Runge-Kutta
solver with a fixed 1 ms timestep. Simulations with models of
different body sizes were ran to test the generality of our
conclusions for the analysis of kinematic data from individuals
of different sizes. The OpenSim and Simulink joint torques
were compared by calculating root-mean-squared-error
(RMSE) for each DOF for all movements. The RMSE values
were normalized to the torque range of the OpenSim model
per DOF per movement.

III. RESULTS

Applied torques calculated with inverse dynamics were on
similar scale across all models for all movements. The mean
RMSEs were below 5% of peak-to-peak torque for most DOFs
across all movements. This shows that the inverse dynamic
calculations in OpenSim API and Simulink are similar despite
any differences in their respective algorithms. The differences
between models were, as expected, primarily in pronation-
supination torques.

The applied torque about the pronation/supination DOF of

the segmented model was the most similar to that produced by
anatomical joints simulated in OpenSim (Fig. 3B). The
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Figure 3. Trajectories for pronation/supination DOF from inverse dynamic

simulation of a movement 1) as described in methods with elbow at 90°. A.

Angular kinematics that served as input into the simulation (acceleration is

not shown). B. Applied torque, the output of the simulations with the

OpenSim and two Simulink models (solid and segmented) scaled to the

average body size (50" percentile of normal range). C & D. Same as B for
models scaled to the small and tall body size respectively (5 and 95"

percentiles respectively).
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Figure 4. Torque errors between solid and segmented Simulink models and
OpenSim model. A-E: Errors for torques about individual joints. Black lines
connect RMSE values for corresponding movements, red lines are averages
with shaded rectangles indicating interquartile range. Pro-Sup indicated
pronation and supination; F-E indicated flexion and extension; Ab-Ad
indicates abduction and adduction; nu indicated normalized units.

forearm architecture had a generally small effect on the torque
accuracy across all movement and DOFs (Fig. 4). As expected,
the largest effects of forearm architecture on torque accuracy

across all movements was at pronation/supination and elbow
DOFs (Fig. 4A & B). These errors were driven by the
differences in offset, as illustrated in Fig. 3B, or in profiles that
affected the peak values of applied torques and sometimes
both. This shows that simulations with solid forearm models
could be wrong by up to 15% in estimating the amplitude of
postural and propulsion-related muscle forces.

Torque profiles obtained for the models of short and tall
human body sizes varied in scale, but not profiles (Fig. 3C &
D). The errors between the corresponding OpenSim and
segmented models generally increased with body size but
remained mostly below 15% of peak-to-peak torque (Fig. 5).
The scaling of errors with body size was the most prominent
in torques about the wrist and finger joints in movements with
concurrent elbow motion. This is likely due to the cumulative
effect of numerical errors that propagate from proximal to
distal joints and have a larger effect on smaller distal torques.
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Figure 5. Torque errors between segmented Simulink model and the
corresponding OpenSim model scaled to short (5%), average (50%), and
tall (95%) body sizes. Formatting as in Figure 4.

IV. DISCUSSION AND CONCLUSION

Despite known difficulties in obtaining consistent
solutions across platforms [20], we have achieved very close
inverse simulation results between OpenSim and Simulink
models. Even the model with extremely simplified
pronation/supination joint placed in the cylindrical solid
forearm segment produced joint torques that were closely
matched to those of a model with separate ulna segment
rotating about the radius segment through complex joints
(Fig. 4). These errors were mostly below 10% of peak-to-peak
torques across all simulated joints and movements, with
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pronation/supination being the most adversely affected DOF.  [4]
Our results have shown that when the accuracy of muscle
moments about the wrist is not crucial, a simplified
pronation/supination joint with a single DOF placed in the
elbow can provide reasonable approximations for biomedical ~ [3]
applications.

The segmented forearm model in Simulink performs with
high precision across all tested movements. The errors were (6]
within the range of perceptual errors in joint position measured
in psychometric human studies [21]. The uneven split into
proximal and distal cylindrical segments closely matches the
moments of inertia of the radius segment rotating about the 7]
ulna segment and results in the smallest errors between
OpenSim and Simulink models (Fig. 4). This model still
simulates pronation/supination as a single DOF about an axis
parallel to both compartments of the forearm segment, (8]
providing the benefit of a simplified dynamic simulation. This
result has direct implications for neuroprostheses. The
myoelectric control of actuated hand prostheses in transradial  [9]
amputees may be improved by embedding the segmented
model into the decoding algorithm. Such a model could be
more accurate in predicting the intended motion from
contractions of residual muscles involved in pronation and [10]
supination, such as pronator teres, supinator, biceps, and
extensor and flexor carpi radialis and ulnaris muscles.

The accuracy of simulations with movement of the elbow
were sensitive to body size. In these movements, the errors
scaled with model size by less than 1% on average, the worst
single-movement simulation showing 15% errors about finger
joints (Fig. 5E). This cannot be explained by the change in [12]
body inertia because RMSE values were normalized to the
peak-to-peak torque, which scaled with body size. This
normalization did not remove the trend, indicating that the [3]
errors in numerical methods for solving differential equations
may be the culprit. Our results show that the cumulative effect
of these numerical errors in simulations with movement of
proximal joints is the largest at distal joints.

[11]

In conclusion, both the solid and segmented forearm  [14]
models performed well in simulating applied joint torques
during naturalistic human movements, below 5% errors on

. .. [15]
average. The segmented model is preferred for applications
where accuracy in the muscle moments driving pronation or [16]
supination is important. This performance is good enough for
dynamic real-time simulations, for example, in biomimetic
controllers. Both types of models can be scaled for individual
body size with minimal reduction in the accuracy of dynamic [17]
simulations.

[18]
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