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The evolution of multicellularity was a major transition in

evolution and set the stage for unprecedented increases in

complexity, especially in land plants and animals. Here, we

explore the genetics underlying a de novo origin of

multicellularity in a microbial evolution experiment carried

out on the green alga Chlamydomonas reinhardtii. We show

that large-scale changes in gene expression underlie the

transition to a multicellular life cycle. Among these, changes to

genes involved in cell cycle and reproductive processes were

overrepresented, as were changes to C. reinhardtii-specific and

volvocine-specific genes. These results suggest that the genetic

basis for the experimental evolution of multicellularity in

C. reinhardtii has both lineage-specific and shared features,

and that the shared features have more in common with

C. reinhardtii’s relatives among the volvocine algae than with

other multicellular green algae or land plants.
1. Introduction
How and why organismal complexity increases are central

questions in evolutionary biology. If we take the number of

types of parts as an operational definition of complexity [1,2], it

is clear that both the maximum and the average levels of

complexity have increased from the origin of life to the present

day (although the vast majority of life forms remain simple).

Large increases in organismal complexity resulted from a series

of events in which existing individuals combined to become

components of a new kind of individual with parts specialized

to play various roles. Such events are known as major

transitions [3] or evolutionary transitions in individuality [4–6]

and include the emergence of cellular life from groups of

interacting molecular replicators, of eukaryotes from two
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prokaryotes, of multicellular organisms from unicells and of eusocial ‘superorganisms’ from individual

animals. Among such transitions, the evolution of multicellular organisms from single-celled ancestors,

and the further evolution of cellular differentiation, set the stage for unprecedented increases in

complexity, especially in land plants and animals.

Multicellularity has evolved independently in at least 25 separate lineages, including the Eubacteria,

Archaea and several lineages spanning the deepest divergences within the eukaryotes [7,8]. These

independent origins of multicellularity are replicate natural experiments with the potential to reveal

general principles involved in this transition. The predominant approach to studying these origins has

been retrospective, using comparative methods. This approach has been productive in many cases, but

it does suffer from important limitations. First, for most lineages, evidence of the earliest steps in the

transition has been decimated by extinction and obscured by the limitations of the fossil record.

Second, most such comparisons are with extant unicellular relatives, which are only approximate

stand-ins for unicellular relatives; after all, they have been evolving just as long since the initial

divergence as have the multicellular groups with which we are comparing them.

One way around these limitations is to use experimental microbial evolution to generate a de novo

origin of multicellularity. Simple multicellular structures have evolved in response to predation in

experiments using the green algae Chlorella vulgaris [9] and Chlamydomonas reinhardtii [10]. However,

virtually nothing is known about the genetic changes underlying these evolutionary responses. In the

yeast Saccharomyces cerevisiae, multicellular ‘snowflakes’ evolved in response to selection for an

increased rate of settling out of liquid suspension [11]. These experiments show that simple

multicellularity can evolve relatively quickly (approx. 100 to approx. 300 generations), given a strong

selective pressure for increased size [9,12].

We have subjected the unicellular chlorophyte alga C. reinhardtii to selection for increased settling

speed, resulting in the evolution of a simple multicellular life cycle [12]. The evolved isolate is

characterized by unicellular propagules, which develop clonally into multicellular clusters. Clusters

inoculated into fresh medium exhibit little movement or cell division. Around 4 h post-inoculation,

motile unicells begin to disperse away from the parent cluster. By 8 h post-inoculation, many of these

single-celled propagules have stopped swimming and begun to develop into multicellular clusters,

which continue to grow by cell division over the remainder of the culture cycle.

Chlamydomonas reinhardtii is closely related to the colonial or multicellular volvocine algae in the

families Tetrabaenaceae [13], Goniaceae [14] and Volvocaceae [15], which collectively form a

multicellular clade. Because C. reinhardtii is nested within an otherwise unicellular clade, it is inferred

to be primitively unicellular, i.e. to have no multicellular ancestors. The multicellular structures that

evolved in our experiments thus represent a novel origin of simple multicellularity, not a reversion to

an ancestral condition.

The life history of experimentally evolved C. reinhardtii is stable over successive generations in the

absence of selection, indicating that it is heritable. Here, we explore the hereditary basis of this transition

from a unicellular to a multicellular life cycle. Using a combination of whole-genome sequencing,

bulked segregant analysis and genome-wide transcriptional analysis, we identify changes in gene

structure and expression that distinguish an evolved multicellular clone from its unicellular ancestor.

2. Methods
2.1. Whole-genome sequencing
In the experiment described in Ratcliff et al. [12], outcrossed experimental populations of C. reinhardtii
were subjected to selection for increased settling rate via low-speed centrifugation, resulting in the

evolution of multicelled clusters in one of ten experimental populations. Multicellular isolate WRC01

(Will Ratcliff Clone 01) was derived from this population. Ten clones were initially isolated from the

same experimental population, but Sanger sequencing of five unlinked loci revealed no genetic

variation. We therefore treat WRC01 as representative of the algae from this population.

Populations in the evolution experiment reported on by Ratcliff et al. [12] were founded using a large

pool of F2 progeny created by crossing 15 genetically diverse C. reinhardtii strains from the

Chlamydomonas Resource Center (CC-124, CC-125, CC-1690, CC-1691, CC-2290, CC-2342, CC-2343,

CC-2344, CC-2931, CC-2932, CC-2935, CC-2936, CC-2937, CC-2938 and CC-4414). The genomes

of most of these parental strains had been previously sequenced to low coverage (approx. 10-fold

average genomic coverage) using paired-end libraries on an Illumina platform [16]. To supplement

these data, we generated our own paired-end sequencing data for four additional parental strains
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(CC-124, CC-1690, CC-1691 and CC-4414) and WRC01 (NCBI Sequence Read Archive accession numbers

SAMN09580649 and SAMN09580651–4).

Algae for whole-genome sequencing were grown in 100 ml TAP medium [17] at 22.58C under cool

white fluorescent lights (4300 K) on a 14 L : 10 D cycle. We extracted DNA from dense cultures using the

Qiagenw DNeasy Plant Maxi Kit. Paired-end DNA libraries for Illumina sequencing were prepared by

the Vincent J. Coates Genomics Sequencing Laboratory (Berkeley, CA, USA) using an Apollo 324TM

Next Generation Sample Preparation System with the PrepX ILM 32i DNA Library Kit and sequenced

on an Illuminaw HiSeqw 2000.

Paired-end reads from Jang & Ehrenreich [16] (NCBI Short Read Archive accession numbers

SRR516510-23 and SRR552312-837) and from our sequencing described in the previous paragraph were

filtered using Trimmomatic v. 0.11.219 as follows: adapter sequences and low-quality bases (less than 3)

were removed, reads trimmed when the average quality of a 4 bp sliding window dropped below 15, and

trimmed reads less than 36 bp long discarded. Surviving reads were aligned to the C. reinhardtii reference
genome (v. 5.5 from Phytozyme v. 11, phytozome.jgi.doe.gov) using the mem function of BWA [18].

2.2. Bulked segregant analysis
Weused bulked segregant analysis [19] to identify alleles associatedwithmulticellularity.We suspected that

WRC01wasmating type (mt)minus, because no reads from thewhole-genome sequencing alignedwith the

FUS1 locus, which is diagnostic for mtþ. Mating was carried out using the protocol in Harris [17], modified

as follows: WRC01, CC-125 (mtþ) and CC-124 (mt2) were grown separately in 50 ml TAP medium [20]

shaken at 200 r.p.m. for 5 days. Cells were collected by centrifugation at 2000g for 5 min, resuspended in

25 ml Chlamydomonas mating medium [17], and grown under continuous light for 6 h to induce

gametogenesis. Gametes were mixed in 6-well tissue culture plates as follows: each plate contained 4

wells with 2 ml each of WRC01 and either CC-125 or CC-124 and 2 wells with 4 ml of a single strain. The

single-strain wells served as controls to ensure that no vegetative material survived (and thus that all

surviving progeny were outcrossed). Plates were kept in continuous light for 24 h then in dark for 6 days,

at which time all wells were completely desiccated. Zygotes were germinated by addition of 4 ml

TAP medium per well and grown on a 14 L : 10 D cycle. Within three weeks, all four wells of the

WRC01 � CC-125 cross showed obvious signs of growth, while none of the single-strain controls or

the WRC01 � CC-124 wells showed any sign of growth, confirming that WRC01 is indeed mt2.

Pools of WRC01 � CC-125 F1 progeny were crossed to generate a large pool of F2 progeny for use in

bulked segregant analysis. We separated F2 progeny into primarily unicellular and primarily

multicellular pools by four rounds of growth and centrifugation. Ten millilitres of pooled algae were

transferred to a 15 ml conical tube and centrifuged for 1 min at 100g. The top 2 ml (for the unicellular

pool) or the bottom 1 ml (for the multicellular pool) was used to inoculate 50 ml TAP medium. We

extracted total DNA from unicellular and multicellular pools using the DNeasyw Plant Mini Kit

(Qiagen). DNA libraries were generated by the Vincent J. Coates Genomics Sequencing Laboratory

(Berkeley, CA, USA) using the PrepX ILM 32i DNA Library Kit and were sequenced on an Illumina

HiSeq 2500 at the Georgia Institute of Technology. The resulting sequence data are available on the

NCBI Sequence Read Archive as accession numbers SAMN09580655–6.

Adapter sequences and low-quality bases were removed, reads were trimmed, and trimmed reads

less than 36 bp long were dropped using Trimmomatic v. 0.11.2 as described above for the whole-

genome sequencing analysis [21]. Paired-end reads for which both reads survived filtering were

aligned to the C. reinhardtii genome v. 5.5 (phytozyme.jgi.doe.gov) using BWA-mem v. 0.7.10 [18].

Reads that aligned with a mapping quality less than 30 were removed using SamTools v. 0.1.15 [22].

SNPs identified as differing between WRC01 and CC-125 were treated as alleles segregating in the F2

population. Alleles originating in WRC01 and overrepresented in the multicellular pool are candidates

for causing the multicellular phenotype in WRC01, and we quantified the degree of their

overrepresentation in terms of log odds. Odds and log odds for allele frequency differences between

the two bulked segregant pools were calculated using exact binomial probabilities as follows: given

the overall frequency of an allele across the two pools, what are the odds of observing the estimated

frequency difference (or greater) between the two pools by chance? We chose to estimate deviations

from the observed overall allele frequency, rather than deviations from the expected 1 : 1 frequency, in

case some alleles provided a growth rate advantage and consequently increased in frequency while

cells were being grown to high density for DNA extractions. Deviations from the observed overall

frequency can only be due to sampling error or to selection, and the statistical test was designed to

distinguish between these possibilities.
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2.3. RNA-Seq
We extracted total RNA using the RNeasyw Plant Mini Kit (Qiagen) from three biological replicates each

of WRC01 and CC-125 at 3, 6, 9, 12 and 48 h post-inoculation. These time points were selected to compare

gene expression in each phase of the multicellular clone’s life cycle: lag (3 h), release of swimming

propagules (6 and 9 h) and growth and development of multicellular clusters (12 and 48 h). Cultures

for RNA extraction were grown under conditions identical to those in which the experiment was

carried out. Cells were collected by centrifugation at 17 000g for 1 min, snap-frozen in liquid N2 and

stored at 2808C for up to one week before extraction. Cells were not disrupted as specified in the

RNeasy protocol, but rather were thawed and immediately mixed with lysis buffer by pipetting. RNA

quality was quantified using an Agilent 2100 Bioanalyzer using the Plant RNA Nano assay.

We generated cDNA libraries from 500 ng total RNA using the TruSeqw RNA Sample Preparation Kit

v. 2 (Illuminaw) following the standard protocol, with the following exceptions. cDNA fragments were

enriched using 14 PCR cycles, based on the results of qPCR using the DyNAmo Flash SYBR Green

qPCR Kit (Thermo Scientific). Clusters and 100 bp paired-end reads were generated on an Illumina

Hi-Seq 2500 at the Georgia Institute of Technology. The RNA-Seq experiment was blocked by flow

cell, such that each of the three Hi-Seq flow cells contained one replicate of each strain at each time

point. Lane assignments and Illumina indices (from the TruSeq RNA Sample Preparation Kit) are

shown in electronic supplementary material, table S1.

Adapter sequences and low-quality bases (less than 3) were removed, reads trimmed when the

average quality of a 4 bp sliding window dropped below 15 and trimmed reads less than 36 bp long

dropped using Trimmomatic v. 0.11.2 [21]. Differential gene expression was estimated using the

Cufflinks workflow [23]. Paired-end reads for which both reads survived Trimmomatic filtering were

mapped to the Chlamydomonas reference genome (Phytozome 5.5) using TopHat v. 2.0.13 [23,24],

transcriptomes assembled using Cufflinks v. 2.2.1 [23], transcript expression quantified using

Cuffquant v. 2.2.1 [23] and expression differences quantified using Cuffdiff v. 2.2.1 [23].

Expression levels, estimated as Fragments Per Kilobase of transcript per Million mapped reads

(FPKMs), among the three biological replicates from each strain (CC-125 and WRC01) at each time

point (3, 6, 9, 12 and 48 h), were correlated with r . 0.98 in all pairwise comparisons (electronic

supplementary material, table S2). The raw RNA-Seq data are available from the NCBI Sequence Read

Archive accession numbers SAMN09580649–50. For the following analyses, we included only

differentially expressed genes with an average expression level difference of fourfold or greater

(log2 � 2) at one or more time points.

We estimated the phylogenetic origins (phylostrata [25]) of differentially expressed genes using

protein–protein BLAST [26] searches of translated primary transcripts from the C. reinhardtii reference
genome (Phytozome 5.5). BLASTp matches with an E-value , 0.001 were considered homologous.

Homologues were assigned to one of the following categories (in order of increasing inclusiveness)

according to the GenBank taxonomy: Chlamydomonas, volvocine, Chlamydomonadales, Chlorophyceae,

Chlorophyta, Viridiplantae, Eukaryota and cellular organisms (figure 3). We tested variation from

expected frequencies of differentially expressed genes from particular phylostrata using a two-tailed

hypergeometric test with the Bonferroni correction (a ¼ 0.0025, equivalent to a false discovery rate of

1%) in GeneMerge v. 1.4 [27]. Expected frequencies for this analysis were those assigned to a taxonomic

level across the entire genome, to test the null hypothesis that differentially expressed genes of a

particular taxonomic level are represented at their underlying (genome-wide) frequency.

Functional annotation of differentially expressed genes was carried out using Blast2GO v. 3.3.5

[28,29]. We tested variation from expected (genome-wide) frequencies of differentially expressed genes

with particular ontologies using a two-tailed hypergeometric test (a ¼ 0.0025, equivalent to a false

discovery rate of 1%) in GeneMerge v. 1.4 [27].
3. Results
3.1. Whole-genome sequencing
To identify and characterize genetic variants, we sequenced the evolved multicellular strain and several

parental strains. Paired-end Illumina sequencing generated an average depth of coverage of 47� across

the WRC01 genome. Average coverage for the parental strains CC-124, CC-1690, CC-1691 and CC-4414

was 70�, 39�, 36� and 61�, respectively. The WRC01 genome contains large-scale differences from all
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of the parental strains used to found the starting populations, confirming that it descends from

recombined sexual progeny.

Because the experimental populations were founded from a genetically diverse pool of outcrossed

progeny, there is no single ancestral genotype to which we can compare the evolved multicellular

strain. Genetic variants contributing to the multicellular phenotype could be novel mutations that

occurred during the experiment, novel combinations of alleles that were present in the parental strains

or a combination of both. Variants identified by whole-genome sequencing must therefore be tested

for association with the multicellular phenotype.

3.2. Bulked segregant analysis identifies genomic regions associated with undifferentiated
multicellularity

To distinguish genetic variants contributing to the multicellular phenotype from those that are

unrelated, we used bulked segregant analysis of an F2 population generated by crossing the

multicellular strain WRC01 and unicellular CC-125. Average depth of coverage for the bulked

segregant pools enriched for unicellular and multicellular algae were 155� and 128�, respectively.

Results from the bulked segregant analysis are shown in figure 1. Markers on portions of

chromosomes 14 and 16 are substantially overrepresented in the bulked segregant pool enriched for

multicellular algae.

3.3. RNA-Seq analysis of unicellular and multicellular growth cycles reveals differential
expression of lineage- and group-specific genes

To gain insight into gene expression differences underlying de novo multicellularity, we estimated

transcript levels in WCR01 and compared them to those of wild-type C. reinhardtii (CC-125).

Previous experiments showed that the multicellular clone had evolved a characteristic life cycle,

discernible over 72 h, including an approximately 4 h lag followed by release of unicellular

propagules (approx. 4 to 6 h), which developed into multicellular clusters over the next

approximately 48 h. To capture this process, we inoculated three biological replicates each of a

unicellular ancestor (CC-125) and the multicellular clone (WCR01), harvested cells at 3, 6, 9, 12 and

48 h and subjected each to RNA-Seq analysis. FPKM values from the three biological replicates of

each combination of strain and time point were highly correlated (R2 . 0.96 in every case). We
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found large-scale expression differences between the evolved multicellular isolate WRC01 and

unicellular CC-125 (figure 2).

Genes whose transcript levels differ by at least fourfold between CC-125 and WRC01 are significantly

enriched for volvocine-specific (Chlamydomonas þ Gonium þ Volvox) genes compared to the C. reinhardtii
genome (figure 3). Chlamydomonas reinhardtii-specific genes were significantly overrepresented at 3, 6, 12

and 48 h, and volvocine-specific genes were significantly overrepresented at 3, 9, 12 and 48 h.

Chlamydomonadales-specific genes appear to be overrepresented at the first four time points, but

only significantly at 6 h. The Chlamydomonadales results are possibly due to sampling bias: the only

published genomes in the Chlamydomonadales are in Chlamydomonas and volvocine species, so

only 13 genes were assigned to this phylostratum genome-wide, when compared with greater than

6000 to C. reinhardtii and greater than 2000 to volvocine.

Among the significantly differentially expressed genes, 3453 were over/underexpressed by

fourfold or greater at one or more time points. Table 1 shows gene ontology categories that are

overrepresented among differentially expressed genes, relative to their representation in the

C. reinhardtii genome. Of particular interest is the overrepresentation of gene ontologies related to

cell cycle and reproductive processes downregulated at 3 h post-inoculation and upregulated at 9 h.

Consistent with the observation that multicelled clusters undergo little or no cell division during

the first 4 h post-inoculation, several gene ontologies related to mitosis are significantly

overrepresented among genes underexpressed at 3 h. These include cell cycle (GO:0007049), cell

division (GO:0051301), DNA replication (GO:0006260), nuclear division (GO:0000280), cell division

(GO:0051301), cell proliferation (GO:0008283), regulation of cell division (GO:0051302) and

regulation of cell cycle (GO:0051726). With the exception of regulation of cell division, the same

ontologies are overrepresented among the genes overexpressed at 9 h, when clusters are beginning

to grow through mitosis. In addition, some of the gene ontologies overrepresented among the

upregulated genes at 6 and 9 h are associated with multicellular developmental processes,

including regulation of post-embryonic development (GO:0048580), regulation of reproductive

process (GO:2000241) and regulation of shoot system development (GO:0048831). A complete list of

the gene ontologies making up each category and the complete results of the GeneMerge [27]

analyses, including the differentially expressed genes in each ontology, are available on Dryad:

http://dx.doi.org/10.5061/dryad.6447n78 [30].

http://dx.doi.org/10.5061/dryad.6447n78
http://dx.doi.org/10.5061/dryad.6447n78
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4. Discussion
The life cycle of the multicellular isolates described in Ratcliff et al. [12] alternates between unicellular and

multicellular stages. The time points used in the RNA-Seq experiment were chosen to bracket milestones

in the life cycle: at 3 h, clusters appear dormant; at 6 h, unicellular propagules are actively swimming; at 9

and 12 h, many have lost motility and begun to develop into multicellular clusters; and at 48 h, clusters

have reached a large size (approx. 50 cells or more).

Many of the gene ontologies related to mitosis that are overrepresented among genes underexpressed

at 3 h are also overrepresented among genes overexpressed at 9 h, including several related to cell cycle

and reproductive processes. This is consistent with observations of the evolved multicellular life cycle, in

which cell division is largely absent at 3 h but rampant at 9 h. The overrepresentation of gene ontologies

related to multicellular development at 6 and 9 h is also consistent with the observed initiation of

multicellular clusters at around this time.

Among differentially expressed genes, either volvocine-specific or Chlamydomonadales-specific

genes are overrepresented at all five time points, suggesting that the genetics underlying the evolution

of multicellularity in our experiment [12] has more in common with that in Volvox and related algae

than with land plants. By contrast, green algal (Chlorphyceae/Chlorophyta) and Viridiplantae-specific

genes are not overrepresented at any time point. In spite of a very different resulting phenotype,

C. reinhardtii selected for multicellularity nevertheless followed a genetic pathway similar to that of

the multicellular volvocine algae. However, C. reinhardtii-specific genes are also overrepresented at

four of the five time points, suggesting important differences from volvocine evolution.

The results of the bulked segregant analysis show that at least two loci, on chromosomes 14 and 16,

are significantly associated with the multicellular phenotype. While this analysis did not have sufficient

resolution to identify the specific mutations responsible for the phenotype, this analysis considerably

narrows the range of possibilities.

Understanding the evolution of complexity requires exploring both the ultimate (selective) and

proximate (mechanistic) causes. The experiments described here, along with previous experiments by
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ourselves [11,12] and others [9,31,32], have shown that single-celled organisms can readily evolve

multicellularity when subjected to the right selective pressures. We have shown that the genetic basis

for the experimental evolution of C. reinhardtii involves large-scale changes in gene expression

affecting nearly 20% of the organism’s transcriptome. Conspicuous among these transcripts are those

encoded by genes involved in multicellular development. The observed genetic changes have more in

common with multicellular volvocine algae than with other multicellular green algae or land plants,

but a large portion were Chlamydomonas-specific genes as well.
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