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Abstract 24 

Biogeochemical processes are often spatially discrete (hot spots) and temporally isolated (hot 25 
moments) due to variability in controlling factors like hydrologic fluxes, lithological characteristics, bio-26 
geomorphic features, and external forcing. Although these hot spots and hot moments (HSHMs) account 27 
for a high percentage of carbon, nitrogen and nutrient cycling within the Critical Zone, the ability to identify 28 
and incorporate them into reactive transport models remains a significant challenge. This chapter provides 29 
an overview of the hot spots hot moments (HSHMs) concepts, where past work has largely focused on 30 
carbon and nitrogen dynamics within riverine systems. This work is summarized in the context of process-31 
based and data-driven modeling approaches, including a brief description of recent research that casts a 32 
wider net to incorporate Hg, Fe and other Critical Zone elements, and focuses on interdisciplinary 33 
approaches and concepts. The broader goal of this chapter is to provide an overview of the gaps in our 34 
current understanding of HSHMs, and the opportunities therein, while specifically focusing on the 35 
underlying parameters and processes leading to their prognostic and diagnostic representation in reactive 36 
transport models.  37 

1. Introduction		38 

The Critical Zone encompasses the biosphere and its heterogeneities, with an extremely high 39 
differentiation of properties and processes within each compartment from bedrock to canopy, and across 40 
terrestrial and aquatic interfaces. Given this complexity, a comprehensive areal characterization of the 41 
critical zone environment at multiple temporal resolutions is needed but not always possible, and failing 42 
which the ecosystem fluxes, exchange rates and biogeochemical functioning may be under- or over-43 
predicted. The hot spots hot moments (HSHMs) concept provides an opportunity to identify the dominant 44 
controls on carbon, nutrients, water and energy exchanges. Hot spots are regions or sites that show 45 
disproportionately high reaction rates relative to surrounding area, while hot moments are defined as times 46 
that show disproportionately high reaction rates relative to longer intervening time periods (McClain and 47 
others 2003).  48 

By definition, hot spots and hot moments are rare sites and events that are significant for element 49 
and nutrient cycling at landscape and ecosystem scales. Some examples of HSHMs include: 50 

• Spring melt and storm events constituted hot moments that were important contributors of 51 
mercury loading to Lake Michigan, which had direct consequences for fish spawning and 52 
ecosystem health (Hurley et al., 1998); 53 

• Rainfall magnitude and duration controlled hot moments of pesticide leaching within the 54 
Wheatbelt region of Western Australia, which has important implications for groundwater 55 
quality (McGrath et al., 2010); 56 

• Temperature fluctuations constituted hot moments that resulted in a 170% increase in 57 
groundwater carbon exports to the river from a floodplain site in Rifle, Colorado (Arora et 58 
al., 2016b); 59 

• Stream stage fluctuations, and specifically high stream stage, are biogeochemical hot 60 
moments that promote hyporheic exchange and nutrient cycling (Gu et al., 2012); 61 

• Root tips were identified as hot spots of assimilated carbon in the rhizosphere of rye-grass 62 
grown on a long-term pastureland in Germany (Pausch and Kuzyakov, 2011); 63 

• Topographic features such as hollows and depressions are denitrification hot spots and 64 
have a significant impact on wetland-scale denitrification (Frei et al., 2012); 65 

• South-facing swales (concave hillslopes) were identified as carbon hot spots because they 66 
exhibited significantly higher soil organic carbon storage and more active hydrology as 67 
compared to the rest of the catchment (Andrews et al., 2011); 68 
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• Agricultural wetlands, particularly shallowly flooded rice fields, constituted hot spots of 69 
methylmercury accumulation (Ackerman and Eagles-Smith, 2010); 70 

• Riparian buffer strips are considered hot spots for the purpose of developing mitigation 71 
measures aimed at preventing phosphorus and nitrogen transport from agricultural land to 72 
surface waters (Vidon et al., 2010). 73 
 74 

In general terms, HSHMs may be associated with elevated concentrations of solutes, such as arsenic 75 
(Yu et al., 2003), uranium (Liu et al., 2008), pesticides (McGrath et al., 2010) and nitrate (Dwivedi et al., 76 
2017), or processes rates, such as denitrification (Henson et al., 2017; McClain et al., 2003; Palta et al., 77 
2014; Zarnetske et al., 2012), mercury methylation (Ackerman and Eagles-Smith, 2010) and organic carbon 78 
degradation (Arora et al., 2016b). Therefore, identifying and quantifying the distribution of HSHMs in the 79 
critical zone is important from the perspective of resolving resource management problems such as 80 
eutrophication, toxic algal blooms, groundwater contamination, heavy metal transport, and greenhouse gas 81 
fluxes to the atmosphere.		82 

1.1. Definition of terms 83 

In their seminal work, McClain et al. (2003) defined HSHMs as associated with rare locations and 84 
non-uniform times where biogeochemical rates are maximized. Adding to this definition, Vidon et al. 85 
(2010) made a distinction between transport-dominated and biogeochemically-driven HSHMs. In the 86 
former category, transport processes control the location, timing and duration of solute contact and 87 
transformation resulting in higher solute fluxes or concentrations; while the latter HSHMs correspond to 88 
higher reaction rates occurring from a convergence of ideal biogeochemical conditions that includes 89 
electron acceptors and donors transported through different flow paths. Several studies have shown the 90 
impact of transport-driven hot moments such as rainfall events, wetting-drying cycles and water table 91 
fluctuations on changes in concentrations of conservative and redox-sensitive chemicals (Arora et al., 2013; 92 
Barcellos et al., 2018; Han et al., 2001; McGuire et al., 2005). An example of biogeochemical hot moments 93 
includes the work of Palta et al. (2014) wherein they linked the presence of anaerobic conditions and nitrate 94 
availability to higher nitrate removal rates in brownfield wetlands. Another example includes the 95 
association of temporal patterns in contaminant distribution to the presence of chemically-reduced 96 
sediments (rich in pyrite, uranium and carbon) within a floodplain environment (Arora et al., 2016a). 97 

Implicit in the definition from Vidon et al. (2010) is the fact that the types of HSHMs are not 98 
mutually exclusive, such that they may occur together due to a convergence of ideal biogeochemical 99 
conditions with the transport of the limiting reactant, or they may occur separately, with brief overlaps at 100 
certain times. In this regard, Harms and Grimm (2008) showed that peak nitrogen retention and removal 101 
occurred during the monsoon season (transport-dominated) and coincided with seasonal shifts in microbial 102 
community carbon use (biogeochemically-driven) in the riparian zone of the San Pedro River, Arizona. In 103 
contrast, Andrews et al. (2011) reported that transport-dominated hot moments of dissolved organic carbon 104 
were observed during periods of snowmelt (linked to flushing), while biogeochemically-driven hot 105 
moments were observed during late summer to early fall wet-up (related to temperature). Together, both 106 
types of hot moments contributed to ~55% of the total dissolved organic carbon exported in the Shale Hills 107 
Catchment in 2009. 108 

Research on hot spots has also focused on critical zone interfaces, where biogeochemical rates, 109 

nutrient cycling and biodiversity is often orders of magnitude higher than the surrounding area. These 110 

critical interfaces are defined as the interacting boundaries between zones of distinct ecohydrological, 111 

geochemical, microbial and lithological properties (Arora et al., 2019a; Li et al., 2017). In their review, 112 

Kuzyakov and Blagodatskaya (2015) described rhizosphere (i.e., the root-soil interface) and detritusphere 113 

(i.e., the soil-litter interface) as microbial hot spots. In a recent study, Krause et al. (2017) described the 114 

soil-atmosphere interface, capillary fringe zone, the interface between terrestrial upland and lowland 115 

aquatic ecosystems, as well as groundwater-surface water interface as ecohydrological hot spots. Their 116 
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work further highlighted the dynamic nature of these interfaces in contrast to the stationary physical 117 

boundaries that separate different ecosystems or ecotones (boundaries that have a defined thickness and 118 

share characteristics with each of the systems they separate). This dynamic nature of HSHMs was also 119 

stressed in a review by Bernhardt et al. (2017). Bernhardt et al. (2017) made the case for merging hot spots 120 

and hot moments into the concept of ecosystem control points, defined as “…areas of the landscape that 121 

exert disproportionate influence on the biogeochemical behavior of the ecosystem...” They argued that 122 

any spatiotemporal domain within the watershed continuum contains a broad range of biogeochemical 123 

rates, and that knowledge of the rate distributions has more relevance than knowledge of maximum rates. 124 

This is a revision of the classical HSHM concept and takes a more continuous perspective on ecosystem 125 
control points, in contrast to the traditional concept of discrete ‘hot or not’ conditions. As a framework 126 

for understanding HSHM influences, they suggest a focus on the controls and transferability of HSHMs to 127 

improve our understanding of critical zone functioning and dynamics. We agree that understanding the 128 
mechanisms that govern HSHMs at profile, ecosystem and landscape levels, as well as identifying their 129 
origin, spatial and temporal organization, along with critical thresholds of reaction rates necessary for 130 
functions at higher scales, can greatly reduce conceptual uncertainties and provide better estimation of the 131 
development and occurrences of HSHMs. 132 

1.2. Scope and overall impact 133 

An  over-emphasis on C and N processes in riparian systems has dominated the research on HSHMs 134 
so far. Vidon et al. (2010) brought attention to this shortcoming by emphasizing the drivers controlling the 135 
occurrence and formation of HSHMs of phosphorus, organic matter, pesticides, and mercury across riparian 136 
zones. They further emphasized that HSHM for one solute may not necessarily be a HSHM for another, 137 
and this diversity of response for different solutes should be recognized when considering riparian zone 138 
management decisions. More recently, studies are bridging this gap by focusing on HSHMs of soil 139 
moisture, sediments, trace metals, greenhouse gases and coupled biogeochemical cycles within the critical 140 
zone. For example, Barcellos et al. (2018) reported that rapid fluctuations in soil moisture and O2 content 141 
created hot moments that impacted coupled Fe and C pools within day-to-week timescales. In another study, 142 
hot moments of sulfate in a municipal landfill site were found to be associated with re-oxidation of FeS 143 
minerals, groundwater recharge and reduced vegetation uptake in winter months (Arora et al., 2013). Since 144 
Vidon et al.’s study, exciting work on HSHMs in unique ecosystems is also challenging our concepts of 145 
how certain environments may be more important to capture the integrated and aggregated hydrological 146 
and biogeochemical responses at local and global scales. This includes work on peatlands, bogs and arctic 147 
ecosystems where fluxes of CO2, N2O and other greenhouse gases have motivated several fundamental and 148 
applied questions related to the mechanisms that create HSHMs or their stability in different hydrological 149 
and climatic contexts (e.g., Loiko et al. 2017; Grant et al. 2017; Arora et al. 2019b).  150 

A recent review by Bernhardt et al. (2017) recognizes that while past research may have been 151 
limited in scope, the success and appeal of the HSHM concept is such that it transcends disciplinary 152 
boundaries and has been applied across a variety of disciplines including but not limited to biogeochemistry, 153 
ecology, microbiology, hydrology, environmental science, soil science, and general science. Geostatistics, 154 
for example, is an important contributor to the study of HSHMs. Geostatistical analysis is typically used to 155 
describe spatial patterns or hot spot locations using variograms and predict the ‘hot or not’ locations in non-156 
sampled areas using kriging. A wide variety of geostatistical techniques - from kernel density estimates to 157 
indicator kriging - have been used to answer important questions about HSHMs, such as (i) which threshold 158 
values should be used to classify HSHMs? (ii) what probability distributions should be used to explain the 159 
observed HSHM locations or times? and (iii) which factors or variables (topographic indexes, land cover, 160 
geology, vegetation indexes, etc.) should be included to define HSHMs at unknown locations or times? 161 
These techniques have shown promise for use in environmental monitoring and evaluating risks associated 162 
with hazardous materials at non-sampled locations (Komnitsas and Modis, 2009; Lado et al., 2008; Lin et 163 
al., 2010). Several other studies suggest that converging ideas and techniques from different disciplines will 164 



5 

 

offer benefits in synthesizing the why of HSHMs, i.e. what factors underlie the creation and distribution of 165 
HSHMs (e.g., Abbott et al., 2016; Chen et al., 2020; Pinay and Haycock, 2019). Generating such an 166 
understanding will be vital for decision making related to climate change adaptation, mitigation, land use 167 
and water management. 168 

The purpose of this chapter is to introduce the concept of hot spots and hot moments and frame 169 
them within a numerical modeling context. Although the critical zone extends from impermeable bedrock 170 
upward through the porous bedrock, the vadose and saturated zones, rhizosphere to the top of the vegetation 171 
canopy, this work is mostly focused on hyporheic zones, floodplains and river corridors. These interfaces 172 
and transition zones present essential components of the critical zone, which provide fertile ground for 173 
highlighting research on HSHMs. In this chapter, we provide a brief introduction to reactive transport 174 
models relevant to HSHM research at hyporheic, floodplain and river reach scales. In section 3, we present 175 
some recent developments in current field-based methods and process-based understanding that facilitate 176 
HSHM research. In section 4, we provide a few examples of where and how models can be used to tackle 177 
challenges related to HSHMs, and summarize opportunities for future work that are applicable to riverine 178 
transition zones and beyond. Finally, section 5 provides a summary of the chapter’s key points.  179 

 180 

2. Capturing	scales	and	complexity	using	models	181 

HSHMs are known to play an outsized role in the critical zone and act as ecosystem control points. 182 
For conceptualizing and quantifying the influence of HSHMs, reactive transport models (RTMs) offer a 183 
flexible framework that can incorporate relevant processes at a range of spatial and temporal scales. 184 
Likewise, it is essential to conceptualize why, where, and when HSHMs occur and recur to develop a 185 
transferrable understanding of HSHMs. Another high-priority objective in HSHMs within the critical zone 186 
is to identify drivers that can be manipulated or managed at relevant scales for purposes of resource 187 
management. A key challenge is that these drivers or phenomenon are not directly observable due to short 188 
timescales or inaccessibility (e.g., fast chemical reactions, deep groundwater circulation). Understanding 189 
the mechanisms driving these HSHMs can benefit from numerical modeling that can explore the tight 190 
coupling of processes and interactions across critical zone compartments. 191 

During the past decade, most studies have relied on HSHM investigations through data-driven 192 
approaches. Only a few studies have investigated why and how HSMHs evolve, and have quantified their 193 
aggregated response on biogeochemical processes using a physics-based modeling framework, particularly 194 
at the floodplain and riverine scales (Briggs et al., 2014b; Dwivedi et al., 2018a, 2018b; Gu et al., 2012). 195 
Although limited data availability and lack of mechanistic models applicable to the Critical Zone due to 196 
extreme heterogeneities make the analysis of HSHMs difficult, hot moments are in part more tractable 197 
because of the availability of continuous and high-resolution point measurements (e.g., pressure 198 
transducers, DO sensors). In contrast, hot spots require extensive data in both space and time (Arora et al., 199 
2020; Groffman et al., 2009). More recently, high-resolution airborne remote-sensing data, such as digital 200 
elevation model (DEM) from a LiDAR (light detection and ranging) survey, time-lapse NASA Airborne 201 
Snow Observatory (ASO) data, NEON hyperspectral derived leaf chemistry and plant physiology, airborne 202 
electromagnetic (AEM), and other developments in sensing techniques are making characterization of 203 
critical zone hot spots possible in the spatial domain. However, sufficient temporal resolution of these data 204 
is not yet available to develop an understanding of the underlying processes that produce these hot spots. 205 

While several challenges remain unaddressed in developing a generic, scalable template for 206 
identifying and characterizing HSHMs, current understanding suggests that interfaces and transition zones 207 
function as hot spots, and are responsive to hot moments. For example, HSHMs in riverine systems are 208 
most apparent across terrestrial–aquatic interfaces (TAI), such as riparian corridors, wetlands, hyporheic 209 
zones, and stream beds, because of distinct hydrological, thermal, biological, and chemical gradients in 210 
these zones. These distinct gradients give rise to multi-directional exchanges of water, energy, and nutrients 211 
across TAI. For that reason, temperature or water table fluctuations have been found to be drivers of 212 
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HSHMs leading to higher biogeochemical reaction rates and variations in dissolved oxygen, U(VI), 213 
nitrogen species, and Fe in the pore water of floodplain environments (Arora et al., 2016b; Hubbard et al., 214 
2018; Yabusaki et al., 2017). However, several other factors such as reaction pathways and oxic-anoxic 215 
zones potentially play a role in the creation of HSHMs. Herein, we describe the principal models used, the 216 
questions generated, and the recent developments in quantifying HSHMs using the example of riverine 217 
systems from hyporheic to river reach scales.  218 

2.1. Hot spots within the hyporheic zone – the redox microzone concept 219 

The hyporheic zone is the part of the stream system where surface water enters the streambed and 220 
is filtered through interstitial pores before returning to the stream (Valett et al., 1996). As a result, reactive 221 
processes in these zones are strongly influenced by hydrodynamic exchange. The most broadly used models 222 
of stream solute transport (e.g., Runkel 1998) treat retention of water within the hyporheic zone as a single 223 
well-mixed zone with homogenous properties. Such parsimonious models do not attempt to capture the 224 
inherent physical complexity of hyporheic flow, such as fluid exchange between mobile and adjacent less-225 
mobile porosity, which may be particularly relevant to reactive processes. This simplification may explain 226 
why transient-storage model parameters that account for conservative solute transport fail to capture 227 
observed stream nitrogen dynamics (Harvey et al., 2013; Lautz and Siegel, 2007). Further, traditional fluid 228 
sampling of the saturated subsurface preferentially samples the mobile porosity domain (Harvey and 229 
Gorelick, 2000; Singha et al., 2007), so information regarding less-mobile pore space and the reactive 230 
processes occurring therein is highly uncertain. 231 

Stream water entering a hyporheic flowpath can contain oxygen, nitrate and organic carbon (Baker 232 
et al., 2000; Boulton et al., 1998) (Fig. 1a). As these solutes interact with microbial communities in the 233 
sediments, they fuel a bioreactor that is much more efficient per unit time than reactions that may occur in 234 
the open stream channel. Numerical modeling of hyporheic fate and transport that include reaction 235 
thermodynamics make use of observations that residence time is a strong control on redox state (Gomez et 236 
al., 2012; Marzadri et al., 2011; Zarnetske et al., 2012). From a Lagrangian perspective, as a parcel of water 237 
containing oxygen and nitrate moves through the hyporheic zone, oxygen is reduced first, leading to a shift 238 
to nitrate reduction at later transport timescales. This nitrate reduction occurs primarily via denitrification, 239 
which converts nitrate to inert N2 gas, effectively removing the nutrient from the aquatic ecosystem. 240 
Therefore, a reasonable first step in Lagrangian-based reactive nitrate transport modeling is to assume a 241 
threshold time transition from aerobic to anaerobic respiration. Net reaction potential along hyporheic 242 
flowpaths is tied to a balance of transport velocity (e.g. flowpath residence time) and the reaction rate of 243 
the solute of interest. This balance can be expressed as a dimensionless Damköhler number (DaO2) 244 
(Zarnetske et al., 2012). 245 

‘Anomalous’ field data contrasts this type of systematic redox evolution along ideal flowpaths 246 
(Briggs et al., 2015), finding strong evidence of denitrification while bulk mobile pore water is still 247 
oxygenated (e.g., low small DaO2). Facultative denitrifying microbes only switch to the less 248 
thermodynamically favorable nitrate reduction when oxygen is functionally unavailable, which leads to the 249 
hypothesis that there are anoxic sites embedded within the less-mobile porosity of bulk oxic sediments. 250 
This activity could be further fueled by the aerobic process of nitrification, which often increases the net 251 
nitrate concentration in the oxic zone while consuming oxygen. Therefore, the interface between less-252 
mobile pore space and the oxic mobile zone may be hot spots for denitrification. This idea has recently 253 
been supported by the work of Harvey et al. (2013), who found that the denitrification rate was greatest just 254 
below the streambed interface where bulk water was oxic. Beyond the physical connectivity of mineral soil 255 
pores, organic-rich aggregates in streambed sediments are thought to locally increase denitrification rates 256 
both by providing fuel for microbial respiration and in supporting greater microbial biomass (Sawyer, 257 
2015). 258 

Dual-domain mass transfer between mobile and less-mobile porosity along subsurface flowpaths 259 
has long been recognized by the groundwater community as critical to explaining anomalously long mass 260 
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retention timescales (Harvey et al., 1994) and its effect on chemical reactions (Haggerty and Gorelick, 261 
1995). Similarly, mass transfer between porosities of varied mobility in hyporheic flow is expected to 262 
generate a distribution of local residence times throughout heterogeneous bed sediments (Briggs et al., 263 
2015). Long residence times in less-mobile porosity provides the physical mechanism for the development 264 
of anoxic microsites or hot spots for time-dependent reactions, such as denitrification (Fig. 1a). 265 
Denitrification within less-mobile pore space in the bulk oxic zone is particularly relevant as there may be 266 
a greater chance of the reaction not going to completion at intermediate residence times (Quick et al., 2016), 267 
forming at a terminal product of N2O, which is an extremely potent greenhouse gas (~ 320 times greater 268 
than of equivalent concentration of CO2 (Wrage et al., 2001). Recent watershed research shows that streams 269 
may play an important role in the worldwide budget of this potent greenhouse gas, but the production of 270 
N2O varies greatly between watershed systems and within single stream networks (Beaulieu et al., 2011). 271 

 272 

 273 

Figure 1. Panel a) The conceptual model of anoxic microzone or hot spot formation in hyporheic 274 

sediments shows oxic streamwater being carried into the hyporheic pore network. As dissolved oxygen 275 

is taken up via aerobic respiration there is a bulk transition to anoxic conditions that can be predicted 276 

with the DaO2 (τlim), but embedded redox microzones may be expected upgradient of this bulk transition 277 

due to enhanced local residence time in less-mobile porosity (modified from Briggs et al., 2015). Panel b) 278 

shows a hypothetical flowpath simulated with a 2D pore-network model with varied pore throat 279 

connectivity, where red zones are anoxic and tend to cluster toward the bulk anoxic transition.  Panel c) 280 

shows a cross section of a climbing ripple deposit (photo courtesy of Gary Kocurek and Audrey Sawyer) 281 

that provided the sediment texture for simulations of Dehkordy et al. (2018) where the white rectangle 282 

delineates the model domain. Panel d) displays the sand and cobble sediments of a groundwater flow-283 

through glacial lakebed, where flow around the inclusions may create anoxic microzones or hot spots 284 

near the lakebed interface.  285 

 286 

2.1.1. Simulating the physical controls on hot spot formation and their 287 

dynamics in time 288 
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The skew of reach-scale residence time distributions toward ‘anomalous’ late-time retention has 289 
been directly linked to streambed sediment type and heterogeneity (Aubeneau et al., 2014). Although redox 290 
microzones are known to form across biofilms and via bioclogging (Holmes et al., 1996), along with 291 
spatially-variable organic carbon lability (Jørgensen, 1977; Sawyer, 2015), we focus here on the physical 292 
control of varied sediment permeability in enhancing localized residence times that may create embedded 293 
anoxic pockets or hot spots. Spatially variable flow through heterogenous hyporheic sediments can be 294 
conceptualized from the pore- (Liu and Kitanidis, 2012), to bedform- (Dehkordy et al., 2018), to reach-295 
scale (Dehkordy, 2019), and simulated with various levels of  complexity.  296 

As a first direct translation on the concept of mobile/less-mobile porosity from groundwater 297 
flowpaths to river corridor sediments, one-dimensional groundwater flow models were developed in 298 
MODFLOW-2000 (Harbaugh et al., 2000) to analyze anomalous solute transport at the cm-scale (Briggs et 299 
al., 2013), though the rigid dual-domain physics of these models offered little room to explore how hot 300 
spots might develop naturally. Therefore, Briggs et al. (2015) developed two-dimensional (2D) ‘pore 301 
network models’ were created to efficiently track water and solute movement through a lattice of voids 302 
with variable connectivity. By simulating advective-diffusive transport at the sub-mm scale using a network 303 
of pores with a bimodal distribution of pore throat connectivity and inferred pore-scale anoxic transitions 304 
based on the DaO2 concept (Fig. 1b). As might be intuitively expected, clusters of tight pore throats in the 305 
models that could represent inclusions of fine sediment resulted in localized zones of enhanced residence 306 
time and potential microzone conditions. These microzones or hot spots showed minimal sensitivity to 307 
hyporheic flow rate and direction of flow, but were sensitive to the distance from the streambed (inflow) 308 
boundary. However, another general class of microzones or hot spots were also observed in the pore 309 
network models: ‘flow dependent’ pockets of enhanced residence time that formed adjacent to flow-310 
invariant microzones and were highly sensitive to varied hydraulic conditions. This result suggests that 311 
predictions of HS functionality in heterogenous hyporheic sediments will need to consider bulk hyporheic 312 
water flux rate in addition to varied pore connectivity and dissolved oxygen reaction rate. When all three 313 
of these factors were simultaneously varied using the pore network model framework, Briggs et al. (2015) 314 
found that there were likely to be hot moments of microzone formation, with the highest fraction of 315 
embedded hyporheic pore spaces displaying anoxic conditions at a combination of low water flux and 316 
slower oxygen uptake. At higher oxygen reaction rates a greater fraction of the total hyporheic zone trends 317 
toward anoxic conditions, collapsing the bulk oxic zone in which HS have functional relevance.  318 

The pore network code is highly efficient and capable of simulating column scale experiments, 319 
although its representation of flow and transport are approximate, and it is limited to lattice-type pore/grain 320 
architectures. Dehkordy et al. (2018) developed more realistic 2D advection-dispersion models at the 20 321 
cm flowpath scale based on disparate types of observed stream and lakebed sediments using COMSOL 322 
Multiphysics 5.2 (Fig. 1c,d). According to these models, interbedded sand and silt layers formed by 323 
climbing ripple deposits in lowland rivers are expected to generate zones of less-mobile porosity (enhanced 324 
local residence time) associated with the low permeability of the finer sediment deposits (Fig. 1c). However, 325 
hot spot formation associated with these layers is likely sensitive to bulk hyporheic flow direction, 326 
specifically how aligned flow direction is with the layering. As hyporheic flowpaths are known to show 327 
strong temporal variability in orientation and magnitude based on changes in stream and groundwater 328 
pressures (e.g., Briggs et al., 2012), hot spot dynamics will also show temporal patterning. When a poorly-329 
sorted glacial sand-and-gravel bed sediment is considered (Fig. 1d), zones of locally-enhanced residence 330 
time form in leeward of the larger inclusions, even though all pores in the matrix are fundamentally well 331 
connected. The models of Dehkordy et al. (2018) suggest that hot spot formation in heterogeneous but high-332 
permeability bed deposits are likely to be extremely sensitive to changes in flow rate and direction, 333 
particularly if the larger clasts are irregular in shape. A primary finding of this work was also that in natural 334 
streambed sediments, hot spot formation may be dominated by a spectrum of advective flow rates, rather 335 
than zones of diffusive-dominated exchange as was more commonly conceptualized. However, as pore- to 336 
cm-scale zones of less-mobile porosity are embedded within a more permeable matrix even pores with 337 
diffusion-controlled exchange remain fundamentally well connected to the bulk streambed as diffusion 338 
lengths are short. 339 
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Dehkordy et al. (2019) extended the COMSOL modeling domains to the reach scale, considering 340 
hyporheic exchange through multiple consecutive dune bedforms of varied geometry. These simulations 341 
indicated zones of less-mobile porosity form below streambed bedforms based on flow dynamics alone, 342 
similar to the stagnation points predicted by Marzadri et al. (2015), at the convergence of hyporheic and 343 
groundwater flow cells. This less-mobile stagnation zones will also be impacted by heterogeneous bed 344 
sediment layering, driving complex HS dynamics. 345 

 346 

2.2. HSHMs at the floodplain scale 347 

Floodplains are areas that are periodically inundated by the lateral overflow of rivers or lakes, that 348 
result in the formation of HSHMs and consequentially have an impact on the cycling and transport of 349 
nutrients and metals (Junk, 2013; Meitzen, 2018). Past work on floodplains and riparian aquifers has 350 
focused primarily on spatial redox gradients and steady state conditions. A challenge in HSHM studies has 351 
been the difficulty in collecting groundwater chemistry data at high temporal or spatial resolution in 352 
response to extreme events such as storms (Groffman et al., 2009; Sawyer et al., 2014). As a variety of data 353 
streams have become increasingly available, data-driven techniques have gained traction in facilitating our 354 
understanding of HSHMs at this scale. While statistical and data-driven models allow for a faster execution 355 
and have been primarily used for identifying temporal components, they are not as explainable as process-356 
based models. On the other hand, process-based models are computationally demanding and require 357 
extensive data for adequate parametrization; however, they hold potential for developing a predictive 358 
capability of HSHMs. Below, we summarize the current state of modeling approaches focused on HSHMs 359 
at the floodplain scale. 360 

Data-based studies at the floodplain scale have focused mostly on identifying drivers of HSHMs 361 
or evaluating the overall contribution of these HSHMs at a meaningful catchment scale (Duncan et al., 362 
2013; Dwivedi et al., 2018a; Dwivedi and Mohanty, 2016; Pinay et al., 2007; Vidon et al., 2010).To a large 363 
extent, data-driven statistical approaches have been used to demonstrate how a variety of landforms and 364 
flooding events lead to the formation of HSHMs in riverine floodplains. For example, Bernard-Jannin et al. 365 
(2017) used simple statistical analyses (e.g., partial least squares regression, leave-one-out cross validation) 366 
to suggest that nitrate HMs were associated with river–groundwater exchange and flood occurrences, while 367 
denitrification hot spots were associated with river bank geomorphology particularly at low bank full height. 368 
At the same time, these field scale investigations have spurred novel data mining techniques aimed at 369 
identifying the distribution and causes of HSHMs. For example, Arora et al. (2016a) developed a novel 370 
wavelet-entropy approach to identify geochemical hot moments in a mining impacted floodplain 371 
environment. In another study, Saha et al. (2018) employed the use of graphical and quantitative indicators 372 
typically used in economics, i.e. the Lorenz curve to assess the inequality and thereby HSHMs of N2O 373 
emissions. 374 

In most cases, numerical “flow” models have been used to analyze the origin, properties and 375 
functioning of HSHMs. For example, Singer et al. (2016) used HEC-RAS hydraulic modeling framework 376 
to assess how frequently inundated floodplain areas of the Lower Yuba/Feather River system in California 377 
contributed to methylmercury production potential. Shrestha and Wang (2018) used the Soil and Water 378 
Assessment Tool (SWAT) to estimate current and future N2O emissions in a cold climate watershed located 379 
in western Canada. They reported that hot moments of N2O emissions in the boreal floodplain were 380 
associated with the summer season, as opposed to that spring season that contributes to >50% of N2O 381 
emissions in agricultural dominated regions of the watershed. 382 

Despite the recognition that HSHMs are important for riverine functioning and water quality, 383 
adequate prognostic models do not exist. However, hot moments have been better represented in modeling 384 
studies, both process-based and data-driven, than hot spots (Arora et al., 2019a, 2019b; Groffman et al., 385 
2009; Pinay et al., 2015). When predicting hot spots, high-resolution, fully coupled variably saturated flow 386 
and reactive transport models are needed that are computationally demanding. Although limited, these 387 
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investigations have provided important insights on how HSHMs are shaped in such environments. For 388 
example, a study conducted by Arora et al. (2016b) in a riverine floodplain using a 2-D reactive transport 389 
model (Fig. 2a,b) showed that different abiotic and biotic reaction pathways, including heterotrophic and 390 
chemolithoautotrophic pathways, exert different controls and, as a result, lead to the release of significantly 391 
different amounts of dissolved carbon exports to the river. More recently, Dwivedi et al. (2018a) 392 
demonstrated that three-dimensional modeling is needed to explicitly simulate the formation of nitrate 393 
HSHMs at the floodplain scale. In their study, HSHMs of nitrogen were found to be sustained by microbial 394 
respiration, the chemolithoautotrophic oxidation of reduced minerals in the riparian zone, and the mixing 395 
of oxic and reduced waters due to flow reversals (Fig. 2c). Collectively, these studies argue that factors 396 
such as reactant delivery effectiveness and biogeochemical conditions (e.g., sediment properties, organic 397 
matter, microbial community) in addition to hydrological events and cyclic fluctuations determine HSHMs 398 
at this scale. 399 

 400 
 401 
 402 
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 403 
Figure 2 a) Distribution of Naturally reduced zones (NRZs) in the Rifle floodplain and their proximity to 404 

the riverbank, b) 2-D modeling of the NRZs demonstrating localized zones rich in sulfide (Arora et al., 405 

2016b), and c) modeling analysis shows enhanced capacity of NRZs for denitrification under typical and 406 

reversed groundwater (G.W.) flow  (from Dwivedi et al. 2018a). 407 

2.3. HSHMs along river corridors 408 

 River corridors are complex conveyor belts that mobilize water, solutes, energy, and 409 
microorganisms from the landscape along channels and their surrounding environments (Covino, 2017; 410 
Harvey and Gooseff, 2015; Harvey, 2016; McClain et al., 2003; Pinay et al., 2002; Wohl et al., 2019; 411 
Wollheim et al., 2018). River channels, the central axis of these conveyors, are characterized by a 412 
continuous exchange with hyporheic zones, floodplains, ponded waters (i.e., lakes, reservoirs, and 413 
wetlands), and transient storage zones that results in prolonged contact with reactive environments where 414 
mixing drives important chemical and biogeochemical reactions with significant implications for local and 415 
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regional water quality (Covino, 2017; Harvey et al., 2019). Furthermore, this exchange process plays a 416 
central role as a boundary condition that determines the export dynamics from hillslopes and floodplains 417 
and ultimately impacts the spatial and temporal evolution of the critical zone. 418 
 Our understanding of the mechanisms and importance of river corridor connectivity has 419 
significantly improved during the last half-a-century (Wohl et al., 2019).  Even though the focus has been 420 
on studying local to reach scales, the need for predictions at the regional scale has driven a revolution in 421 
bottom-up approaches that can capture the granularity of local processes and their spatiotemporal variability 422 
and cumulative effects over large spatial domains (Gomez-Velez and Harvey, 2014; Harvey et al., 2019; 423 
Pinay et al., 2015; Ward and Packman, 2019). Central to this effort is the explicit representation of river 424 
corridor exchange processes by using parsimonious parameterizations that improve the physics and 425 
prediction of the next generation of regional water quality models (Gomez-Velez et al., 2015; Gomez-Velez 426 
and Harvey, 2014; Kiel and Cardenas, 2014). 427 

To this end, the scientific community has focused on the use of reduced-order models for individual 428 
exchange processes. Reduced-order models (ROMs) are simplifications of computationally-expensive, 429 
high-fidelity models (Pau et al., 2014; Razavi et al., 2012). These ROMs serve as tools to gain mechanistic 430 
understanding about the exchange itself, but also to propose parsimonious parameterizations that can be 431 
used within a more general and multi-scale modeling framework.  Reduced-order models for river corridor 432 
exchange have significantly evolved over the past decade (Harvey et al., 2019), with a particular interest 433 
on upscaling hyporheic and transient storage connectivity and its biogeochemical implications (Boano et 434 
al., 2014; Grant et al., 2018; Harvey et al., 2019). In general, these models use numerical or analytical 435 
solutions for flow and transport in both the water column and surrounding sediments to estimate exchange, 436 
residence times, and biogeochemical transformations driven by different river morphologies such as 437 
bedforms (Cardenas and Wilson, 2007a; Gomez-Velez et al., 2014; Marzadri et al., 2012, 2011, 2010; 438 
Stonedahl et al., 2010), meanders (Boano et al., 2010; Cardenas, 2009; Gomez et al., 2012), and transient 439 
storage  zones (Jackson et al., 2012; T. R. Jackson et al., 2013; Tracie R. Jackson et al., 2013). Because 440 
these models are intended for a large scale contextualization, where the multi-scale nature of regional 441 
groundwater flow (Cardenas, 2008, 2007; Frisbee et al., 2013; Gomez and Wilson, 2013; Winter et al., 442 
1998) plays a critical role, the ambient groundwater fluxes modulating the exchange are typically included 443 
as a prescribed flux boundary condition (Boano et al., 2009, 2008; Cardenas and Wilson, 2007b; Gomez-444 
Velez and Harvey, 2014; Mojarrad et al., 2019). Early efforts focused on steady flow conditions; however, 445 
the inherently transient nature of rivers has driven significant interest on the development of new 446 
approaches that capture the dynamics of the exchange (Boano et al., 2007; Gomez-Velez et al., 2017; Singh 447 
et al., 2019; Song et al., 2018, n.d.; Ward et al., 2017; Wu et al., 2018). 448 

Stonedahl et al. (2010) proposed a multi-scale model to represent the role of multiple morphological 449 
features along river reaches.  This model allows them to quantify the relative role of bedforms and meanders 450 
within a single reach, highlighting the dominant role of bedform-driven hyporheic exchange (Stonedahl et 451 
al., 2013, 2012, 2010). With a similar spirit, Gomez-Velez and Harvey (2014) proposed the modular 452 
modeling framework Networks with Exchange and Subsurface Storage (NEXSS) to estimate the 453 
magnitude, residence times and relative importance of multiple river corridor exchange processes for 454 
predictions at the watershed to continental scales (Fig. 3a). Initial applications of the NEXSS model within 455 
Mississippi River Basin accounted for lateral exchange driven by partially-submerged alternating bars and 456 
meanders and vertical exchange driven by bedforms (ripples, dunes, and riffle-pool sequences) (Fig. 3b). 457 
These simulations illustrate NEXSS’s potential as a tool to gain understanding about the emergence of hot-458 
spots resulting from hydrogeomorphic variability across the basin (Gomez-Velez et al., 2015). In addition, 459 
by using the Reaction Significance Factor (RSF) (Harvey et al., 2013), a simple yet informative metric for 460 
the potential for biogeochemical reactions, Gomez-Velez et al. (2015) highlighted the dominant role of 461 
bedform-driven hyporheic exchange along the Mississippi River Basin, which is expected to control 462 
denitrification along the river network and be a critical target for efficient restoration efforts.  463 

More recently, Schmadel et al. (2018, 2019) explored the regional importance of lakes, reservoirs, 464 
and other ponded waters along the river corridors and their role as modulators of water quality. They used 465 
the model SPARROW (Schwarz et al., 2006) to evaluate the importance of location and density of ponded 466 
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waters in the removal of nitrogen along river networks of the Northeastern United States. These simulations 467 
highlight the critical role that these features play on the removal of nitrogen, and in particular, how their 468 
spatial distribution and physical metrics (size, shape, and connectivity to the network) determine the 469 
emergence of thresholds where their role becomes a major control of water quality downstream (Schmadel 470 
et al., 2018). In a related paper, Schmadel et al. (2019) evaluated the role of small ponds, a ubiquitous 471 
exchange zone throughout river networks, and found that depending on their spatial location these small 472 
reactors can dominate the retention of nutrients and sediments and therefore impact water quality at the 473 
regional scale. Similar efforts have focused on capturing the importance of floodplains and their inundation 474 
dynamics at the regional scale. Numerical analysis by Czuba and Foufoula-Georgiou (2015) and Czuba et 475 
al. (2018) have provided a clearer picture of the importance of location and size of floodplain inundation 476 
along river networks and how these factors determine their potential to affect water quality at the regional 477 
scale. In a recent empirical analysis, Scott et al. (2019) showed the richness of behavior in flood-plain 478 
inundation, another ubiquitous exchange process that represents a significant fraction of the total water 479 
mass moving though river network. These efforts will ultimately inform reduced-order models that can be 480 
incorporated into river-corridor modeling frameworks such as NEXSS. 481 

The empirical and modeling efforts mentioned above emphasize the importance of a coherent river-482 
corridor modeling framework that can be either parsimonious and capture the main physical and 483 
biogeochemical characteristics of their connectivity with channels and the landscape, or high-fidelity and 484 
provide an adequate spatial representation and predictions of hydrologic states and fluxes. Both 485 
parsimonious and detail-oriented models are essential to support the evaluation of water resources and 486 
quality at the scale of the nation, where the convolution of processes within the critical zone and the river 487 
corridor determine water quantity and quality. Ultimately, these approaches can provide a predictive 488 
understanding of river corridor processes that is critical for consistent water resources management, 489 
restoration, and planning under present and future weather, climate, and human demand. 490 

 491 

 492 
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Figure 3 Total reaction significance factor (RSF) (a) and ratio of vertical and lateral RSF for denitrification 493 

in the headwaters of the Mississippi River Basin. Figure taken from Gomez-Velez et al. (2015). 494 

 495 

3. Current	understanding	and	the	path	forward		496 

Robustly predicting impacts of disturbances on critical zone structure, function, and evolution is 497 
essential to addressing energy and environmental challenges such as clean water availability (DOE, 2018). 498 
Altering carbon and nutrient fluxes as well as critical zone services, these disturbances also create a need 499 
for new theoretical approaches and models that apply across sites to predict shifts in integrated Earth system 500 
function. The idea of biogeochemical HSHMs proposed by McClain et al. (2003) is a core paradigm in 501 
studies linking disturbances to integrated hydrology and biogeochemistry (i.e., hydro-biogeochemistry).  502 
Developing rules and concepts that enable prediction of biogeochemical HSHM influences is particularly 503 
important because of their outsized influences on aggregate system function. However, developing a 504 
predictive understanding of HSHMs across a large landscape, such as river reach or regional, includes 505 
multiple challenges. First, there is no agreed-upon approach to transfer small-scale process understanding 506 
at the large scale. Second, it is essential to characterize the multi-scale heterogeneity at the large scale; 507 
frequently, scale-relevant data are not available. Third, the presence of surface water bodies such as lakes, 508 
wetlands, reservoirs and beaver dams adds another level of complexity for resolving the dynamics of 509 
HSHMs. Finally, climatic perturbations such as low-frequency considerable precipitation or early snow 510 
melt can lead to the formation of HSHMs. To tackle this extreme-scale HSHMs problem, we envision the 511 
development of approaches for the rapid identification of precursors of HSHMs through the assimilation of 512 
diverse, multi-scale data into models at the larger catchment or regional scales. A few developments are 513 
highlighted below. 514 

3.1. A conceptual take on HSHMs using a trait-based framework 515 

Here, the notion of ecosystem control points proposed by Bernhardt et al. (2017) is further extended 516 
to a new quantitative approach that estimates ‘control point influence’ (CPI). A CPI compares the 517 
contribution of elevated biogeochemical rates in space (hot spots) or time (hot moments) to the net 518 
aggregated rate within a defined system. Therefore, CPIs are elevated when HSHMs are common enough 519 
and have high enough rates to drive aggregated rates. While not called out explicitly in Bernhardt et al. 520 
(2017), the control point concept is based on the distribution of biogeochemical rates through space and/or 521 
time. Focusing on what governs the shape of biogeochemical rate distributions, instead of maximum rates 522 
as proposed by McClain et al. (2003), provides an opportunity to move towards a transferable and 523 
mechanistic HSHM framework that aligns with the needs of critical zone science.  524 
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CPIs can be estimated by quantifying the fraction of the 525 
cumulative rate (e.g., total respiration) that is contributed by rates 526 
above the distribution’s median (Fig. 4). This is a new and robust 527 
metric that can be estimated for distributions of any shape. It 528 
provides a single quantitative value—conceptualized as a 529 
biogeochemical trait—that can be directly compared across 530 
systems and across scales, thereby providing an opportunity to 531 
understand mechanisms governing cross-system/scale variation in 532 
the influence of biogeochemical HSHMs. It is also distinct relative 533 
to previous approaches focused on (i) identifying contributions of 534 
a given ecosystem compartment to overall function (Tall et al., 535 
2011; Troxler and Childers, 2010; Zhu et al., 2013), (ii) identifying 536 
outlier rates (Harms and Grimm, 2012), and (iii) comparing mean 537 
rates to historical conditions (Jenerette et al., 2008). 538 

Previous studies have implicitly looked at the shape of rate 539 
distributions by identifying statistical features such as outliers 540 
(Harms and Grimm, 2012); however, systematic evaluations of 541 
mechanisms underlying cross-site variation in the shape of 542 
biogeochemical rate distributions are lacking. Quantitative 543 
estimates of CPI can be considered a “trait” of the system that reflects the degree to which whole system 544 
biogeochemical function is influenced by hot spots/moments. Summarizing system behavior into traits has 545 
been useful across numerous disciplines because it abstracts complex systems into quantifiable concepts 546 
that are straightforward and computationally tractable to use across systems (Cadotte et al., 2011; McGill 547 
et al., 2006; Violle et al., 2007; Weiher and Keddy, 2009). Trait frameworks allow transferability for cross-548 
system prediction and integration (Allison, 2012; Allison and Martiny, 2009; Arora et al., 2017; Cheng et 549 
al., 2018; Enquist et al., 2003; Green et al., 2008; Lau et al., 2018; Martiny et al., 2015; Stegen et al., 2012; 550 
Wang et al., 2019; Wright et al., 2004). 551 

As an example application of the CPI approach placed within a trait framework, we consider the 552 
hyporheic zone, which is itself often considered a biogeochemical hot spot as described above. To help 553 
understand biogeochemical behavior in dynamic transition zones such as hyporheic zones, McClain et al.'s 554 
(2003) concept of biogeochemical HSHMs focused on the mixing of complementary electron donors and 555 
acceptors. In the hyporheic zone, this can occur when DOM-rich water mixes with water rich in terminal 556 
electron acceptors (e.g., O2). This mixing simultaneously overcomes electron acceptor limitation and 557 
electron donor limitation, thereby stimulating biogeochemical activity (Craig et al., 2010). Reactive 558 
transport models (Steefel, 2019; Steefel et al., 2015) are ideal for studying this phenomenon because they 559 
link the hydrology of groundwater–surface water mixing with redox biogeochemistry (Gu et al., 2012; Song 560 
et al., n.d.; Yabusaki et al., 2017). These models often represent a biogeochemical reaction network that 561 
includes dissolved organic matter (DOM), terminal electron acceptors, and intermediate products. This 562 
modeling construct aligns with the perspective from McClain et al. (2003) that bringing DOM together with 563 
electron acceptors increases biogeochemical rates. Lacking, however, are models linking the detailed 564 
properties of DOM chemistry to HSHMs and CPIs. 565 

 

Figure 4. Quantifying influences of 

hot spots/moments over total system 

function as control point influence 

(CPI) provides opportunities to reveal 

governing processes through cross-

site and multi-scale comparisons.  
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In soil science, there is an increasing focus on physical protection of organic matter and a move 566 
away from the perspective that organic C chemistry influences microbial oxidation of organic C (Schmidt 567 
et al., 2011). In subsurface sediments, however, there is greater hydrologic connectivity and potentially less 568 
influence of aggregate formation, which may enhance the influence of DOM chemistry. Consistent with 569 
this hypothesis, there is mounting evidence that 570 
DOM chemistry has strong influences over 571 
biogeochemical function in hyporheic zone 572 
sediments (Boye et al., 2017; Graham et al., 573 
2018, 2017; Stegen et al., 2018). For example, 574 
DOM chemistry can explain ~70% of the 575 
variation in hyporheic zone respiration rates, 576 
while microbial community functional potential 577 
(i.e., metagenomes) and expressed function 578 
(i.e., metaproteomes) explained virtually none 579 
(Graham et al., 2018). Hyporheic zone microbes 580 
preferentially target organic molecules based on 581 
thermodynamic properties, pointing to a key 582 
role of C chemistry. Graham et al. (2017) and 583 
Stegen et al. (2018) further showed that 584 
stimulated biogeochemical activity during 585 
groundwater–surface water mixing is the result 586 
of changes in DOM thermodynamic properties. 587 
Boye et al. (2017) also found that organic C 588 
thermodynamics provide strong constraints on 589 
subsurface biogeochemistry. Given these 590 
studies, using a trait-based approach centered 591 
around CPIs has potential to generate the 592 
knowledge and data needed to bring DOM 593 
chemistry into hydro-biogeochemical models 594 
aimed at predicting the influences of 595 
disturbance on hyporheic zone function. As an 596 
initial demonstration, two simulation models 597 
were used to (1) link environmental disturbances to variation in DOM chemistry and (2) link variation in 598 
DOM chemistry to CPIs. These are simple simulation models that provide preliminary (i.e., hypothesis-599 
generating) outcomes indicating that (1) increasingly frequent disturbances (i.e., greater temporal 600 
environmental variation) can cause DOM chemistry to become less variable (Fig. 5a), and (2) that CPI can 601 
be a unimodal function of DOM variability (Fig. 5b).  602 

Much more modeling and experimental work is needed to evaluate these initial simulation-based 603 
outcomes. The underlying models are extensions of those used in Stegen et al. (2015) and Graham and 604 
Stegen (2017). The models make simplifying assumptions, whereby prevailing environmental conditions 605 
select for particular kinds of organic molecules. The models are not truly mechanistic whereby the specific 606 
environmental variables are not defined; the environment is generic in the sense that it is anything that leads 607 
to changes in relative abundance of different organic molecules. This is conceptually analogous to an 608 
ecological system in which the environment selects for particular biological taxa (as in the models from 609 
Stegen et al. (2015) and Graham and Stegen (2017)). In turn, increasing environmental variation leads to 610 
strong selective pressures for a defined set of organic molecules, just as has been observed in ecological 611 
communities (Chase, 2007). The pattern that emerges is a decrease in the variation of organic molecules as 612 
environmental variation increases (Fig. 5a). Further work is needed to refine the model and explore the 613 
consequences of changing the underlying assumptions. 614 

The second simulation model allows us to connect the degree of variation in organic molecules to 615 
CPIs. This model follows the conceptual approach of Graham and Stegen (2017) such that when organic 616 

 

Figure 5. Simulations provide hypotheses connecting 

environmental variation to variation in the composition 

of organic molecules that underlie biogeochemical 

function and CPI. (a) Variation in organic molecule 

composition decreased with environmental variance. 

(b) CPI varied as a unimodal function of organic 

molecule variation. Black symbols are outcomes of 

individual simulations. The level of environmental 

variation was manipulated across simulations. The 

level of variation in organic molecules was estimated 

via null models derived from meta-community ecology. 

The application of the null modeling framework to 

ecological communities is described in Stegen et al. 

(Stegen et al. 2012) and its application to organic 

molecules is described in Danczak et al. (forthcoming). 
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molecules are deterministically organized by the environment, it leads to maximum biogeochemical 617 
function. A high CPI is the result of large outliers driving the cumulative biogeochemical function of a 618 
defined system. In context of the simulation model, large outliers occur when a small number of locations 619 
contain organic molecules that lead to high rates, while most locations contain organic molecules that are 620 
a poor match to the needs of associated microbial communities. As such, when there are high levels of 621 
variation in organic molecules, there is a low probability of achieving high biogeochemical rates and a high 622 
probably of achieving low to moderate rates. This leads to a skewed rate distribution characterized by a 623 
small number of large outliers, and thus high CPI. The effect is non-monotonic, however. With very low 624 
variation in organic molecule composition, all biogeochemical rates are similar to each other. Consistency 625 
in rates leads to low CPI because there are no large positive outliers. As variation in organic molecule 626 
composition increases there is increasing chance that a small number of locations will have high rates. This 627 
leads to an increase in CPI with increasing levels of variation in organic molecule composition (Fig. 5b). 628 
As molecular variation increases even more, the system becomes unstructured such that organic molecules 629 
are always a poor match to the needs of microbial metabolism. This results in all rates being low and thus 630 
low CPI. The result is a unimodal function between CPI and the degree of variation in organic molecular 631 
composition (Fig. 5b). 632 

Here, we presented an example of how CPIs can be used to examine the influence of DOM 633 
composition on the overall functioning of the hyporheic zone. In a similar manner, other scenarios can be 634 
developed by linking CPIs to other data types (e.g., vegetation, bedrock properties, soil characteristics). We 635 
believe that quantifying the influence of HSHMs as CPIs provides opportunities to reveal the underlying 636 
mechanisms and functioning of the critical zone. Given the transferable and quantifiable nature of this 637 
approach, CPIs can be beneficial to evaluating hypotheses about HSHMs across sites and scales, and 638 
providing guidance to improving model architecture. 639 

3.2. Improvements in field-scale characterization of hyporheic zones 640 

Over the past decade, fine-scale geophysical methods have been developed to evaluate the 641 
exchange of electrically conductive solute through all porosity domains simultaneously. Again, using the 642 
example of the hyporheic zone, these methods can sample the less-mobile porosity domains where “micro” 643 
hot spots or anoxic microzones are more likely to form (Day-Lewis and Singha, 2008). Specifically, the 644 
delayed loading and unloading of solute tracer in the less-mobile domain during tracer injection and flush 645 
phases, respectively, creates predictable hysteresis curves when bulk-streambed electrical conductivity is 646 
plotted against mobile-water fluid conductivity. Using a range of simple models of 1D dual-domain 647 
transport Briggs et al. (2014) suggested that analysis of the these hysteresis curves for paired mobile/less-648 
mobile porosity characteristics could be performed in semi-analytical fashion, without the need for 649 
numerical model parameterization. Electrical conduction dynamics added to the numerical models of Day-650 
Lewis et al. (2017) and Dehkordy et al. (2018) provided mechanistic explanation for the development of 651 
the hysteresis curves, and supported the use of cm-scale geophysical field techniques to measure enhanced 652 
local residence times within discrete packets of natural hyporheic sediments. 653 
 A field tool for performing controlled solute injections within isolated zones of stream and lakebed 654 
sediments was developed for the experiments of Briggs et al. (2018) and described in detail by Scruggs et 655 
al. (2018). The ‘dual-domain porosity apparatus’ makes use of precisely controlled surface-water head 656 
levels within an isolated chamber similar to an infiltrometer though a system of float switches and pumps. 657 
Head within the flux chamber is adjusted based on prior measurement of bulk hydraulic conductivity to 658 
achieve specific bulk-downward fluid-flux rates. This allows in-situ testing of the flow-dependent anoxic 659 
microzone dynamics, predicted by various numerical models, when the injections are paired with electrical 660 
resistivity and fluid conductivity measurements made at discrete distances from the surface water interface. 661 
Experiments performed by Briggs et al. (2018) in a groundwater flow-through kettle pond with a sand and 662 
cobble bed indicated the inclusions could enhance local residence times on the order of 1 hr, creating the 663 
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template for potential anoxic microzone formation. Residence time within this less-mobile porosity was 664 
found to vary qualitatively with bulk downward flowrate (1, 3, and 5 m/d tested).  665 
 Dehkordy et al. (2019) performed the first geophysical less-mobile porosity experiments within a 666 
stream hyporheic zone that specifically targeted less-mobile porosity model parameters such as the 667 
exchange coefficient or α. The experiments were performed in an urban stream outside Boston, MA, USA 668 
where previous work had identified strong NO3

- transformations and N2O production occurring in the 669 
stream (Beaulieu et al., 2011). Due to extensive road-sand application in this watershed with approximate 670 
25% impervious area, this urban streambed is dominated in places by introduced silica sand, intermixed 671 
with native till soils and organic material. Using the dual-domain porosity apparatus Dehkordy et al. (2019) 672 
targeted two adjacent streambed sites of varied apparent road sand abundance that resulted in a factor 2x 673 
difference in bulk hydraulic conductivity. They conducted a range of downward flux experiments that 674 
demonstrated that both streambed locations had appreciable less-mobile porosity fractions (approximately 675 
30% total porosity) that varied by depth and location. Further, the size of the less-mobile domain at both 676 
locations was found to increase slightly with higher downward bulk water flux rate, but local less-mobile 677 
residence time was found to systematically decrease with flow rate. These emerging empirical approaches 678 
and the data they are generating indicate that flow-dependent anoxic microzone dynamics may be 679 
predictable for certain hyporheic sediment types.  680 

 681 

3.3. Recent developments in observation and modeling of hot spots featuring 682 

the sediment water interface 683 

Extending our review of promising developments, here we summarize novel field experiments 684 
(Hampton et al. 2019 and in review) and models (Roy Chowdhury et al., in revision) that are starting to 685 
directly reveal some of the biogeochemical implications of hot spots in the sediment-water interface (SWI). 686 
The field experiments in the SWI provide some of the first direct evidence of anaerobic biogeochemical bi-687 
products occurring in bulk-oxic sediments. Hampton et al. (2019), using 15N-NO3 as a tracer, monitored 688 
the transformation of lake-water NO3 as it passed through the SWI under different head conditions. Their 689 
study was paired with the geophysical tracer methods of Briggs et al. (2018) and explored how variable 690 
head (bulk residence time) conditions controlled the fate of NO3, including denitrification bi-product of 691 
N2O. The study was able to link the presence of less-mobile porosity to the fate of NO3, thereby, identifying 692 
the potential biogeochemical importance of less-mobile porosity and anoxic microzones in heterogeneous 693 
SWI sediments. Concurrent with the predictions of Briggs et al. (2015), anoxic microzone formation 694 
appeared to be enhanced in bulk-oxic near-surface sand and gravel sediments as the deeper bulk anoxic 695 
transition was shallowed through a combination of increased residence time and organic carbon availability.  696 
 When similar experimental methods were applied to the urban headwater stream mentioned in 697 
Section 3.2 (i.e., in Dehkordy et al. 2019), Hampton et al. (in review) documented large fluxes of both 698 
denitrified N2 and N2O from their studied sediments while porewater O2 concentrations were still bulk oxic 699 
(>6.25 μmol O2/L). This finding is the most direct evidence of microzones or hot spots in a field 700 
experiment, but there are many previous studies documenting anaerobic microbial metabolism occurring in 701 
bulk-oxic conditions, and further implicating anoxic microzones as important denitrification sites in SWI 702 
sediments (Briggs et al., 2018; Harvey et al., 2013; Kravchenko et al., 2017; Triska et al., 1993; Zarnetske 703 
et al., 2011). Together, this growing set of field studies suggest that models of the SWI that rely on bulk 704 
intrinsic properties and formulations that use threshold controls on anaerobic processes, such as oxygen 705 
inhibition of anaerobic reactions, are not accounting for, and therefore missing, some of the anaerobic 706 
regions of the SWI that might be contributing to biogeochemical budgets. For example, in SWI processing 707 
of nitrate and its reduction to N2O and N2 via denitrification pathways, Quick et al. (2016) identified a 708 
“Goldilocks’ Zone” where there is a region along SWI flowpaths where there is a balance between transport 709 
and reaction timescales that produces an N2O generation hotspot. Relatedly, Zarnetske et al. (2012) and 710 
Marzadri et al. (2011) suggested that there is a predictable threshold when transport timescales and oxygen 711 
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update timescales are at unity that predict if an SWI is a net source or sink of nitrate (i.e., net nitrification 712 
vs net denitrification). These threshold perspectives assume bulk-fluid properties and clear transitions from 713 
one biogeochemical outcome to another along flowpaths. Perhaps, these threshold perspectives need to be 714 
revisited in light of the evidence that N2O production was clearly observed outside of the Goldilocks’ zone 715 
of the SWI in the Hampton et al. (in review) study. Making progress on identifying where N2O production 716 
occurs in stream networks would address a key knowledge gap in current stream research as where and 717 
when N2O is being generated is largely unknown (e.g., Beaulieu et al. 2011). The implications of the recent 718 
microzone field studies suggest that future models and experiments that incorporate microzone or hot spot 719 
processes may better account for the missing N2O sources documented in streams. Further, there are many 720 
future opportunities in extending the efforts of documenting and accounting for hot spots by exploring for 721 
other redox sensitive processes in the SWI, such as metal, carbon, and contaminant transport. 722 

Process-based modeling of the SWI has been critical to extending field observations and 723 
experiments by enabling the exploration of a range of biogeochemical and hydraulic conditions. 724 
Collectively, these modeling efforts have provided insights to the spatial distribution and temporal stability 725 
of stream biogeochemical processes and the role of SWIs on biogeochemical budgets from reach to basin 726 
scales (Gomez-Velez et al., 2015; Zarnetske et al., 2015). Recently, progress has been made on how to start 727 
to incorporate microzone formation and function into SWI process-based models that also incorporate the 728 
potential key role of microbial biomass. Roy Chowdhury et al. (in revision) provided one of the first 729 
assessments of what processes occurring in SWIs lead to the formation of microzones. As discussed above, 730 
representing simple hydraulics and biogeochemical reaction rate models can lead to HS formation, but the 731 
microbes driving much of these reactions have additional consequences for SWI conditions. In fact, 732 
microbes, and their associated biomass growth, are also capable of altering hydraulic flux, leading to 733 
bioclogging (e.g., Caruso et al. 2017). Consequently, Roy Chowdhury et al. (in revision) simulate a 734 
synthetic 2D hyporheic zone with different hydraulic fluxes (0.1-1.0 md-1), nutrient concentrations (O2 = 8 735 
mgl-1, organic C = 20 mgl-1, NO3

- = 1.5-3 mgl-1, NH3 = 0.5-1 mgl-1), and biomass scenarios (with/without 736 
growth). Their model domain was a pore network with heterogeneous pore-throat radii creating localized 737 
zones of extended residence time where pore connectivity was reduced, similar to the models of pore 738 
network models of Briggs et al. (2015), but with variable biogeochemical conditions and a dynamic biomass 739 
formation. Roy Chowdhury et al. (in revision) found that over the course of 30 day-long simulations anoxic 740 
microzones formed in all scenarios, and biogeochemical function of these microzone populations was 741 
dynamic over time (Fig. 6). This study illustrates that when biological factors are considered, microzone 742 
spatial distributions are not simply controlled by variable sediment connectivity alone, but rather by the 743 
complex interactions of hydraulic flux, nutrient concentrations and biomass, with bioclogging having strong 744 
feedbacks on both the hydraulics of the hyporheic zone and nutrient transport through the media. Also, 745 
under conditions with biomass growth, anoxic microzones were ultimately unstable, and were enveloped 746 
in the bulk anoxic zone only days after the microzones formed, primarily due to extensive bioclogging 747 
occurring just at the inlet of the SWI. Consequently, unchecked bioclogging shifts hyporheic transport 748 
conditions from advection-dominated to diffusion-dominated, essentially removing all oxic regions in the 749 
hyporheic zone and rendering anoxic microzones functionally irrelevant. Overall, the Roy Chowdhury et 750 
al. (in revision) model results show that anoxic microzones as biogeochemical HS are likely to form under 751 
many combinations of hyporheic zone conditions, but their distribution and biogeochemical function will 752 
be dynamic and microbial biomass should be considered as an important control in addition to substrate 753 
availability and sediment heterogeneity.  754 
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	755 

Figure 6. Spatial map of O2 concentrations that evolved after 400 h in a simulated sandy hyporheic zone 756 

with 0.5 md-1 flux with abundant nutrients and carbon. Note where the visual demarcation of oxic and 757 

anoxic pore water conditions is in this example as shown with the dashed line, plus six examples of 758 

anoxic (< 2 mgl-1) microzones are circled in white to highlight their location. 759 

	760 

4. How	can	models	contribute?		761 

As documented above, a major challenge in representing hot spots in models is the ephemeral and 762 
dynamic nature of hot spots and the fact that they are activated at certain times only. Hot spots are defined 763 
as locations with higher reaction rates relative to the surrounding area; however, this functioning can change 764 
with time both in terms of their spatial extent and level of activity (Bernhardt et al., 2017; Boano et al., 765 
2010; Krause et al., 2017). Consequently, our incorporation of hot spots in models is dependent on how 766 
tightly an intermediate, observable parameter is associated with higher reaction rates, or what proxies or 767 
metrics can be used to transfer this understanding across scales and sites. The best path forward is to identify 768 
when and under what conditions HSHMs form, or what makes them behave as such (Krause et al., 2017; 769 
Pinay and Haycock, 2019). Identifying these controls can help improve model architecture (i.e., 770 
mathematical representation of HSHM processes) and parameterization (e.g., Leon et al. 2014). Some 771 
promising developments from the modeling side are noted below. 772 

4.1. Scale aware modeling/parameterization 773 

HSHMs in the critical zone can occur across several scales in space and time. An obvious example 774 
is the hyporheic exchange flux which results in complex and nested patterns of microbial, ecological and 775 
nutrient gradients and dynamics. An important question on HSHMs is to identify how these interfaces scale 776 
in space and time, and whether these small-scale interfaces are manifested at larger scales across complex 777 
landscapes.  778 

To this end, high-resolution forward models offer considerable opportunity to predict and track the 779 
transient and scale-dependent nature of HSHMs. However, high-resolution models are computationally 780 
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expensive and pose a serious impediment to scientific progress, particularly due to the need for appropriate 781 
initialization of high-resolution models requiring several million CPU hours before actual simulations of 782 
HSHM processes. On the contrary, coarse-resolution catchment or reach-scale models do not adequately 783 
represent sub-grid heterogeneity and may completely overlook hot spots at smaller scales. In addition, these 784 
models also require forcing (e.g., precipitation, temperature) or hot moments information at sufficient 785 
model resolution to better capture the non-additive and nonlinear behavior of HSHM functioning in critical 786 
zone systems. Variable resolution models present an adequate tradeoff between HSHM representation and 787 
computational tractability. In this manner, highly localized phenomena such as anoxic microzones can be 788 
captured at the scale of the hyporheic zone, while being able to realize these local scale processes at the 789 
river reach or regional scales.  790 

Another possibility is the use of reduced order models for capturing small-scale heterogeneities 791 
such as varied soil moisture fields to large-scale morphologic features such as bedforms (e.g., Pau et al. 792 
2014; Harvey et al. 2019). These reduced order models are often approached bottom-up and require transfer 793 
of parameters from one scale to the next. Even in simplified systems, such as experimental soil columns, 794 
parameterization of spatial heterogeneity and scaling of localized reaction rates (e.g., mixing-induced 795 
mineral precipitation) can be difficult (Arora et al., 2015, 2011; Battiato et al., 2009). A superior alternative 796 
is to use a probability distribution function or higher order moments of parameters that provide adequate 797 
bounds on HSHMs or identify CPI. 798 

More recently, machine learning based approaches are offering promising alternatives to identify 799 
and characterize important information at scales. For example, work is now being done to downscale 800 
precipitation using machine learning assisted techniques and capture the impact of these hydrological 801 
fluctuations at relevant model resolutions (e.g., Mital et al., 2020). Although we have not described these 802 
techniques in detail here, critical zone research on HSHMs can benefit from the versatility of machine 803 
learning approaches. 804 

4.2. A preemptive prioritization of HSHMs 805 

At present, predictive simulations of critical zone systems are mostly undertaken in a deterministic 806 
framework under the assumptions of stationarity (Milly et al., 2008). In light of steadily increasing 807 
computational capability and greater aspirations for simulation in domains of scientific prediction and 808 
engineering design, high-resolution models offer a unique advantage in the sense that they can be used to 809 
identify “critical” uncertainties or problem areas in advance of large-scale data collection efforts. Frei et al. 810 
(2012), for example, conducted a numerical experiment to suggest that topographic depressions are hot 811 
spots of denitrification. More recently, Dwivedi et al. (2017) conducted 3-D numerical simulations 812 
considering the impact of high-resolution geomorphic features such as meanders, and their work suggested 813 
that inclusion of meanders resulted in significantly different denitrification profiles, than without. Likewise, 814 
other numerical investigations can be designed that can help in isolating topographic features that are 815 
conducive to high biogeochemical reaction rates.  816 

In a recent review article, (Li et al., 2017) made the case that “models test our understanding of 817 
processes and can reach beyond the spatial and temporal scales of measurements.” They argued that once 818 
a reasonable numerical model exists based on available data, these models can be used to perform virtual 819 
experiments that can elucidate the influence of specific features such as HSHMs within the critical zone. 820 
Work from Li Li’s group has demonstrated the use of virtual experiments in “discovering” general 821 
principles about concentration discharge relationships at the catchment scale, and developing and testing 822 
hypothesis about properties that impact critical zone functioning (Xiao et al., 2019; Zhi et al., 2019). With 823 
a similar spirit, modeling investigations can provide crucial insights on key drivers of HSHMs and 824 
mechanisms that govern their variability temporally and spatially. Data-worth analysis is one such metric 825 
that can determine the “influential” critical zone properties, whether existing or potential, which can reduce 826 
uncertainties of target predictions. Data-worth analysis works by ranking the contribution that each data 827 
point makes to the solution of a subsequent predictive simulation, which may eventually be used for 828 
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resource management or policy relevant decisions (Arora et al., 2019a; Finsterle, 2015). By identifying data 829 
or drivers that are crucial to target predictions, we can identify controls as well as circumstances under 830 
which these HSHMs form.  831 

Process-based models also offer the advantage to evaluate how hot spots form or change under 832 
future stress events such as flooding, fire, drought, permafrost thaw and early snowmelt. These tools can 833 
be used preemptively to determine the effectiveness of different management options under different 834 
climate and land-use change scenarios (e.g., Butterbach-Bahl et al. 2013). Recent work has also focused on 835 
developing decision support systems wherein competing demands and resources are analyzed as a multi-836 
objective optimization problem (e.g., Müller et al., 2020).   837 

5. Concluding	remarks	838 

The substantial body of research we review reveals that identifying and incorporating hot 839 
spots/moments provides a strong foundation for quantifying nutrient dynamics, greenhouse gas emissions, 840 
as well as water and energy exchange in the critical zone. Recent advances in sensing and tracing 841 
technologies have further shown that improved resolution and frequency in monitoring HSHMs is now 842 
possible (e.g., Briggs et al. 2014a). At the same time, high resolution physics-based models are at crossroads 843 
today (Steefel, 2019). 15 years ago, modeling challenges were related to dealing with expensive simulations 844 
at larger scales or scaling of local scale observations to entire catchments. Additionally, including fine scale 845 
spatial patterns (e.g., size, shape of meander bends) or hot spots (e.g., distribution of riparian wetlands) to 846 
larger catchments was problematic. While some of these questions are still relevant today, the increase in 847 
computational power and real time monitoring has resulted in much finer flow of information from one 848 
scale to the next. With variable resolution models, modelers now have the ability to explicitly characterize 849 
HSHMs at relevant scales. In fact, numerical models have become exciting tools that can preemptively 850 
predict the location of hot spots, or the time of occurrence of a hot moment, and may ultimately expand our 851 
understanding of the spatial and temporal HSHM templates that underlie larger landscapes. 852 

In this regard, systematic and integrated approaches that combine spatial analysis, field 853 
observations as well as process-based modeling investigations have led to new insights regarding what 854 
constitutes hot spots and how they evolve in time. For example, anoxic microzones in the hyporheic zone, 855 
frequently inundated floodplains, and topographic depressions typically constitute biogeochemical hot 856 
spots (Andrews et al., 2011; Briggs et al., 2015; Singer et al., 2016). At the catchment sale, Pinay and 857 
Haycock (2019) argue that small headwaters are hotspots of nitrogen and nutrient loadings due to the 858 
dendritic nature of catchments and the spatial arrangement resulting in higher wet/dry interfaces in these 859 
catchments. Dwivedi et al. (2018a) demonstrate that chemically reduced floodplain sediments become 860 
denitrification hotspots especially with flow reversal and high oxygen inputs. However, it is necessary to 861 
further develop these concepts wherein there is clear information about when hot spots are stable in time 862 
(e.g., small headwaters) or when they respond to disturbance events (e.g., flow reversal), which may alter 863 
process intensities and even process directions. The recognition that hot spots may be ephemeral in nature 864 
is likely to lead to the development of a new generation of models and/or conceptual frameworks.  865 

This ephemeral nature of hot spots begs interdisciplinary knowledge exchange and advances, and 866 
adaptations of concepts beyond discipline-specific theories. For example, Krause et al. (2017) identified 867 
steep redox gradients across the groundwater-surface water interface as one of the critical ecohydrological 868 
interfaces, which is also known to be a biogeochemical hot spot for riparian ecosystems. This exchange of 869 
theories across disciplines therefore has the potential to define organizational principles of HSHMs and 870 
may be used to quantify their functioning at larger scales. Investigations of hot moments have benefitted 871 
from this cross-disciplinary exchange to a much larger extent. Statistical, economic, computational, and 872 
geophysical techniques, among others, have been adopted to identify times where intense reaction rates 873 
occur. For example, precipitation events, water table fluctuations and wetting drying cycles have been 874 
identified as hot moments (Arora et al., 2019b, 2016a, 2013). This delineation in time will be further 875 
relevant to evaluate if disturbance and perturbations, such as warming, earlier snowmelt, increased floods 876 
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and fires, and freeze-thaw cycles, constitute hot moments of critical zone functioning. Such understanding 877 
will provide a basis for planning, management, and improved protection of critical zone resources (Abbott 878 
et al., 2019; Hubbard et al., 2018; Shrestha and Wang, 2018).  879 
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