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Abstract

We present a principled technique for reducing the lattice and ma-
trix size in some applications of Coppersmith’s lattice method for find-
ing roots of modular polynomial equations. It relies on extrapolating
patterns from the actual behavior of Coppersmith’s attack for smaller
parameter sizes, which can be thought of as “focus group” testing.
When applied to the small-exponent RSA problem, our technique re-
duces lattice dimensions and consequently running times, and hence
can be applied to a wider range of exponents. Moreover, in many dif-
ficult examples our attack is not only faster but also more successful
in recovering the RSA secret key. We include a discussion of subtleties
concerning whether or not existing metrics (such as enabling condition
bounds) are decisive in predicting the true efficacy of attacks based on
Coppersmith’s method. Finally, indications are given which suggest
certain lattice basis reduction algorithms (such as Nguyen-Stehlé’s L.2)
may be particularly well-suited for Coppersmith’s method.
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1 Introduction

Ever since Shamir’s devastating attack on the Knapsack cryptosystem [19],
lattice basis reduction algorithms such as LLL [15] have found surprising
success against cryptosystems that a priori have nothing to do with lattices.
A fundamental example is the RSA cryptosystem [18], whose public key
consists of an integer n = pg (where p and ¢ are large secret primes of
comparable size) and an encryption exponent e. In situations where some
extra information about the public key is known (e.g., certain bits of p or
q), it is sometimes possible to use the lattice basis reduction method of
Coppersmith [7] to discover the factorization of n.

One notable such situation is when the secret decryption exponent d is
small,

(1.1) d = n’, §<

N[

(see Section 2 for more background on RSA). Wiener [21] showed that contin-
ued fractions expose d when § < 1/4, essentially instantaneously. Continued
fraction approximations can be thought of as the simplest example of lattice
basis reduction, namely for 2-dimensional lattices. Boneh-Durfee [4] apply
Coppersmith’s method with higher dimensional lattices to give an attack for

(1.2) 6 < 1 — 272 =~ 202

More precisely, they prove that LLL’s output on a particular lattice pro-
duces enough information to factor n (subject to an algebraic independence
assumption). It is an important open problem to improve! the bound (1.2),
which still stands as the current record despite many attempts to improve it,
or to even rigorously establish the needed algebraic independence (see [2]).

! This raises the question of what precisely constitutes an improvement over Boneh-
Durfee’s .292 result [4]. Merely replacing .292 by a larger constant alone is insufficient,
since algebraic dependence may creep for smaller §. Indeed, Bauer [1] gives an attack in
which the right-hand side of (1.2) can be replaced by .34, but which suffers from a failure
of algebraic independence at a much earlier point. On the other hand, it should be pointed
out that we don’t even know at present whether or not Boneh-Durfee’s attack suffers from
the same problem before reaching § = .292. See the end of Section 2 for more comments.

On the practical side, one sees another obstacle from (1.3): attacks which require enor-
mous lattices are infeasible and cannot come close to their theoretical limitations anyhow.
Our approach here is to develop a method which gives experimentally verified improve-
ments over previous work.



Since the LLL algorithm has a widespread reputation for outperforming
its provable guarantees, one might surmise that the bound (1.2) is more
modest than actual experiments would indicate. Surprisingly, the opposite is
true: all successful experiments in the literature work only for § relatively far
below the theoretical upper bound of 1—271/2 ~ .292 [4,5,22]. The reason for
this is that (1.2) is an asymptotic estimate that requires very large lattices.
Specifically, for 1,024-bit moduli n

Boneh-Durfee’s attack requires lattices

1.3
(1.3) of dimension > 500 for § > .278.

The difficulty of finding short vectors in lattices of dimension > 500 already
serves as the hard underlying problem behind other cryptosystems, and in-
deed § = .278 is close to the limit of known experiments in [4,5,22].2

Thus implementing lattice-based attacks can itself face impractically diffi-
cult problems even in ranges covered by theoretical guarantees. It is therefore
natural to ask the following questions:

Q1. Can one practically solve small-exponent RSA instances for ¢ signifi-
cantly larger than the experiments reported in [4,5,22]7

Q2. Is there a barrier from algebraic independence that creeps in before the
theoretical upper bound is reached? If so, how does one estimate the
true range of validity of the attack?

Q3. How can Coppersmith’s method be modified to reduce the size of the
matrices (and their entries) involved? It has long been considered to
look at sublattices, but what are the optimal sublattices to choose?

In Section 2 we review Coppersmith’s method and the Boneh-Durfee at-
tack, and comment on some nuances of comparing theoretical analyses to
actual outcomes in applications of Coppersmith’s method (e.g., Q2). The
main contribution of this paper is to Q3, by introducing a method in Sec-
tion 3 (influenced by the idea from machine learning of trying to find patterns
in known examples, rather than being guided solely by theory) to cut down
the matrix size and hence push back the choke point that high dimensional

2Tt follows that it is important to distinguish between theoretical ranges of applicability
of Coppersmith’s method, and the practical ranges that they could possibly be applied to
(in light of the difficulty of lattice basis reduction in large dimensions).



lattice basis reduction algorithms face in practice. We use that to address Q1
in Section 4, where we show our method is faster (and often more effective).

In Section 5 we present another example of how the “focus group” method
can be applied to the attack in [3, §6], where the size of the spanning set
can be reduced significantly. We chose these two examples because they are
prominent theoretical and practical applications of Coppersmith’s method to
RSA. All the computations here (unless otherwise noted) were performed in
Mathematica® v.11 on a Dell PowerEdge R740xd server equipped with two
Intel Xeon Silver 4114 2.2GHz processors and 256GB RAM. In particular we
did not use specialized lattice basis reduction packages such as [9,20].

We would like to thank Dan Boneh, Henry Cohn, Nadia Heninger, Jeff
Hoffstein, Antoine Joux, Daniel Lichtblau, Alexander May, Oded Regev,
Adi Shamir, Noah Stephens-Davidowitz, and David Wong for their helpful
discussions. We are also very appreciative of the anonymous referee for their
very helpful comments, and to Galen Collier and the staff of the Rutgers
Office of Advanced Research Computing for their assistance with Rutgers’
Amarel high performance cluster.

2 An overview of Coppersmith’s method and
Boneh-Durfee’s attack on RSA

As before, let p and ¢ be secret large prime numbers of comparable size, and
n = pq the public RSA modulus. Let e be the public encryption exponent and
d = n? be the secret decryption exponent, which satisfy ed = 1 (mod ¢(n)),
where ¢(n) = (p—1)(¢ — 1) = n—p — ¢+ 1. In this case d’s relation to e
can be restated as the existence of an integer k£ such that

(2.1) ed = 1+ k¢(n), where k ~ n°,

in which we have made the natural — and trivially verifiable — assumption
that the public exponent e has comparable size to n. After dividing both

3Specifically, using Mathematica’s LatticeReduce command, which implements the
L2 algorithm of Nguyen and Stehlé [17].



sides by d¢(n) and using the fact that n — ¢(n) = O(y/n), this implies

E_E‘ e__e +‘ : _E‘
(2.2) n d — |n ¢n) ?(n) d
- O(W> + T O(n=12).

Wiener [21] observed that if § < %, the fraction § approximates < much more
accurately than d=2 > n~% which is an unusually good approximation of
a real number by a rational number of denominator d. Hence S occurs
among the continued fraction approximants to -, and can be very efficiently
computed.

Following [4], consider the bivariate polynomial

(2.3) flz,y) = z(n—y) + 1,

which according to (2.1) satisfies

(2.4) f(zo,y0) = 0 (mode),

where

(2.5) zo = k = O(®) and 1y = n—o(n) = O(e)

are both relatively small compared to the modulus e. Coppersmith’s method
(in this example, following Howgrave-Graham [11]) is used to promote a
polynomial congruence relation such as (2.4) into a system of two integer
polynomial equalities, which can then be solved using classical methods. To
illustrate this in terms of the Boneh-Durfee attack, define x-shifts and y-shifts

. pinlen) = 2 o)
and  hjem(z,y) = ¥ flz,y) e,

for

(2.7) 0<l<m,0<i<m-—/, and 1<j<t.

They satisfy

(2.8) Giem(TosY0) = higm(To,v) = 0 (mode™)
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and span a sublattice A of R[x,y], the latter of which is endowed with the
sum-of-squares norm || - || on polynomial coefficients. A short vector in this
sublattice is a polynomial with small coefficients, ideally small enough that
its value at a particular point such as (zg,yo) will itself be relatively small.
By (2.8), that value is also a multiple of ™; thus if it is less than ™ in
absolute value, it must actually vanish.

To make this more precise in our setting, let X and Y be upper bounds
for |xo| and |yo|, respectively (such as provided in (2.5)). Howgrave-Graham
[11] observed that if a polynomial p(x,y) € A satisfies?

(2.9) [p(z X, yY)|| < ,
v/ Wp

where w, is the number of nonzero monomials in p(-, ), then an application
of Cauchy-Schwartz shows |p(zg,yo)| < €™. In particular, (z¢,yo) is a root
of p(+,-) over Z since p(zg,yo) = 0 (mod e™). Boneh-Durfee prove that this
norm condition is met for the shortest vector outputted by LLL provided

(2.10) Al < e (2w)Imw/2 gy = dim(A),

where |A| denotes the covolume of A. For § < I — g ~ .284 this “enabling”
condition is met for sufficiently large values of m and e. We shall refer to this
as the Boneh-Durfee “.284” attack, in order to distinguish it from their more
refined analysis (using a carefully selected sublattice) that extends the range
tod < 1—2712 ~ .292. See also [5,12,14] for other attacks theoretically
deriving exponents of this size, or close to it.

Under the enabling condition (2.10), the two shortest vectors outputted
by LLL are coefficients of bivariate polynomials which vanish at (zq,yo).
Boneh-Durfee point out that in practice these polynomials are algebraically
independent, and thus their common roots can be extracted using resultants.
However, this observed algebraic independence has not yet been rigorously
established (see [2]). In principle (as can happen, for example, if one does
not use any of the polynomials hj,,,) the shortest vectors may all result in

4Note that vector length || - || is not necessarily the appropriate metric. The length
condition (2.9) is quadratic in the polynomial coefficients, but the actual value of interest
(the polynomial evaluated at a particular point) is instead linear: it is the value of a linear
functional on A. Of course bounding the norm bounds the value of a linear functional, but
possibly with a significant loss. One might imagine leveraging some geometric information
about xg and yo (such as their sign) which is known in advance.
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polynomials which are trivial multiples of each other, and hence not give
enough equations to reveal the two unknowns xy and yq.

An interesting example: consider the 1,000 bit RSA modulus n = pg and
key d = n® given by

p = 327534248375076317083641611376534056264358811260976111454743
469579874653650577266211366585026890270802159105074832098421
5116927258714434174724054953133 ,

q = 327462704072360233831723075103626846066746692190298143145154
087005180715732984190358817594057449905589163120424047417288
3400239374471379393571624577657 ,

and

d = 300147077152565471186517713474704374146330287118250537992743
5326735028048350149451, (§ ~ .2707).

We applied the BKZ lattice basis reduction from [20] with block size 3 to
the lattice from Boneh-Durfee’s .292 attack with parameters (m,t) = (5, 2).
Of the 25 output vectors, only one of them (the fifth longest®!) produces a
polynomial which vanishes at (xg,yo). Interestingly and perhaps counterin-
tuitively, applying BKZ with larger block size (such as 5) failed to produce
any vectors vanishing at (zg,49). (We were unable to do any better using
the implementation of BKZ in sagemath.) This example demonstrates that
the vector length of the output basis is not the sole determinant of success,
in addition to the sensitivity to the choice of lattice basis reduction method.

It is worth mentioning other lattice attacks which use polynomials dif-
ferent from (2.3), and which also consistently beat Wiener’s § < 1/4 bound.
Bauer’s thesis [1, Chapter 4] discusses a three-variable analog based on us-
ing a short continued fraction approximation of e/n, stopping roughly at the
point at which it is theoretically expected to differ from that of e/¢(n). Two
additional integer parameters are then substituted to account for the remain-

A similar feature was already observed in A. Bauer’s Ph.D. thesis [1].



ing part of the continued fraction approximation.® A lattice is again formed
as above using congruences modulo powers of e. Her analysis of the enabling
condition shows that when ¢ < .34, the lattice has short vectors that produce
polynomials which vanish at the desired roots. Alternatively, one can instead
apply the lattice method of [13] to this partial continued fraction approach
(as we have attempted in experiments) — its analogous enabling condition
holds for § < 1/3. These are theoretical ranges in which Coppersmith’s
method will provably find short vectors (for large enough lattice sizes), yet
possibly nevertheless fail to factor n because of algebraic dependence. Both
ranges extend much further than Boneh-Durfee’s § < 1 —27%2 x 292 range,
and the lattice sizes in both attacks can be improved using the “focus group”
methodology in Section 3 below.

Indeed, despite the promising increase in this range for ¢ from .292 to 1/3
or .34, neither of these approaches comes near .292 in practice. The results of
our limited experimental trials indicate that the actual performance of either
of these algorithms seems roughly comparable to that of Boneh-Durfee’s.
In particular, the experiments show that algebraic independence fails at a
much earlier point, well before the enabling condition of § < 1/3 or 6 < .34
is reached. Furthermore, the lattice sizes necessary to study such large ex-
ponents ¢ are themselves impractically large. That calls into question the
direct practical relevance of the enabling condition itself, and demonstrates
the importance of a better understanding of the actual performance of these
attacks.

Remarks on sublattices and minimizing |A|: in order to leverage prov-
able guarantees that a lattice basis reduction algorithm will find a sufficiently
short vector, sublattices in variants of Coppersmith’s attack are often taken
in order to effectively reduce the covolume |A| (see Q3 in Section 1). This is
primarily done to ensure the validity of an enabling condition such as (2.10).
While this allows for rigorous, theoretical analysis, there are geometric rea-
sons why it may not be optimal:

e If A does not behave like a random lattice, it may have vectors at
several length scales that do not interact much with each other.

6See also the paper [8]. The anonymous referee of the present paper kindly suggested
another approach: attempt to guess a portion of the bits of these unknown parameters,
in the hopes of gaining a more-than-compensating savings from the smaller lattices which
result from analyzing the remaining portion.



e For example, suppose one appends a very long vector to a short basis of
a lattice perpendicular to it. This would magnify the covolume without
affecting the outcome of lattice basis reduction at all.

e The ultimate goal in Coppersmith’s method is not to reduce the co-
volume, but to increase the likelihood of finding a short vector. It is
more important to identify sublattices having short vectors, which is
not well-measured by the covolume.

e As we have noted in the above discussion of Bauer’s thesis [1], attacks
with very different enabling condition bounds may perform similarly in
practice, since algebraic dependence may creep in before the enabling
condition is reached. Thus |A| itself may not actually enter into a
meaningful bound anyhow.

We conclude this section by remarking that the lattices produced in the
Boneh-Durfee attack appear to be far from random, as is evidenced by their
vector lengths. This appears to be in contrast with the lattices produced in
other applications of Coppersmith’s method — though not all (e.g., [6]). For
example, one typically expects a basis outputted by the LLL algorithm [15]
to have vectors of comparable length. Figure 1 shows the logarithms of the
vector lengths in the original and reduced lattice bases for an instance of the
Boneh-Durfee .284 attack with n ~ 260% and § ~ .284. At this logarithmic
scale one can see clumps of basis vectors of roughly the same length, yet nev-
ertheless the overall lengths of the basis vectors do differ significantly within
each plot. The plot the left indicates that the input basis has several different
regimes, owing to the structure of (2.6)-(2.7). The plot on the right shows
that the output basis also has vectors in (fewer) clumps of similar logarith-
mic length, in particular with a large separation between the shortest vector
(which represents a constant polynomial) and the others. Not surprisingly,
the attack failed in this particular instance. Understanding this “clumping”
phenomenon may help gain insight into Coppersmith’s method. For exam-
ple, is there inhomogeneity in the geometry of the lattice that effectively
reduces its dimension? If so, can it be exploited? This is the underlying
geometric motivation behind the “focus group” method in Section 3, which
is an approach to identifying sublattices having short vectors.
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Figure 1: Natural logarithms of lengths of lattice basis vectors in the Boneh-
Durfee .284 attack with n ~ 25°%0 and § ~ .284, before and after lattice basis
reduction. The attack failed in this instance.

3 “Focus group” attacks

Applying lattice basis reduction to a sublattice may increase the chances of
finding short vectors, while of course simultaneously decreasing run time.
Given the inherent limitations in performing lattice basis reduction in high
dimensions, sometimes finding an appropriate sublattice can make the dif-
ference between finding solutions and finding no solutions at all (or not even
being able to fully execute lattice reduction).

In this section we describe a principled, evidence-based approach to se-
lecting a sublattice in certain lattice basis reduction problems, such as ap-
plications of Coppersmith’s method. Its main idea is to deform to a simpler
problem in which one can directly determine which basis vectors contribute
nontrivially to the shortest vectors. This methodology is applied in Section 4
to small-exponent RSA and in Section 5 to the “Coppersmith in the wild”
smart card attack of [3].

This “focus group” attack consists of three main steps:

1. Set small parameters. Find a regime with the same lattice dimen-
sion, but reduced sizes of basis vectors coordinate entries. This makes
it faster (or even possible) to execute lattice basis reduction on large
matrices. For example, in the case of small-exponent RSA we set ¢ in
(1.1) to be slightly larger than % (which is the point at which Wiener’s
continued fraction attack ceases to work). Of course would be desirable
to improve this step by theoretically understanding in advance which
basis vectors to keep (e.g., using the notion of “helpful vector” from
[16, Chapter 7] rather to rely on experiments), but this may not be
practical because of the complexity of lattice basis reduction.
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Figure 2: A representation of the change of basis matrix for the lattice basis
reduction step in Boneh-Durfee’s .284 attack (see the text for more details).
The matrix has a number of columns with many zero entries (marked white).

2. Check the output to see which parts of the original basis were
actually used. Figure 2 pictorially represents the change of basis
matrix for the lattice basis reduction step in Boneh-Durfee’s .284 attack
for a 6,000-bit RSA modulus n, with § ~ .251 and parameters (m, t) =
(4,2) (see (2.7)). The columns are indexed by the input basis vectors
and the rows are indexed by the output basis vectors. Each entry in
the matrix is plotted as blue/dark gray (positive), orange/light gray
(negative), or white (zero).

The long white vertical streaks emanating from the top of the figure
reveal that certain input basis vectors are not used in forming the short-
est vectors in the lattice output. Those basis elements from (2.6)-(2.7)
can be graphically represented as in Figure 3, where the figure on the
left represents the x-shifts and the figure on the right represents the
y-shifts. Here the unfilled white circles indicate unused vectors and
filled black circles indicate useful vectors. Boneh-Durfee’s .292 attack
refines their .284 attack by discarding some y-shifts from (2.7), but not
the same ones as here (theirs are chosen to minimize the covolume |Al).
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Figure 3: A representation of which polynomials in (2.6)-(2.7) are actually
used (black circles) in forming the shortest vector in the lattice basis reduc-
tion step for a particular instance of the Boneh-Durfee attack. The unfilled,
white circles represent discarded basis vectors (see the text for more details).

In fact, the figure indicates that most of the y-shifts are not actually
used. It is more striking that some of the smaller z-shifts are not used,
consistent with the utility of a similar device in [5, §4]. Similar patterns
arise for larger parameter sizes and were used to formulate the attack
in Section 4. Indeed, examples of patterns yield useful descriptions in
terms of extra additional parameters, which are then used to extrap-
olate good guesses for which families of sublattices to look at in more
challenging situations.

3. Remove unused basis elements. This has advantages for run time,
storage, and quality of results, since lattice basis reduction on smaller
lattices typically performs dramatically better. After all, the approxi-
mation factor in lattice basis reduction is tighter in smaller dimensions.

12



4 The “focus group” attack on small-exponent
RSA

We now specialize the methodology of Section 3 to small-exponent RSA.
Trials of the Boneh-Durfee .284 attack [4] with small parameters suggest a
particular sublattice to use, which we shall describe below. Previous work has
selected sublattices using other methods. For example, Boneh-Durfee suggest
in their .292 attack to remove certain h;,,, which contribute large factors to
the covolume. Later work by Blomer and May [5] suggests removing some of
the g;¢m as well (see also [12,14]).

Our approach is guided by which vectors are likely to contribute to a
nontrivial solution, but not directly by determinant considerations. We in-
troduce two integer parameters o and 7 (in addition to m and t), and exclude
from (2.7) all indices with i +¢ < ¢ and ¢ — 25 < 7 (this is motivated by the
shape of the black and white circles in Figure 3). That is, the polynomials
in (2.6) are taken for indices

(41) 0 <0 <m,max(—1,0—¢) <i<m—/{, and 1 <j <min(t,1+57)

instead of (2.7). We choose X = [2¢°] and Y = [2¢/2] as rough integral
upper bounds for xy and yo, respectively (cf. (2.5)).

Experiments

We ran timings using Mathematica v.11 on a Dell PowerEdge R740xd server
with two Intel Xeon Silver 4114 2.2GHz processors and 256GB RAM. We did
not seriously attempt to optimize the lattice basis reduction computations,
relying instead on Mathematica’s LatticeReduce command (which is an
implementation of [17]). Timing results are presented in Table 1 and include,
as a control experiment, a comparison with an implementation of Boneh-
Durfee’s .292 and .284 attacks using Mathematica on the same machine with
the same parameters m and t. It would be interesting to perform a similar
comparison with the algorithm of [5], whose sublattice is more similar to the
one selected by the “focus group” attack. The attack in [5] also satisfies the
enabling condition for the same § < 1— \/1/_2 ~ .292 range as Boneh-Durfee’s
attack [4]. We have not rigorously analyzed at what point our enabling
condition breaks down, as it may be moot anyhow: algebraic independence
might be lost before that point (see the comments at the end of Section 2).
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Focus group Boneh-Durfee .292 | Boneh-Durfee .284

bits of n | trials J (m,t,0,7) time | dim time dim time dim
1000 100 | .270 (6,2,2,0) 8.46 s 28 15.95 s 34 30.29 s 42
4000 100 | .273 (6,2,2,0) 60.37 s 28 103.49 s 34 182.92 s 42
6000 15 | .277 | (8,3,2,-1) 1905.81 s 54 2170.15 s 57 3920.45 s 72
10000 100 | .260 (3,1,1,0) 1.70 s 14 2.76 s 17 4.47 s 20
10000 100 | .265 (4,1,1,0) 12.94 s 14 17.90 s 17 24.76 s 20
10000 15 | .277 | (8,3,2,-1) 4565.47 s 54 5063.59 s 57 8492.21 s 72

Table 1: Timings of trials of the “focus group” attack on small-exponent
RSA. Times listed are averages over many trials of RSA keys, in which each
of the three attacks on the right is performed on the same key. Comparisons
are given in the last two columns for the Boneh-Durfee .292 and .284 attacks
with the same values of m and ¢t. We list the average time in seconds as well
as the dimension of the lattices involved, which get progressively larger as
one goes from the focus group attack to the Boneh-Durfee .284 attack. The
focus group attack is significantly faster, and uses less memory due to the
smaller lattice size. (All computations were run on the same machine using
the same lattice basis reduction algorithm.) Times refer to the lattice basis
reduction step only.

bits of n | trials s (m,t,0,7) Focus group Boneh-Durfee .292 | Boneh-Durfee .284
L Success % | dim || Success % | dim Success % | dim
1000 100 | .270 (6,2,2,0) 100% 28 100% 34 100% 42
1000 100 | .273 (6,2,2,0) 43% 28 64% 34 64% 42
1000 100 | .277 | (8,3,2,-1) 21% 54 10% 57 9% 72
1000 100 | .279 | (10,4,2,-3) 62% 92 26% 85 26% 110
1000 100 | .280 | (10,4,2,-3) 1% 92 0% 85 0% 110
4000 100 | .273 (6,2,2,0) 58% 28 100% 34 100% 42
6000 15 | .277 | (8,3,2,-1) 100% 54 100% 57 100% 72
10000 100 | .260 (3,1,1,0) 100% 14 100% 17 100% 20
10000 100 | .265 (4,1,1,0) 100% 14 100% 17 100% 20
10000 15 | .277 | (8,3,2,-1) 100% 54 100% 57 100% 72

Table 2: Success rates of the three algorithms in Table 1, as measured by
producing multiple polynomials which vanish on the secret key (as a time-
saving proxy to allow for more experiments to be run). Again, each trial
involves the three attacks on the right applied to the same RSA key. The
focus group attack has a lower success rate than Boneh-Durfee’s attacks for
some smaller values of ¢, but appears to outperform the Boneh-Durfee attack
for larger values of 4 and lattice dimensions. More data is shown in the plots
in Figure 4.
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Success rates for 1000 bit n

0.9
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0.7 Each data point represents 200 trials
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—e— Focus group (54-dimensional lattice) - ®-BD .292 (57-dimensional lattice)
Success rates for 4000 bit n
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0.8
0.6
0.4
0.2
0
0.2718 0.272 0.2722 0.2724 0.2726 0.2728 0.273 0.2732 0.2734 0.2736 0.2738 0.274
o
—e— Focus group (28-dimensional lattice) - ®-BD .292 (34-dimensional lattice)
Success rates for 4000 bit n
1.2
(m,t,0,7) = (83,2,—1)
1 Each data point represents 100 trials
0.8
0.6
0.4
0.2
0
0.27685 0.2769 0.27695 0.277 0.27705 0.2771 0.27715 0.2772 0.27725 0.2773
1)
—e— Focus group (54-dimensional lattice) - ®-BD .292 (57-dimensional lattice)

Figure 4: These plots amplify the data in Table 2 and show how the focus
group method compares to the Boneh-Durfee .292 attack near their limits of
failure for larger exponents 9. It appears the focus group method outperforms
the Boneh-Durfee .292 attack for larger ¢ and lattice dimensions.
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Extraction of the secret key after lattice basis reduction can be fairly
slow, but we always found it to be possible so long as more than one output
polynomial vanishes on the secret key. In order to generate more data on
the success of the method and avoid this bottleneck, we ran a number of
experiments in which success was measured by finding more than one such
polynomial. (In order to be more confident that no algebraic dependence
issues arose, we performed a more rigorous analysis on several sample lattice
reduction outputs and found sufficient algebraic independence in all cases.)
Table 2 and Figure 4 show the probability of success for the focus group
method compared to the Boneh-Durfee attacks. These experiments were run
on many machines in Rutgers’ Amarel high performance cluster. For some
parameter choices (m, t, o, 7), the focus group attack is more successful than
the Boneh-Durfee attacks (e.g., in the first plot in Figure 4), but not for
all. For example, in the entry for 4000 bit moduli n with (m,t,0,7) =
(6,2,2,0) and 6 = .273, the Boneh-Durfee attack was successful on 100
out of 100 randomly chosen RSA keys, whereas the focus group attack was
successful only 58 of those same 100 RSA keys. The second plot in Figure 4
shows this holds true for the same choice of (m,t,0,7) = (6,2,2,0) and for
exponents 0 in a nearby range. However, it appears this phenomenon may
be limited to smaller 4 and matrix sizes: when one instead considers the
larger lattices with (m,t,0,7) = (8,3,2,—1) (the last plot in Figure 4), the
situation apparently reverses and the focus group method is more successful
than Boneh-Durfee’s attack. Table 2’s entries for 1000 bit n and the first plot
in Figure 4 also suggest that the focus group may be more successful than
Boneh-Durfee’s attack in runs that involve larger lattices and exponents §.
We should caution, however, that we have not systematically analyzed this
beyond the experiments presented here. We are also unsure exactly what to
attribute this apparent improvement to, though we suspect it is that lattice
basis reduction algorithms have superior performance on smaller lattices.

As an aside, the timings demonstrate the power of the implementa-
tion of the L2 lattice basis reduction algorithm [17] used in Mathematica’s
LatticeReduce command, which typically outperformed the BKZ implemen-
tations in NTL and sagemath. For example, the exponents d achieved here
are higher than in previously reported experiments (e.g., [4,5,22]), with the
size of d in the last entry in Table 1 being 220 bits longer than achieved in [4]
for a 10,000-bit RSA modulus n. Recall that Table 1 makes a controlled com-
parison between different approaches to Coppersmith’s method on the same
RSA keys, by using the same hardware and same lattice basis reduction al-
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gorithms. It is interesting to speculate whether certain features of [17] are
particularly useful when applied to the lattices produced by Coppersmith’s
method, and if so, how to leverage them further (recall also the example in
Section 2, where BKZ is more helpful with block size 3 than block size 5).

5 The “focus group” attack applied to partial-
key-recovery methods of [3]

In this section we apply the “focus group” methodology to the “Coppersmith
in the wild” partial-key-recovery attack of [3, §6], which as far as we are aware
was the first Coppersmith-style attack successfully applied to real-world keys.
In their situation, n = pg ~ 2'°%* is an RSA modulus, and p ~ 252 has the
special form

(5.1) p = a+ 2's + r,

where a and t are — or at least suspected to be — known, but s and t are
unknown. The authors consider the polynomial f(x,y) = a + 2'x + y, and
form the (k;2)—dimensional lattice spanned by the polynomials

(5.2) {2y f(z, )0 <i+h<k-1} U {7y"n|0 <j+h <k}

for an integer parameter £ > 0. Lattice basis reduction is then used (if
successful) to obtain two small algebraically independent polynomials, from
which the values of s and t are extracted.

We performed experiments with one particular set of parameters success-
fully studied in [3, §6.2], namely k = 4, t = 428, a = 2511 4 2510 X = 2100,
and Y = 228, Experiments with small parameters revealed that solutions are
often found within sublattices generated by the polynomials in (5.2) having
h > hg, where hyq is fixed (see Figure 5).” Following the focus group method-
ology, we considered such a sublattice in this particular example with hg = 1,
and verified that by taking these ten polynomials (instead of the 25 in (5.2)),
we could just as easily recover the factorization of n using lattice basis re-
duction applied to the corresponding sublattice. Thus the same performance

7 After removing a common factor of y"°, the generators of this sublattice are given by
(5.2) but with k replaced by k — hg. This might explain the remark on [3, p. 355] that
some experiments for small k£ worked in situations where theoretically no useful output
was expected.
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in this example is obtained from using this chosen ten-dimensional sublattice
of the ambient 25-dimensional lattice.

The use of Hermite normal form in the “focus group” method:
Hermite normal form has previously been applied to Coppersmith’s method
(e.g., [10, Example 19.3.2]). For example, one can obtain the Hermite normal
form of matrix whose rows form a generating set of the lattice (perhaps
strictly larger than a basis), and then apply lattice basis reduction to only
some of the rows of the output. Thus instead of using the generating set
directly produced by Coppersmith’s method, we instead transform it to a
different generating set (using Hermite normal form) and apply the focus
group methodology of selecting a sublattice at this secondary stage instead.

This approach via Hermite normal form did not work well when applied
to the previous example, but did find success when applied to primes (5.1) of
a different type than those studied in [3]. Namely, here we arbitrarily chose
a to be the smallest positive integer congruent to 3% (mod 25!2), and ran-
domly generated p of the form (5.1) with X =Y = 2?° and t = 488. We
took k = 5 and studied the 36 x 21 matrix of coefficients of the generating set
(5.2) with respect to the monomial basis {z'y"|0 < i+h < k}, and considered
the lattice spanned by the top (kgl) = 15 rows of its Hermite normal form as
generated by Mathematica’s HermiteDecomposition command. Lattice ba-
sis reduction applied to this 15-dimensional lattice then yielded polynomials
which easily recovered the factorization of n.

6 Conclusions

We have considered the small-exponent RSA problem and attacks on it using
Coppersmith’s method, which relies on finding short vectors in a lattice. Us-
ing theoretical and experimental observations, we have proposed a principled
technique to restrict lattice basis reduction to a carefully-selected sublattice,
based on the behaviour of simpler examples. This “focus group” attack
specifically takes into account which parts of the lattice are likely to be used.
When applied to the small-exponent RSA problem, it points to a geometric
structure of the lattice in Boneh-Durfee’s attack [4] that can be leveraged
to reduce the running time and memory usage of the lattice basis reduction
step, while allowing the attack to be applied to more RSA keys.

Several interesting questions remain for future investigations. For ex-
ample, Mathematica’s implementation of the L2 [17] lattice basis reduction
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Figure 5: A representation of which polynomials from (5.2) are actually used
(black circles) in solving for s and ¢ in small examples. In this example k =5
and h in (5.2) is at least hy = 3.

algorithm accounted for a several hundred bit improvement in some exper-
iments over previous work (which instead used LLL [15]), an improvement
which cannot be explained by hardware advances alone. Is it possible that
special features of the lattices generated by Coppersmith’s method can be
exploited by new, specially designed lattice basis reduction algorithms? After
all, Figure 1 suggests these lattices strongly differ from random lattices, which
opens the door to such a prospect. Is it possible to specifically understand
from initial principles (or perhaps even by machine learning) which parts
of the lattice are not used, and perhaps redesign Coppersmith’s method to
include more useful vectors from the outset? Finally, might the difficult issue
of algebraic independence (which is needed to establish rigorously provable
results) be easier to settle using these smaller sublattices?
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