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Abstract
A reliable, accurate, and yet simple dynamic model is important to analyze, design and control hybrid rigid-continuum
robots. Such models should be fast, as simple as possible and user-friendly to be widely accepted by the ever-growing
robotics research community. In this study, we introduce two new modeling methods for continuum manipulators: a
general reduced-order model (ROM) and a discretized model with absolute states and Euler-Bernoulli beam segments
(EBA). Additionally, a new formulation is presented for a recently introduced discretized model based on Euler-
Bernoulli beam segments and relative states (EBR). We implement these models to a Matlab software package, named
TMTDyn, to develop a modeling tool for hybrid rigid-continuum systems. The package features a new High-Level
Language (HLL) text-based interface, a CAD-file import module, automatic formation of the system Equation of Motion
(EOM) for different modeling and control tasks, implementing Matlab C-mex functionality for improved performance,
and modules for static and linear modal analysis of a hybrid system. The underlying theory and software package are
validated for modeling experimental results for (i) dynamics of a continuum appendage, and (ii) general deformation of a
fabric sleeve worn by a rigid link pendulum. A comparison shows higher simulation accuracy (8-14% normalized error)
and numerical robustness of the ROM model for a system with small number of states, and computational efficiency
of the EBA model with near real-time performances that makes it suitable for large systems. The challenges and
necessary modules to further automate the design and analysis of hybrid systems with a large number of states are
briefly discussed in the end.
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Nomenclature
Acronyms

BVP Boundary Value Problem

CC Constant Curvature (Kinematics)

COM Center of Mass

DSL Domain Specific Language

EBA Euler-Bernoulli Beam Model with Absolute States

EBR Euler-Bernoulli Beam Model with Relative States

EOM Equation of Motion

FEM Finite Element Method

HLL High-Level Language

MK Main Kinematic Chain

ODE Ordinary Differential Equation

PDE Partial Differential Equation

PVW Principle of Virtual Work

ROM Reduced-order Model

SLR Series Rigid Link Model

TMT Method of Deriving Vector-form of Lagrange EOM

VC Variable Curvature (Kinematics)

Sets & Constants
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N Natural Numbers

R Real Numbers

Z Integer Numbers

g Gravitational Constant, 9.81 [m/s2]

Operators

∗ Rotating a Vector with a Quaternion

× Cross Product for Vectors & Mapping from R
i to so(i)

for Quaternions

∆ Arithmetic Difference

? Translation/Quaternion Pair Rotation

a : b Vector of [a, a+ 1, ..., b− 1, b]

e Lie transformation Base

Subscripts & Superscripts

′ Spatial Differentiation

, Partial Differentiation

0 Initial/Boundary Value

−1 Inverse for a Matrix & Conjugate for a Quaternion

¯ Terms in state space, X̄ = T>x XTx

¯̄ Linearized terms at a given point

˙ Temporal Differentiation

ˆ Unit Vector

ω Terms in modal space

com COM Variables

˜ Non-unit Quaternions

> Matrix/Vector Transpose

+ Updated values in numerical integration mid-step
function

a Cross-sectional Area Variables

b Euler-Bernoulli Beam Variables

c Constraint Variables

d Mesh Variables

h DOF Variables

i General Purpose Numerator

j Joint Variables

l Load Variables

m Bodies’ Variables

p Actuation Pressure

r ROM Variables

r Rotated Vector

t Geometrical Transformation Variables

u Input Variables

v Viscous Damping Variables

Other Symbols

α Local Bending/Twist Angle

d̄ EOM gravitational & inertial velocity dependent terms

M̄ T>MT mass matrix in state space

χ Position/Orientation Vector

δ Differential Variation

ε Deformed Local Position/Translation Vector

η Modal Damping Ratio

Γ 4× 4 Transformation Matrix

d̂i Local Curvilinear Frame Directors with d̂3 Tangent to
The Backbone

î, ĵ, k̂ Reference Cartesian Frame Unit Vectors for x, y, z-
axes

λ Lagrange Multiplier

µ Viscous Damping Coefficient

ν Viscous Damping Power Law

Ω Angular Velocity

ω Modal undamped natural frequency

Φ Mode Shape Vector

φ Rotation Angle in an Axis-Angle Rotation

ψ Pneumatic Actuators Location Polar Angle

ρ Position Vector

σ Material Density

τ Moment

θ Absolute Bending/Twist Angle

Ξ A Translation/Quaternion Pair

ξ Local Strain Vector

ζ Local Curvatures/Torsion Vector

a Cross-section Area

C ROM Coefficient Matrix

D Coefficient Matrix of d

d Velocity Dependent Terms in 2nd time derivatives

E Elastic Modulus

f Action Force Vector

G Shear Modulus

I Mass 2nd Moment of Inertia

J Cross-section 2nd Moment of Area

K Linearized Elastic Stiffness Matrix

k Elastic Stiffness

l Length
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M Mass Matrix

m Body Mass or ROM Mass per Unit Length

n Number of Elements

o,O Pneumatic Actuator Location Variables

Q Rotation Quaternion [Q0, Qρ]

q State Vector

Q0 Rotation Quaternion Scalar

Qρ Rotation Quaternion Vector

R Rotation Matrix

r Radius

S ROM Shape Function Vector

s Length Variable Along a Rod Backbone

T Transformation Jacobian

V Linearized Viscous Damping Matrix

w Action in PWV Method

I Unit Matrix

Introduction
Mimicking highly dexterous and deformable biological
bodies has been a trending topic of multi-disciplinary
research, called soft robotics, using intrinsically soft
materials in the form of continuum robotic platforms (Rus
and Tolley 2015). Performing delicate tasks (Cianchetti et al.
2014), high maneuverability in unstructured and confined
environments (Burgner-Kahrs et al. 2015; Cianchetti and
Menciassi 2017; Walker et al. 2016), dexterous grasping
(Katzschmann et al. 2015), mimicking biological tissue and
organs (He et al. 2018), bioinspired dynamic locomotion
(Wehner et al. 2016) such as crawling (Rich et al. 2018),
terrestrial (Godage et al. 2012) or submerged locomotion
(Cianchetti et al. 2015) are among the promises made by
the researchers in the field. Soft robots are appealing to
investigate new design and theoretical concepts such as
variable stiffness structures (McEvoy and Correll 2018),
morphological computation (Nakajima et al. 2018) and
embodied intelligence (Nakajima et al. 2015), to simplify
the control and sensing tasks through robot embodiment
(Füchslin et al. 2012; Thuruthel et al. 2018a).

However, compliance has disadvantages, such as uncertain
deformations, limited control feedback, reduced control
bandwidth, stability issues, underdamped modes, and lack
of precision in tasks involving working against external
loads (Blanc et al. 2017; Cianchetti et al. 2013). These
usually result in modeling and/or control challenges for
such designs. Besides, there is an urgent need for unified
frameworks to transfer our well-established knowledge of
dynamic system analysis, path planning and control design
for rigid-body robots to soft robotics research (Kapadia
et al. 2010; Renda and Seneviratne 2018; Renda et al. 2018;
Della Santina et al. 2018b) and to model hybrid rigid-soft
body systems (Sadati et al. 2018c; Paternò et al. 2018).
Such frameworks should be as simple as possible and easy

to use, to be widely accepted by the ever-growing soft
robotics research community that gathers researchers from
different disciplines and backgrounds. It should provide fast
computational performance, to be suitable for control and
design problem of soft systems with large state spaces.
Also, it needs to be integrable with standard software
platforms, e.g. C/C++ language, Matlab software, ROS
(Robotic Operation System, see ros.org), etc., widely used
in the community.

Here, we introduce two new modeling approaches for
continuum rods and actuators, a general reduced-order model
(ROM), and a discretized model with absolute states and
Euler-Bernoulli beam segments (EBA). These models enable
us to perform more accurate simulation of continuum rod
manipulators as well as extending the solution to modeling
2D and 3D continuum geometries, which is missing in
similar recent research (Renda et al. 2018). Besides, a new
formulation is presented for a recently introduced discretized
model by (Renda et al. 2018; Shiva et al. 2018) which is
based on Euler-Bernoulli beam theory and relative states
(EBR). These models are implemented in a Matlab software
package, that we name TMTDyn, to establish a new
modeling and simulation tool for hybrid rigid-continuum
body systems. The package is improved with a new High-
Level Language (HLL) text-based interface, an element-
wise representation of deriving Lagrange EOM in a vector
formalism (called TMT method (Wisse and Linde 2007)), a
CAD-file import module, automatic formation of the system
EOM for different modeling and control tasks, implementing
C-mex functionality for improved performance, and other
modules for static and linear modal analysis of a hybrid
system. Our main goal is to make the tasks of deriving EOM
of hybrid rigid-continuum body robots, performing dynamic
system analysis, state observation, and control system design
more accessible to the interdisciplinary soft robotics research
community and people with limited expertise in dynamic
system modeling.

In this paper, first, in a brief state-of-the-art review, we
discuss High-Level Languages in robotic system modeling,
system dynamics modeling, and mechanics of continuum
structures with a focus on continuum rods as the different
elements of this research. Then, we discuss hybrid system
kinematics, based on unit and non-unit quaternions, and
how rigid-body kinematics framework can be extended to
the variable curvature and discretized continuum kinematics
cases, with relative and absolute states. A new general
yet efficient reduced-order solution for the rod backbone
is discussed based on truncated series. Then, an element-
wise form for the TMT method is presented to derive
a separate set of equations for each body/element in a
dynamic system. The Principle of Virtual Work (PVW) is
adapted to derive the system linear and nonlinear compliance
actions. Using this framework, hybrid system dynamics
is discussed where a lumped-system representation of the
Cosserat rod theory and a new discretization method based
on absolute (independent) states is presented. As a result, the
relations for a one-dimensional continuum element can be
generalized to model two-dimensional (membrane or fabric)
and three-dimensional (tissue block) geometries. A simple
example is employed to showcase the derivation steps and
the use of TMTDyn package text-based user interface.
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Subsequently, we discuss how these modeling methods are
implemented in the newly developed TMTDyn package
with new functionalities and modules. The software package
and experimental results from a STIFF-FLOP (STIFFness
controllable Flexible and Learn-able manipulator for surgical
OPerations) continuum appendage (Fras et al. 2015) are used
to investigate the computational performance and simulation
accuracy of the discussed continuum rod models. Finally, the
package is tested for dynamic modeling of a system with a
2D continuum geometry, a rigid link pendulum with a fabric
sleeve on, and compared with experimental results.

The contributions of this paper can be summarized as
below.

1. Two new modeling methods are introduced for
continuum manipulators: a general reduced-order
model (ROM) and a discretized model with absolute
states and Euler-Bernoulli beam segments (EBA).

2. A new formulation is presented for a recently
introduced discretized model based on Euler-Bernoulli
beam segments and relative states (EBR).

3. A Matlab software package, named TMTDyn, is
developed as a modeling tool for hybrid rigid-
continuum system dynamics.

4. The modeling performance and accuracy of four
different models are compared for static and dynamic
modeling of a continuum appendage.

5. Dynamics of a fabric sleeve on a rigid pendulum is
modeled using the TMTDyn package.

Throughout this paper, parts of the derived theory that are
presented for the first time and considered novel are placed
in a box frame. To the best of our knowledge, this is the first
time that any of the above tasks are presented in soft robotics
literature. Some preliminary results based on the content of
this paper is presented in (Sadati et al. 2019a).

The rest of this paper has the following structure. The
”Sate of The Art Review” section is dedicated to a review on
High-Level Languages in robotics and modeling techniques
for continuum rods as the basic element of any continuum
structure. Mechanics of a hybrid system, consisting of
kinematics and dynamics of rigid and continuum links, is
discussed in the ”Hybrid Systems Mechanics” section. The
package software algorithms are briefly presented in the
”TMTDyn Package Algorithm” section. The ”Case Studies
& Validations” section is dedicated to the case studies
and validation of the presented methods and TMTDyn
package based on two experimental setups as mentioned
above. Discussions and conclusions are presented in the
”Discussion & Conclusion” section.

This paper contains multiple Appendices. Appendix
1 discusses rigid-body kinematics based on quaternions.
Appendix 2 is dedicated to a comparison between the
derivation steps in TMT and Lagrangian method of deriving
a system EOM. Appendices 3 & 4 present a summary
of the package modules, their implementation and usage,
and the High-Level Language of the software package.
Appendix 5 presents Pseudocode for each module in
the TMTDyn package. Further information about the
experimental setups is provided in Appendix 6. The
TMTDyn software package is made available online at

https://github.com/hadisdt/TMTDyn, supported with a brief
documentation and examples.

State of The Art Review

High-Level and Domain-Specific Languages
Domain-Specific Languages (DSLs) and Model-driven
Engineering (MDE) are interesting emerging areas in
the robotics research community, e.g. distributed robotics,
system control, and vision, with significant potential in
facilitating the programming of future robots. A DSL is a
dedicated programming language for a particular problem
domain, offering specific abstractions and notations, to
decrease the coding complexity and increase programmer
productivity. DSLs have been used for programming
complex systems, such as robots, control systems, etc, for
which traditional general-purpose languages do not provide
a good correlation between the implementation requirements
and language features. To address this, DSLs are powerful
and systematic ways to provide two main features;

1. quick and precise adaptation by domain experts, who
are not familiar with general-purpose programming
languages;

2. hiding the architecture complexity by software
engineers to facilitate complex configuration and
design architectures before transferring to domain
experts (Fowler and Parsons 2011). From this point
of view, DSLs are often High-Level Languages (HLL)
introducing a higher level of abstraction suitable for
the intended application.

ROS, Orocos (Open Robot Control Software, see oro-
cos.org), SmartSoft (see smart-robotics.sourceforge.net),
OpenRTM (see openrtm.org), Matlab Robotics System Tool-
box (see mathworks.com/products/robotics), and Robotics
Toolbox (see petercorke.com/wordpress/toolboxes/robotics-
toolbox) are some robotic software platforms developed to
make robotics programming and configuration as accessible
as possible to experts from different application domains.
Robotics Toolbox by Corke (2019) is probably the most
comprehensive text-base toolbox developed in Matlab soft-
ware environment. The Toolbox, currently in its 10th release,
provides many functions for kinematics, dynamics, and tra-
jectory generation of classical arm-type robotics based on
methods in (Corke 2017).

However, none of the aforementioned robotics software
platforms are fully compatible with soft structure robots,
which need modules for handling highly articulated geome-
tries with repeated elements, discretization or employing
reduced-order model assumptions to simplify the modeling
and control state space for a continuum geometry. Moreover,
it is not always straightforward to access the derived Equa-
tions of Motion (EOM) which is necessary for off-the-shelf
dynamic system analysis, design optimization, and control
system design tasks. On the other hand, most recent efforts
for publishing modeling packages for soft robots (Coevoet
et al. 2017; Gazzola et al. 2018; Renda and Seneviratne
2018; Hu et al. 2018) were more focused on the feasibility
of their modeling and control approach, and cannot be
extended easily due to not providing the classical EOM
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for the system (mostly because of using differential equa-
tions and Finite Element Method (FEM) solvers, e.g. SOFA
(Simulation Open Framework Architecture, see www.sofa-
framework.org) package (Coevoet et al. 2017) and Chain-
Queen (Hu et al. 2018)). Almost none of them provide an
easy-to-use HLL to reach researchers with less expertise in
the mechanics of continuum structures.

As a part of this research, we address these challenges
by developing a Matlab-based package for modeling and
control of hybrid robotic systems with minimal modeling
and control states. To this end, the key challenge is to
integrate continuum mechanics with traditional rigid body
dynamics, which is widely being used in robot control
research. To address this issue, we start with a brief review
of the modeling methods for mechanical systems and, later,
continuum elements.

TMT Dynamics
Deriving EOM for modeling hybrid rigid-continuum body
mechanisms has been a challenge in soft robotic research
(Boyer 2014; Rus and Tolley 2015; Burgner-Kahrs et al.
2015; Sadati et al. 2017b). The Newton-Euler method (Jung
et al. 2011), Lagrange dynamics (Mustaza et al. 2019;
Godage et al. 2016), the Principle of Virtual Work (PVW)
(Trivedi et al. 2008; Sadati et al. 2016, 2017a), TMT methods
for deriving the Lagrange dynamics (Sadati et al. 2018b) and
Bond Graph approaches (Sutar and Pathak 2017) have been
used to derive EOM of such systems. Here, we disregard
the Cosserat rod dynamics (Till and Rucker 2017), FEM
(Coevoet et al. 2017) and the Moving Least Squares Material
Point Method (MLS-MPM) (Hu et al. 2018), methods that
result in a system of differential equations which are not
inherently compatible with control design methods for rigid-
body systems.

Most commercially available dynamical system modeling
software, e.g. MSC. ADAMS (Negrut and Dyer 2004)
and Robotics Toolbox (Corke 2019), utilize the Lagrange
dynamics formulation. Lagrangian method results in a hard-
to-interpret final set of equations. Hence, usually, an extra
step is needed to collect the final EOM in a closed-form
vector formalism (see Appendix 2).

Recently, Wisse and Linde (2007) have employed a vector-
form of Lagrange dynamics to model a class of passive biped
walkers in which the coefficient matrices of the EOM vector
formalism are derived directly and mostly separate from each
other. According to Wisse and Linde (2007), “this method
is based on parts of Lagrange’s investigations on variational
calculus and analytical mechanics, dealing with generalized
coordinates, virtual work and inertial forces (presented
earlier by D’Alembert in 1743), which was published in
1788 and before his well-known Lagrange method”. Wisse
and Linde (2007) have named it “TMT”, not as an acronym
but because of the easy formation of the system inertial
matrix (M ) final form in the generalized coordinates space
(T>MT ). Here, T is the Jacobian transformation matrix
between the Cartesian and generalized coordinates spaces
and superscript (>) is the matrix transpose operator.

Although it is not a unique feature of the TMT method
(many standard approaches for dynamic system analysis
result in the same term, e.g. D’Alembert, Lagrangian,

Recursive-Newton Euler, Gauss-Principle, Jourdain’s Prin-
ciple, etc. method (Lynch and Park 2017)), we continue
with this choice of name for simplicity and consistency
with previous research. The main advantage of this method
compared to the standard Lagrange method is that a final step
for collecting coefficients of the system states and arranging
them in a vector-form is not needed which tends to be
complex and time consuming for large systems. Further-
more, the derived terms are independent, hence suitable for
parallel analytical derivation and numerical simulation. As a
result, it is faster to derive a system EOM in a closed vector
form using commercially available symbolic mathematical
toolboxes, e.g. Matlab Symbolic Toolbox, Maple, etc. The
derivation steps of TMT method are compared with the
Lagrange method in Appendix 2.

We have recently developed a Matlab software package,
called AutoTMTDyn to derive TMT EOM of rigid-body
mechanisms (Sadati et al. 2018d, 2015). AutoTMTDyn∗

was originally developed for deriving the TMT EOM
of rigid-body systems (Sadati et al. 2015) and used for
analyzing free-fall righting maneuvers of a robot cat (Sadati
and Meghdari 2017), lumped system modeling of continuum
appendage (Sadati et al. 2017b), and dynamic analysis of a
spider web structure (Sadati et al. 2018a).

In this paper, we introduce a new version of
AutoTMTDyn, now called TMTDyn†, which is
equipped with a new HLL text-based interface, CAD-file
import module, automatic formation of the system EOM
for different modeling and control tasks, implementing
Matlab C-mex functionality for improved performance, and
modules for static and linear modal analysis of a hybrid
system. We employ the TMT method to derive EOM of
continuum bodies based on discretized and reduced-order
solutions. As a result, a unified software package is provided
for deriving EOM, control design, and numerical simulation
of hybrid rigid-continuum body systems. To this end, a
brief review is provided on different modeling elements and
assumptions for continuum rods.

Mechanics of Continuum Rods
If taking a theoretical approach, two key stages can be
identified which determine the modeling strategy of a soft
robot (Burgner-Kahrs et al. 2015; Gazzola et al. 2018;
Sadati et al. 2017b). (1) Modeling assumptions for (1-I) the
system kinematics, (1-II) system conservation law (system
mechanics), and (1-III) material constitutional law (material
mechanics). This stage results in a system of differential
equations for the mechanics of a continuum medium. (2)
The method to solve the resulting system, which can be
based on (2-I) direct or (2-II) indirect methods. Please note
that by a theoretical approach, we mean in contrast to pure
learning (Braganza et al. 2007; Thuruthel et al. 2018b),
combined reduced-order solution and learning (Thieffry
et al. 2018a) approaches, and beyond the distinction between
2D versus 3D and static versus dynamic models. Table 1
has summarized the different methods used for modeling a
continuum beam in soft robotic literature.

∗Available at https://github.com/hadisdt/AutoTMTDyn
†Available at https://github.com/hadisdt/TMTDyn
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Table 1. Different elements of a model for continuum rods.

1- Modeling Assumptions References
I- Kinematics

i- Continuous Geometry
a- Variable Curvature (VC- finite strain assumption) Trivedi et al. (2008); Rucker and Webster III (2011); Till et al. (2019)
b- Truncated Series Shape Assumption Godage et al. (2011, 2016); Sadati et al. (2018b); Singh (2018)
c- Constant Curvature (CC) Webster and Jones (2010)

ii- Discretized Geometry
a- Series Rigid-Body Kinematics Della Santina et al. (2018a); Shiva et al. (2018)
b- Screw Theory Renda et al. (2017); Renda and Seneviratne (2018); Renda et al. (2018)
c- Forward Discretization of VC Shiva et al. (2018)

II- Mechanics (Conservation Law)
i- Cosserat Rod Method Trivedi et al. (2008); Rucker and Webster III (2011); Burgner-Kahrs et al. (2015)

Till et al. (2019)
ii- Principle of Virtual Work (PVW) Sadati et al. (2017a)
iii- Beam Theory Sadati et al. (2017a)
iv- Lagrange Dynamics Godage et al. (2016); Sadati et al. (2018b); Della Santina et al. (2018a)

III- Material Mechanics (Constitutional Law)
i- Linear Elasticity (Hooke’s Law) Trivedi et al. (2008); Rucker and Webster III (2011); Godage et al. (2016)

Sadati et al. (2017b); Till et al. (2019)
ii- Finite Strain Theory (Neo-Hookean, Money-Rivlin, Neo-Hookean: Trivedi et al. (2008); Sadati et al. (2017a,b); Shiva et al. (2018).

Gent, etc) Gent: Shiva et al. (2018).
iii- Visco-Hyperviscoelastic Sadati et al. (2018b); Mustaza et al. (2019)

2- Solutions
I- Direct Methods

i- Analytical Integration
ii- Numerical Forward Integration Steps Godage et al. (2016); Sadati et al. (2017a, 2018b)

II- Indirect methods
i- Optimization Based Methods Single Shooting: Godage et al. (2011); Rucker and Webster III (2011);

Sadati et al. (2017a,b, 2018b); Thuruthel et al. (2018b).
Series Solution: Godage et al. (2011).
NN Model: Thuruthel et al. (2018b).

ii- Finite Element Methods (FEM) Cianchetti and Menciassi (2017); Bieze et al. (2018)
iii- Reduced-Order Method (Ritz Method) Reduced-Order: Thieffry et al. (2018b). Ritz: Sadati et al. (2018b).

Ritz-Galerkin: Tunay (2013); Sadati et al. (2018b).
iv- Combination of the above Tunay (2013); Sadati et al. (2017a, 2018b); Bieze et al. (2018);

Gazzola et al. (2018); Thieffry et al. (2018b); Till et al. (2019)

Here, we focus on modeling methods for 1-dimensional
(1D) continuum elements, (continuum rods), as the most
studied continuum structure in soft robotics research. Later
we explain how to generalize models for continuum rods
to 2-dimensional (2D) (membrane) and 3-dimensional (3D)
continuum structures.

Two methods are widely used to describe continuum
rod kinematics; 1-I-i) continuous and 1-I-ii) discretized
Kinematics. 1-I-i-a) Variable Curvature (VC- finite strains
assumption), 1-I-i-b) truncated series shape functions, and 1-
I-i-c) Constant Curvature (CC- as a subset of general shape
function approach), which is probably the most simple and
widely used assumption for soft manipulator modeling report
instances of employing continuous kinematics.

Instances of using a discretized representation of such
system kinematics are as follows. 1-I-ii-a) Employing series
rigid-body kinematics, by simplifying a continuum rod as
a hyper-redundant mechanism with finite but large enough
number of segments, based on transformation matrices for
consecutive but distinct rotational and translational joints,
or methods based on 1-I-ii-b) Screw Theory and 1-I-ii-c)
forward discretization of VC differential equations, where
a skew-symmetric matrix of local curvatures/torsion vector
is used to describe the local relative rotations along the
backbone, are instances of using discretized representation
of such system kinematics.

1-II-i) The Cosserat Rod method, 1-II-ii) Principle of
Virtual Work (PVW), 1-II-iii) Beam Theory, and 1-II-iv)
Lagrange Dynamics are used to derive the system governing
equation (conservational law). The material constitutional
law (material mechanics) is usually derived based on 1-III-
i) linear elasticity theory (Hooke’s law), 1-III-ii) finite strain
theory (considering large strain in hyperelastic materials,
such as Neo-Hookean, Mooney-Rivlin, Gent, etc), or 1-III-
iii) by considering hyper-viscoelastic properties.

Any combination of the above choices results in a system
of Ordinary (ODE) or Partial Differential Equations (PDE)
to be solved numerically based on the system initial and
boundary conditions. Using shape functions or discretized
kinematics results in PDEs with decoupled spatial and time
domains where direct solutions based on 2-I-i) analytical,
if possible, or 2-I-ii) numerical forward integration steps in
spatial and time domain can be used to solve the resulting
initial value problems. If static solutions are sought, such
systems turn into a Boundary Value Problem (BVP) where
forward integration is valid when distributed loads, e.g.body
weight, are neglected (Shiva et al. 2018).

Alternatively, indirect solutions can be sought. 2-II-i)
Optimization-based methods, i.e. single shooting, multiple
shooting, and concatenation methods, are suitable for BVPs
resulting from static models with general loads, or for
learning the coefficients of an approximate series solution
or gains in a Neural Network (NN) model. 2-II-ii) Finite
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Element Methods (FEM) or similar segmentation methods
are suitable if spatial (kinematics) discretization methods are
used where, instead of a forward integration over the spatial
domain, a system of nonlinear equations is formed with a
large but sparse coefficient matrix. The system equilibrium
point in static cases or at every time step of the dynamic
simulation is found by calculating the pseudo-inverse of
the coefficient matrix while satisfying all the geometrical,
dynamical and optimal control constraints (Cianchetti
and Menciassi 2017). While considering truncated series
solutions as the system kinematics, 2-II-iii) reduced-order or
Ritz method for solving a PDE problem, different choices
of weighting functions can be used to improve the accuracy
of the solution, e.g. in the case of Ritz-Galerkin methods.
Finally, 2-II-iv) a combination of the above methods can
be used, usually for solving PDEs resulting from complex
geometries.

As an example of general practice in many commercially
available FEM solvers, Tunay (2013) used a discrete
Galerkin method, where weighted governing equations are
used to construct the FEM solution for pneumatic actuators
with general deformation. Sadati et al. (2017a) and Sadati
et al. (2018b) used forward integration on the spatial domain
for the PDEs resulting from employing reduced-order
solutions for continuum manipulator kinematics, and then
combined that with single shooting optimization method
to find the system static solution under excessive external
tip loads. Till et al. (2019) implicitly discretized the PDE
problem time domain and solved the resulting BVP in arc
length for each time step. Bieze et al. (2018) combined FEM
and optimization methods to solve the closed-loop control
problem of continuum manipulators. Gazzola et al. (2018)
combined FEM with forward integration on time-domain in
dynamic simulations. Thieffry et al. (2018b) constructed a
reduced-order model based on dominant deformation modes
that are found from multiple FEM based simulations of a
system under different loading conditions. The coefficients
of such solution were then optimized to solve for general
cases. Cianchetti and Menciassi (2017), Bieze et al. (2018),
and Thieffry et al. (2018b) used a SOFA FEM modeling
package for real-time dynamic simulation of soft structures.

In a comparative study with experimental results with a
single module STIFF-FLOP appendage (Sadati et al. 2017b),
we have recently shown the advantage of:

- a lumped system approach (1-I-ii-a & 1-II-iv & 2-I-i)
for dynamic analysis and traditional control design
CC and modified CC (1-I-i-c & 1-II-ii & 2-I-
i) for considering structural complexity and design
parameter study

-- Cosserat rod theory (1-I-i-a & i-II-i & 2-II-i) for
accuracy in general cases

- reduced-order series solutions (1-I-i-b & 2-II-i) for
real-time performance, all based on 1-III-i if needed.

We show that combining reduced-order kinematics, the
Cosserat rod mechanics, numerical integration on spatial
domain and optimization-based solution (1-I-i-b & 1-II-i
& 2-I-ii & 2-II-i) produces most of the aforementioned
advantages, i.e. accuracy, simple control design, real-time
performance, considering structural complexity for a single

STIFF-FLOP appendage in planar motion with excessive
external load at the tip (Sadati et al. 2018b).

In this paper, we generalize our solution for multi-
segment arms in general 3D dynamic motion and compare
the accuracy and numerical performance of the results
with models with other assumptions. Additionally, the
discretization method presented by Renda et al. (2018),
which is based on Screw Theory and transformation
matrices, is modified to use absolute (independent) states to
achieve discretized models for multi-dimensional continuum
geometries with a large number of states and significantly
improved numerical efficiency.

Hybrid Systems Mechanics
A dynamic system with inertial, compliant and constraining
elements can be expressed as a set of lumped (point)
masses, usually assumed at the system elements’ Center of
Mass (COM) locations, with moments of inertia which are
connected with spring/dampers and joints to the adjacent
lumped masses. For a continuum system, where usually
a system of differential equations describes the system
mechanics, a differential format of the lumped-system
approach can be employed. To this end, first, the free body
diagram of the load balance in a single differential element
is drawn, then the lumped-system equivalence of the system
is assumed where the parameters are differential terms.

The main assumptions made in this paper about modeling
a hybrid rigid-continuum system are as follows.

- The dynamic motion of a multi-link system is derived
where external/input loads, geometrical constraints,
rope elements, and soft impacts can be modeled.

Each element in the system can be assumed as
a combination of separable inertial, linear elastic,
viscous damping with power law, and external load
elements, each with 3D elements.

-- The system may have finite (only for the ROM
elements) or infinite number of elements but must
have a finite number of states, forming an ODE to be
integrated numerically over time.

- External/input loads, elastic, damping, geometrical
constraint, soft contact, and directional elements (such
as string and membrane).

- 1D continuum elements can be modeled as a finite
number of interconnected Euler-Bernoulli elastic
beam elements (discretization), or as continuous beam
elements with predefined polynomial deformation
shape functions (ROM).

- 2D & 3D continuum elements can be modeled as wire
meshes in which edges are 1D Euler-Bernoulli beams
and connections are point masses.

- Hyperelasticity is not captured directly but can be
added by updating an element stiffness matrix in an
intermediate step during the numerical simulation.

As a result, our modeling assumption has the following
limitations that should be considered before putting into use.
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- Material nonlinearity due to hyperelasticity is not
directly addressed.
Coulomb friction is not supported.

-- Geometrical inputs, e.g. displacement and velocity,
need to be transformed to geometrical constraints
before being able to deal with.

- Hard contacts, i.e. impulse model, are not addressed
although the provided methods can be adapted for such
cases.

- Continuum systems with an infinite number of states,
i.e. with PDE governing equations, are not addressed,
hence the accuracy of the results is limited.

- 2D & 3D continuum systems cannot be modeled
as planar or 3D meshes where the use of shear
rates instead of bending/twist improves the numerical
performance of simulations.

- numerical stability and performance of the presented
methods are noted but not thoroughly investigated.

- Large systems, especially with multi-material layers,
are hard to implement and computationally expensive
to simulate.

- Solutions for the system kinematic singular points, the
sensitivity of the dynamic system to highly nonlinear
material, or sudden transition in the system states are
not looked into resulting in instability of numerical
simulations in such cases.

In the following sections, first, the continuum-body system
kinematics using quaternions and the reduced-order method
of using truncated polynomial series is described. Then,
the TMT dynamics of such systems are discussed. Finally,
we explain how to derive the lumped-system equivalence
of Cosserat rod and reduced-order methods with relative
and absolute (independent) states. The rigid-body kinematics
based on quaternions are reviewed in Appendix 1 to provide
a unified framework for the less experts in dynamic system
modeling.

As an example, the different presented derivations are
showcased to derive the governing equations for the planar
motion (2-DOF: a bending about y-axis θ1 and an elongation
along the backbone l) of a beam with a single element
(nd = 1 for the SRL, EBR, and EBA) or expressed with a
first-order polynomial (nr = 1 for the ROM). We refer to this
example as ”our simple example” in the rest of this paper.
Fig. 1 presents the parameters of our simple model. Here,
x− zi and Qi are the local frame directors and quaternion
representation of rotation with 0 subscript for the reference
frame. ρ1 is the position vector for the 1st point mass. l1
is the axial location of the 1st point mass, l0 is the beam
initial length, ε0 is the axial deformation for this section, and
ξ0 = l′1 − 1 is the section axial strain. θ1 is the bending angle
of the 1st frame, θ0 is the frame initial bending angle, α0 is
the change in the bending angle for this section, and ζ0 = θ′0
is the section bending. fl is a point load at axial location l
and g is the gravity acceleration vector.

In the rest of this paper, parts of the derivations that
are presented for the first time and considered novel are

ρ1=[x 1 ,0 , z 1]

m1, I1

Q0

l
1=

ϵ
0 +l

0

x 0

z 0

x 1z 1 Q1

θ 1
=

α

0
+

θ 0

ζ 0
=

θ 1
'

ξ
0 =
l1 '−
1

f lg

Figure 1. Parameters for planar motion of a simple beam (in
light gray) as our simple example in this paper. This system is
used to showcase the application of the presented models.
More precisely, we have θ1, α02 , α0 = [0, α02 , 0],
ξ0 = [0, 0, l′1 − 1], ζ0 = [0, θ′1, 0], Q0 = [1, 0, 0, 0], and
Q1 = [cos(θ1/2), 0, sin(θ1/2), 0]. Here l0 is the initial length of
the beam and θ0 = 0.

placed in a box frame. Parts of the derivations are from the
literature but presented here using our choice of parameters
to provide a unified modeling framework. These parts are
either adopted as an intermediate step of our final derivations,
to be implemented as a part of our software package, or used
only for comparison purpose. The rest of the derivations are
related to the presented simple example system to showcase
the implementations of our methods. The latter two cases are
indicated in the text.

Hybrid System Kinematics
System kinematics describes the geometric relations between
the system elements in terms of rotation and translation.
As a result, equations describing the position vector and
orientation of each point of the system (usually only COMs
and joint axis) are derived.

The general transformation of a rigid body in 3D space
can be described with a combination of a rotational and
a translational transformation. The rotations/orientations
can be described in terms of rotation matrices R[3×3],
quaternions Q[1×4] or exponential coordinates based on
screw theory and Lie group notations. The translation is a
3D vector ρt. Rotation matrices and Screw Theory result in
the same final set of equations, despite their differences in
notation. Non-unit quaternion and axis-angle representation
of rotations define a rigid body orientation with four states,
where unit quaternions, rotation matrices, and exponential
coordinates (screw theory) requires three states. A non-unit
quaternions representation of rotation, implemented in the
TMTDyn package, does not suffer from inherent singular
points (known as Gimbal lock orientation where the axes
of two of the three rotations are driven into a parallel
configuration) associated with the transformation matrices
and screw transformations. It also does not suffer from
the singularity at π [rad] rotations associated with a unit
quaternion. Also, Matlab is shown to be faster in optimizing
the derived equation when quaternions are used. However,
quaternion arithmetic requires more numerical operations, as
described in Appendix 1.
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Figure 2. a) Variable curvature kinematics and free body
diagram of Cosserat rod method for one differential element
along the continuum backbone. Subscript ( l ), ( u ), and ( σ )
are for the external point loads at the along the backbone, loads
due to internal pressures and/or tendons’ tension (inputs) if any,
and distributed loads, e.g. due to gravity, respectively. [f, τ ]s are
the structural internal loads induced in response to the
aforementioned loads. Note the direction of the load vectors. b)
Discretized VC kinematics and lumped mass representation of
Cosserat rod method for the same continuum rod as in (a).
Lumped mass representation of Cosserat rod method is
equivalent to assuming a concentrated mass at the base of
each differential/discretized element along the rod backbone.

In the rest of this paper, the Jacobian of the transformation
map to the system state space (Tm) is

Tm =

[
Tρm 0

0 TQj

]
, (1)

where Tρm = ρm,q is the Jacobian of the transformation
that maps the link COM position vector between the
Cartesian and the system state spaces, ρm is the COM
position vector with respect to reference frame, q is the
system state (DOF) vector, TQj = (2(Q−1

j )×Qj,q)[2:4,1:nq ]

is the Jacobian of the transformation that maps the link
COM orientation quaternion to the system state space,
and nq is the number of system states (DOFs). Here, ×

represents quaternion multiplication as in Rucker (2018),
Q−1 represents quaternion inverse (equivalent to conjugate
for unit quaternions), superscripts ( ˙ ) and (¨) are for the first
and second temporal derivatives, and subscript ( , ) represents
partial derivatives as X,x = ∂X/∂x. All the vectors in this
paper are with respect to and expressed in the system
reference frame unless stated otherwise. See Appendix 1 for
a complete explanation and derivation of rigid-body system
kinematics based on quaternion representation of rotations.

Continuum Rod VC Kinematics- We use 1-dimensional
(1D) continuum elements, i.e. continuum rods, as the
basis of modeling continuum geometries in this work. A
higher-dimensional geometry (e.g. a mesh geometry) can
be constructed based on lumped masses (e.g. nodes of a
mesh) interconnected by these 1D elements (e.g. edges of
the mesh).

Using the Cosserat rod method, which considers all six
translational (strains- ξ) and rotational (curvatures/torsion-
ζ) differential states, is beneficial for 1D continuum
elements. It is not the most efficient method for higher
dimensional geometries, where the strain field is sufficient to
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⏟
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(abs. states)

ρ, Qs=∑i C rS i (s )

Implementation

Discrete:

Figure 3. Different modeling assumptions for a continuum rod.
a) Rod differential Variable Kinematics (VC), b) discretized VC
framework, c) Reduced-Order Model (ROM) based on a
polynomial series solution for the backbone kinematics, d)
equivalent highly-articulated series rigid link mechanism, e)
discretized model with relative states from Euler-Bernoulli (EB)
beams, f) discretized model with absolute states (with respect to
reference frame) and EB beam compliant connections. In the
case of absolute states, we may assume that segments are
connected to the ground with zero stiffness elastic elements
and to each other with EB beams. Backbone is shown by a
continuous gray line and dashed curves are EB beam sections.

calculate the distortions too; however, it is well suited for our
main purpose here, which is deriving easy to interpret EOM
of hybrid systems suitable for system dynamics analysis
and controller design. Such models are not aimed at exact
geometrical analysis and design, for which FEM methods
are more suited. They rather are built upon simplifying
assumptions for improved performance to investigate the
large state space of such systems to clarify their underlying
dynamics and/or control opportunities/challenges.

We have recently used Variable Curvature (VC), based on
rotation matrices, and Beam theory to investigate continuum
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manipulator mechanics in static and dynamic motions
(Sadati et al. 2017b,a, 2018b) and for a hybrid rigid-
continuum body system proposing of a highly-articulated
inter-locking interface for stiffness control of a continuum
appendage (Sadati et al. 2018c,a). We showed that employing
a beam theory approach simplifies solving the BVP for static
analysis of a continuum rod with numerical optimization-
based or reduced-order model methods. However, it is not
a good candidate as a part of a unified framework for
modeling hybrid systems and especially in a lumped system
approach framework. VC kinematics and the Cosserat rod
theory are used to model the static mechanics of continuum
rods, based on rotation matrices (Gazzola et al. 2018) and
quaternion (Trivedi et al. 2008; Burgner-Kahrs et al. 2015)
representation of rotations.

We start with the variable curvature kinematics as in
(Rucker 2018; Trivedi et al. 2008) The rod backbone curve
spatial configuration (ρs) and 1× 4 rotation quaternion
unit vector (Qs), expressed in inertial Cartesian coordinates
([̂i, ĵ, k̂]), are derived according to VC

Q′s = Q×s [0, ζs]/2, ρ
′
s = Qs ∗ (ξs + [0, 0, 1]), (2)

where ∗ is the operator for quaternion rotation of a vector
as in Rucker (2018). Here, the equations are derived in a
local physical curvilinear coordinates [d̂1, d̂2, d̂3], where
s is the variable along the backbone, d̂3 is tangent to the
backbone, and at the rod base we have [d̂1, d̂2, d̂3](s =

0) = [̂i, ĵ, k̂] (Fig. 2.a). The simple implementation of
quaternion rotation is more computationally expensive than
using rotation matrices Rs as R′s = Rζ×s and ρ′s = R(ξs +
[0, 0, 1]), where × for a 3-element vector denotes the
standard mapping from R

3 to so(3) (Burgner-Kahrs et al.
2015). However, quaternions are reported to be better in
terms of numerical integration accuracy and preserving
frame orthogonality and vector length (Trivedi et al. 2008;
Rucker 2018).

For our simple example we have, Q1s =
[cos(θ1s/2), 0, sin(θ1s/2), 0], ζ0s = [θ′1s , 0, 0], and
ξ1s = [0, 0, l′1s − 1], where subscript show that the variables
are a function of curve unit length s. Trivedi et al. (2008).
Then Eq. 2 reduces to Eq. 3. System states in this equation
are continuous. To incorporate the VC kinematic of Eq. 2 in
a hybrid modeling framework, three different discretization
(the SRL, EBR, EBA) and a general reduced-order (ROM)
methods are discussed in the following sections. Fig. 3
presents a simple graph abut the assumptions made for each
method.

Discretized VC Kinematics- Discretized versions of Eq.
2 with rotation matrices are discussed in (Takano et al.
2017; Renda and Seneviratne 2018; Renda et al. 2018;
Shiva et al. 2018). Shiva et al. used first order discretiztion,
Ri+1 = Ri(ζi∆s+ I[3×3]) (i is the element numerator,),
which is probably the simplest assumption, failing to
conserve the principal properties of a rotation matrix.
Renda et al. used the same method in the context of
screw theory as Ri+1 = Rie

ζi∆s, where eζ∆s = ζ∆s+
I[3×3] (Renda and Seneviratne 2018; Renda et al. 2018).
Takano et al. used the most accurate representation for ζ
with Euler angles (three consecutive rotations around local
frame principle unit vectors) with 1-2-3 (x− y − z) order

(Rxyzζ = Rxζ1Ryζ2Rzζ3 ), as

Ri+1 = RiRxyzζi , or Qi+1 = Q×i Qζi (4)

in the case of using quaternions representation of rotation.
The above relation is used for the comparison purpose
in our study. A similar representation is discussed in
(Shiva et al. 2018), Appendix section, arguing that the
order of the rotations is not important as long as small
enough elements are considered along with the backbone
(infinitesimal curvatures/torsion). They showed that using
any of the above methods does not affect the accuracy of
modeling a short appendage with beam theory, even for
large deformations. The same can be done by quaternion
transformations too.

In the case of our simple example, we have Q0 =
[1, 0, 0, 0], Qθ = [cos(θ1/2), 0, sin(θ1/2), 0, 0], and hence
for the transformation pair (Ξ1 = {Q1, ρt1}) we have

Q1 = Q×0 Qθ =

[
cos(

θ1

2
), 0, sin(

θ1

2
), 0, 0

]
, (5)

ρt1 = [ε01
, 0, l0 + ε03

],

We can define the system states as qSRL = [ε01
, ε03

, θ1].
Here we use the first representation used by Shiva et al.

and Renda et al., since it is easy to interpret its inverse as
ζi = R>i (Ri+1 −Ri)/∆s, which is necessary for modeling
a continuum rod with absolute (independent) modeling states
(a new contribution of this paper). Using quaternions and
their properties, the final form of the discretized equations
are

Qi+1 = Q×i [1, αi/2], (6)
ρi+1 = Qi ∗ εi + ρi,

for VC kinematics and

[0, αi] = 2(Q−1
i )×(Qi+1 −Qi), (7)

εi = Q−1
i ∗ (ρi+1 − ρi),

for their inverse. Here, α = ζ∆s is the local bending/twist
angle vector, and ε = ∆ρ = (ξ + [0, 0, 1])∆s is the
deformed local position/translation vector. Notice that Qi
is the absolute orientation quaternion at each point, but α
describes the relative orientation of consecutive elements.
Note that [1, αi/2] in Eq. 6 is a non-unit quaternion by
definition but we assume it is a unit one as long as αi ≈ 0
holds, i.e. small bending/torsion angles.

In the case of our simple example for Eq. 6 we get (see
Fig. 1)

Q1 = [1, 0, 0, 0]×[1, 0, α02
/2, 0] (8)

= [1, 0, θ1/2, 0],

ρ1 = [1, 0, 0, 0] ∗ [ε01
, 0, ε03

] + [0, 0, l0]

= [ε01
, 0, ε03

+ l0],

where ε01 = x1, ε03 = ∆l = l1 − l0 and α0 = ∆θ = θ1 −
θ0. We can define qEBR = [ε01

, ε03
, α02

] as the system states
if using this equation set. This results in a set of relative states
with respect to the local (segment fixed) reference frame to
be used with the SRL or EBR model. The same set of states
is used for the SRL case too, but the kinematic relations that
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Q′1s =


cos(θ1s/2) 0 − sin(θ1s/2) 0

0 cos(θ1s/2) 0 sin(θ1s/2)
sin(θ1s/2) 0 cos(θ1s/2) 0

0 − sin(θ1s/2) 0 cos(θ1s/2)




0
0
θ′1s
0

 /2 =


− sin(θ1s/2)

0
− cos(θ1s/2)

0

 θ′1s/2, (3)

ρ′1s =

 x′1s
0
z′1s

 =


cos(θ1s/2)

0
sin(θ1s/2)

0

 ∗
 0

0
l′1s

 =

 sin(θ1s)
0

cos(θ1s)

 l′1s .

define the segments’ relative transformation as in Eq. 4. Note
that Q1 from Eq. 8 is an approximation for this term in Eq. 5
for small angles θ ≈ 0.

For their inverse from Eq. 7 we get

[0, α0] = 2[1, 0, 0, 0]× (9)
([cos(θ1/2), 0, sin(θ1/2), 0]− [1, 0, 0, 0])

= [2 cos(θ1/2)− 1, 0, 2 sin(θ1/2), 0],

0 ≈ 2 cos(θ1/2)− 1, α0 ≈ [0, θ, 0],

ε0 = [1, 0, 0, 0] ∗ ([x1, 0, z1]− [0, 0, l0])

= ([x1, 0, z1 − l0]).

It is clear form Eq. 9 that this assumption is only valid if
cos(θ1/2)− 1 ≈ 0, e.g. small bending angles (θ1 ≈ 0). Then
we have α02 ≈ θ1. More importantly, Eq. 8 does not predict
any lateral movement of the tip. Also, any lateral movement
of the beam tip in the case of Eq. 9 is solely resulted from
shear (ε01

= x0) and not the beam elongation (ε03
= z0 −

l0). These cases are similar to an Euler-Bernoulli beam where
the lateral and longitudinal deformations are decoupled. As
a result, any realistic model for continuum rods should have
more than one segment along the backbone. Despite this,
we continue with our simple example that only serves to
present the implementation of the presented methods in a
simple yet generalizable example. From Eq. 9 we can define
qEBA = [x1, z1, θ1] as the system states. This results in a set
of absolute states with respect to the reference frame to be
used with the EBA model.

Eq. 6 & 7 show that the deformation of a discretized
element can be modeled as a quaternion transformation pair
Ξ = {Qα, ε}, which is a 3D translational joint with state
space ε and initial value ε0, followed by a 3D rotational joint
with state α, initial value α0 and quaternion representation
of Qα = [1, α/2] (Fig. 2.b). The same can be said if using R
as Γ = {Rxyzα , ε}. Having an element’s initial bending/twist
angle (α0) and a local translation vector (ε0), the local
deformation of the discretized geometry (∆α = α− α0 and
∆ε = ε− ε0) can be calculated for deriving the element
viscoelastic mechanical action due to system deformation.

Reduced-Order Kinematics- Reduced-Order Models
(ROM) for continuum rod kinematics is discussed by
Godage et al. (Godage et al. 2011, 2016) based on the
pressure chambers’ length for a pneumatic soft manipulator.
The presented solution is hard to interpret, results in
complicated dynamic derivations, and the mechanical
coupling between the actuation chambers’ input pressure
and length are not considered. The need to learn a large
number of coefficients that should be learned through
experimental trials is another drawback of such a method. In
our previous work, we showed the advantageous numerical

performance and accuracy of using a truncated Lagrange
polynomial series passing through some arbitrary points
along the backbone (Sadati et al. 2018b). The proposed
solution is easy to interpret for shape estimation and
controller design, since the used polynomial is constructed
using Cartesian coordinates of physical points, and has a
small number of states (6 for a short appendage consisting
of Cartesian coordinates of 2 points at the appendage
tip and mid-length). Both methods solve the singularity
problem of using Constant Curvature and rotation matrix
representations.

However, we used the CC assumption to compensate for
the imaginary torsion of a Frenet–Serret frame and to find the
physical torsion of the appendage cross-section based on the
input chambers’ pressure. Besides, the cross-section shear
was neglected and a mean axial strain is assumed along the
backbone. The kinematics was combined with Beam theory
for static modeling and PVW for dynamic modeling, using
Ritz and Ritz-Galerkin solutions. Duriez, Bieze, and Thieffry
have recently generalized the same concept to modeling and
control of complex continuum geometries by extracting the
dominant deformation maps using the SOFA FEM package
(Cianchetti and Menciassi 2017; Bieze et al. 2018; Thieffry
et al. 2018b).

Here, we drop using Frenet–Serret frames and present a
new general ROM approach to account for the cross-section
local strains, as well as dealing with curvatures/torsion
without any secondary assumptions, e.g. CC. Additionally, a
simple polynomial is used instead of a Lagrange polynomial
that results in simpler and faster derivation of the system
kinematics. An inverse linear problem is solved to find
the initial value of the polynomial coefficients based on
the position and orientation of some nodes along the rod
backbone. The final solution is more suitable for Cosserat
rod and PVW methods. We assume that the manipulator
geometry is defined by 6 truncated polynomial series of order
nr + 1 for the position and nr for the orientation map, as

[ρ,Qρ] =

nr∑
i=1

(CrSi) + S0, (10)

where Qρ is the vector part of the quaternion representation

of backbone orientation (Q) with Q0 =
√

1−QρQ>ρ , nr is
the polynomial order, Cr[6×nr] is the polynomial coefficient
matrix which is considered as the system modeling states,
Si = [s, s, s, 1, 1, 1]si and S0 = [0, 0, s, 0, 0, 0] are the
shape function matrices that satisfies the rod base boundary
conditions, i.e. being perpendicular to the base.

Alternatively, the orientation can be expressed with a non-
unit quaternion (Q̃) to avoid singularities for curvatures with
rotations larger than π. Then, we have [ρ, Q̃] in Eq. 10,
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and Q = Q̃/

√
Q̃Q̃>, Cr[7×nr], Si = [s, s, s, 1, 1, 1, 1], and

S0 = [0, 0, s, 0, 0, 0, 0].
Defining S = S1:nr , we can rewrite the above equation in

a vector-form as

[ρ,Qρ] = CrS + S0. (11)
The state (coefficient matrix) initial values (Cr0) are found
based on position (ρ0) and orientation (Qρ0) of a few
points along the manipulator backbone (sr) by solving the
following inverse problem,

Cr0 = ([ρ0, Qρ0]− S0s0
)S−1
s0 . (12)

The above inverse problem can be solved efficiently using
Matlab inv function. ρ0 and Qρ0 can be simply measured
from experimental observations using magnetic or visual
trackers.

For the local strain ξ and curvatures/torsion ζ, from Eq. 2
and similar to the inverse map in Eq. 7, we obtain

[0, ζ] = 2(Q−1)×Q′, ξ = Q−1 ∗ ρ′ − [0, 0, 1]. (13)
ξ and ζ are used to calculate the mechanical action of the rod
structural compliance. Alternatively, the system geometry
can be described using only four polynomials, three for ρ and
one for twist angle (θ1̂), where the bending angles are found
by compensating the Frenet–Serret frames non-physical
orientation using θ1̂. Such a solution results in a system with
a smaller number of states, but more complex equations to
handle, and inherent singular points.

In the case of our simple example, if we choose a
unit quaternion representation of rotation and consider a
1st order polynomial(nr = 1) for each of the three states
([x1s , z1s , Qρ12s ], where Qρ1s = [

√
1−Q2

ρ12s
, 0, Qρ12s , 0]

, from Eq. 11 we have x1s

z1s

Qρ12s

 = [Cr1 , Cr2 , Cr3 ]

 s
s
1

 s (14)

+

 0
s
0

 =

 Cr1s
2

Cr2s
2 + s

Cr3s

 ,
where qROM = [Cr1 , Cr2 , Cr3 ] is the system states. Know-
ing the initial configuration of the system tip position (s =
l0) to be [0, l0, 0], from Eq. 12 we get q0 = Cr0 = [0, 0, 0].
For Qρ1s we get

Qρ1s =
[√

1− C2
r3s

2, 0, Cr3s, 0
]
. (15)

Then, Eq. 16 can be derived from Eq. 13.
Note that ξ01 has a value, meaning that this method can

capture the material shear deformation along the local frame
x-axis.

Hybrid System Dynamics
Dynamic modeling and controller design for hybrid systems
are practiced, by having a kinematic model with a finite
number of states. The discussed discretization method and
reduced-order model are the key elements in modeling such
systems. We use the TMT method as in Wisse and Linde
(2007); Sadati et al. (2015) for deriving vector formalism of

inertial terms in Lagrange EOM. The TMT method benefits
from a smaller number of steps and simpler procedures
compared to deriving EOM based on a system Lagrangian.

In the following section, the TMT method is adapted to
derive a separate set of equations for each body/element in
the system that speeds up the derivation and optimization
of derived equations, as well as providing the possibility
of implementing parallel numerical simulation methods for
large systems. Then, the Principle of Virtual Work is used to
derive the actions for the system springs, dampers, and input
forces. In the rest of this paper, the link (rigid-body) inertial
matrix (M ) is

M =

[
mI[3×3] 0

0 Im

]
, (17)

where m is the body mass, Im is the body second moment of
inertia [3× 3] matrix, and I[n×n] is an [n× n] unity matrix.
M for our simple example in the SRL, EBR, and EBA is

M1 =

 m1 0 0
0 m1 0
0 0 I1

 = m1

 1 0 0
0 1 0

0 0
3r21+l20

12

 ,
(18)

if the beam is assumed to be a uniform cylinder with radius
r1, density σ1.

Element-wise TMT Method- From Newton’s second laws
of motion for the inertial terms (related to M ) and
gravitational forces (related to g) of a rigid body EOM
in general free motion, we have Mχ̈ = fχ, where χ =
[ρ,Qρ], M as in Eq. 17, fχ are the forces in Cartesian
coordinates, e.g. body weight fχ = fg = M [g, 0, 0, 0], and
g = [0, 0, 9.81] [m/s2] is the gravity vector. From mapping
the system states from Cartesian coordinates to state space
coordinates using the Jacobian transformation matrix, we
have Tm = χ,q , where q is the vector of system states), and
hence χ̇ = Tmq̇, χ̈ = Tmq̈ + (Tmq̇),q q̇.

Combining the above relations and transforming the
equation to the state space (using T>m ) we obtain,
T>mMTmq̈ = T>m(−MDmq̇ + fg), where Dm = (Tmq̇),q .
While the above relation is valid for a large dynamic
system, deriving the necessary vectors (M,Tm, Dm, fg) for
individual bodies in a system provides flexibility in dealing
with bodies of a different type. So we have

nm∑
i=1

M̄i q̈ =

nm∑
i=1

d̄i, (19)

M̄i = T>miMiTmi ,

d̄i = T>mi(−MiDmi q̇ + fgi),

where Tmi[6×nq ], Mmi[6×6], Dmi[6×nq ], fgi[6×1], i is a
general numerator for the body number in a system with nm
bodies, q[nq×1] = q1:nm is the vector of all the system states,
and nq = Σnmi=1nqi is the number of states in the system. Note
that the Jacobian matrices are calculated with respect to q (all
the system states) and not qi. Eq. 19 can be solved for q̈ to
form an ODE problem, and then integrated over time using
a numerical integration method, e.g. 4th-order Runge–Kutta
method implemented in Matlab software ode15s or ode113
function.
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0
0
ζ02
0

 = 2


Cr0 0 Cr3s 0
0 Cr0 0 −Cr3s

−Cr3s 0 Cr0 0
0 Cr3s 0 Cr0



−
C2
r3
s

Cr0
0
Cr3
0

 = 2


0
0
Cr3
Cr0
0

 , (16)

 ξ01
0
ξ03

 =


Cr0 0 Cr3s 0
0 Cr0 0 −Cr3s

−Cr3s 0 Cr0 0
0 Cr3s 0 Cr0

 ∗
 2Cr1s

0
2Cr2s+ 1

−
 0

0
1

 ,
= 2s

 Cr1 + Cr3Cr0 − 2Cr1C
2
r3s

2 + 2Cr2Cr3sCr0
0

−C2
r3s+ Cr2 − 2Cr2C

2
r3s

2 − 2Cr1Cr3sCr0


Cr0 =

√
1− C2

r3s
2.

There is only one element in our simple example in the
case of the SRL, EBR, and EBA. For Tm as in Eq. 1 we have
TmSRL|EBR

= TmEBA
= I[2×2]. For Eq. 19 we haveDm = 0,

fg = [m1g, 0], and hence

m1

 1 0 0
0 1 0

0 0
3r21+l

2
0

12

 ¨ε01
¨ε03
α̈02

 or

 ẍ1
z̈1
θ̈1

 =

 0
m1g

0

 .
(20)

Springs, Dampers, External & Input Loads- Following
PVW, the mechanical action of such elements in the system
state space (q) is wδq = fTfδq, where f is the force vector
exerted by the element, and Tf = χf,q is the Jacobian
that transforms the loads exerting location/orientation from
Cartesian space to the system state space. The term w> =
T>f f will be added to the right side of Eq. 19 as

nm∑
i=1

M̄i q̈ =

nm∑
i=1

d̄i −
∑
i

w>i , (21)

where Tfi[nfi×nq ], fj[nfi×1], wi[nq×1] represents other
mechanical actions in the system due to viscoelastic
elements, external, internal, and body forces, etc., and nfi
is the dimension of vector fi.

For external loads (fl) with action point ρl, we have

Tl = ρf,q. (22)

If the elements are acting directly on the system states, i.e.
elements parallel to the DOFs, Tq = q is for the acting point,
flq is the DOF direct input,

fkq = kq(q − q0k) (23)

is the force of a parallel spring, q0k is the resting value of the
spring, and

fvq = µq q̇
ν (24)

is the force of a parallel viscous damper with power ν.
For simple axial (1D) elements, connecting two points of

the system (ρf1&ρf2 ), we have

Ta = ρ̄f,q, (25)

where ρ̄f = ∆ρf = ρf1 − ρf2 is the line of action,

fl = |fl| ˆ̄ρf (26)

is the external force with value |fl| along the element unit

direction vector where ˆ̄ρ = ρ̄f/
√
ρ̄f ρ̄>f ,

fk = kρ̄f (1− l0k/
√
ρ̄f ρ̄>f ) (27)

is the spring force vector, l0k is the spring resting length, and

fv = µ ˙̄ρνf (28)

is the viscous damping force vector. Note that the order of
ρa|b is not important in calculating ρ̄f , as long as it remains
consistent.

Finally, by monitoring the sign of the deformation of
the element ∆lk =

√
ρ̄f ρ̄>f − l0k , tension only (∆lk > 0,

e.g. rope) and compression only (∆lk < 0, e.g. impact)
elements can be modeled. The same procedure can be
adapted for continuum elements, e.g. an Euler-Bernoulli
beam or reduced-order model of a deforming beam, which is
discussed in the following sections. The derivations for our
simple example is provided in the next sections.

Continuum Body Dynamics- Eq. 21 can be easily adapted
for a discretized continuum rod using the lumped mass
method. The differential form of TMT terms are

M̄i =

∫ li

0

dM̄ids, d̄i =

∫ li

0

dd̄ids, w
>
i =

∫ li

0

dw>i ds,

(29)
where li is the length of the ith the ROM element. For each
of the ROM element in the system, the above spatial integrals
can be handled with a numerical forward integration method,
e.g. trapezoidal rule implemented in Matlab software trapz
function, in each integrating time step of Eq. 19. The
Cosserat rod method is used to derive the TMT method
differential terms in Eq. 29 for the ROM elements. To this
end, we start with the differential form and then differential
lumped mass representation for Cosserat rod model.

For Tm as in Eq. 1 we have TmSRL|EBR
= TmEBA

= I[2×2].
For our simple example in the case of the ROM, we have
dm = m1/l0ds, dDm = 0, fg = [m1g/l0, 0]ds, and hence

dM =

 ms 0 0

0 ms 0

0 0 Ims

 ds =
m1

l0

 1 0 0
0 1 0

0 0
r21
4

 ds, (30)

m1

l0

 1 0 0
0 1 0

0 0
r21
4


 ¨ε1s

¨ε3s
α̈2s

 or

 ẍs
z̈s
θ̈s

 =

 0
m1g
l0
0

 .
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Cosserat Rod Mechanics- The Cosserat rod theory
presents the conservation law to balance the material local
internal loads (fs, τs) due to local external (fl, τl- external
loads at the rod tip or body), internal (fu, τu- due to internal
actuation pressure or tendon tension) and body loads (fg, τg-
due to body weight or other uniform loads, e.g. a magnetic
field). Different methods of deriving Cosserat rod mechanics
are presented in the literature, based on distributed load
balance in an infinitesimal element (Trivedi et al. 2008), and
differentiation of the shear force balance on a long segment
(applying variational calculus) (Rucker et al. 2010; Burgner-
Kahrs et al. 2015; Renda et al. 2018). Governing equations
for the above approaches can be derived using the Principle
of Virtual Work too (Grazioso et al. 2018). Here, we follow
(Trivedi et al. 2008) by considering the distributed load
balance for free body diagram of a single differential element
along the rod backbone (Fig. 2.a). For the load balance,
expressed in the reference frame, we have

(fs −Qs ∗ fu)′ + fg = σasρ̈s, (31)

(τs −Qs ∗ τu)′ + ρ′s × fs + τg = ImsΩ̇s,

where ρs and Qs are as in Eq. 2, Ims is the cross-section
second moment of inertia, fg = σasg, σ is the material
density, and as is the rod cross-section area. Note that the
effect of fu and τu are considered in the force ((Qs ∗
fu)′) and moment ((Qs ∗ τu)′) balance equations after being
transformed to the reference frame.

External local loads fls , τls are local shear loads
considered as local boundary conditions

fs −Qs ∗ fu + fg∆s+ fls = 0, (32)
τs −Qs ∗ τu + ∆ρs × fs + τg∆s+ τls = 0,

where ∆ represents the variation between the integra-
tion boundaries. Knowing all the boundary conditions
(ξ, ζ, fs, τs) at a point and all the external contact forces
along the backbone fl, τl, Eq. 33 can be integrated between
the external contact points and free ends, using Eq. 32 to
update fs, τs at each external contact point (between two
consecutive spatial integration steps). In a discretized or
reduced-order modeling framework, Eq. 33 and 32 are han-
dled alongside after direct (ROM) or indirect (discretization
methods) spacial integration of Eq. 33. Hooke’s law (linear
stress-strain relation), expressed in reference frame, is the
usual choice for the system constitutional law as fs = Qs ∗
(kξξs) and τs = Qs ∗ (kζζs), where kξ and kζ are diagonal
stiffness matrices based on the rod material.

In the case of our simple example, we assume fu =
[0, 0, fu3

] and τu = [0, τu2
, 0] to be the force and moment

from internal actuation, e.g. due to internal pressurized
chambers or tendons. fs1

0
fs3

′ − fu3

 cos(θs)
0

− sin(θs)

 θ′s +

 0
0
m1g
l0

 (33)

=
m1

l0

 ẍ1s

0
z̈1s

 ,
τ ′s2 − τu2 + fs1 cos(θ1s)− fs3 sin(θ1s) =

m1r
2
1

4l0
θ̈s.

fl = [fl1 , 0, fl3 ] is the tip external force vector which should
be considered as a boundary condition of the form Eq. 32.

The above formulation results in a BVP problem which
is hard to integrate into a unified modeling framework
for hybrid systems. In the next sections, three methods
for dynamic modeling of a continuum rod are discussed,
using the discretized (Eq. 6 & 7) and reduced-order model
(Eq. 10 & 13) kinematics, discussed earlier, and using
TMT differential terms (Eq. 29), and PVW for compliance
elements and loads explained above.

Discretized Continuum Dynamics with Relative States-
Discretizing Eq. 33, a highly articulated system with length
l, nd elements, and relative states (q = [ε, α]) is formed
with the kinematic relation expressed in Eq. 6. M and
Tm are found by substituting ρi and Qi from Eq. 6 into
Eq. 1 & 17, to find the TMT inertial terms as in Eq. 19.
This forms the right hand of Eq. 33. The external loads
are handled based on their exerting point, found from Eq.
6. In such systems, beam elasticity and damping, and the
internal pressure/tendon tension acts parallel to the states q,
so we set k|µq = [k|µε, k|µα] and flq = [fu, τu], and follow
the relevant procedure for compliance elements and loads
explained above. These form the left-hand side of Eq. 33.

Finally, the above terms are used alongside other terms
in Eq. 21. The proposed procedure is easy to implement;
however, the derived equations tend to be complex after
having less than ten elements, which results in long
segments, resulting in inaccurate results, slow derivation and
simulation (Sadati et al. 2018d; Takano et al. 2017). The
method is not suitable for large system models.

In the case of our simple example, from Eq. 8 and Hooke’s
Law, we have qSRL|EBR = [ε01

, ε03
, α02

] = [x1, l1 − l0, θ1],
for θ0 = 0. Then, the stiffness coefficient matrices are

kε = diag([G1, E1])πr2
1/l0 (34)

kα = EJ1/l0,

where J1 = πr4
1/4. For the damping coefficient matrix, we

assume µε, µα to be constant values. The action for the
compliant elements, i.e. continuum body, is directly related
to the system states as wk|v = wk|vq , where

w>kq =


G1πr

2
1

l0
0 0

0
E1πr

2
1

l0
0

0 0
E1πr

4
1

4l0


 ε01

ε03

α02

 , (35)

w>vq =

 µε 0 0
0 µε 0
0 0 µα

 ˙ε01

ν

˙ε03

ν

˙α02

ν

 ,
w>u =

 0
fu3

τu2

 , w>l =

 fl1
f13

0

 .
This is valid for both the SRL and EBA cases, while their
difference is in the kinematic relations that define the relative
transformation between the segments. Notice that, usually
there is no direct input force on the direction of shear
deformation (x-axis) when tendons or pressurized chambers
parallel to the rod backbone are used as the actuation method.
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Discretized Continuum Dynamics with Absolute States-
To avoid complex derivations for a high number of elements,
we may assume the discretized system states to be the
lumped-masses’ Cartesian positions and take the vector part
of their unit quaternion orientation as q = [ρ,Qρ], or all the
four elements of a non-unit quaternion as q = [ρ, Q̃]. Here
we continue with the unit quaternion where Q0 is derived
based on Qρ to form a unit quaternion.

The system kinematics is the same as q and increasing the
number of elements does not increase the complexity of the
derivations. M and Tm are found by substituting ρ and Q
into Eq. 1 & 17, to find the TMT inertial terms as in Eq. 29.
The external loads become loads directly acting on system
states flq = fl. The inverse map presented in Eq. 7 is used
to derive εi and αi, based on which the beam elasticity (wk)
and damping (wv), and the internal pressure/tendon tension
(wu) actions are calculated as

χb = [εi, αi], Tb = χb,q, (36)
w>k = T>b kε|α(χb − χb0),

w>v = T>b µε|α(Tbq̇)
ν ,

w>u = T>b [fu, τu],

where χb0 is the beam initial position vector and
bending/twist angle that can be fund based on the system
states’ initial condition q0 as χb0 = χb(q0). The above terms
are used alongside other terms in Eq. 21. The proposed
method allows for handling a large number of elements. To
the best of our knowledge, this is the first time that such
a discretization method is used for modeling an actuated
continuum manipulator, as well as its integration to a unified
hybrid system modeling framework.

However, similar discretization methods are widely being
used to solve hyperbolic PDEs, e.g. Eq. 33, numerically.
Meeting Courant−Friedrichs−Lewy condition is necessary
for converging the solution which usually results in systems
with a very large number of elements and hence slow
performance (Skeel and Berzins 1990). We do not analyze
the convergence criteria in this paper, but a comparison with
experimental results and the other presented methods in this
paper are provided later.

For our simple example and from Eq. 9, we have
qEBA = [x1, z1, θ1], χb = [ε01 , ε03 , α02 ] ≈ [x1, z1 − l0, θ1],
and Tb = I[3×3]. k and µ are similar to the SRL and EBR
models. Hence, Eq. 36 becomes

w>k =


G1πr

2
1

l0
0 0

0
E1πr

2
1

l0
0

0 0
E1πr

4
1

4l0


 x1

z1 − l0
θ1

 ,(37)

w>v =

 µε 0 0
0 µε 0
0 0 µα

 ẋ1
ν

ż1
ν

θ̇1
ν

 ,
w>u =

 0
fu3

τu2

 , w>l =

 fl1
f13

0

 ,
where wk|vq = 0.

Reduced-Order Model Dynamics- In the case of reduced-
order model kinematics, the system spatial and temporal

domains are decoupled. So we keep the differential form of
Eq. 33, and perform a forward numerical integration over
the ROM terms in each time step of the final system EOM
numerical temporal integration.

Here the states are the elements of Cr in Eq. 10 which
gives 6× nr states. The system kinematics is presented in
Eq. 10 as χs = [ρs, Qρs ], and Tm is found by substituting
ρs and Qρs into Eq. 1. for dM we have, dm = σads
and Ims is found based on the second moment of inertia
for planar objects with the shape of the rod cross-section.
TMT differential terms are found from Eq. 29. The contact
point kinematics of an external load at location sl along the
backbone is found by substituting s = sl in Eq. 10.

Using the inverse map in Eq. 13 to find ξ, ζ, the differential
form of Eq. 36 is used to find the action derivatives for
viscoelastic structure and internal pressures/tendon tensions.
This method does not suffer from discretization inaccuracy;
however, the modeling accuracy depends on the order of
the polynomial, while a higher number of terms does not
necessarily improve the accuracy. Initial bent configurations,
rods with initial arbitrary geometries are easy to handle, by
choosing appropriate values for χs0 .

For our simple example, the beam shear deformation along
the local frame x-axis is derived in Eq. 16 too. Similar to the
SLR, EBR, and EBA cases but in a differential form we get
Eq. 38, where ξ, ζ, qROM, and Cr0 are as in Eq. 16.

Intermediate Numerical Step for Higher Order Nonlinear
Terms- High order nonlinear terms due to soft structure
hyper viscoelastic behavior can be handled by considering
nonlinear stiffness and damping coefficients. Such assump-
tions do not change the method of deriving such elements’
actions as for compliance elements and loads explained
before. However, the value of the nonlinear coefficients
should be updated during the numerical simulation.

An intermediate numerical integration step is introduced
to update the nonlinear coefficients based on the system
current states. We have used this approach in our earlier
work to account for the braid constraint of pneumatic
actuators in continuum manipulators and the material hyper-
elastic deformation (Sadati et al. 2018b; Shiva et al. 2018).
This intermediate step can be used for event handling and
saturation constraints. For example, in the case of our simple
example, this intermediate step calculates and updates the
values for I|J1 when the beam cross-section alters. Further
details are provided in the later sections and in (Sadati et al.
2017a,b, 2018b).

Linear Modal Analysis- The concepts of exploiting natural
dynamics of a continuum system for design, optimization
and control of soft robots (Giorgio et al. 2017; Della Santina
et al. 2018b; Sayahkarajy 2018) and continuum sensors
(Trinh et al. 2018) have been investigated recently. Although
it is not the main focus of this paper, the following section is
dedicated to linear modal analysis of a hybrid system based
on which a module is designed in the TMTDyn software
package. The theory presented below provides the necessary
tool for such analysis on a hybrid system.

A linearized version of Eq. 21, without time-varying
external forces, at a given point q0 is∑

im

¯̄Mim q̈ +
∑
iv

¯̄Viv q̇ +
∑
ik

¯̄Kikq +A0 = 0, (39)
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kε = πr2
1

[
G1 0
0 E1

]
, (38)

χb =

 ξ01

ξ03

ζ02

 =

 Cr1 + Cr3Cr0 − 2Cr1C
2
r3s

2 + 2Cr2Cr3sCr0
−C2

r3s+ Cr2 − 2Cr2C
2
r3s

2 − 2Cr1Cr3sCr0
2Cr3/Cr0

 ,
Tb = χb,q

=

 −4C2
r3s

3 + 2s 4Cr3 ∗ s2Cr0 2s(2C2
r3s

2 − 2Cr2s+ 4Cr2C
2
r3s

3 + 4Cr1Cr3s
2Cr0 − 1)

−4Cr3s
2Cr0 −4C2

r3s
3 + 2s 4s(Cr1 + Cr3Cr0 − 2Cr1C

2
r3s

2 + 2Cr2Cr3sCr0)
0 0 2/Cr0

 ,
w>k = T>b

 G1πr
2
1 0 0

0 E1πr
2
1 0

0 0 E1
πr41
4

 ξ01

ξ03

ζ02

 ,
w>v = T>b

 µξ01 0 0
0 µξ03 0
0 0 µζ02


 ˙ξ01

ν

˙ξ03

ν

˙ζ02

ν

 ,
w>u = T>b [fu3

, τu2
].

where ¯̄M = M̄,q(q0), ¯̄V = wv,q(q0), and ¯̄K = wk,q(q0) are
linearized matrix coefficients (derivatives with respect to q
evaluated at q0) for inertia, stiffness, and viscous damping
respectively, and A0 is a constant term due to linearizion of
d̄, gravitational forces, springs resting values, etc.. A0 does
not contribute to the system modal analysis.

Eq. 39 can be used for linear modal analysis of a system
without damping or a proportionally damped system, subject
to proper choice of damping coefficients ( ¯̄V = A1

¯̄M +
A2

¯̄K) and ν = 1, where Ai is a general constant. The
eigenvalue problem for Eq. 39 can be solved with the
Matlab eig function to find the system undamped natural
frequencies (ω) and matrix of mode shapes (Φ) as [Φω, ω] =

eig(− ¯̄M−1 ¯̄K). Then the system modal damping ratio
is ηω = (ωMω)−1Vω , where Mω = Φ>ω

¯̄MΦω and Vω =

Φ>ω
¯̄V Φω are the linearized inertial and viscous damping

matrices in modal space.
The derived models for our simple example are already

linear for the SRL, EBR, and EBA cases. From Eq. 18, 35 &
37 fro Eq. 39 we get

¯̄M = m1

 1 0 0
1 1 0

0 0
3r21+l20

12

 , (40)

¯̄V =

 µε 0 0
0 µε 0
0 0 µα

 , ¯̄K =


G1πr

2
1

l0
0 0

0
E1πr

2
1

l0
0

0
E1πr

4
1

4l0

 .
In the case of the ROM, the above terms are found by
disregarding higher order terms with respect to the system
states qROM and then rearranging in a vector-form.

Constraints, Controller & Observation Design- Constraints
can be modeled as soft constraints, e.g. elastic connections,
and hard ones, e.g. geometric constraints. The former can be
handled by adding viscoelastic elements to the system, while
for the former the following closed form expression can be

adapted from Eq. 21[
ΣiM̄i −T>c
Tc 0

] [
q̈
λc

]
=

[
Σid̄i − Σiw

>
i

−dc + uc

]
, (41)

where Tc = χc,q is the Jacobian transformation matrix for
the constraint, χc = 0 is the geometrical constraint relation,
λc is Lagrange multiplier, dc = (Tcq̇),q q̇ and uc is a control
term that can be used to set a desired acceleration for the
constraint term as uc = χ̈c + Cc.
uc can be used to design a Jacobian based nonlinear

controller by setting it to the desired acceleration control
input for the constraint geometry (χc). In this case, T>c is
substituted with −T>u and λc with fu. Cc can be a constant
or a PID term, e.g. Cc = CcPχc + CcI

∫ t
0
χcdt+ CcD χ̇c, to

compensate for the numerical integration and/or inversion
errors for a constraint, or to cancel out the control tracking
error in a controller design. As a result, fu is derived
alongside the rest of system states q in a way that satisfies
the desired behavior that is expressed by the constraint terms
Tc, dc, and χ̈c.

As an example, Eq. 41 can be adapted to derive an
inverse-Jacobian based controller to control the beam tip
configuration (position and orientation). Assuming the EBA
model (qEBA), for the tip configuration we have χc = [zc −
z1, θc − θ1] = [zc − ε03

− l0, θc − α02
− θ0] as the desired

constraint, where zc, θc are the desired tip position and
orientation angle. Hence

Tc = χc,q =

[
0 1 0
0 0 1

]
, dc = 0. (42)

Note that we do not have any control on the tip lateral
deformation in any of the SRL, EBR, or EBA modeling
methods, since it is solely governed by the external load
fl1 and not the system inputs. A model with at least two
segments is needed to capture the effect of fu3

, τu2
on this

system. Adding the system inputs fu3
, τu2

to the system
states, and by substituting Eq. 20 and 37 in 41, we get to
Eq. 43 for the control system EOM. Note that the system
is not fully defined and a pseudo matrix inversion method
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is needed to solve the resulted system of equations. Eq. 43
is equivalent to a constrained system EOM but with an PD
error compensation terms Cc.

TMTDyn Package Algorithm
The discussed modeling frameworks for soft robots
have enabled us to incorporate their states into the
traditional modeling framework of rigid body dynamics.
In the following section, the TMTDyn Matlab software
package modules are explained to automate the derivation,
simulation, and visualization of the EOM of a hybrid system.

The TMTDyn package flowchart are presented in Fig.
4. The package structure is presented in Table 10 and 11 of
Appendix 3. The package consists of 5 main stages and 10
sub-stages, implemented in 13 modules each in a separate
Matlab file. Some modules have sub-functions, embedded
in the same file with local only access. The connection
between the stages/modules are provided by three means: (i)
passing a Matlab structure variable, named par and defined
in the system.m file, between the modules, (ii) generating
the necessary functions (Matlab, C or C-mex format) after
completion of some stages and calling them in the next
stages, and (iii) calling the main modules in a single file
(system.m) that returns the resulting parameters to the
Matlab workspace environment for later use.

The system geometry, in the form of a set of bodies that
are interconnected with compliant elements and constraints,
is described in the User Interface module (system.m) using
an HLL. Next, the check.m module is called to check the
defined parameters and assign default values if needed. The
system is passed to the tmt eom derive.mmodule to derive
the hybrid system TMT EOM. Depending on the method
of choice for optimization and storing the derived EOM,
Matlab, C-mex or C++ functions are generated by calling the
save func.m and save mex.m modules.

The intermediate steps in the numerical simulation
should be defined in int mid step.m by the user. Then,
int eom mex.m is called to generate the code that is used
for numerical static and dynamics simulations. equil.m,
modal.m, and dyn sim.m are called to perform static
equilibrium analysis, linear modal analysis, and numerical
dynamic simulation. Finally, the results are passed to
anim.m, providing a simple animation, and to post proc.m
(provided by the user) for any intended post-processing of
the results. The functionality and implementation of the HLL
interface elements are explained in Appendix 3. Pseudocodes
for each file are presented in Appendix 4.

Case Studies & Validation
Two cases of hybrid rigid-continuum systems are modeled
and the results are verified in comparison to experimental
results. The studied cases are as follows.

1. Dynamic motion of a single STIFF-FLOP continuum
appendage in the presence of external loading (E1).

2. Dynamic deformation of a fabric sleeve worn on an
elbow-like rigid-link pendulum (E2).

Different modeling assumptions for continuum rods are
tested and compared for E1 in terms of modeling complexity,

EOM derivation time, dynamic and static simulation time,
and accuracy of the results in comparison with experiments.
As a result, the most efficient and accurate method for
modeling 1D continuum elements, i.e. continuum rods,
is identified. The challenges in modeling a 2D (fabric)
continuum medium are investigated in E2. The case studies
show how the proposed unified modeling framework and
software package help in deriving simple Lagrange EOM
for hybrid systems. Further discussion is provided on the
advantages of such models for controller and observer design
tasks.

Where applicable, unit quaternions are used to model
the systems since a rotation larger than 180 [deg] is not
observed in our test cases. The mean (M) and Mean Standard
Deviation (MSTD) values for the experimentally measured
values are compared with the numerical simulation results
to evaluate absolute (Err) and percentage error (%Err) for
each case study. A Lenovo Yoga 3 Pro 1370 laptop computer
(Intel Core M-5Y71 CPU, 2× 1.2− 2.9GHz cores, 8 GB of
RAM) was used to perform the analysis in this paper.

Dynamics of A Continuum Appendage
STIFF-FLOP Continuum Appendage- A STIFF-FLOP
(STIFFness controllable Flexible and Learn-able manipula-
tor for surgical OPerations) module (Fras et al. 2015) is a
pneumatic continuum appendage (Fig. 5). Earlier tests show
their high repeatability and negligible performance change
due to aging and fatigue (Shiva et al. 2018).

The manipulator is made of silicone elastomer (Ecoflex
50 from Techsil) and selective actuation of the three braided
pneumatic chamber pairs (6 chambers in total) via separate
electronic proportional micro pressure regulators (Camozzi
K8P) provides 3-DOF (one axial elongation and two side-
bendings) of the appendage tip (Appendix 6 Fig. 14). The
first chamber pair is placed along with the manipulator +y-
axis with 120 [deg] offset from the other pairs (Fig. 5.a).
Chambers in each pair have about 40 [deg] polar offset with
each other (φpo ≈ 20 [deg] with respect to their symmetry
line).

The pressure regulators are connected to a compressor
(BAMBI MD Range Model 150/500) and controlled via
a data acquisition (DAQ) board (National Instruments Inc.
NI-DAQmx USB-6411) and its control software. A control
diagram for this study is presented in Appendix 6 Fig. 13. An
ATI Mini40 6-axis force sensor is mounted at the appendage
base and an ATI Nano17 6-axis force sensor is connected
at the manipulator tip to measure the external loads at the
appendage tip (flt ). Fig. 5.b shows the setup elements.
Sequences of the experiments with and without tip external
loads are shown in Fig. 5.c . The measured and identified
structural parameters of the experimental setup are presented
in Table. 2.

Modeling Assumptions & Program Input- Each STIFF-
FLOP module has 3 pairs of braided pneumatic actuators
so we set p2i−1 = p2i for the three input pressures with
index i ∈ [1, 3]. Their resulting axial force is fu = Σ6

i=1piap
and the vector of bending/torsion is τu = Σ6

i=1piaprOi ×
[0, 0, 1], where rp and ap = πr2

p are the pneumatic chamber
inner radius and area.
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Table 2. The structural parameters, their units and the way they
are obtained (M: Measured, D: Data sheet, C: Calibrated).

Sym. Value Met. Sym. Value Met.

ra1 [mm] 4.5 M ra2 [mm] 12.5 M
rp[mm] 2.5 M rpo [mm] 8.5 M
lm2 [mm] 50 M lm3 [mm] 14.5 M
m2[gr] 28 M m3[gr] 13.47 M
γ[deg] 87 M σ[Kg/m3] 1820 D
E[KPa] 205 C ν 2 C
µε[Ns/m] 0.1-100 C µα[Nms/rad] 0.5-1e-5 C

Links are considered as EB beams with linear
elasticity Kε = diag(ac[G,G,E]) and Kα =
diag([E,E,G]).diag(J) which are diagonal stiffness
matrices associated with strains (ε) and curvatures/torsion
(α) respectively, in the d̂i frame. Here, E and
G ≈ E/3 are the material elasticity and shear modulus,
J = π/4(r4

a2 − r
4
a1 − 6r4

p).[1, 1, 2]− apdiag(rO.r
>
O) is a

1× 3 vector consisting of the cross-section second moments
of areas. rO is a matrix of which rows are position vectors
of the chambers in the manipulator cross-section plane as

rOi = rpo . [cos(ψoi), sin(ψoi), 0] , i ∈ 1...6 (44)
ψo2i−1

= π/2− 2(i− 1)π/3− ψ0, i ∈ 1...3,

ψo2i = π/2− 2(i− 1)π/3 + ψ0,

where ro is the radial offset of the chambers from the center.
The finite length or infinitesimal length masses are

assumed to be cylinders which are attached to the point
of interests, e.g. joint in discretized methods, at their
COM. As a result, we have a symmetric mass distribution
in the body-fixed local frames. For the ROM the model
we assume a hollow disk with differential moment of
inertia Im = diag((r2

a2 + r2
a1)[1/4, 1/4, 1/2])dm2), where

dm2 = m2/lm2
ds. For discretized methods we have Im =

diag(m2

(
(r2
a2 + r2

a1)[ 1
4 ,

1
4 ,

1
2 ]) + (

lm2

nd
)2[ 1

12 ,
1
12 , 0]

)
). The

effects of actuation chambers are neglected here.
The four modeling assumptions presented in Fig. 3 are

implemented using the TMTDyn package as in Tables 3 &
4. The properties of these models and the abbreviation used
to describe each are presented in Table 5.

Numerical Integration Mid-step Function- An intermediate
step is applied in the numerical integration to account for
the material hyper-elastic deformation (Gazzola et al. 2018)
as r+ = r/

√
|ε3| for all radii, l+ = |ε3|l for link lengths

and E+orG+ = EorG/|ε3| (Sadati et al. 2018b; Shiva et al.

2018), except for rp which remains constant due to the dense
braid constraint (γ ≈ π/2) and in calculating fg which is
independent of the cross-section deformation. |ε3| is the rod
mean axial stretch which is

∫ l
s=0

ξ3ds for the ROM model,
where ξi3 = sprdmp(i).dl. For the SRL and EBR models
we have Σndi=1εi3 , where ε is a part of system total states
(Z). The same relation is valid for the EBA model, but
εi3 = sprdmp(i).dl is the linking EB beam lengths.

In addition, the force and moment due to input pressure
fup , τup needs to be updated during the simulation. The
code to implement these considerations is provided in
int mid step.m module. We introduce some symbolic
variables in par.sym for |ε3|, fup , τup and update their
corresponding values in par.var in int mid step.m
module.

Experimental Results & Discussion- Two sets of experi-
ments were carried out with and without external load at
the manipulator tip, and for different input pressures. Each
experiment takes about 55 [s] and dynamic data for the actua-
tor inputs, the manipulator tip position, orientation, and force
were recorded. Sample experimental steps and recordings
from the two experiments in comparison to simulation results
from the EBR model with nd = 4 are presented in Fig. 6 &
7.

Matlab ode15s was used to speed up the numerical
integration in our simulation in this section. Considering
hyper-elasticity effects, if possible, improves the simulation
results accuracy by up to %6. This is in accordance with our
previous observations in (Sadati et al. 2018b). We set µξ =
0.1, µζ = 1e− 5 for the ROM and SRL, µξ = 100, µζ =
0.5 for the EBR, and µξ = 100, µζ = 0.01 for the EBA
model. EBR model required higher damping coefficients to
compensate the system sensitivity to rapid changes in the
states in dynamic simulations.

Fig. 6-8 presents a comparison between computational
performance (Fig. 6) and accuracy of these models in
predicting experimental results with (Fig. 7) and without
(Fig. 8) external loads. The ROM consumes the least memory
and computer CPU time to derive the EOM, but the EBA is
the best in terms of CPU time for equation optimization. The
SRL is the worst in this regard. It takes hours to optimize
the EOM for a system with more than three consecutive
links. The change in system links, either to improve accuracy
of a single rod model as presented here or in a system
with multiple links, affects the EBA model CPU usage the
least. For planar geometries (results are not provided here),
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Figure 4. TMTDyn package flowchart.

a system with three times nr or nd of those presented here
consumes the same memory and CPU time. As a result, the
EBA is the best model for systems with a large number of
bodies. The EBR and EBA have the best simulation time,
as well as static and dynamic, performance. However, the
EBR showed to be very sensitive to sudden changes in
the input pressure and external force values. High viscous
damping values were considered to prevent exponentially
growing errors (numerical analysis diverge) in this case.
As a result, the EBR simulation outputs were not reliable
for fast dynamic motions. All the models show real-time

performance (CPU time < 1 [s]) except the ROM which has
the highest CPU time demand in simulations.

The ROM presents significantly lower errors, even for
nr = 1, compared to other models, with 6 [mm] absolute
error (Abs. Err.) & 9% normalized error (Norm. Err.) for
static motion and 3.5 [mm] & 5.5% for dynamic motion in
experiments without external loads (Fig. 7). These values are
12.5 [mm]& 19% for static and 9 [mm]& 14% for dynamic
motion in presence of external tip loads (Fig. 8). The
accuracy of other methods increases rapidly with a higher
number of states and even slightly surpass the accuracy of the
ROM for experimental cases without external tip load (Fig.
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Figure 5. a) Structural design, b) parameters and c) sequences of experiments with a pneumatically actuated STIFF-FLOP
continuum appendage.

7). The EBA model with 5 segments had 5.2 [mm] absolute
error (Abs. Err.) & 8.1% normalized error (Norm. Err.) for
static motion and 3 [mm] & 4.7% for dynamic motion in
experiments without external loads (Fig. 7). This accuracy
increase is less noticeable and even reverses in some cases
(static motion with external load, Fig. 8) for the ROM.

The ROM remains the most accurate model for
experimental cases with external load. The EBA and the EBR
methods show similar performance for static analysis of the
experimental case without an external load while the EBA
performs better for static analysis of cases with external load.
However, the EBA method accuracy is much higher than
the EBR method in dynamic simulations. The SRL method
shows closer results to the EBA, but we did not report the
results for a model with more than three segments since it
takes hours to derive and optimize their EOM. Results for
the EBR model were not reliable for dynamic simulations
since high viscous damping values filter parts of the dynamic
motion.

Our dynamic simulation results are more accurate than
the static ones. However, we did not try to optimize the
manipulator parameters or numerical analysis properties to
find the best results, since this is not our main purpose in
this study. It is possible to improve the accuracy by tuning
these parameters or finding a way to effectively implement
the hyper-elasticity assumption for all the modeling cases.

Table 8 presents the calibrated damping coefficient
for each method and the cases where the cross-section
deformation is neglected. Where the models are highly
sensitive to the nonlinearities due to the change of cross-
section, this effect is neglected to avoid large errors. This
is observed for the SRL, EBR, and EBA methods in the
experimental case with an external load where a sudden
change in the external load is troublesome. The sensitivity
increases as the number of system states increases. The
EBA method is less sensitive to this increase. Furthermore,
the dynamic simulations are slightly more robust and the
modification is less needed, especially in the case of the EBA
method. The ROM method showed less sensitivity to such
nonlinearity and did not need any modification. On the other
hand, the EBR model required higher damping coefficients
to compensate the system sensitivity to rapid changes in

the states in dynamic simulations. Considering these, the
EBR method was more prone to be sensitive to numerical
instability.

Overall, we observed better accuracy and less sensitivity
to nonlinearities for the ROM, especially for a system with
a small number of states and cases with external tip loads.
The EBA method provides better numerical performance
among all the methods, especially for large systems, and less
sensitivity to the nonlinearities compared to the SRL and
EBR methods. In the next section, the EBA is adapted to
model a hybrid system with a 2D continuum membrane.

Dynamics of a Fabric Sleeve

Pendulum with Fabric Sleeve Setup-
A fabric sleeve, made of Jersey fabric, was cut and clamped
on a rigid-link pendulum, made of ABS clear plastic (Fig. 9).
The pendulum resembled a standard-sized human arm and
is used to simulate the effect of clothing movement given
wearer motion. The pendulum was fixed with a 1 DOF joint
at the top and passively swings. The model was intended to
capture the fabric dynamics due to the pendulum free motion.
Three magnetic trackers were used to measure the link COM
motion, and deformation of two points on the fabric (s1, s2).

Capturing the dynamics of soft fabrics can be useful for
research on wearable sensors and textile-embedded human
motion analysis such as those used for computer animation
and rehabilitation feedback Michael and Howard (2017,
2018). The fabric parameters are not known and identified
to present the best correlation with the experiments. Table
10 presents the fabric and setup dimensions and simulation
parameters.

Modeling Assumptions & Program Input- The fabric can
be modeled as a membrane which is a 2D tension-only
continuum geometry that does not withstand bending or
compression. This can be done by assuming the fabric
as a net of equally distributed masses with connecting
linear springs. Setting dir = 1 in the package express that
the springs are tension-only elements. We have used a
similar method to model a spider web with TMTDyn
recently (Sadati and Williams 2018). A drawback of such
assumptions is that the model does not capture the crumbling
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Table 3. TMTDyn package input for different models of a continuum rod, based on a pneumatically actuated STIFF-FLOP
continuum appendage. Model labes are as in Fig. 3. Continues in Table 4...

world.g = [0, 0,−g]; gravity
body(1).m = m2/lm2 ; ROM body
body(1).I = I2;
joint(1).second = [1, lm2 ]>; ROM joint
joint(1).rom.order = nr;

joint(1).tr.trans = [inf, inf, inf ];
joint(1).tr.rot = [0, inf, inf, inf ];

joint(1).dof(3).init = (1 : nr)lm2 ; DOF properties
joint(1).spring.coeff = [diag(Kv)>, diag(Ku)>]; EB beam stiffness
joint(1).damp.visc = [µξ, µζ ]; EB beam viscous damping
joint(1).damp.pow = ν; viscous damping power law index
joint(1).input = [fup , τup ]; pressure inputs
body(2).m = m3; tip force sensor
body(2).I = I3;

body(2).l com = [0, 0, lm3/2];

joint(2).first = [1, lm2 ]>; tip force sensor joint
joint(2).second = 2; mesh = [ ]; no mesh body
exload(1).exbody = 2; tip load
exload(1).ftau = [flt , τlt ];

exload(1).tr(1).trans = [0, 0, lm3 ];
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⏟
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Implementation

Discrete:

world.g = [0, 0,−g]; gravity
body(1).m = m2/nd; Rigid body
body(1).I = I2d;
body(1).tip = [0, 0, lm2/nd]; only required for animation plots
Kχ = [diag(Kv)>,diag(Ku)>]; EB beam stiffness
µχ = [µξ, µζ ]; EB beam viscous damping
fuχ = [fup , τup ]; pressure inputs
joint(1).first = [1, (0 : nd − 1)]>; rigid link series with 1st one connected to ground
joint(1).second = [1, (1 : nd)]>;

joint(1).tr(1).trans = [0, 0, lm2/nd];

joint(1).tr(2).trans = [inf, inf, inf ];
joint(1).tr(2).rot = [3, inf ]; rotation about z−axis
joint(1).tr(3).rot = [1, inf ]; rotation about x−axis
joint(1).tr(4).rot = [2, inf ]; rotation about y−axis
for ih = 1 : 6; DOF properties then

joint(1).dof(ih).spring.coeff = Kχ(ih);

joint(1).dof(ih).damp.visc = µχ(id);

joint(1).dof(ih).damp.pow = ν;

joint(1).dof(ih).input = fχ(ih);

end
body(2).m = m3; tip force sensor
body(2).I = I3;

body(2).l com = [0, 0, lm3/2];
joint(2).first = [1, nd]>; tip force sensor joint
joint(2).second = 2;

mesh = [ ]; no mesh body
exload(1).exbody = 2; tip load
exload(1).ftau = [flt , τlt ];

exload(1).tr(1).trans = [0, 0, lm3 ];
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⏟
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Implementation

Discrete:

of the fabric between the mesh nodes. Also, the membrane
assumption may not be accurate for thick fabrics, such as
the Jersey fabric used in these experiments. This is more
important when the fabric takes shapes such as hollow
columns, e.g. a fabric sleeve, that is more resistive against
buckling and bending. The fabric behaves like a shell,
a 2D continuum geometry that withstands bending and
compression too, in these scenarios. We used EB beam
elements to resolve this issue without the need to increase
the number of nodes or introducing diagonal connections,
e.g. forming a tetrahedron mesh. This is a simplifying
assumption that may be accurate enough to capture the
underlying physics of a system with a thin membrane or shell
geometries.

To model the system, we focus on the fabric model and
import the link motion in the form of a constraint that
follows an already recorded path (χc = ρcom) based on the
experimental recording of ρcom. We use Eq. 41 to model
the proposed constrained system. One geometric constraint
is enough to fully define the link 1 DOF motion. Due to the
constrained motion of the link, the values for m1 & Im1

are
not important for our analysis. Index 1 is used to define the
link parameters and index 2 for the fabric ones. The fabric
deforms when clamped on the link. The overall geometry of
the clamped fabric is modeled with FreeCAD software as a
wireframe sketch with a 3× 5 grid of nd = 15 nodes and 22
edges as in Fig. 9.c. The CAD model is stored in IGES format
to be imported into the model later. Here, nodes 12 & 13 are
equivalent to s1 & s2. The fabric is clamped at nodes 14 &
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Table 4. Continued from Table 3.

world.g = [0, 0,−g]; gravity
body(1).m = [0, 0,m2/nd]; Rigid body
body(1).I = I2d;

body(1).tip = lm2/nd; only required for animation plots
Kχ = [diag(Kv)>,diag(Ku)>]; EB beam stiffness
µχ = [µξ, µζ ]; EB beam viscous damping
fuχ = [fup , τup ]; pressure inputs
joint(1).first = [1, (0 : nd − 1)]>; EB beams with the 1st one connected to the ground
joint(1).second = [1, (1 : nd)]>;
joint(1).tr(1).trans = [0, 0, lm2/nd];

joint(1).tr(2).trans = [inf, inf, inf ];

joint(1).tr(2).rot = [inf, inf, inf ]; EB beam bendings/torsion (α)
for ih = 1 : 6; DOF properties then

joint(1).dof(ih).spring.coeff = Kχ(ih);

joint(1).dof(ih).damp.visc = µχ(id);

joint(1).dof(ih).damp.pow = ν;

joint(1).dof(ih).input = fχ(ih);

end
body(2).m = m3; tip force sensor
body(2).I = I3;

body(2).l com = [0, 0, lm3/2];

joint(2).first = [1, nd]>; tip force sensor joint
joint(2).second = 2; mesh = [ ]; no mesh body
exload(1).exbody = 2; tip load
exload(1).ftau = [flt , τlt ];
exload(1).tr(1).trans = [0, 0, lm3 ];
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Implementation

Discrete:

world.g = [0, 0,−g]; gravity
body(1).m = m2/nd; Rigid body
body(1).I = I2d;

Kχ = [diag(Kv)>,diag(Ku)>]; EB beam stiffness
µχ = [µξ, µζ ]; EB beam viscous damping
fuχ = [fup , τup ]; pressure inputs
joint(1).second = [1, (1 : nd)]>; SRL with absolute states (connected to the ground)
joint(1).tr(1).trans = [0, 0, lm2/nd];

joint(1).tr(2).trans = [inf, inf, inf ];

joint(1).tr(2).rot = [0, inf, inf, inf ]; absolute quaternions rotation of each link (α)
joint(2).first = [1, (0 : nd − 1)]>; EB beams connecting the bodies with the 1st one connected to the ground
joint(2).second = [1, (1 : nd)]>;

joint(2).spring.coeff = [diag(Kv)>, diag(Ku)>]; EB beam stiffness
joint(2).spring.init = [0, 0, nan, 0, 0, 0]; EB beam directions initial state (geometry)
joint(2).damp.visc = [µξ, µζ ]; EB beam viscous damping
joint(2).damp.pow = ν; viscous damping power law index
joint(2).input = [fup , τup ]; pressure inputs
body(2).m = m3; tip force sensor
body(2).I = I3;
body(2).l com = [0, 0, lm3/2];

joint(3).first = [1, nd]>; tip force sensor joint
joint(3).second = 2;

mesh = [ ]; no mesh body
exload(1).exbody = 2; tip load
exload(1).ftau = [flt , τlt ];
exload(1).tr(1).trans = [0, 0, lm3 ];
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Implementation

Discrete:

Table 5. Complexity of different rod (1D continuum element) models for a one-segment continuum manipulator with 3 active DOFs
(1 axial elongation and 2 side bendings). All the models in our study have one extra rigid body mass at the tip, as tip force sensor,
and an external load at the tip, that are not considered in this table.

Type Model No. of segments or Masses joints DOFs
ROM Polynomial order

Continuum Reduced-Order Model (ROM) nr 1 1 6× nr
Discretized Series Rigid Link (SRL) nd nd nd 6× nd
Discretized Euler-Bernoulli Beam with Relative States (EBR) nd nd nd 6× nd
Discretized Euler-Bernoulli Beam with Absolute States (EBA) nd nd 2× nd 6× nd

16 to the link at [±lcx , 0, lcz ]. Two sets of six constraints are
defined to fully fix each of these two nodes to the link.

The fabric mesh is modeled with lumped masses at
the CAD-file wireframe nodes that are interconnected with
EB beams. The system states are described with absolute
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Table 6. Experiments on free and forced deformations of a STIFF-FLOP continuum appendage. An external load is exerted by a
force sensor at the tip of an actuated module while the appendage tip deformation is measured by a magnetic tracker.
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Table 7. Sample recordings from the two experiments with a STIFF-FLOP appendage in comparison to simulation results with the
EBR model with nd = 4. top) experiments with no external load, middle & bottom) experiments with tip external loads.

Table 8. The simulation assumption and system damping
coefficients for experiments with external load. Where the
cross-section deformation is neglected are colored green. The
cases where a simulation is not conducted due to long
derivation/simulation time are colored black.

Damping nr|d
Method Study µε µα 1 2 3 4 5

ROM Equil. X X X X X
Dyn. 0.1 1e− 5 X X X X

SRL Equil. X × ×
Dyn. 0.1 1e− 5 X × ×

EBR Equil. X × × × ×
Dyn. 100 0.5 X × × × ×

EBA Equil. X X × × ×
Dyn. 100 0.01 X X X X ×

states of the masses. This is similar to the EBA model
for continuum rods that was discussed in the previous
section. The nodes are rigid lumped masses with an equally
distributed mass of m2/nd. The relation for thin plates is

used to derive their second moment of inertia as

I2 =
m2

12nd
diag( [ l2m2y + (

lm2z

5
)2, (45)

(
lm2x

3
)2 + (

lm2z

5
)2, (

lm2x

3
)2 + l2m2y ] ).

Links are considered as EB ribbons with
linear elasticity Kε = diag(ac[G,G,E]) and
Kα = diag([E,E,G]).diag(J) as in the case of
continuum rods in previous section. Here, J =
[l3m2y lm2b , lm2y l

3
m2b

, l3m2y lm2b + lm2y l
3
m2b

] is a 1× 3
vector consisting of the cross-section second moments of
area, where lm2b = (lm2x + lm2z )/2 is the mean width of
the ribbons in the x, z-axis directions.

The only parameter that needs updating during simulation
is uc, the desired acceleration of the pendulum COM
position, either in the x− or z−axis direction. To map the
motion of the nodes to the beams deformation map, one
way is to define the xaxis vector that defines beam specific
frames. This results in better accuracy but cumbersome
calculations to derive and simulate the system EOM. An
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Figure 6. Comparison between computational performance (derived EOM file size, EOM derivation and optimization time) for
different modeling assumption for a continuum rod (based on experiments with STIFF-FLOP continuum appendage).

Figure 7. Comparison between computational performance
(simulation time per simulation steps for static analysis and
per experimental time frame for dynamic analysis) and
accuracy (absolute and normalized error) of different
modeling assumption for a continuum rod (based on
experiments with STIFF-FLOP continuum appendage)
without any external tip load.

Figure 8. Comparison between computational performance
(simulation time per simulation steps for static analysis and
per experimental time frame for dynamic analysis) and
accuracy (absolute and normalized error) of different
modeling assumption for a continuum rod (based on
experiments with STIFF-FLOP continuum appendage) with
external tip load.

alternative assumption is to have the beams in the local body
frames and initially deformed to reach the second connecting
body. This is possible by setting init = nan which adopts
the beam initial geometry (ε0, α0) to the system initial
condition. We use the second method where 2D continuum
geometries are modeled. This results in an almost 10 times
decrease in the size of the file that stores the system EOM.
The inputs for the TMTDyn package to model this setup is
as in Table 9.

Experimental Results & Discussion- Two sets of experi-
ments were carried out to record the fabric deformation at
points s1 and s2. The static solution for the fabric defor-
mation equilibrium point is challenging to find. The final
result is sensitive to the initial guess for the system states
that is passed to Matlab’s fsolve solver and unrealistic
solutions may be found if the guessed states are not close
enough to the equilibrium states. It is more accurate if a
dynamic simulation is performed, by knowing the system
initial conditions, to find the deformed state of the system.
To test this, the pendulum was set free from an initial angle
θh0
≈ 85 [deg] to swing under gravity and its joint internal

viscous damping (µh). The fabric and pendulum 3D motions
were recorded using NDI Aurora six DOF sub-millimeter
accuracy magnetic trackers.

The pendulum Swung passively under gravity. The
recorded data for the pendulum was imported as the desired
rigid link trajectory in the model (Fig. 11.left), and the
simulation results were compared with the experimental data
for fabric deformation (Fig. 11.right). The simulation results
show good accuracy in predicting node motion in the x-axis
direction. The overall absolute error is ≈ 10 [cm] (≈ 40%
normalized error based on lzs ).

Modeling such complex hybrid structures can have
other benefits other than capturing the real dynamics with
minimum error. For example, it is interesting to observe that
the oscillation frequency of the node motion along the z-axis
direction is twice the frequency of their oscillation in the x-
axis direction. Also, the fabric is slightly deformed toward
gravity (the decreasing mean value of sensor readings along
the z−axis in Fig. 11) during the pendulum swing in both the
simulation and experimental results. A simple model for the
hybrid system helps in capturing such basic physics which
are useful for system design, control, and observation.

Discussion & Conclusion
Simple, reliable, and easy to use models for hybrid rigid-
continuum systems which are suitable for controller and
observer design are highly sought in the field of soft robotics
research. Current models are not suitable for control tasks
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Table 9. TMTDyn package input for the sleeve fabric models clamped to a rigid-link pendulum. Model labes are as in Fig. 9.

world.g = [0, 0,−g]; gravity
body(1).m = m2; pendulum rigid link
body(1).l com= [0, 0,−lm1 ]; pendulum COM
joint(1).second = 1;
joint(1).tr.rot = [2, inf ]; 1 DOF rotation around y−axis
joint(1).dof.init = θh0

; pendulum initial angle
joint(1).dof.damp.visc = µh; pendulum joint viscous damping
Import mesh geometry:
mesh.file name=′ cad.iges′; CAD-file name
mesh.tol= 1e− 3; geometry import tolerance
mesh.tr.trans= [0, 0,−lcz ]; mesh geometry initial position/orientation
mesh.tr.rot= [2, θh0

];
mesh.body.m = m2/nd; equally distributed fabric mess over the nodes
mesh.body.I = I2; Describing the mesh absolute DOF with mesh.joint(1):
mesh.joint(1).tr.trans = [inf, inf, inf ]; masses absolute state as system DOFs
mesh.joint(1).tr.rot = [0, inf, inf, inf ]; unit quaternion representation of orientation
Describing the mesh EB beam connections with mesh.joint(2):
mesh.joint(2).spring.coeff = [diag(Kε), diag(Kα)]; linear elasticity of beams
mesh.joint(2).spring.init = nan.ones(1, 6); beam initial state from system geometry
mesh.joint(2).damp.visc = [µε, µα]; linear viscous damping
Pendulum control constraint:
joint(2).second = 1;

joint(2).tr2nd.trans = [0, 0,−lcom1 ];
joint(2).fixed = 1; constraining x−axis
joint(2).control = uc; Fabric clamps:
joint(3).first = 1;
joint(3).second = 16; clamp at node 16 based on mesh file plot
joint(3).tr.trans = [lcx , 0,−lcz ];

joint(3).fixed = ones(1, 6); fully constrained joint
joint(4).first = 1;

joint(4).second = 14; clamp at node 14 based on mesh file plot
joint(4).tr.trans = [−lcx , 0,−lcz ];
joint(4).fixed = ones(1, 6);
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(e.g. FEM) due to a large state space, reliable in general
cases (e.g. machine learning methods), adequately accurate
(e.g. lumped system method), or compatible with energy and
Lagrangian based modeling and controller design techniques
(the Cosserat beam method). The performance and accuracy
of the newly introduced discretized (Renda et al. 2018) and
reduced-order models (Sadati et al. 2018b; Thieffry et al.
2018b) that have promised to overcome these challenges
are not yet thoroughly investigated. Additionally, there is no
unified framework to implement these methods for hybrid
systems with a combination of multi-dimensional rigid and
continuum elements.

In this paper, we developed two new models for continuum
rods and actuators: a general reduced-order model (ROM),
and a discretized model with absolute states and Euler-
Bernoulli beam segments (EBA). These models enable
us to perform more accurate simulation of continuum
manipulators, as well as modeling 2D and 3D continuum
geometries, which has so far been missing in similar
investigations (Renda et al. 2018). Furthermore, a new
formulation is presented for a recently introduced discretized
model by (Renda et al. 2018; Shiva et al. 2018) which is
based on Euler-Bernoulli beam theory and relative states
(EBR). These models are built in a new Matlab software
package, called TMTDyn (Sadati et al. 2015), to develop
a modeling and simulation tool for hybrid rigid-continuum
systems. The package performance is boosted using a new
High-Level Language (HLL) text-based interface, a CAD-
file import module, automatic formation of the system EOM

for different modeling and control tasks, implementing C-
mex functionality for improved performance, and other
modules for static and linear modal analysis of a hybrid
system.

The package is used herein to compare and validate
the aforementioned modeling methods in comparison to
experimental results on the general motion of a STIFF-
FLOP continuum appendage under external loads. We
observed higher simulation accuracy (with as little as 8-
14% normalized error) and numerical robustness (enabling
consideration of material hyper-elasticity) of the ROM
model, while the EBA was less computationally cumbersome
to derive and simulate with near real-time performance.
The EBR showed high sensitivity to sudden changes in the
system actuation inputs and external loads and relatively
higher computational cost both in derivation and simulation.
The lumped system approach for modeling continuum
rods as a hyper-redundant series-rigid-link system (SRL) is
investigated as well. The SRL had the highest computational
cost to derive and optimize the system EOM. This showed
the importance of our investigation on discretized and
reduced-order methods for modeling hybrid systems.

Finally, the package was successfully tested for modeling
a system with 2D continuum geometries. A CAD-file import
module was introduced to ease importing simple 2D and
3D continuum geometries in the form of wireframe objects
stored in IGES CAD-file format. A fabric sleeve was fixed
to a rigid link pendulum to study cloth dynamics. We
observed reliable consistency between our simulation and
experimental results. To the best of our knowledge, this study
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Figure 9. a) A fabric is cut to form a fabric sleeve around a
single link pendulum. b) The link forms a passive pendulum with
calmped fabric sleeve. The link is fixed with a 1 DOF joint at the
top and two magnetic trackers at nodes s1 & s2. Red dots are
equivalent to the CAD-file nodes. c) CAD-file wireframe of the
sleeve in the clamped configuration (as shown by
mesh import.m module).

Figure 10. The modeling parameters for the experiments with
a fabric sleeve around a single link pendulum (M: Measured,
D: Data sheet, C: Calibrated).

Sym. Value Met. Sym. Value Met.

m1[gr] 40 M m1[gr] 36 M
lm1 [mm] 270 M lcom1 [mm] 135 M
lm2x [mm] 350 M lm2y [mm] 0.8 M
lm2z [mm] 99 M lcx [mm] 38 M
lcz [mm] 30 M θh[deg] 85 M
E[KPa] 5 C ν 1 C
µh[Ns/m] 1e2 C µε[Ns/m] 1e2 C
µα[Nms/rad] 1e2 C

is the first that investigated low-cost analytical models for
deformation of fabrics as a part of a hybrid system. Such
models are important for wearable robotics research, and
service robots which may deal with fabrics in their tasks.
As a part of this case study, we showcased how the package
can be used to easily design a nonlinear controller for a
hybrid system based on the system nonlinear map (system
Jacobian).

As mentioned earlier, a fluent user interface needs to be
as close as possible to human language. On the software
package development side, we plan to develop a dynamic
High-Level Language for our package to make it more
accessible for less-expert researchers. Some preliminary
results on this ongoing effort are presented in (Sadati
et al. 2019b). Our long term goal is enabling robotic
agents to flexibly produce abstract models of other robots
and mechanisms in their environment. On the hybrid-
system modeling side, we plan to test our package for
observation and control of multi-arm continuum appendages
and manipulators for medical applications, e.g. narrow port
surgery and soft tissue probing. As a result, the package will
be benchmarked for a hybrid system with 3D continuum
geometry (the tissue sample).

A similar study to what presented here for 1D continuum
geometries (rods) on the numerical performance and
accuracy of different modeling assumptions is needed
to compare different modeling methods for 2D and 3D
continuum geometries in a hybrid system. The current
package develops multiple copies of mostly similar codes

in the case of the EBA for which most of the terms can be
considered sparse vectors/matrices. We are looking into more
efficient ways of employing the computational capacity and
memory of the computing unit by only storing the none zero
elements and collocating the system EOM in the run-time
stage, using Matlab sparse function.

One of the interesting observations in our comparative
study was the lower sensitivity of the EBA to nonlinearities
introduced by considering the material hyperelasticity. We
plan to look into why the same is not observed for the EBR,
giving the same nature of both techniques. We also plan
to further investigate the numerical stability, convergence,
and computational efficiency of the introduced methods and
the TMTDyn software package in the near future. This is
possible with performing standard numerical and modeling
tests in comparison to analytical solutions or results from
high fidelity modeling methods such as FEM. Our final goal
is to use this package for hybrid force and position control
and geometry, force and stiffness estimation in soft robotics
research.
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Appendices
1. Rigid-Body Kinematics Using Quaternions
Unit quaternion representation of a rotation φ around a unit
vector ρ̂[1×3] is Q = [Q0, Qρ], where Q0 = cos(φ/2) and
Qρ = sin(φ/2)ρ̂, hence, basic rotation around frame x-, y-
, or z-axis is simply setting ρ̂ to î, ĵ, or k̂ respectively.
Alternatively, if a general 3D rotation/orientation is
described with the three elements of Qρ, we have Q0 =√

1−QρQ>ρ . The method of defining a rotation with only
three parameters does not suffer from singularity around 0
[deg] (which is associated with the singularity of CC and
series rigid-link kinematics of continuum rods at straight
configuration). Note that Q0 = −

√
1−QρQ>ρ is also an

equally valid scalar part.
Following any of the above formulations, by definition,

can never produce a quaternion with both positive and
negative scalar part and employ the whole space of
quaternions, rather only the ones with positive or scalar
parts. As a result, this method will suffer from inherent
representational singularities, just like Euler angles do but
for rotations approaching ±180 [deg] about any axis. One
should use such method only for rotations ∈ (−π, π), not
inclusive of ±π. An alternative is defining a non-unit
quaternion rotation with all the four elements Q̃ where

Q = Q̃/

√
Q̃Q̃>. An alternative is presented by (Rucker

2018) where the normalization step is implemented in the

conj function as conj(Q̃) = [Q̃0,−Q̃ρ]/
√
Q̃Q̃>. It is also

possible to modify the existing operators, e.g. multiplication,
to incorporate a normalizing term to deal with a non-unit
quaternion, as in (Tunay 2013; Till and Rucker 2017; Rucker
2018). We use the former in this paper and implemented
in the software package. While most of the derivations are
based on a unit quaternion, non-unit representations are
mentioned throughout the text where applicable.

Consecutive local rotations are handled by simple right-
hand multiplication R1:n = Πn

i=1Ri, or matrix multiplica-
tion of quaternions as Q1:n = Q×1:n−1Qn, where Q× ( × for
a quaternion vector) is equivalent to a matrix product as

Q× =


Q0 −Qρ1 −Qρ2 −Qρ3
Qρ1 Q0 −Qρ3 Qρ2
Qρ2 Qρ3 Q0 −Qρ1
Qρ3 −Qρ2 Qρ1 Q0

 , (46)

and 1 : n means considering all the instances with index
1 to n. For rotating/transforming a vector ρ to ρr
with quaternions, we have ρr = Rρ with rotation matri-
ces and [0, ρr] = (Q× [0, ρ])×conj(Q), where conj(Q) =
[Q0,−Qρ] is the definition of quaternion conjugate, Q−1 =

conj(Q)/
√
QQ> is quaternion inverse, andQ−1 = conj(Q)

for a unit quaternion. We present the above quaternion
manipulation by ρr = Q ∗ ρ in this paper for simplicity.

A translation (ρt) followed by a rotation (R or Q)
can be represented by a 4× 4 transformation matrix Γ =
{R, ρt} as Γ(1 : 3, 1 : 4) = [R, ρt],Γ(4, 1 : 4) = [0, 0, 0, 1],
where consecutive transformations are handled by simple
multiplication of Γ as Γ = Πn

i=1Γi, and a vector transforma-
tion by ρr = Γρ. We use a similar quaternion transformation

pair as Ξ = {Q, ρt}, where consecutive transformations are
handled by Ξ1:n = {Q1:n, ρt1:n}, in which ρt1:n = ρt1:n−1 +
Q1:n ∗ ρtn and Q1:n = Qt1:n−1imesQn. We present the
above quaternion pair transformation as Ξ1:n = Ξ1:n−1 ? Ξn
in this paper for simplicity. All the vectors in this paper are
with respect to and expressed in the system reference frame
unless stated otherwise.

Each joint can be described as a set of transformations (Γj
or Ξj) and the system kinematics represents the joint axis
transformations with respect to and expressed in the system
reference (inertial) frame. Then, the linear velocity of the
body COM, to which the joint (j) is immediately connected
in the system main kinematic chain, is ρ̇m = Tρm q̇, where
Tρm = ρm,q is the Jacobian of the transformation that maps
the link COM position vector between the Cartesian and the
system state spaces, ρm = Ξj ∗ ρcom is the COM position
vector, q is the system state (DOF) vector, ρcom is the COM
local vector (with respect to and expressed in local frame),
superscripts ( ˙ ) and (¨) are for the first and second temporal
derivatives, and subscript ( , ) represents partial derivatives as
X,x = ∂X/∂x. The COM rotational velocity Ωm is derived
with respect to the reference frame but expressed in the link
local frame, since it is easier to calculate the link second
moment of inertia with respect to the link local frame. We
have, Ωm = TQj q̇, where TQj = (2(Q−1

j )×Qj,q)[2:4,1:nq ] is
the Jacobian of the transformation that maps the link COM
orientation quaternion to the system state space, and nq is the
number of system states (DOFs). Finally, the Jacobian of the
transformation map to the system state space (Tm) become

Tm =

[
Tρm 0

0 TQj

]
. (47)
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2. TMT vs. Lagrange Method
Derivation steps of the TMT are compared with those of
the Lagrange method for an unconstrained system with
conservative forces is presented in Table 12. The fewer
steps associated with the TMT method is the reason for
implementing it in our TMTDyn package.
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System Kinematics

Potential H and kinematic K energies
and forming Lagrangian L

L,q,L,q̇

dL,q̇
dt

Lagrange EOM terms

Collecting coeff.s of q̈
and form M̄

Lagrange Method

M , T = χ,q , and f for inertial,
loads, and compliant elements

D = (T q̇),q, M̄ , d̄, wk

TMT Method

EOM closed vector-form
M̄q̈ = ...

Figure 12. Derivation steps of the TMT vs. the Lagrange method for an unconstrained system with conservative forces. Both
methods start with the same system kinematics and result in the same closed form for the EOM. Terms in the same box can be
handled in parallel. Lagrange method needs two extra steps. The step involving the collection of system states coefficients and
forming M̄ is very tedious and computationally time-consuming when using commercially available symbolic mathematical
packages, e.g. provided by Matlab or Maple software.
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3. Package Structure & Implementation
The TMTDyn package elements are explained further below.

System Declaration
The interface of our package, or more broadly a HLL or
DSL, need to be fluent, i.e. it has a human language-
like flow. Properly named elements and utilizing a human
language-like structure are the necessary considerations to
this end. Use of method completion, where suggestions
are provided to complete a syntax, or a dynamic language
environment, where an agent can interpret the intention of
the user from a less strict syntax structure, are the more
advanced steps toward a fluent user interface Fowler and
Parsons (2011). While method completion and dynamic
language are not implemented in the current step of our
package development, we have tried to use proper names and
develop a sensible structure based on standard interpretation
of kinematics of a multi-link mechanism, e.g. similar to DH
(Denavit–Hartenberg) parameters Craig (2009). As a result,
basic knowledge about the kinematics and dynamics of
multi-link mechanisms helps to understand the implemented
user-interface.

The package control parameters, and the system properties
(geometrical, inertial and stiffness) and inputs (actuator
inputs, external loads) are described in system.m file, using
a text-based High-Level Language. The HLL inputs are
Matlab structure variables that store the package control
parameters (par), properties of the simulation environment
(world), and a dynamic system consisting of bodies (body),
joints (joint), mesh elements from a CAD (Computer-
Aided Design) file (mesh), and external loads (exload).
We continue with our simple example to show how
different elements of the package user-interface can be
used. The fields, types, input options, default values, and
suggested unit for these structure variables are explained
in detail in Appendix 4 Table 13-16. Then different
modules are called respectively based on the package
control parameters par. These modules derive the EOM
(tmt eom derive(...)), solve static equilibrium (equil(...)),
perform linear modal analysis (modal(...)), simulate the
system dynamics (dyn sim(...)), present and record simple
animation of the system geometry and motion (anim(...)),
and perform user-provided post processes on the results
(post proc(...)). Pseudocode for system.m is presented in
Appendix 5 Algorithm 1.
par contains the package control (par.anim,

par.mov, par.derive, par.fun, par.mex, par.equil,
par.modal, par.dyn, par.nint) and modeling (par.sym,
par.var) parameters. The modeling parameters, e.g. system
dimensions, can be set to numeric values or symbolic
variable, stored in par.sym. It is possible to vary the
symbolic values, stored in par.sym, after deriving the
system EOM to provide flexibility. The numeric values
remain constant speeding up the derivation, function
optimization/generation and simulation processes. par.sym
is considered as an input for the generated functions from
derived EOM. par.var contains the numeric values for
par.sym to be set after EOM derivation, e.g. for numerical
simulation. For example, if we want to derive the EOM for
our simple example which gives us flexibility to change the

structural parameters (l0,m1, I1), input (fu3 , τu2 ), or control
(ucz , ucθ ) values later, we can use the following syntax in
Matlab language

syms l0,m1, I1, fu3 , τu2 , ucz , ucθ ; (48)
par.sym = [l0,m1, I1, fu3 , τu2 , ucz , ucθ ];

Then par.var stores the numeric values for par.sym that
can be changed before or during numerical simulation.
For detailed explanation of package control parameters see
Appendix 4 Table 13-16.

world.g stores the gravity vector as [gx, gy, gz]. It is
world.g = [0, 0,−9.81] in the case of our simple example.
body, joint, and exload store the system structural
parameters. Assume a system with nm different bodies
or body sets (body), nj joints or joint sets (joint), and
nl external loads (exload). A single joint or exload my
describe a set of nd elements with similar properties, which
we call a mesh. Series of links with relative DOFs, nodes
with absolute DOFs, and any arbitrary interconnections
between the nodes in a mesh are possible. A joint with
rom field defines a continuum rod modeled with the ROM.
A mesh geometry cannot be defined with a ROM joint. Our
simple example has a body (nm = 1), a joint (nj = 1) in the
case of the ROM, SRL, and EBR, or two joints (nj = 2) in
the case of the EBA. The two joints for the EBA model is to
define the body absolute DOF as well as the Euler-Bernoulli
beam connecting it to the ground. We can assume an external
load exload at the tip too (nl = 1).

The first joint that is connected to a body is a member of
the Main Kinematic chain (MK). Any other joint connected
to a body is a compliant element (if spring, damp, or input
fields are defined) or a geometric constraint (if fixed field is
defined). A body that is connected to a mesh joint defines
the inertial properties of the mesh elements. An alternative
way to define a mesh body is importing a mesh CAD file. The
mesh structure stores the CAD file name, a body field to be
assigned to the mesh nodes, and two joint fields to define the
bodies absolute DOFs (with respect to reference frame) and
to assign to the mesh edges. To generate a mesh geometry
with a ROM joint, ameshwith such joints can be defined to
assign to a CAD file imported geometry. Brief descriptions
for the fields in each structure variable are provided below.
We use SI units throughout this paper.

body has the following fields. m is the body mass, I
is the 3× 3 inertia matrix, .l com is the COM position
vector, and tip is the link tip position vector, both in the
local frame. If a body describes a mesh with nd elements,
each of the above fields can have different values for each
mesh elements. A nd × 1 column vector is assigned to
each parameter that each row stores the value for a mesh
element with the corresponding row number. We follow the
convention throughout this paper, that individual values for
mesh elements are stored in a different column of a vector or
matrix, except for I that becomes a 3× 3× nd cube variable.
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For our simple example we can write

body(1).m = m1; (SRL,EBR,EBA) (49)
body(1).I = I1.eye(3);

body(1).m =
m1

l0
; (ROM)

body(1).I =
m1r

2
1

4l0
.eye(3);

where eye(3) is a Matlab function that generates a 3× 3
unit matrix. In case of the ROM continuum elements, all
the fields present differential values with ”per unit length”
unit. nm is the total number of bodies defined, im is their
unique numerator, and nmd = Σnmi=1ndi is the total number
of masses defined in the system.
joint describes the system geometric connections and

defines one of the following: i) system DOFs if being a
member of MK, ii) a continuum ROM element if it contains
rom filed and is in MK, iii) a compliant connection, e.g.
spring, viscous damper, or actuator input, if not being a
member of MK and contains any of spring, damp, or input
fields, iv) a geometric constraint if the fixed field is defined
and joint is not in MK. It can define a mesh too if it is
connected to multiple instances of a body, in any of the above
cases, except for a ROM joint.
joint has the following fields. rom defines if the joint

is a ROM link. rom has one filed order setting the ROM
polynomial order (nr) that should be defined (SBD). If the
ROM with a 1st-order polynomial is considered to model our
simple example, we write

joint(1).rom.order = 1; (50)

Otherwise, we do not need to define it.
first and second are 1× 2 or 1× nd + 1 row vectors

defining the body number and instance/axial location that
the joint ends are connected to. The first element of the
row defines the body number. Either of the ends should be
connected to a single body. In the case of a 1× 2 vector, i) the
second element defines the ROM continuum beam length, if
joint is a ROM (has rom field) in MK, ii) it is axial location
of contact on the continuum beam, if joint is not in MK and
the target body is a ROM, or iii) it is the instance of the body
that the joint is connected to if joint is not in MK and the
target body is not a ROM.

There is a single joint in our simple example that connects
the beam to the ground. As in Appendix 4, we can leave
joint(1).first undefined since its default value is zero, i.e.
the joint first end is connected to the ground. For the joint
other end, depending on the chosen modeling approach, we
write

joint(1).second = [1, l0]>; (ROM) (51)
joint(1).second = 1; (SRL,EBR,EBA)

In the case of a 1× nd + 1 vector, i) the joint creates a
mesh with nd elements if joint is in MK, and ii) it connects
to instances of the body defined in 2 : nd + 1 elements if
joint is not in MK. joint cannot be a ROM when defining a
mesh. Leaving these fields completely empty (fields’ default
value) means connecting to the reference frame (ground),
and if a scalar is assigned, the first instance of the body

is used. first and second must have the same number of
elements if both are defined and their assigned vectors have
three or more elements.

Each joint can define nt number of consecutive
transformation between its ends that are defined in the tr
field. Each tr has a translation followed by a rotation pair
defined in trans and rot fields with zero default values.
trans is a 1× 3 position vector in local frame. rot can be i) a
principal axis and rotation set defined as elements of a 1× 2
vector respectively (eg. [2, θ] defines a rotation of θ around
local frame y-axis), ii) a 1× 3 vector defining the axis of a
unit quaternion (Qr), iii) a non-unit quaternion 1× 4 vector
if the first element is inf , or iv) an angle-axis 1× 4 vector,
if the first element is any other number, with the first element
as the angle (cannot handle DOF).
trans and rot can define a fixed transformation, if their

elements are set to numeric values, or a free DOF if set
to inf . The properties for each DOF are defined in a dof
field with zero default value. nh is the number of DOF
definitions and nq = Σ

nj
j=1nhjndj is the total number of

states (generalized coordinates) in a system.
In the case of the SRL, EBR, and EBA there are two

transformations (nt = 2) for the joint in our simple model,
one the axial transformation of l0 and one the shears and
bending DOFs. However, the way the DOFs are defied is the
key element that distinguishes between the four presented
kinematic models. For the SRL case, we have transformation
ε0 along local z-axis, followed by a rotation α02

around
reference frame y-axis,

joint(1).tr(1).trans = [0, 0, l0]; (52)
joint(1).tr(2).trans = [inf, 0, inf ];

joint(1).tr(2).rot = [2, inf ];

The EBR case is similar but with a translational strain ε0
along local z-axis, followed by a bending strain α02 around
reference frame y-axis,

joint(1).tr(1).trans = [0, 0, l0]; (53)
joint(1).tr(2).trans = [inf, 0, inf ];

joint(1).tr(2).rot = [0, inf, 0];

The EBA defines the general translation and rotation
(expressed with quaternions) of a free mass in 2D space,

joint(1).tr(1).trans = [0, 0, l0]; (54)
joint(1).tr(2).trans = [inf, 0, inf ];

joint(1).tr(2).rot = [0, 0, inf, 0];

Note that a unit quaternion is used, resulting in a
system with three DOFs [x1, z1, Qr2 ]. Alternatively, a
non-unit quaternion can be used as joint(1).tr(1).rot =
[inf, 0, inf, 0]; resulting in a system with four DOFs
[x1, z1, Q01 , Qr12 ].

In the ROM case, join have only one transformation
(nt = 1) that defines the free directions of the curvilinear
frame

joint(1).tr(1).trans = [inf, 0, inf ]; (55)
joint(1).tr(1).rot = [0, 0, inf, 0];
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Here, unit or non-unit quaternions should be used to define
the curve bending/torsional DOF. Similar to the EBA case,
the system may have three or four DOFs depending on our
choice of quaternion representation of rotation.
dof has the following fields mostly with zero

default values: initial value (init), initial values
axial location for a ROM Joint (inits), kinematic
constraint between DOFs (equal2), elastic properties
in spring (spring coefficient(spring.coeff ), spring
initial value (spring.init), and initial compassion ratio
(spring.compr)), active direction (dir), damping properties
in damp (viscous damping coefficient (damp.visc) and
damping power (damp.pow)), and direct actuator input
(input).
init and inits are for the ROM elements, where the

element base is considered fixed at the base of the joint local
frame. Hence, there is no need to define an initial value at
s = 0.

The spring/damping/input elements act in parallel to the
DOF (having the same displacement). If the spring.init is
set to nan, this value is assigned automatically based on the
system initial configuration (system DOFs’ initial value).
dir sets the active direction of these elements, not the DOF

itself, and accepts a scalar value in [0,±1].
equal2 handles kinematic constraints between different

DOFs. Instead of defining a new state, the new DOF is set to
equal with the referenced one in the equal2 value. However,
a new set of spring, damping, and input elements are
defined with their own dir property.

In the case of our simple example, all the models have
three DOFs with an initial value of 0. It is also bidirectional
without a compression ratio. So we can leave most of the
dof elements undefined. The beam stiffness acts in parallel
to these states for the SRL and EBR models, where for the
elements in q with the order that they are appeared in tr(1),
we have

joint(1).dof(1).spring.coeff =
G1πr

2
1

l0
; for ε01 , (56)

joint(1).dof(1).damp.visc = µε;

joint(1).dof(1).damp.pow = ν;

joint(1).dof(2).spring.coeff =
E1πr

2
1

l0
; for ε03 ,

joint(1).dof(2).damp.visc = µε;

joint(1).dof(2).damp.pow = ν;

joint(1).dof(2).input = fu3 ;

joint(1).dof(3).spring.coeff =
E1πr

4
1

4l0
; for θ1 or α02 ;

joint(1).dof(3).damp.visc = µα;

joint(1).dof(3).damp.pow = ν; .

joint(1).dof(3).input = τu2 ;

The above syntax changes slightly for the EBA model
where there is no physical stiffness and damping that act
parallel to the system states. So we leave all the elements
of joint(1).dof(1) undefined.

For a ROM joint, init is a matrix with 3 rows, for the
3-value Cartesian location of a point at an axial location
defined by init s, and an unlimited number of columns,
the number of points along the axis which is equal to the
number of init s elements. An inverse problem is solved

in the check.m file to find proper initial values for the
coefficients of an nr-order polynomial that passes through
all these points. An initially curved beam can be defined as
a ROM body by setting proper values for the init and init s
fields.

In the case of our simple example with the ROM, we leave
all the elements of joint(1).dof(1) undefined except for
the initial condition in the case of the ROM. Any number
of points along the beam can be used to define the initial
shape of the polynomial curve. As a general rule, we may
use (1 : nr)lm for initially straight curve as

joint(1).dof(2).init = l0; (57)

where the 1st and 3rd DOFs remain zero along the curve
initial shape. The code automatically adds the base point
ρ(s=0) = [0, 0, 0] to the above set of points.

A joint defines a mesh by assigning matrices and vectors
with nd rows to its fields, except for a ROM joint. All
instances of a mesh joint have the same tr but can have
different DOF properties. This is possible by setting the dof
sub-fields to matrices with nd rows.

A joint in MK does not need any definition for a
transformation regarding the connection to the second body
frame. In the case of MK, the second body local frame is
assumed to be attached to the joint itself. tr2nd defines such
transformation with respect to the second body local frame
if joint is not in MK. We name these ”linking” joints. They
have the same fields as tr but cannot have inf elements, i.e.
define any new DOFs. A linking joint can have dir, spring,
damp, and input fields as stated above. A linking joint
can define an elastic Euler-Bernoulli beam by assigning six-
column vectors/matrices to these fields. The six columns
correspond to [ξ, ζ] states of an Euler-Bernoulli beam as in
Eq. 7.
dir field, here, can be a vector of values in [0,±1] to

set the active direction for each of the local frame directors
individually, or be a scalar and assign the same feature to all
the directions. The former feature can be used to model soft
contacts with a surface where the contact point moves along
the surface, e.g. bouncing of a ball on a surface while it can
freely move parallel to the surface.
spring.init values can be set to nan for a linking EB

beam. By default, such a beam is defined along the z-axis
of the frame defined by tr. Alternatively, a new right-hand
orthogonal frame is calculated using the aforementioned z-
axis and the director axis defined in xaxis field. The matrices
assigned to these fields can have nd rows, to define and/or
assign different values to elements of a mesh joint. If a row
vector is assigned for a mesh joint, same values are assigned
to all the mesh elements.

For our simple example, in the case of the EBA, an Euler-
Bernoulli beam connects m1 (joint(2).second = 1) to the
ground (there is no need to define joint(2).first element.).
This is defined using a linking joint(2) as

joint(2).second = 1; (58)

joint(2).spring.coeff = [
G1πr

2
1

l0
, 0,

E1πr
2
1

l0
, 0,

E1πr
4
1

4l0
, 0];

joint(2).spring.init = [0, 0, nan, 0, 0, 0];

joint(2).damp.visc = [µε, 0, µε, 0, µα, 0];

joint(2).damp.pow = 2;

joint(2).input = [0, 0, fu3 , 0, τu2 , 0];
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Table 10. TMTDyn package structure. Underlined file names
are provided or edited by the user (continued in Table 11).

Note that, although the model is a planar model, we defined
the linking beam joint as a 3D link.

A ROM joint is similar to a linking joint in having the
above fields and definition of an Euler-Bernoulli beam with
a few differences. The assigned values for a ROM joint
should have the same number of columns as the order of the
ROM polynomial. Also, spring.init values should not be set
to nan, neither a mesh can be defined for a ROM joint. In
the ROM case for our simple example, the same fields as in
Eq. 58 are defined for joint(1).

Finally, refbody, fixed, and control define the reference
frame in which the constraint is defined, constrained
directions, and their desired control value. refbody is
assigned similar to first or second fields of a body element.
The constraint is defined in the local frame of the body
which is defined by refbody. If refbody is not defined, the
constrained are defined in the reference frame. When a ROM
body is set as refbody, the axial position of the local frame
should be provided or the tip location is assumed to be the
default position of the body local frame (see Appendix 4).
fixed accepts a boolean vector and a geometric constraint

is defined for each direction that is set to 1. A 1× 3 vector
can be used to constrain local Cartesian directions ([x, y, z])
or a 1× 6 vector to constrain the different states of an EB
beam ([α, ε]). This does not override the spring, damp,

Table 11. ...continued from Table 10.

or input fields for the constrained directions. The dynamic
actions associated with the compliant elements parallel to
the constrained directions should result in zero. A spring and
damper in parallel to these directions act as PD control terms
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to minimize the numerical simulation errors in satisfying the
constraints.
control can be set to a symbolic variable and then

updated during the simulations with the desired acceleration
(since EOM is of 2nd differential order) of the constrained
geometry. Setting it to zero (its default value) fixes the
constraint. It is useful for designing a Jacobian nonlinear
controller. The dir field is ignored for constraints. Also
fixed field is ignored for a ROM joint.

For the constrained dynamic model presented in Eq. 43,
we need to define a constraint joint (joint(3) for the ROM,
or joint(2) for the SRL, EBR, and ROM) that defines a
constraint between the beam tip (body(1)) and the ground
and controls the tip vertical position z1 and angle θ1 as

joint(3).second = 1; (59)
joint(3).fixed = [0, 0, 1, 0, 1, 0];

joint(3).control = [0, 0, ucz , 0, ucθ , 0];

where uc is the control term, e.g. PID term, to be updated
in the int mid step.m file for each time step during the
numerical simulation.

An alternative way to define a complex geometry is
importing a CAD mesh file with extension ”IGES” or ”STL”.
Matlab igesToolBox provided by Ellenberg (2019) is used
to import the files. The mesh structure has a file name
to store the CAD file name, tol to set the points’ overlap
tolerance of the CAD file, tr to set initial position and
orientation of the imported body, a body and two joint sub-
structures with the same fields as stated before. A body is
assigned to each node of the CAD file that at least two
edges are attached to it. Nodes that are only attached to
a single edge are assumed fixed connecting points with
the ground. Each ”body” has absolute DOFs, described in
mesh.joint(1). A linking joint is assigned to each edge
of the CAD file based on mesh.joint(2). The CAD-file
coordinates transform based on tr filed and then used to
define the initial condition of the imported elements. The
links are numbered based on the order of extracted lines from
the CAD file and overlapping of the nodes. Hence, it is hard
to predict the assigned numbers to the links and masses. A
plot is shown at the end of the importing process with labels
showing the assigned mass numbers.

The imported bodies will be added after all the previously
defined body instances, hence their labels may start with
numbers greater than 1. The imported joints will be
added before all the previously defined joints to satisfy our
definition of MK joints. The import process is handled
in the mesh import.m file. This module returns structure
vectors for created body and joint instances. Only onemesh
element can be defined (one CAD-file can be imported) at the
moment. Pseudocode for this file is presented in Appendix 5
Algorithm 2.

External loads on the system are defined in exload. nl is
the number of defined external loads. exload has exbody,
refbody, and ftau fields. exbody defines the exerting body
number and the body instance, in case of a mesh, or axial
location of the external load, in case of a ROM body.
exload can define a set of loads if a matrix with multiple
rows is assigned to exbody, the same as defining a mesh
with a joint that is explained earlier. The exerting point

location in the local frame is defined by the trans and
rot fields. The external force is defined as a 1× 6 vector,
in the form of [f, τ ]l, in the ftau field. ftau elements
can be set to symbolic parameters and later updated in the
int mid step.m file during the simulation steps. ftau is
measured in the local frame of the body which is defined
by refbody (similar to a constraint joint). If refbody is not
defined, ftau is then measured in the reference frame. When
a ROM body is set as refbody, the axial position of the local
frame should be provided or the tip location is assumed to be
the default position of the body local frame (see Appendix
4).

The external tip load in our simple example are exerted at
body(1) but is defined in the reference frame. We may define
it as

exload(1).exbody = 1; (60)
exload(1).ftau = [fl1 , 0, fl2 , 0, 0, 0];

Most of these fields can be left undefined or empty.
The check.m module assigns the default values, formats
the input matrices, and performs some simple complication
checks for the parameters. For a complete explanation of
the above fields, and their acceptance and default values
see Appendix 4. Pseudocode for this file is presented in
Appendix 5 Algorithm 3. Examples of different hybrid
systems are provided later to clarify the application of the
HLL and text-based user interface. The inputs are then
passed to the tmt eom derive.m module to derive the
system TMT EOM. After calling the mesh import.m and
check.m modules, the code proceeds to derive the system
TMT EOM and generate optimized Matlab, C-mex, and/or
C functions.

TMT EOM Derivation & Optimization
The system TMT EOM is derived in a set of Matlab structure
variables. First the code iterates through all the joint vector
elements (nj), their instances (nd) and the ROM order (nr).
This step identifies inf elements in trans and rot sub-
fields, and generates the system states (q, q̇) and collects the
elastic fkq , viscous damping (fvq ) and input (fuq ) actions
in parallel to each DOF for the whole system. This step
calculates each joint instance rotation (joint(ij).Q(id).loc)
and transformation (joint(ij).TQ(id).loc) in the local frame
too.

Then the code iterates through all body vector elements
(nm) and finds their MK joint. The joint type (the
ROM or not) and the number of instances (nd) define the
type and number of mass elements in the system. The
MK joints rotation (joint(ij).Q(id).abs) and transformation
(joint(ij).TQ(id).abs) in the reference frame are calcu-
lated. The terms for each inertial element (M for M̄i, T
for Tmi , Dd for Dmi , and fg for fgmi ) are stored as fields
of a mass structure vector. These terms are collected for
the whole system in single variables (M for M̄ , T for Tm,
Dd for Dm, and fgv for fgm ). r jtips[nmd × 6] matrix
stores the base and tip position vector of all the mass vector
elements. rom.mass stores zeros for rigid links and length
of the beam for the ROM rods.

Then the code iterates through all the joint vector
elements (nj) and their instances (nd) to find the linking
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joints and constraints. The joint type (axial element, an
EB beam or a ROM beam) defines the type of compliant
elements in the system. The terms for each linking joint
(Tt for T>j , kx to calculate fkj , vd to calculate fvj , dl for
ρ̄j , in for fuj , k mat for Kj , v mat for Vj , and dir for
joint active direction) are stored as fields of the sprdmp
structure vector. These terms are collected for the whole
system in single variables (fj k for fkj , fj vd for fvj ,
fj in for fuj , fj sdi for fkj + fvj + fuj , fj k mat for
Kj , and fj vd mat for Vj). The r ks[nmd× 6] matrix
stores the base and tip position vector of all the sprdmp
vector elements. rom.sprdmp stores zeros for rigid links
and length of the beam for the ROM rods. The code checks
if any of the link directions are fixed. lambda row vector and
cnst structure vector store the terms for constrain (lambda
for λci , T for Tci , D for Dci , and in for uc). Tcn for Tc,
Dcn for Dc, and Ccn for uc are single variables that collect
all the constraint terms in the system.

Finally, the code iterates through all the exload vector
elements (nj) and their instances (nd). The terms for each
external load term (Tt for T>li and ftau for fli ) are stored as
fields of the loads structure vector. These terms are collected
for the whole system in single variables (Ttef for T>l and
ftau ef for fl).

The structure vectors are used in a framework as in Eq.
21 while the single variables that collect the terms for the
whole system form the EOM closed vector-form for the
whole system. We use the structure vectors to have more
flexibility in handling different link types and for faster
derivation and optimization of the derived parameters. For a
complete definition of the variable names refer to Appendix
5 Algorithm 4-6 and source codes available at (Sadati 2017).

Derived parameters are passed to save func.m and
save mex.m modules for converting to Matlab, C, and
C-mex functions and are stored as separate files in a
folder named ”code” in the active Matlab folder. Matlab
matlabFunction, ccode, and codegen functions are used
to perform this task. These functions optimize the derived
equations by searching for and collecting repeated terms in
the code. C-mex functions are only available for structure
vectors. The generated Matlab functions are used to debug
the model and code, by setting par.equil, par.dyn, and
par.modal to 1. Once the model is debugged, C-mex
functions can be used for increased numeric performance, by
setting par.equil, par.dyn, and par.modal to 2. Pseudocode
for these modules is presented in Appendix 5 Algorithm 7.

Dynamic System Analysis & Post-Processing
The system EOM are constructed using the generated
functions in the previous step. The save eom mex.m
module generates the EOM for dynamic and static analysis.
The system states are named Z consisting of the geometric
states q and Lagrange multiplier λc vector and their temporal
derivatives.

This module generates the EOM code as a string variable
(string all) and stores it as a Matlab function file, using the
Matlab fprintf function. The module calls fj k, fj vd,
and fj in to account for the compliance and inputs in
parallel to the system states. Then it iterates through all
the mass vector elements and generates a piece of code
that calculates and sums up the summation in Eq. 19. The

code performs a spatial integration if the mass is a ROM
element based on its corresponding element in rom.mass.
Then it generates the necessary code for the linking joints
in sprdmp, external loads in loads, and constraints in the
cnst structure vectors. Finally, the code to calculate Eq. 21
is added to string all. The differential terms are omitted for
static equilibrium analysis. string all is written in EOM.m
file for dynamic simulation and in EOM eq.m for static
analysis.

A C-mex function is generated for each of the
above Matlab functions. Pseudocode for this module is
presented in Appendix 5 Algorithm 8. A similar module
(save modal mex.m) generates necessary equations for
linear modal analysis based on the system linearized EOM
as in Eq. 39. The generated functions are stored in the
EOM modal.m file. par.equil, par.modal, and par.dyn
values control if an analysis is performed and which
generated function is used.

Static equilibrium analysis is used to solve for the static
model of a system or initial equilibrium point before a
dynamic simulation. If par.equil is not zero, the equil.m
module is used to solve the system static equilibrium.
Matlab’s fsolve function is used to solve the static
equilibrium problem. EOM eq.m is used if par.equil = 1,
otherwise C-mex function is used. The dyn sim.m module
is used to perform a dynamic simulation, if par.dyn is
not zero. Matlab’s ode15s or ode113 functions are used
to perform a numerical temporal integration, using the
EOM.m function if par.dyn = 1 or using the generated C-
mex function otherwise.

The results (analysis time t and states Z) are passed to the
anim.m module to generate and record a simple animation
of the results. The simple plots show rigid links with
continuous lines, the ROM continuum links with continuous
line curves, and compliant joints (axial elements or beams)
with dashed lines. par.anim and par.mov control if an
animation is generated and/or recorded to a video format
file. The post proc.m module is considered to perform user-
specified post-processes on the generated data. This file does
not have any code by default.

In ”Case Studies & Validation” section, different examples
of modeling multi-dimensional continuum and hybrid
systems are provided. TMTDyn enables us to provide
comparisons between numerical performance and accuracy
of using different modeling assumptions and complexity
levels. This helps with deciding the most appropriate method
for similar hybrid-system modeling tasks.
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Table 13. HLL inputs’ symbol, definition, type, dimension, proposed unit in SI, default values, and user options. nm is the number
of bodies, nd is the number of repeated bodies in a mesh geometry, nt is the number of consecutive relative transformations, nh is
the number of DOF definitions, nq is the number of states (generalized coordinates), nr is the number of polynomial order in
reduced-order model, nj is the number of joints/connections, and nl is the number of external loads in a system. i is a general
counter, [ ] is an empty variable, - is for not defined, SBD means ”Should Be Defined”, ROM is for continuum body Reduced-Order
Model, MK for joint on main kinematic chain, and N,Z,R are for Natural, Integer and Real number sets, respectively. Different
possible presentations of each variable are discussed in extra rows shaded with dark gray (continued in Table 14).

Symbol Definition Type [Dimensions] Default [Unit] Input Options

par control param.s & var.s struct - SBD
par.anim animation control boolean 1 -, [ ], 0: off, 1: on
par.mov save video control boolean 0 -, [ ], 0: off, 1: on
par.derive derivation control boolean 1 -, [ ], 0: off, 1: on
par.fun derived function type integer 1 -, [ ],...

1: single Matlab structures for each element,...
2: separate Matlab functions for each element,...

3: Matlab functions for each EOM matrix/vector,...
4: similar to (3) but in C language

par.mex C-mex file generation boolean 1 -, [ ], 0: off, 1: on
par.modal linear modal analysis ∈ [0, 1, 2] 1 -, [ ],...

0: off, 1: use with Matlab function, 2: use C-mex function
par.equil solve equilibrium point ∈ [0, 1, 2] 1 -, [ ],...

0: off, 1: use with Matlab function, 2: use C-mex function
par.dyn dynamic simulation ∈ [0, 1, 2] 1 -, [ ],...

0: off, 1: use with Matlab function, 2: use C-mex function
par.init spatial integration steps integer 50 -, N

world system general properties struct - -, [ ]
world.g gravity vector vector [1× 3] [0,0,0] [m/s2] -, [ ], R[1×3]

body(im) inertial elements struct [1× nm] - SBD
body(im).m body mass double [nd × 1] 1e-9 [Kg] -, [ ],...

R: in a mesh: same value for all elements,...
R[nd×1]: individual values for each mesh element

body(im).I body inertia double [3× 3× nd] 1e-9 [Kg.m2] -, [ ],...
R[3×3]: same value for all elements in a mesh,...

R[3×3×nd]: individual values for each mesh element
body(im).l com COM local pos. vec. double [nd × 3] [0,0,0] [m] -, [ ],...

R[1×3]: same value for all elements in a mesh,...
R[nd×3]: individual values for each mesh element

body(im).tip tip local pos. vec. double [nd × 3] 2×l com [m] -, [ ],...
R[1×3]: same value for all elements in a mesh,...
R[nd×3]: individual values for each mesh element

joint(ij) connections & actuation lines struct [1× nj ] - SBD
joint(ij).rom ROM details struct [ ] if ROM- .l (SBD),...

else- -, [ ]
... .rom.order ROM polynomial order integer - if ROM- N (SBD),...

else- -, [ ]
joint(ij).first first connecting body double [1× 2or(nd + 1)] [0,0] -, [ ],...

N: body number, if MK- single mass, else- attached to single body or to 1st element in a mesh,...
[N,NorR][1×2]: body number first(1), attached to element number first(2) (∈ N) in a mesh or...

or axial length s = first(2) (∈ R) in a ROM body,...
Z[1×(nd+1)]: body number first(1), if MK- creates a mesh with nd bodies,...

else- attached to elements with number first(2 : ...) in a mesh
joint(ij).second second connecting body integer [1× 2or(nd + 1)] [0,1] same as .first except...

[N,NorR][1×2]: body number second(1), if MK- creates a ROM continuum rod with length second(2) (∈ R)
joint(ij).tr(it) local transformations to 1st body... struct [1× nt] - -, [ ], .trans, .rot

contact point location/orientation
... .tr(it).trans translation vector double [1× 3] [0,0,0][m] -, [ ],...

R[1×3]: set elements to inf to create a DOF,...
if ROM- R[1×3] represents the local strain vector
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Table 14. ...continued from Table 13 (continued in Table 15).

Symbol Definition Type [Dimensions] Default [Unit] Input Options

... .tr(it).rot rotation vector double [1× 2− 4] [0,0] [-,rad] -, [ ],...
R[1×2]: consist of rotation axis & rotation angle respectively, set the 2nd element inf for rotational DOF,...

R[1×3]: local bendings/twist angle vector (use for VC and with ROM),...
R[1×4]: rotation expressed with a quaternion or Euler axis-angle rotation, set any of the 1st-4th element to inf form a DOF,...

set the 1st element to 0 form a unit quaternion (Q). If so, Q0 is set to
√
QρQ>ρ ,...

set the 1st element to inf form a non-unit quaternion (Q̃). If so, Q is set to Q/
√
Q̃Q̃>,...

set the 1st element to any other number form an Euler angle-axis rotation which cannot handle DOFs.

Only for spring/damper/input/constraint connection without any DOF:
joint(ij).tr2nd(it2) local transformations to 2nd body... struct [1× nt] - -, [ ], .trans, .rot

contact point location/orientation...
(not needed for MK)

... .tr2nd(it2).trans translation vector double [1× 3] [0,0,0] [m] -, [ ],...
R[1×3]: Don’t set elements inf

... .tr(it2).rot rotation vector double [1× 2− 4] [0,0] [-,rad] -, [ ],...
R[1×2]: consist of rotation axis & rotation angle respectively, don’t set elements inf ,...

R[1×4]: rotation expressed with a quaternion, don’t set elements inf

Only for MK joints with DOF:
joint(ij).dof(ih) properties of each inf (DOF)... struct [1× nd] - -, [ ],...

in all instances of joint(ij).tr .equal2, .init, .spring, .damp, .input
... .dof(ih).equal2 geometric constrain between DOFs integer [nd × 3] [ ] -, [ ],...

N[1×2]: equal to DOF number equal2(2) of joint number equal2(1),...
N[1×3]: equal to DOF number equal2(3) in mesh number equal2(2) of joint number equal2(1),...

not applicable to ROM
... .dof(ih).init DOF initial value in simulations double [nd × N] 0 [m]or [rad] -, [ ],...

R: initial value for the DOF, if mesh or ROM- same for all of mesh instances or polynomial coefficients,...
R[nd×1]: initial value of DOF for each element in mesh,...

R[1×N]: initial value of DOF for any number (N) of points along the polynomial in ROM
... .dof(ih).init s Backbone position for ROM... double [1× N] (1 : nr)l/nr[m] -, [ ], R[1×N]

initial values Don’t include s = 0
... .dof(ih).spring Spring parallel to the DOF struct [ ] -, [ ],...

.coeff , .init, .compr
... .spring.coeff DOF spring coefficient double [nd × 1] 0 [N/m] or [Nm/rad] -, [ ],...

R: coefficient of the DOF spring and if mesh or ROM- same for all of its instances in the mesh or ROM coefficients,...
R[nd×1]: coefficient of the DOF springs of each element in mesh

... .spring.init DOF spring initial (resting) value double [1ornd × 1] 0 [m] or [rad] -, [ ],...
R: initial value for the DOF spring and if mesh or ROM- same for all of its instances in the mesh or ROM coefficients,...

R[nd×1]: initial value for DOF springs of each element in mesh...
set each element to ”nan” to automatically find that initial value based on system DOFs’ initial condition

... .spring.compr DOF spring compression ratio double [nd × 1] 1 -, [ ],...
R ∈ (0, 1]: compression ratio for the DOF spring and if mesh or ROM- same for all of its instances or coefficients,...

R[nd×1]: compression ratio for DOF springs of each element in mesh
... .dof(ih).dir active direction for... integer [nd × 1] 0 -, [ ], [0,±1]

DOF parallel elements
-1: compression only (e.g. soft contact), 1: elongation only (e.g. rope), 0: both directions (e.g. regular spring),...

integer [nd × 1]: same value for all the Cartesian directions in local frame,...
integer [nd × 3]: different value for each of the three Cartesian directions in local frame.

... .dof(ih).damp Viscous damping parallel to DOF struct [ ] -, [ ], .visc, .pow

... .damp.visc DOF viscous damping coefficient double [nd × 1] 0 [Ns/m] or [Nms/rad] -, [ ],...
R: coefficient of the DOF damping and if mesh or ROM- same for all of its instances in the mesh or ROM coefficients,...

R[nd×1]: coefficient of the DOF damping of each element in mesh
... .damp.pow DOF viscous damping power double [nd × 1] 1 -, [ ],...

R: power value for the DOF non-Newtonian viscous damping and if mesh or ROM- same for all of its instances in...
the mesh or ROM coefficients,...

R[nd×1]: power value for DOF damping of each element in mesh
... .dof(ih).input direct load (input) on DOF double [nd × 1] 0 [N] or [Nm] -, [ ],...

R: value of the DOF input and if mesh or ROM- same for all of its instances in the mesh or ROM coefficients,...
R[nd×1]: value of the DOF input of each element in mesh

Only for a ROM or spring/damper/input connection without any DOF (not for constrains):
joint(ij).dir joint active direction integer [nd × 1] 0 -, [ ],...

-1: compression only (e.g. soft contact), 1: elongation only (e.g. rope), 0: both directions (e.g. regular spring)...
integer [nd × 1]: same value for all the Cartesian directions in local frame,...

integer [nd × 3]: different value for each of the three Cartesian directions in local frame...
ignored for constraints (when fixed field is present)
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Table 15. ...continued from Table 14 (continued in Table 16).

Symbol Definition Type [Dimensions] Default [Unit] Input Options

joint(ij).xaxis joint x-axis direction with... integer [nd × 3] [ ] [m] -, [ ], R[nd×3]

respect to local frame
joint(ij).spring spring link struct [ ] -, [ ], ,...

.coeff , .init, .compr
... .spring.coeff joint spring coefficient double [nd × 1ro6] 0 [N/m] & [Nm/rad] -, [ ],...

R: coefficient of the link spring and if beam or ROM- same for all the directions,...
R[1×6]: stiffness of the beam or ROM direction (strains and curvature/torsion),...

R[nd×1or6]: coefficient(s) of the joint/beam springs for each element in mesh
... .spring.init joint spring initial (resting) value double [nd × 1or6] 0 [m] & [rad] -, [ ],...

R: initial value for the link spring and if beam or ROM- same for all the directions,...
R[1×6]: stiffness of the beam or ROM directions (strains and curvature/torsion),...

R[nd×1or6]: initial value(s) for joint/beam springs of each element in mesh,...
set each element to nan to automatically find that initial value based on system DOFs’ initial condition (not for ROM)

... .spring.compr spring compression ratio double [nd × 1or6] 1 -, [ ],...
R ∈ (0, 1]: link spring compression ratio and if mesh or ROM- same for all the directions,...

R[1×6]: link spring compression ratio for the beam or ROM directions (strains and curvature/torsion),...
R[nd×1or6]: link spring compression ratio of each element in mesh

joint(ij).damp Viscous damping connection struct [ ] -, [ ], .visc, .pow
... .damp.visc link viscous damping coefficient double [nd × 1or6] 0 [Ns/m] & [Nms/rad] -, [ ],...

R: coefficient of the link viscous damping and if beam or ROM- same for all the directions,...
R[1×6]: damping of the beam or ROM directions (strains and curvature/torsion),...

R[nd×1or6]: damping coefficient of each element in mesh
... .damp.pow link viscous damping power double [nd × 1or6] 1 -, [ ],...

R: power value for the link viscous damping and if beam or ROM- same for all the directions,...
R[1×6]: damping power value of the beam or ROM directions (strains and curvature/torsion),...

R[nd×1or6]: power value for the damping of each element in mesh
joint(ij).input load (input) along the joint double [nd × 1or6] 0 [N] & [Nm] -, [ ],...

R: value of the input load along the joint and if beam or ROM- same for all the directions,...
R[1×6]: input value of the beam or ROM directions (strains and curvature/torsion),...

R[nd×1or6]: input value of the joint for each element in mesh
joint(ij).refbody reference body double [1× (nd + 1)] [0,1] -, [ ],...

R: reference body number, uses 1st element for mesh or tip for ROM,...
R[1×2]: always uses refbody(2) element for mesh or at s = refbody(2) for ROM,...

R[1×(nd+1)]: only for a mesh of linking joint elements, uses refbody(2 : ...) elements for mesh or at s = refbody(2 : ...) for ROM
joint(ij).fixed constrained directions boolean [nd × 6] 0 -, [ ],...

[1× 6] boolean vector: constrained directions that are set to 1,...
[nd × 3] boolean matrix: different constrained directions for each element in a mesh,...

ignored for ROM (when rom filed is present)
joint(ij).control constraint desired acceleration double [nd × 6] 0 -, [ ],...

0: fixed constraint,...
R: same constraint control for all the fixed directions,...

R[1×6]: different controls for each of the fixed directions,...
R[nd×6]: different constraint controls for each element in a mesh,...

ignored for ROM (when rom filed is present)

mesh a mesh element struct [1× 1] - SBD
mesh.file name mesh file name String - -
mesh.tol node import tolerance Integer - -
mesh.tr transformation of mesh... struct [1× nt] - -, [], .trans, .rot

local frame
mesh.body body assigning to nodes struct [1× 1] - same as body
mesh.joint joints defining DOFs & links joints struct [1× 2] - same as joint,...

joint(1): joint element defining each node DOF,...
joint(2): joint element assigning to each line

exload(il) external loads struct [1× nl] - SBD
exload(il).exbody exerting point body double [1× (nd + 1)] - ...

R: exerting body number, on 1st element,...
R[1×2]: exerts at body(2) element,...

R[1×(nd+1)]: exerts at body(2 : ...) elements
exload(il).refbody reference body double [1× (nd + 1)] [0,1] -, [ ],...

R: reference body number, uses 1st element for mesh or tip for ROM,...
R[1×2]: always uses refbody(2) element for mesh or at s = refbody(2) for ROM,...

R[1×(nd+1)]: only for a mesh of exload elements, uses refbody(2 : ...) elements for mesh or at s = refbody(2 : ...) for ROM
exload(il).tr(it) local transformations to contact... struct [1× nt] - -, [ ], .trans, .rot

point location/orientation
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Table 16. ...continued from Table 15.

Symbol Definition Type [Dimensions] Default [Unit] Input Options

... .tr(it).trans translation vector double [1× 3] [0,0,0] [m] -, [ ], R[1×3]

... .tr(it).rot rotation vector double [1× 2or4] [0,0] [-,rad] -, [ ],...
R[1×2]: consist of rotation axis & rotation angle respectively,...

R[1×4]: rotation expressed with a quaternion [Q0, Qρ]
exload(il).ftau load vector double [nd × 6] [0,0,0,0,0,0] [N,Nm] -, [ ],...

R[1×3]: fl,...
R[1×6]: [f, τ ]l,...

R[nd×6]: separate load for each instance
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5. Algorithms and Pseudocodes
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Algorithm 1: Algorithm for system declaration in ”system.m”. See Table 13-15.
Result: System model, simulation & analysis
par.anim, .mov, .derive, .fun, .mex, .equil, .dyn, .nint; modeling parameters
if par.derive then

syms, par.sym; symbolic structural parameters
end
par.var; default structural parameters
world.g, body, joint,mesh, exload; system geometry
Default routines:
if par.derive then

tmt eom derive(...); EOM derivation
end
if par.equil then

equil(...); solve for equilibrium
end
if par.dyn then

modal(...); system linear modal analysis
end
if par.mov then

Set video recording parameters
end
for dynamic simulation intervals do

if par.dyn then
dyn sym(...); solve system dynamics

end
if par.anim then

anim(...); simple animation & record video
end

end
if par.mov then

Close recorded video file
end
post proc(...); post-processing the results
save(’code/results.mat’ ); save results in a file

Algorithm 2: Algorithm for importing ”IGES” file geometries, using Matlab igesToolBox toolbox, in
”mesh import.m”.

Data: body, joint,mesh, par
Result: mesh body,mesh joint; mesh elements
nm; find current number of body instances
[mesh.body,mesh.joint] = check(par, [],mesh.joint,mesh.joint, [], []); Default values for mesh body & joints
Import mesh file: makeIGESmex(); compile the c-files
lines; load line elements from IGES-file and transform them based on mesh.tr
for i = 1 :numel(lines); find nodes and links do

ij , ijl; number of DOF & linking joints
link joint(ijl ) = mesh.joint(2); assign link joints & default values
Find new nodes:
if new node then

ip = ip + 1; number of points
points(ip, :) = [lines(i).p1(1 : 3), 0, ijl]; update point sets

else
if new mass then

ib = ib + 1; ij = ij + 1; number of bodies and DOF joints
Set node mass and DOF properties:
mesh body(ib) = mesh.body;

mesh joint(ij) = mesh.joint(1);
mesh joint(ij).first|second = ib + nb; link the joint to the new body index
points(ip, 4) = ib + nb; record the node body index

else
link joint(ijl ).first|second = ib + nb; update linking joint info.

end
end
Similar procedure for the links’ 2nd end.

end
mesh joint = [mesh joint, link joint]; concatenating the imported DOF & linking joints
plotIGES(lines); plot the IGES object and label the nodes
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Algorithm 3: Algorithm for system parameters check and default values in ”check.m”.
Data: par, world, body, joint, exload,mesh
Result: s, world, body, joint, exload, par; System structural parameters
syms s; axial length variable for ROM elements
mesh import(...); assign bodies and DOF joints and links to a mesh file
par; set default values for undefined modeling parameters
world; set default values for world.g
for ib = 1 : nb;number of bodies do

for ij = 1 : nj ;number of joints do
if joint.second = ib;is in MK then

nd = numel(joint(ij).first) - 1; number of mesh (repeated similar) elements
body; set default values for body, with dimension nd

end
end

end
for ij = 1 : nj ;number of bodies do

joint.first, .second, .rom; set default values
for ib = 1 : nb;number of joints do

if joint.second = ib;is in MK then
mainkin = 1; MK index

end
end
if numel(joint.first, .second) = 2; series of links then

joint(ij).first, .second(2 : joint(ij).first, .second(2) + 1) = 1 : joint(ij).second(2);
end
nd =max([numel(joint(ij).first), ...
numel(joint(ij).second)]); number of mesh elements
joint(ij).tr.trans, .rot; Default values
for i1 = 1 :numel(joint(ij).tr) do

rotrans = [joint(ij).tr(i1).trans, joint(ij).tr(i1).rot]; transformation vector
for i2 = 1 :numel(rotrans) do

if isinf(rotrans(i2)); DOFs then
nq = nq + 1; Number of DOFs
joint(ij).dof(nq); DOF Default values, with dimension nd
if joint(ij).rom; ROM geometries then

for ir = 1 : joint(ij).second(2); ROM order do
irc = ir;
if i2 < 4; x,y,z Boundary Condition then

irc = ir + 1; corrected order
end
S = [S, sirrc]; vector of shape functions

end
joint(ij).dof(nq).inits default values;
for ir = 1 :numel(joint(ij).dof(nq).init); axial positions do

s0 = joint(ij).dof(nq).inits(is);
S0 = [S0;subs(S, s, s0)]; axial position vector
if i2 = 3; z boundary condition correction then

b0 = [b0, s0]; z boundary condition correction
else

b0 = [b0, 0];

end
end
joint(ij).dof(nq).init =inv(S0)(joint(ij).dof(nq).init− b0); inverse problem for initial values
joint(ij).dof(nq).s = S; shape function vector

end
end

end
end
if joint(ij).tr2nd; links other than MK then

joint(ij).tr2nd; default values
joint(ij).dir, .xaxis, .spring, .damp, .input, .fixed; default values for axial or beam links and constraints, with dimension nd

end
if joint(ij).rom; ROM elements then

joint(ij).spring, .damp, .input; default values for ROM links
end

end
for il = 1 : nl;number of external loads do

nd =numel(exload(il).body); number of mesh elements
exload(il).exbody, .refbody, .tr, .ftau; default values, with dimension nd

end
Handle mesh for mesh import.m module:
mesh.file name, .tol, .body, .joint, .tr; default values & error check
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Algorithm 4: Algorithm for deriving TMT EOM in ”tmt eom derive.m”. Continues in Algorithm 5.
Data: par, world, body, joint, exload,mesh; system geometry and modeling parameters
Result: q, u, lambda, par system states & saving derivations to HDD
[body mesh, joint mesh] =mesh import(mesh, par); import mesh geometries from a CAD-file
Concatenating all the system joint and body elements
[s, world, body, joint, exload, par, symbols] =check(par, world, body, joint, exload,mesh); parameters’ check & default values
Deriving state vector and local transformations:
for ij = 1 : nj all joints do

for nd = 1 :max([numel(joint(ij).first),numel(joint(ij).second)])− 1 mesh elements do
for i3 = 1 :size(joint(ij).tr) number of transformations do

rotrans =sym([joint(ij).tr(i3).transjoint(ij).tr(i3).rot]); transformation vector
for i2 = 1 :numel(rotrans) do

if rotrans(i2) == inf DOF element then
if ROM then

nr = joint(ij).second(2); ROM order
else

nr = 1;
end
for ir = 1 : nr do

if joint(ij).dof(ir).equal2 geometric constraint then
q, q̇, q0; form states and initial value vectors

else
Repeat previous states based on the constraint

end
end
sprdmp(iq).T t, .kx, .dl, .init, .in, .k mat, .vd mat, .dir; compliant element terms for iq state: transpose of

transformation matrix Tt, elastic term kx, change of state dl, initial value init, direct input in, linear stiffness matrix
k mat, linear viscous damping matrix vd mat, and active direction dir
fj k, fj vd, fj in, fj sdi, fj k mat, fj vd mat; collecting terms for all states
if ROM then

rotrans(i2) = q(end− ir + 1 : end)joint(ij).dof.s; from ROM series
if i2 = 3; z boundary condition then

rotrans(i2) = rotrans(i2) + s;

end
else

rotrans(i2) = q(iq); regular states
end

end
end
joint(ij).Q(id).loc = joint(ij).Q(id).loc×Q(rotrans); forming local quaternions
joint(ij).TQ(id).loc = joint(ij).TQ(id).loc ? Ξ(rotrans); local transformation quaternions pair

end
if joint(ij).tr2nd then

joint(ij).Q2nd(id).loc, .TQ2nd(id).loc; local rotation & transformation for 2nd end of a joint similar to above
end

end
end
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Algorithm 5: Continued from Algorithm 4. Continues in Algorithm 6.
Deriving inertial terms:
for im = 1 : nm; number of bodies do

for ij = 1 : nj ; all joints do
if joint(ij).second(1) = im; MK joint then

for id = 1 :numel(joint(ij).first)− 1; number of mesh elements do
nmd = imd + 1; all body counter
if ROM then

Q,TQ =subs(body(joint(ij).first(1)).Q, .TQ(1).abs, s, joint(ij).first(2)); specific axial location
end
joint(ij).Q, .TQ(id).abs; deriving absolute rotations & transformations
r jtips; [nmb × 6] matrix of bodies both ends positions
body(im).Q, .TQ(id).loc, .abs; body kinematics
mass(imd).v com, .omega; deriving COM velocities
mass(imd).M, .T, .Dd, .fg; deriving EOM inertial terms
M,T,Dd, fgv; collecting terms for all bodies

end
break; jump to next body

end
end

end
Compliant links & constraints
for im = 0 : nm number of bodies do

for ij = 1 : nj all joints do
if joint(ij).second(1) = im and joint(ij).tr2nd) double ended link then

for id = 1 :max([numel(joint(ij).first),numel(joint(ij).second)])− 1 number of mesh elements do
if ROM then

Q,TQ =subs(body(joint(ij).first(1)).Q, .TQ, .Q2nd, .TQ2nd(1).abs, s, joint(ij).first(2)); specific axial
location

end
joint(ij).Q, .TQ, .Q2nd, .TQ2nd(id).abs; deriving absolute rotations & transformations
compliant and constraint elements:
ijd = ijd + 1; all joint counter
rks; [njd × 6] matrix of links’ both ends positions
if numel(joint(jcount).spring.coeff(nmesh, :)) = 1 then

Axial elements:
lj0; initial length based on input parameters or initial geometry
sprdmp(ijd).T t, .kx, .dl, .init, .in, .k mat, .vd mat; compliant element terms for axial element

else
Beam elements:
rj0, Qj0; rotate initial position/orientation vector to beam frame xaxis
rQj0 = [rj0, Qj0]; initial position/orientation vector based on input parameters or initial geometry
sprdmp(ijd).T t, .kx, .dl, .init, .in, .k mat, .vd mat; compliant element terms for beam

end
sprdmp(ijd).dir; active directions
fj k, fj vd, fj in, fj sdi, fj k mat, fj vd mat; collecting terms for all links
Constraints:
for compliant directions (3 or 6) do

if joint(ijd).fixed; fixed direction then
icd = icd + 1; constraint counter
λ, cnst(icd).T, .D, .in; constraints Lagrangian and EOM terms
Tcn,Dcn,Ccn; Collect terms for all constraints

end
end

end
end
if ROM then

for id = 1 :max([numel(joint(ij).first),numel(joint(ij).second)])− 1 number of mesh elements do
ijd = ijd + 1; all joint counter
drjd, dQjd; differential position and orientation vectors
sprdmp(ijd).T t, .kx, .dl, .init, .in, .k mat, .vd mat, .dir; compliant element terms for beam
fj k, fj vd, fj in, fj sdi, fj k mat, fj vd mat; collecting terms for all links

end
end

end
end

Prepared using sagej.cls
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Algorithm 6: Continued from Algorithm 5.
External loads:
for il = 1 : nl; number of bodies do

for id = 1 :numel(exload(ij).exbody)− 1; number of mesh elements do
nld = ild + 1; all body counter
exload(ij).Q(id).loc, exload(ij).TQ(id).loc; local rotations & transformations
if exload(il).exbody = ROM then

Q,TQ =subs(body(joint(ij).first(1)).Q, .TQ(1).abs, s, joint(ij).first(2)); specific axial location
end
exload(ij).Q, .TQ(id).abs; deriving absolute rotations & transformations
r ef ; [nmb × 3] matrix of loads’ exerting point positions
ftau abs; [1× 6] transforming load vector from exload(il).refbody frame to reference frame
loads(imd).T t, ftau; deriving terms for external load action
Ttef, ftau ef ; collecting terms for all external loads

end
break; jump to next body

end
save func(...); pass derivation for optimization and forming Matlab, C-mex & C functions

Algorithm 7: Algorithm for optimizing derived EOM and saving on HDD, in ”save func.m” & ”save mex.m”.
Data: EOM terms
Result: Saved functions on HDD
vars mex = [zeros(1,numel(par.sym)),zeros(1,numel([qλu])), 0]; function input format
switch par.fun do

case 1: Matlab function for body, sprdmp, cnst, loads structures
case 2: Matlab function for separate terms in body, sprdmp, cnst, loads
case 3: Matlab function for collective terms
case 4: C function for collective terms

end
save mex(...); generate C-mex files from above functions. The file has the same structure as above.
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Algorithm 8: Algorithm for forming full system EOM and saving on HDD, in ”save eom mex.m”. Similar algorithms
are used for static equilibrium (without temporal differential terms in the same file) and modal analysis (calling
functions for fj k mat, fj vd mat, k mat, vd mat in save modal mex.m file) codes.

Data: par, analysis; system parameters and analysis type
Result: Updated par & Saved function for EOM on HDD
Initialize: remove figure handles and symbolic parameters from par

Write to file write the following in a Matlab & C-mex function file
function Ẋ = EOM(t,X, par) function file header: X = [q, λ, q̇, λ̇]

[z, par] = int midstep(t,X, par); update z & par in each integration mid-step if needed
fkq , fvq , fuq ; call functions for states compliance

end
for i = 1 : nm; all masses do

Write to file
for s = s0 : par.rom.mass(i)− s0; do

[M,Tm, D, fσ ] = massFi(par.var,X, s); call function
M̄ = M̄ + T>m M Tm ds; inertial terms
dm = dm + T>m M (−D ∗ q̇ + fσ) ds;

end
end

end
for i = nq + 1 : njd; all compliant links do

Write to file
for s = s0 : par.rom.mass(i)− s0; do

[Tk, k, v, u] = sprdmpFi(par.var,X, s); call function
wv = wv + T>k v ds;

wk = wk + T>k k ds;

wu = wu + T>k u ds;
end

end
end
for i = 1 : nl; all external loads do

Write to file
[Tl, fl] = loadsFi(par.var,X, 0); call function
wl = wl + T>l ∗ fl;
end

end
end
for i = 1 : nc; all constraints do

Write to file
[Tci, Dc, in] = cnstFi(par.var,X, 0); call function
Tc = [Tc, Tci]; dc = [dc,−Dc q̇ + uc]; end

end
end
Forming EOM to file
Write:

M̄ = [M̄, T>c ;Tc,zeros(nc, nc)];
d = [(dm + fkq + fvq + fuq + wk + wu + wv + wl); dc];

[q̈, λ̈] =inv(M̄) d;

Ẋ = [q̇, λ̇, q̈, λ̈];
end
Write EOM function to file ”EOM eq.m” & ”EOM.m”;

Algorithm 9: Algorithm for static equilibrium, in ”equil.m”.
Data: par; system parameters
Result: X0e , par; equilibrium point & updated system parameters
nqF (par.var); recall model states, initial values, & number of different elements
X0; states initial guess
save eom mex(par, 0); generate static equilibrium EOM
if par.equil == 1; then

equilfun = @EOM eq; use Matlab function
else

equilfun = @EOM eq mex; use C-mex function
end
X0e =fsolve(equilfun,X0); use Matlab ”fsolve” to find equilibrium point
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Algorithm 10: Algorithm for linear modal analysis, in ”modal.m”.
Data: X, par; system states & parameters
Result: Φω ,Mω ,Kω , Vω , ω, ηω ; terms of modal state space & natural frequencies
nqF (par.var); recall model states, initial values, & number of different elements
X; current states
save modal mex(par); generate function for modal analysis
if par.modal == 1; then

modalfun = @EOM modal; use Matlab function
else

modalfun = @EOM modal mex; use C-mex function
end
[M̄, K̄, V̄ ] = modalfun(X); EOM linearized terms in state space
[Φω , ω] = −eig(inv(M̄) K̄); undamped modal analysis
Mω ,Kω , Vω , ω, ηω ; Solve for natural frequencies, EOM terms in modal space, and modal damping ratio
Plot the mode shapes

Algorithm 11: Algorithm for dynamic simulation, in ”dyn sim.m”.
Data: X0, par; system initial states & parameters
Result: t,X, par; dynamic simulation results & updated system parameters
nqF (par.var); recall model states, initial values, & number of different elements
X0; form states initial vector if not provided from static equilibrium analysis
save eom mex(par, 1); generate EOM for dynamic simulation
if par.dyn == 1; then

odefun = @EOM ; use Matlab function
else

odefun = @EOM mex; use C-mex function
end
[t,X] =ode15s or ode113(odefun,X0); use Matlab ODE numerical solvers for dynamic simulation

Algorithm 12: Algorithm for plotting a simple animation, in ”anim.m”.
Data: t,X, par; simulation time steps, system states & parameters
Result: r anim, rjtip, rks, par; structure & matrix variable for links’ tip position, & updated system parameters
par.n massanim, par.n ks anim; determine number of bodies and compliant links
if ROM link presents then

par.n animpoints = 50; points plotting along a link
else

par.n animpoints = 2;
end
for t; for all time steps do

for par.n animpoints; plotting points do
rksF mex(...), rjtipF mex(...); bodies and links positions for par.n massanim, .n ks anim; all bodies and links do

r anim.mass, .sprdmp; store the links’ tips in a structure
rjtip, rks; store the links’ tips in a separate matrices

end
end

end
Determine plotting area
for t; for all time steps do

plot3(par.n massanim); plot bodies with solid line
plot3(par.n ks anim); plot compliant links with dashed line

end
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6. STIFF-FLOP Experimental Setup
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Figure 13. Control diagram for a STIFF-FLOP module.

Figure 14. Axial and side bending of a pneumatically actuated STIFF-FLOP continuum appendage. The system has 3 DOFs via
three internal actuation chambers.
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