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A B S T R A C T   

Drought stress is a major contributing factor to plant mortality across the globe. Drought effects are often 
studied at the local scale, but recent advances in remote sensing allow for observations of plant water status 
across broad geographic scales. The vegetation optical depth (VOD) derived from satellite-based surface 
microwave emission has been shown to be sensitive to canopy water content, which is increasingly recognized 
as an important indicator of water relations and incipient mortality in plants. We develop an index which 
quantifies the normalized difference between night- and daytime diurnal VOD retrievals (nVODr) and apply it 
across the western U.S. to determine the relative sensitivity of plants to variations in water supply (soil 
moisture) and atmospheric water demand (vapor pressure deficit -VPD). Canopy water content dynamics were 
most sensitive to soil moisture variation at intermediate climatic water deficits where tree cover transitions to 
grass cover. These areas are in transitional climate zones and occur at ecotones between forest and non-forest 
vegetation where canopy water content dynamics are most sensitive to both soil moisture and VPD variation. 
Our results suggest that vegetation in semi-arid ecotones is likely to see the most proximal impacts of drought 
stress as the planet warms.   

1. Introduction 

Forest mortality rates have more than doubled in the western United 
States over the last 40 years (Van Mantgem et al., 2009). Elevated 
temperatures and increased water stress that characterize drought have 
been implicated as the largest contributing factors to rising mortality 
rates (Allen et al., 2015; Allen et al., 2010). Drought events are occurring 
more frequently and with higher severity, and these trends are projected 
to continue as climate change progresses (Meehl et al., 2007). While 
negative impacts of drought have been observed in most ecosystems, 
research suggests that populations at dry range edges are less buffered 
from climate impacts and are more likely to exhibit increased mortality 
and regeneration failure under drought stress (Anderegg et al., 2019; 
Davis et al., 2019; Young et al., 2017). These dry range edges are often 
transitional zones between plant physiognomic types where species live 

near the boundary of their climatic tolerance. Moreover, these ecotones 
experience larger climatic variance due to greater land surface- 
atmosphere coupling (Koster et al., 2004; Seneviratne et al., 2010; 
Seneviratne et al., 2006), which potentially exposes dry edge species to 
negative impacts under directional climate shifts towards hotter and 
drier conditions. 

Plants experience drought when increasing evaporative demand 
through rising vapor pressure deficit (VPD) and/or decreasing available 
soil moisture lead to greater water loss through transpiration than can be 
replaced via water uptake from the soil. Although warm temperature 
can accelerate soil drying through evapotranspiration, precipitation can 
recharge soil moisture and is thus a first order control on soil moisture 
dynamics. Research addressing plant responses to drought often focus 
on temperature and/or VPD (Grossiord et al., 2020; Novick et al., 2016; 
Sulman et al., 2016; Williams et al., 2010) or precipitation and soil 
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moisture dynamics (Goulden and Bales, 2019; Schwantes et al., 2018; 
Simeone et al., 2018), but both water supply and demand play a crucial 
role (Du et al., 2018; Perez-Martin et al., 2009; Stephenson, 1990). 
Indeed, water supply and atmospheric demand are fundamentally linked 
(Trenberth and Shea, 2005). Increasing atmospheric aridity across much 
of the western U.S. has resulted in decreasing summer precipitation, 
challenging our ability to attribute drought induced vegetation change 
to either supply or demand (Holden et al., 2018). Therefore, it is 
important to understand how vegetation sensitivity to VPD and soil 
moisture dynamics varies spatially and in time to better quantify 
regional drought susceptibility as the climate changes. Here, we 
examine the relative influence of soil moisture and VPD variation on 
plant water status in the western U.S via their effects on canopy water 
content dynamics. 

There is mixed evidence on the relative importance of water supply 
and demand to plant growth and response to drought. Increasing tem-
peratures and atmospheric demand have been identified as the primary 
contributing variables to tree drought mortality in the southwestern U.S. 
(Williams et al., 2013), as a greater contributing factor to evapotrans-
piration than soil moisture in mesic forests across the U.S. (Novick et al., 
2016), and as the primary driver of interannual variation in forest 
productivity and transpiration at an Ameriflux site in Indiana (Sulman 
et al., 2016). However, soil moisture can impact vegetation productivity 
and transpiration regardless of VPD, especially at moderate to low levels 
of soil wetness (Körner, 2019; Seneviratne et al., 2010; Stocker et al., 
2019). Papagiannopoulou et al. (2017) found that global vegetation 
dependence on water availability has been under reported with semi- 
arid and transitional ecosystems being primarily water-limited, and 
Novick et al. (2016) showed greater soil moisture limitation to stomatal 
conductance at xeric sites. Limited water availability was also largely 
responsible for the extensive forest mortality during the 2012–2015 
California drought (Goulden and Bales, 2019) and the reduced vegeta-
tion productivity during the 2003 European drought (Reichstein et al., 
2007), while low soil moisture extremes were predominantly respon-
sible for canopy loss during a 2011 drought in Texas (Swenson et al., 
2017). Decreased supply and increased demand are often highly corre-
lated over extended time periods, and land-atmosphere feedbacks be-
tween the two can magnify drought impacts (Holden et al., 2018; 
Martinez-Vilalta et al., 2019; Seneviratne et al., 2010; Zhou et al., 2019). 
However, VPD is more sensitive to temperature, which is widely pre-
dicted to increase globally as climate changes, while the impacts of 
climate change on precipitation and moisture availability are more 
variable and uncertain (Burke and Brown, 2008; Dannenberg et al., 
2019; IPCC, 2013; Novick et al., 2016; Pendergrass et al., 2017). 

Drought decreases growth and increases risk of mortality (Anderegg 
et al., 2015a; Berdanier and Clark, 2016; Bigler et al., 2007; Camarero 
et al., 2015; Carnicer et al., 2011; Guada et al., 2016). The imbalance 
between water uptake and loss that plants experience under drought 
increases xylem tension (decreases water potential) and can lead to 
cavitation and loss of water transport capacity (measured as percent loss 
of conductivity - PLC). Such hydraulic failure has been shown to be a 
strong driver of drought-induced mortality (Adams et al., 2017; 
Anderegg et al., 2013; Brodribb and Cochard, 2009). More recent studies 
have emphasized the utility of plant water content-related metrics (such 
as relative water content - RWC) as useful indicators of incipient mor-
tality given its linkage to plant hydraulics, osmotic regulation, and our 
ability to measure water content at large scales using remote sensing 
(Martinez-Vilalta et al., 2019; Sapes et al., 2019). While direct mea-
surements have been successful in parameterizing and simulating the 
effect of drought on plant water status at the watershed scale (Anderegg 
et al., 2015b; Simeone et al., 2018), remote sensing offers the possibility 
to expand monitoring to regional or larger scales. 

Remotely sensed vegetation optical depth data (VOD) is derived from 
satellite-based surface microwave emission and is sensitive to canopy 
moisture, which depends on water content and biomass. Therefore, VOD 
has been identified as a means to retrieve broad-scale vegetation canopy 

water dynamics. High frequency microwaves do not fully penetrate 
plant canopies, and therefore VOD retrievals using short wavelengths 
are minimally influenced by soil moisture, primarily picking up surface 
microwave emission from leaves and the upper canopy (Konings and 
Gentine, 2017; Konings et al., 2019). VOD has been related to multiple 
plant water status metrics including: 1) volumetric water content (VWC) 
(Konings and Gentine, 2017; Konings et al., 2019), 2) leaf water po-
tential (LWP) and above ground biomass (Momen et al., 2017; Zhang 
et al., 2019), 3) RWC of plant canopies for predicting tree mortality from 
the 2012–2015 California drought (Rao et al., 2019), 4) a stomatal 
sensitivity index and drought coupling metric (Anderegg et al., 2018; 
Konings et al., 2017a; Konings and Gentine, 2017; Li et al., 2017), 5) and 
seasonal canopy water content patterns in the African tropics (Konings 
et al., 2017b). Negative anomalies in the diurnal differences between 
night and day VOD retrievals (which represents a decline in nighttime 
canopy rehydration) have also been shown to correlate with meteoro-
logical drought events over croplands in the USA, suggesting that the 
diurnal VOD signal is sensitive to drought stress when there is insuffi-
cient water available for plants to rehydrate (Schroeder et al., 2016). 

In this study we seek to answer two questions. First, can we identify 
the relative sensitivity of canopy water content to VPD and soil moisture 
variation in the western U.S. using VOD retrievals? Although recent 
work has noted that VPD and soil moisture variation are often coupled 
(Novick et al., 2016; Seneviratne et al., 2010; Zhou et al., 2019), these 
drivers have different dynamics with VPD varying at higher temporal 
frequencies than soil moisture (Figs. 1a & S4; Koster et al., 2004). Ex-
tremes from higher frequency variation in VPD may quickly lead to re-
sponses that reduce stomatal conductance but increase plant water use, 
increasing the probability of hydraulic failure (Grossiord et al., 2020), 
while extended low soil moisture from slower frequency variation can 
lead to progressive loss of hydraulic conductance (Martinez-Vilalta 
et al., 2019; Sapes et al., 2019). Loss of hydraulic conductance from high 
VPD as well as from prolonged water can cause RWC to cross mortality 
thresholds. Disentangling their relative influence on canopy water 
content dynamics may provide context for interpreting the relative 
importance of mid to end of century projected temperature and pre-
cipitation changes on plant health. Second, does canopy water content 
sensitivity to soil moisture and VPD vary spatially and if so, where are 
the most sensitive sites? Identifying areas where canopy water content is 
particularly sensitive to variation in supply and demand of water is 
critical for identifying those regions in which we may expect near-term 
climate change impacts due to drought induced mortality. 

2. Methods 

2.1. Background 

We utilize long term VOD retrievals to examine the relative influence 
of soil moisture and VPD variation on canopy water content in the 
western U.S. Because VOD is also sensitive to above-ground biomass 
(Momen et al., 2017; Tian et al., 2016; Tian et al., 2018), changes in 
biomass over space and time can obscure our understanding of changes 
in plant water status (Zhang et al., 2019). Consequently, we isolate the 
effects of varying biomass on VOD using a general additive model and 
focus on the model residuals in order to quantify changes in canopy 
water content. As in other studies, we assume that negative deviations of 
[night – day] VOD retrievals (∆) during the study period signify that 
plants are unable to replace water lost to transpiration during the day 
and are therefore experiencing some degree of water stress (Frolking 
et al., 2011; Schroeder et al., 2016). After accounting for the influence of 
LAI variation we anticipate that positive diurnal anomalies in VPD (drier 
atmosphere) will result in negative diurnal anomalies in VOD (Fig. 2a), 
whereas we expect positive anomalies in soil moisture (greater soil 
moisture) will result in positive anomalies in VOD (Fig. 2b). If canopy 
water content is insensitive to supply/demand then we expect the re-
lationships with VOD to be decoupled (Fig. 2). 
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2.2. Data 

VOD data used in this study comes from the X-band (10.7 GHz) of the 
Advanced Microwave Scanning Radiometer for EOS (AMSR-E) sensor 
that launched in May 2002 and failed in October 2011, and the 
Advanced Microwave Scanning Radiometer 2 (AMSR2) on the Global 
Change Observation Mission-1st Water (GCOM-W1) satellite that 
launched in July 2012. The data includes 25 km resolution ascending 
(daytime at 1:30 pm local time) and descending (nighttime at 1:30 am 
local time) daily overpasses for the complete years 2003 to 2018 (Owe 
et al., 2008), cropped to the Western United States (latitudes from 31◦ - 
50◦ N, longitudes from 102◦ - 125◦ W). Continuity between both sensors 
was achieved using the X-band VOD from the land parameter data re-
cord (Du et al., 2017) (LPDR). The intercalibration removed noted biases 
in AMSR2 retrievals and allowed for a homogeneous and cohesive 
dataset spanning the duration of both products. Data used in this study 
spanned from 2003 to 2018, with a gap between October 4, 2011 and 
May 18, 2012 when AMSR-E was out of operation and AMSR-2 had not 
yet launched. The LPDR product flags and removes pixels where land 
surface temperature < 273 K (assumed frozen soil) and pixels with 
strong precipitation as defined by Jones et al., 2010. We then also 
removed daily observations where either day or night retrievals were 
not present. 

Within the western U.S., we randomly subset 1000 points meeting 
the criteria above (corresponding to 33.9% of suitable pixels) and 
extracted the LPDR VOD difference between night and day (∆) for each 
pixel to include the full cohesive AMSR-E and AMSR2 record. 

Fig. 1. a) Daily time series of standardized scores from 2003 to 2018 for normalized diurnal variability in canopy water content (nVOD; in red) against vapor 
pressure deficit (VPD; top in yellow), soil moisture (SM; middle in blue), and leaf area index (LAI; bottom in green) for an example point shown in red in (b) along 
with the spatial distribution of all sites used in this analysis. c) example temporal distribution of nVOD values for sample point shown in red in (b). (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. Potential responses of nVODr (normalized measure of diurnal variations 
[night-day] in VOD retrievals with the influence of biomass removed) to 
changes in VPD/soil moisture when plant water status is sensitive to changes in 
water demand/supply (left column) and when water status is decoupled from 
changes in water demand/supply (right column). 
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Daily VPD data was retrieved from the gridded meteorological 
climatology database gridMET (Abatzoglou, 2013) at a 4 km resolution 
spanning the full years 2003–2018. The VPD grid was aggregated to the 
25 km resolution of the VOD data. 

To assess changes in biomass, we used LAI data retrieved across the 
years 2003–2018 from the 1 km resolution NASA MCD15A3H MODIS 
product (Myneni et al., 2015), which combines the best acquisitions 
from the sensors on both the Terra and Aqua satellites to retrieve data 
over a 4-day period. The data was filtered using the quality assurance 
data field to filter out LAI retrieval pixels with high cloud cover and 
errors in the main retrieval algorithm. Filtered LAI retrievals were then 
aggregated to 25 km resolution, and linearly interpolated to daily ob-
servations to match the VOD data. 

Soil moisture data across the years 2003–2018 was taken from daily 
grids with 250-m resolution from TOPOFIRE (Holden et al., 2019). Due 
to the large size of the dataset, soil moisture for the 25 km pixel was 
characterized by averaging 30 randomly selected points that fell within 
the larger domain of each 25 km pixel for each of the 1000 pixels utilized 
for the study. The soil moisture grids contained in TOPOFIRE were 
developed using a single layer daily soil water balance model, with 
terrain-resolved radiation, temperature and humidity grids as inputs, 
and a snow model described by Holden et al. (2018). Evapotranspiration 
was modeled using the Penman-Monteith equations (FAO; Allen et al., 
1998) and adapted from the monthly model described by Dobrowski 
et al. (2013). For validation purposes, in situ soil moisture data was also 
accessed through TOPOFIRE (Holden et al., 2019) for 331 sites from 
snow telemetry (SNOTEL) and soil climate analysis network (SCAN) 
stations across the western U.S. that collected soil volumetric water 
content measurements at 8-in. depth across the years 2015–2018. 

To determine the degree of water stress in a plant in response to 
changes in soil and atmospheric drought, we examined the sensitivity of 
the normalized difference between night and day VOD (nVOD; Eq. 1) 
during months in which drought stress is most likely to occur (April to 
September) to changes in normalized VPD, soil moisture, and LAI (Eqs. 
2–4). Seasonally normalized daily standardized scores were calculated 
using the formulas: 

nVOD =
∆i−meanj(∆i)

sj(∆i)
(1)  

VPD standardized score =
vpdi−meanj(vpdi)

sj(vpdi)
(2)  

LAI standardized score =
laii−meanj(laii)

sj(laii)
(3)  

SM standardized score =
smi−meanj(smi)

sj(smi)
(4) 

where ∆ = the difference between night and day VOD retrievals; s =
standard deviation; i represents daily observations during months in 
which drought stress is most likely to occur (April – September) across 
the study period (2003–2018); and j = +/− 5 day window centered on i 
across all years in the study period. 

To analyze how model coefficients vary over climate deficit gradi-
ents we used fields of annual climate normals for climatic water deficit 
(CWD) over the study period. CWD represents the evaporative demand 
that is not met by available water. This product is modeled on a monthly 
timestep and when summed annually varies from 0 mm at the wettest 
sites to roughly 2300 mm at the driest sites. Monthly derived estimates 
of CWD for the western U.S. were acquired from TerraClimate (Abat-
zoglou et al., 2018) covering the period 2003–2017 (2018 data was not 
available at time of access) at 4 km resolution and were aggregated to 
25 km to match the VOD data resolution. Monthly values were summed 
each year to get annual CWD, and then averaged to get mean annual 
CWD for the western U.S. at 25 km resolution. 

Percent tree cover was taken from the MODIS MOD44B vegetation 

continuous fields (VCF) data product at 250-m resolution for the year 
2016 (Dimiceli et al., 2015). Percent forb, grass, and shrub cover was 
taken from the Rangeland Analysis Platform data product at 30-m res-
olution for the year 2016 (Jones et al., 2018). Data was aggregated to 25 
km to match the VOD data. 

Land cover type data (e.g. plant physiognomic types and land use) 
was taken from the National Lands Cover Database (NLCD) 2016 (Yang 
et al., 2018). The data was resampled from 30 m to 100 m using nearest 
neighbor interpolation and then aggregated to 25 km to get fractional 
cover for each classification type. All data sources in this study are 
summarized in Table 1. 

2.3. Analysis 

All analysis was done in R (R Core Team, 2018), and all variables and 
climate information were prepared using the raster package (Hijmans, 
2017). We extracted the LPDR VOD, LAI, VPD, and soil moisture data at 
a subset of 1000 points. From those 1000 points, 8 were removed as the 
soil moisture returned NA due to the presence of water bodies in some of 
the subset of 30 randomly selected pixels. The remaining 992 25 km 
pixels (Fig. 1b) across the western US are treated as independent ‘sites’ 

over which we examine the relationship between nVOD and drought 
metrics. 

At each site, daily time series (Fig. 1a) were developed for nVOD and 
biophysical drivers (soil moisture and VPD). To eliminate variations 
induced by plant phenological cycles and isolate effects of soil moisture 
and VPD, we first removed the effect of LAI on nVOD by fitting a general 
additive model (GAM) relating nVOD to LAI standardized scores and 
then extracted the residuals of this fit from the nVOD time series. These 
standardized residuals will be referred to as nVODr. We used the GAM 
function from the mgcv package (Wood, 2011) and limited the basis 
function to 4 degrees of freedom to avoid model overfitting. 

After removing the effect of LAI on the nVOD dataset (nVODr), we 

Table 1 
Summary table of data products used in the study and their time basis, native 
resolution, and what these data were used for.  

Data Product Time 
Basis 

Native 
Resolution 

Study Use 

AMSR-E Vegetation 
Optical Depth (VOD) 

Daily 25 km VOD as a proxy for canopy 
water content 

AMSR2 VOD Daily 25 km VOD as a proxy for canopy 
water content 

gridMet vapor 
pressure deficit 
(VPD) 

Daily 4 km Atmospheric water demand 
as expressed by VPD 

MODIS leaf area index 
(LAI) 

4-day 1 km Above-ground biomass as 
expressed by LAI 

TOPOFIRE soil 
moisture 

Daily 250 m Water supply as expressed by 
soil moisture 

TerraClimate climatic 
water deficit (CWD) 

Monthly 4 km Mean site climate as 
expressed by mean yearly 
CWD 

MODIS vegetation 
continuous fields 
(VCF) percent tree 
cover 

Yearly 250 m Percent tree cover to 
characterize site vegetation 

NLCD land cover type 
classification 

Yearly 30 m Land cover classification to 
filter out urban and 
agricultural areas 

TOPOFIRE SNOTEL/ 
SCAN soil moisture 

Daily N/A In situ soil moisture 
measurements taken from 
individual stations to 
validate results using 
modeled soil moisture 
product 

Rangeland Analysis 
Platform percent 
vegetation cover 

Yearly 30 m Percent vegetation cover to 
further characterize site 
vegetation composition 
along with tree cover  

D.S. Lyons et al.                                                                                                                                                                                                                                 



Remote Sensing of Environment 253 (2021) 112233

5

then fitted a multiple linear regression using soil moisture and VPD 
standardized scores as predictors and nVODr as the response variable. 
We used standardized coefficients from the linear model to assess the 
relative importance of each variable, and calculated corellograms for 
each time series to visualize serial autocorrelation. We then determined 
whether the coefficients were significantly different than a value of 0 (p- 
value < .05) after accounting for serial autocorrelation in residuals by 
correcting coefficient variance estimates using a Newey West estimator 
(Newey and West, 1986). We initially included an interaction term be-
tween the two predictor variables in our multiple linear regression, 
which proved largely insignificant with only 127 (12.8%) meeting the 
significant threshold of p < .05 and the individual variable standardized 
coefficients showing no change (linear model coefficients of 0.988 and 
0.999 for soil moisture and VPD respectively when forcing the intercept 
through 0). Since all variables are standardized, the coefficients can be 
interpreted as dimensionless sensitivity indices of the response variable 
to the predictors. 

We compared standardized regression coefficients to mean annual 
CWD to examine how nVODr sensitivity differed across a water avail-
ability gradient. We additionally examined how the model coefficients 
varied as a function of inter-annual climate variability using the stan-
dard deviation of annual CWD values. The relationships between the 
coefficients and climate conditions were curvilinear and were fitted with 
GAMs. Lastly, we examined relationships between the most ‘sensitive 
sites’, defined as sites with coefficients greater than the absolute value of 
the 90th percentile, and site climate and vegetation cover. To determine 
if the site conditions of the most ‘sensitive’ sites were different from our 
background population we ran a non-parametric Mann-Whitney-Wil-
coxon Test for percent tree cover, percent grass cover, and mean annual 
CWD comparing ‘sensitive’ sites to all other sites. 

To corroborate the linear regression analysis and account for po-
tential nonlinear relationships between nVOD and our predictors, we 
constructed a separate boosted regression tree (BRT) analysis. At each 
site we fit a BRT model to the response and predictor time series using 
the gbm.step function from the dismo R package (Hijmans et al., 2017). 
We utilized a learning rate and bag fraction set to 0.005 and 0.6 
respectively to model the sensitivity of nVOD to daily LAI, soil moisture, 
and VPD standardized scores. We extracted relative variable influences, 
cross validation correlation means, and partial dependence plots for the 
BRTs at each site. 

To further corroborate our results obtained using modeled soil 

moisture as a predictor, we repeated both the regression and BRT 
analysis using nVOD, LAI, and VPD data at pixels containing SNOTEL 
soil moisture measurements. In this analysis, nVOD, LAI, VPD, and soil 
moisture standardized scores were calculated over the years of available 
SNOTEL observational data (2015–2018). 

3. Results 

Linear model (LM) coefficients, representing the sensitivity of nVODr 
to variation in soil moisture and VPD standardized scores, were signif-
icant (p-value < .05) at 889 and 600 of the 992 sites (90% and 60%) 
respectively. Of the 992 sample sites, 918 (93%) exhibited greater 
sensitivity to soil moisture than to VPD, with larger standardized coef-
ficient absolute values than VPD. The difference in variable influence 
can be observed in the example time series (Fig. 1a) and regression re-
sults (Fig. 3) for a single site. The time series shows that daily nVOD 
dynamics more closely resemble those of normalized soil moisture than 
VPD. This is further reflected in regression results that display a tighter 
LM fit between nVODr and soil moisture (Fig. 3a) where low nVODr 
values are primarily concentrated at the lowest soil moistures regardless 
of the corresponding VPD value. 

The correlograms also reflected the difference in variation constants 
of nVOD and soil moisture compared to VPD. The average variable 
autocorrelation lag for nVOD was much closer to soil moisture than that 
of VPD (Fig. S1), with a slower rate of autocorrelation reduction as the 
lag increases. When comparing the average nVOD autocorrelation lag to 
that of soil moisture the slope was very close to a one to one relationship 
at 0.92. The slope of the VPD autocorrelation relationship with nVOD 
was 0.02, with VPD showing a much faster rate of variation than the 
other two variables. 

Our interpretation of variable contributions to the nVODr response is 
further reinforced by the site partial dependence plots from our BRT 
analysis (Fig. 4). While some nonlinearity in the relationships with 
nVOD is evident, the responses generally resemble the relationships 
conceptualized in Fig. 2. Further, BRT variable influence is consistent 
with our LM coefficients (Figs. 5 & S8). Moving forward, we focus pri-
marily on the strength of LM coefficients as these are more easily com-
parable between sites than diagnostics from the BRT models. 

VPD standardized coefficients exhibited greater absolute values in 
the Southwestern states of Arizona, Utah, New Mexico, and Colorado, 
while the bulk of both insignificant VPD and soil moisture coefficients 

Fig. 3. Linear relationship at sample site in Fig. 1 between nVODr and a) soil moisture and b) VPD standardized scores, and c) the continuous response of nVODr to 
daily VPD and soil moisture standardized scores. The relationships in a and b were derived from a time series spanning 15 years and comprised of 1839 days of 
observations during the months April–September. 

D.S. Lyons et al.                                                                                                                                                                                                                                 



Remote Sensing of Environment 253 (2021) 112233

6

occurred along the Cascades and Northern Rockies (Fig. 5). 
LM VPD and soil moisture coefficients exhibited respective mini-

mums (large negative coefficients) and maximums (large positive co-
efficients) at a similar mean CWD of roughly 800 mm; the absolute value 
of the coefficients declined as CWD increased (drier) and leveled off for 
both soil moisture and VPD between 1200- and 1500-mm (Fig. 6). Soil 

moisture coefficients were better explained by CWD than VPD co-
efficients; GAM deviance explained (D2) values were 0.30 and 0.18 
respectively. The general patterns observed in both the relative influ-
ence of coefficients and the coefficient relationship with CWD are also 
present in the SNOTEL analysis using in situ soil moisture measurements 
(Fig. S1). There is, however, more uncertainty in these models given that 

Fig. 4. Boosted regression tree partial dependence plots relating nVOD to a) soil moisture, b) VPD, and c) LAI for all sites. Grey lines represent the partial response 
curves for each individual site (n = 992) while the black line represents the average response across all study sites. 

Fig. 5. Geographic distribution of nVODr sensitivity relating nVODr to VPD (left column) and soil moisture (right column). nVODr sensitivity is represented by 
standardized regression coefficients from multiple linear regression models in a) and b) and represents % variable influence extracted from boosted regression tree 
models in c) and d). Colored circles in a) and b) represent coefficients that are statistically significant (p < .05) after accounting for serial autocorrelation, grey circles 
represent insignificant coefficients. Coefficient color gradient in a) and b) is opposite for VPD and soil moisture so that relative variable influence for the expected 
response can be compared using the same color scale. 
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they were fit using 4 years of data. Moreover, SNOTEL stations are 
limited to more hygric, high elevation areas with lower deficits. Thus, 
we do not observe leveling off in the coefficient relationship with CWD 
(Fig. S1). 

LAI correlation coefficients with both soil moisture and VPD corre-
lation coefficients showed a strong relationship with mean annual 
climate, having GAM D2 values of 0.44 and 0.73 respectively. The cor-
relations between LAI and VPD transitioned from positive to negative at 
a similar intermediate CWD value of ~800 mm where we observed 
relative maximum and minimum of the LM coefficients (Fig. S7). 

Mean site CWD showed a strong relationship with percent tree cover 
(GAM D2 = 0.68), with tree cover declining as CWD increases (Fig. 7c). 
Percent tree cover approaches a value of 0% at ~800 mm deficit 
(Fig. 7c). Mean site CWD is less strongly linked with percent grass and 
forb cover (GAM D2 = 0.26), with low cover at low and high CWD and a 
peak with wide variability at ~750 mm deficit (Fig. 6b). Both of these 
respective minima/maxima occur at a similar deficit value where soil 
moisture and VPD LM coefficients exhibit their respective maximum and 

minimum values (Fig. 5). The Mann-Whitney-Wilcox tests showed that 
the most ‘sensitive’ coefficients (absolute value of coefficients >90th 
percentile) occurred under different conditions than the background 
population (Fig. 8). They primarily occurred at lower tree cover for both 
soil moisture and VPD (Wilcoxon P < .05 for both) and occurred at lower 
grass cover for VPD and higher grass cover for soil moisture (Wilcoxon p 
< .05 for both) than the background population (Figs. 8b & 8c). CWD at 
the sensitive VPD sites was higher than the background population 
(Wilcoxon p < .05), while the sensitive soil moisture sites had a slightly 
higher mean CWD that was marginally significant (Wilcoxon p = .067), 
but had a much narrower interquartile range than the background 
population (Fig. 8a). 

Contrary to our expectations, we observed a positive response to VPD 
and negative response to soil moisture at 48 (5%) and 85 (9%) sites 
respectively. These sites were primarily located in the Pacific Northwest 
and were concentrated at values of CWD below 500 mm and higher tree 
cover (Figs. 5 & 6;). Of the sites that exhibited these unexpected pat-
terns, 19 and 5 sites fell below the significance threshold of P < .05 for 

Fig. 6. Linear model coefficient (nVODr sensitivity) 
variation along a hydroclimatic gradient (climatic 
water deficit; CWD) for a) VPD and b) soil moisture. 
The red line represents a generalized additive model 
(GAM) fit. CWD represents the evaporative demand 
that is not met by available water. CWD varies from 
0 mm for moist conditions to 2300 mm at the driest 
sites. Mean annual CWD represents the average 
annual value for the years 2003–2017. D2 (deviance 
explained) is shown to illustrate GAM fit. (For inter-
pretation of the references to color in this figure 
legend, the reader is referred to the web version of 
this article.)   

Fig. 7. Percent cover distribution along mean site annual climatic water deficit (CWD) for a) all vegetation types with color coded curves fit using smoothed means 
and then specifically for b) percent grass/forb cover and c) percent tree cover where curves to show relationships were fit with a general additive model (GAM). 
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VPD and soil moisture respectively. 

4. Discussion 

4.1. Canopy water content shows greater relative sensitivity to soil 
moisture than VPD 

Plant canopy water content dynamics across the western U.S. 

responded to both VPD and soil moisture variation. However, knowing 
the relative sensitivity of water content dynamics to variations in these 
two variables provides important context for understanding potential 
future impacts of changing temperature and precipitation on plant water 
relations. 

Soil moisture variability emerged as the dominant driver of canopy 
water content dynamics (nVODr) at 93% of sites, although there also 
remains important joint influence with VPD at non energy-limited sites. 

Fig. 8. Distribution of the 90th percentile of standardized coefficients (‘sensitive sites’) vs all other sites (‘background’) for VPD (left column) and soil moisture (right 
column). Distribution is shown for a) mean annual climatic water deficit (CWD), b) percent tree cover, and c) percent grass and forb cover. Mann-Whitney-Wilcoxon 
tests were conducted across both ‘sensitive sites’ and ‘background’ sites for the variables CWD, tree cover, and grass and forb cover. Actual values are jittered over the 
boxplots for clarity. 
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These results are consistent with research that identifies soil moisture as 
a primary control on vegetation growth (Littell et al., 2008; Papa-
giannopoulou et al., 2017; Reichstein et al., 2007; Stocker et al., 2019; 
Wurster et al., 2020), and studies that suggest that the impacts of 
anomalies in VPD are generally short term compared to the persistent 
effects of soil moisture anomalies (Koster et al., 2004). Even after 
normalization, it is evident from our example time series (Fig. 1a) and 
the site correlograms (Fig. S3) that soil moisture and nVOD have lower 
frequency variation and retain a degree of memory, while VPD stan-
dardized scores exhibit higher frequency variation. Soil moisture deficits 
can impact plant water status regardless of VPD as soil moisture and VPD 
become decoupled under dry conditions (Stocker et al., 2019), as even 
small water losses that occur when stomata are closed can lead to 
dehydration when there is no soil water supply (Körner, 2019). Our 
results suggest that this is the case with canopy water content dynamics 
as well as the lowest values of nVODr primarily occurred at the lowest 
soil moisture standardized scores, regardless of corresponding VPD 
values (Fig. 3c). Nonetheless, soil moisture and VPD cannot be treated as 
entirely independent due to their inherent correlation (Fig. S5; Holden 
et al., 2018; Seneviratne et al., 2010; Zhou et al., 2019), and therefore 
their influence cannot be fully separated into unique contributions to 
changing vegetation water status. 

Greater nVODr sensitivity to soil moisture likely arises from plant 
hydraulic dependence on water availability (Grossiord et al., 2018). Loss 
of canopy water content is driven by a combination of reduced water 
supply from soil and transpiration, and depends on bulk soil-plant hy-
draulic conductance (including stomatal responses) and VPD. When soil 
moisture is low, soil-plant hydraulic conductance decreases and xylem 
tension and resistance to water flow increases resulting in embolism. 
Loss of hydraulic function associated with reduced soil-plant conduc-
tance leaves plants unable to replace water lost to transpiration during 
the day and, therefore, leads to decreased canopy water content (Mar-
tinez-Vilalta et al., 2019; Sapes et al., 2019). Low soil moisture also 
reduces the pressure gradient between the leaf and soil water. This re-
duces the amount of rehydration that can occur as water potentials must 
become increasingly negative in order to drive water uptake and will 
also result in decreased canopy water content. Hydraulic limitation to 
water uptake can occur regardless of VPD (Körner, 2019) and while VPD 
may fluctuate day to day, periods of low soil moisture are persistent until 
a precipitation event. The difference between day and night canopy 
water content will decline due to plants’ inability to rehydrate while the 
soil remains dry (Frolking et al., 2011; Schroeder et al., 2016). Addi-
tionally, the difference between night and day plant water content, the 
basis of our normalized index, may also be influenced by stomatal 
response to soil moisture availability (Mcdowell et al., 2008; Sperry 
et al., 2002; Sperry and Love, 2015). When soil is well-watered, tran-
spiration is unregulated and plant water content fluxes are greater 
(Hochberg et al., 2018). However, when the soil is relatively dry, plants 
may close their stomata to downregulate transpiration and minimize 
water lost regardless of the strength of evaporative demand (Hochberg 
et al., 2018). This mechanism would also cause reduced diurnal differ-
ences in water content due to greater flow resistance associated with 
tighter stomatal control. Further, decreased carbon assimilation from 
tighter stomatal control and the downregulation of transpiration can 
lead to depleted carbon reserves and reduced osmotic regulation, which 
leads to loss of cell turgor, decreased hydraulic conductance, and further 
reductions in water content (Martinez-Vilalta et al., 2019; Sapes et al., 
2019). 

Sites where VPD emerged as a dominant constraint on canopy water 
content dynamics were located in the southwestern U.S. However, our 
results suggest that a larger proportion of sites in the southwestern U.S. 
are more sensitive to variations in soil moisture. This is corroborated by 
results from our BRT analysis (Fig. S6) which also show a larger influ-
ence of LAI on nVOD dynamics in the southwestern region (Figs. S6 & 
S7). This may be driven partially by a monsoon effect that might conflate 
the effects of biomass variation and soil moisture variation. Vegetation 

growth in this region is sensitive to pulses of moisture that come from 
summer precipitation events during the North American monsoon (Tang 
et al., 2012; Watts et al., 2007). By removing the influence of biomass 
variation from the nVOD signal, we likely lose some portion of the nVOD 
response to soil moisture due to variable correlation (Fig. S7). 

4.2. Canopy water content sensitivity is greatest at mesic hydroclimatic 
settings 

Diurnal differences in canopy water content showed the most 
sensitivity to soil moisture variation at intermediate levels of climatic 
water deficit (Figs. 5 & 6). These intermediate levels of water avail-
ability occur at values of CWD that exhibit the highest nVODr sensitivity 
to both soil moisture and VPD and represent climatic transition zones 
from areas that are wetter and more energy limited to drier and more 
water limited. These occur at CWD values where we see a transition from 
forest cover towards grass cover consistent with ecotones between forest 
and non-forest vegetation (Fig. 7; Fig. S8). 

Research has identified woody plant species’ populations at dry 
range edge margins and transition zones as the most vulnerable to 
drought (Allen and Breshears, 1998; Anderegg et al., 2019; Davis et al., 
2019; Young et al., 2017), and have suggested that this vulnerability 
may be due in part to high temporal climate variability (Anderegg et al., 
2019). Areas of hydroclimatic transition zones, represented by an in-
termediate climate between moisture limited arid climates and energy 
limited hygric climates, have been identified as hotspots for land- 
atmosphere coupling where soil moisture feeds back on both evapo-
transpiration and subsequent precipitation and results in enhanced 
climate variability (Koster et al., 2004; Seneviratne et al., 2010; Sen-
eviratne et al., 2006). In these areas, low soil moisture decreases 
evapotranspiration which leads to increased atmospheric aridity, thus 
decreasing the atmospheric moisture that can recharge soil moisture 
through precipitation (Zhou et al., 2019). These zones represent a 
transition from energy limited to water limited systems, and the CWD 
where we observe a switch from a positive correlation to negative cor-
relation between VPD and LAI suggests this occurs at a similar CWD 
where the VPD and soil moisture sensitivity curves peak (Fig. S8; Fig. 5). 
Our results suggest that plants in these hydroclimatic transition zones 
show the greatest sensitivity of canopy water content to soil moisture 
and VPD variation. 

Given that nVODr represents the diurnal ability of plants to replace 
water lost via transpiration, it is not surprising that it is less sensitive at 
sites with low mean annual CWD. These sites are energy limited (Fig. S8) 
with more available water and lower atmospheric demand, and there-
fore are more likely to have sufficient soil water for maintaining canopy 
water content even during extended periods without precipitation. The 
Northwest and montane regions in the Northern Rockies represent the 
bulk of such areas where insignificant model coefficients were found 
(Fig. 5) and represent conditions where plant water status is decoupled 
from changes in daily supply/demand in our conceptual model (Fig. 2). 
Low CWD is also associated with low climatic variance, and therefore 
the standardized values representing deviations from mean seasonal 
conditions may not represent a sufficient imbalance in supply or demand 
to be reflected by a response in plant water content. 

We also find a subset of sites in the Northwest with model co-
efficients that are opposite our expectations (difference between night 
and day increases despite negative soil moisture and positive VPD 
standardized scores). In these areas our models show a lack of significant 
positive VPD coefficients which suggests that the counter intuitive re-
sults may be more driven by moisture surplus and access to deep ground 
water. Evapotranspiration can become decoupled from soil moisture in 
areas that are not water limited (Seneviratne et al., 2010) and tree 
drought response in forested areas can be driven by the availability of 
deep ground water (Goulden and Bales, 2019). As these sites are located 
in energy limited hygric areas with low CWD and high forest cover 
(Figs. 6 & 7) it is possible that soil moisture depletion during the analysis 
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period does not leave the deeper soil dry enough to inhibit plant rehy-
dration. For these areas, canopy water content response to drought is 
likely to occur over multiple seasons that lead to depletions of long term 
water sources (as observed by Asner et al., 2016; Berdanier and Clark, 
2016; Brodrick et al., 2019; Goulden and Bales, 2019), and are not likely 
to show up strongly in an analysis of responses to daily or even seasonal 
changes in water supply and demand. 

Our results demonstrate that the sensitivity of canopy water content 
to soil moisture and VPD dynamics, is mediated by inter-annual 
hydroclimatic variation. Sites that have the lowest nVODr sensitivity 
to soil moisture and VPD variation also have the lowest interannual 
CWD variability (Fig. S3). These areas occur on the ends of the hydro-
climatic spectrum; they can be consistently wet or dry. 

4.3. Geographic variability in canopy water content sensitivity 

The sites most ‘sensitive’ to soil moisture are defined by low tree 
cover and high grass cover (Fig. 8), leading us to hypothesize that 
canopy water content in these areas is more vulnerable to the increases 
in atmospheric water demand and reductions in water supply that are 
likely to accompany directional climate changes. Our LM coefficients are 
greatest at CWD values coinciding with sites where forest cover transi-
tions to grass cover (Fig. 7a), suggesting that the highest sensitivity is 
occurring near transitional climate zones that occur along forest to non- 
forest ecotones. Fluctuations in canopy water content driven by soil 
moisture variation at these sites may push plants in these locations 
beyond hydraulic safety margins resulting in mortality (Brodrick and 
Asner, 2017; Choat et al., 2012; Martinez-Vilalta et al., 2019; Sapes 
et al., 2019). We hypothesize that the most ‘sensitive’ sites occur in 
transitional ecotones. However, the coarse resolution of our data makes 
it difficult to identify specific transitional zones. We provide a map of the 
combined interquartile ranges of tree cover, grass cover, and CWD for 
the ‘sensitive’ sites which identifies the spatial distribution of conditions 
where high nVOD sensitivity is most likely to occur (Fig. S9). 

4.4. Implications for climate change 

Canopy water content sensitivity to hydroclimate and hydroclimate 
variability has implications for understanding impacts of ongoing 
climate change. Hygric environments that experience decreases in 
available water may become more sensitive to anomalies in water sup-
ply and demand as moisture reserves are depleted. This greater sensi-
tivity to drought could have implications for transitional ecosystems, as 
mortality at dry edges can lead to regeneration failure and range shifts 
(Allen and Breshears, 1998; Davis et al., 2019; Lenoir et al., 2008). 

The greater relative importance of soil moisture variation on canopy 
water content dynamics also has implications for forecasting how plant 
water dynamics will be influenced under future climate change. VPD is 
projected to increase with temperature (IPCC, 2013). However, summer 
precipitation in the western U.S. is predicted to decrease in frequency 
and amount but increase in variability, reducing water supply and 
leaving longer periods between soil moisture recharge (Holden et al., 
2018; Pendergrass et al., 2017; Rupp et al., 2017; USGCRP, 2017). 
Therefore, predicted precipitation trends are likely to reduce canopy 
water content and increase rates of drought-induced mortality (Sapes 
et al., 2019). 

4.5. Caveats 

There is uncertainty introduced by scale mismatches between our 
response variable and the functional resolution of the predictor variables 
we derive. However, these types of scale mismatches are relatively 
common to the application of VOD data for examining plant water re-
lations. For example, previous research has shown reasonable agree-
ment between in-situ soil moisture measurements and 25 km resolution 
satellite microwave soil moisture products (Draper et al., 2009; Njoku 

et al., 2003; Reichle et al., 2007). Likewise, individual tree LWP and 
biomass measurements have been shown to correspond with 25 km 
resolution VOD and LAI dynamics (Momen et al., 2017; Zhang et al., 
2019). Our analysis using SNOTEL soil moisture was also consistent with 
our broad scale results (Fig. S2). Additionally, VOD retrievals along 
steep slopes have been noted as less robust. As the LPDR product does 
not flag mountainous areas we were unable to remove them, and it is 
possible that VOD retrieval errors have contributed to the greater 
number of low and insignificant coefficients seen in wetter, energy- 
limited areas that appear to occur around mountainous regions (Fig. 5). 

When we removed the direct influence of seasonality of biomass on 
nVOD dynamics, it is possible that in doing so we have also removed 
information on how canopy water content dynamics respond to drought. 
For instance, leaf shedding can be a physiological response to drought, 
and reduced growth and biomass can indicate higher susceptibility to a 
subsequent drought event (Camarero et al., 2015; Carnicer et al., 2011; 
Guada et al., 2016). Both soil moisture and VPD standardized scores are 
correlated to LAI standardized scores, and by treating LAI as a first order 
influence on nVOD we implicitly assume that any correlation between 
the variables is primarily driven by LAI. However, this approach is 
necessary to disentangle the influence of biomass dynamics on nVOD 
and put the focus of our analysis on canopy water content sensitivity. 
Critically, by removing the effect of seasonal LAI changes, our approach 
likely provides conservative estimates of the sensitivities to the drivers 
of drought. Moreover, correlation coefficients were greater between soil 
moisture and LAI standardized scores (Fig. S7) which suggests that the 
influence of soil moisture was more likely to be negatively impacted by 
removing biomass trends such as those observed in the southwest re-
gion. Further, information lost by removing the influence of biomass is 
unlikely to change the overall pattern of soil moisture coefficients. Our 
BRT analysis (that did not remove the influence of biomass variation and 
used LAI standardized scores as a predictor along with soil moisture and 
VPD) supports our regression-based results; soil moisture still emerged 
as the most influential variable at 90% of the sites with LAI replacing 
VPD in relative importance at some of the southwestern sites (Fig. S8). 

Our study is constrained by the coarse resolution of the VOD data and 
does not parse out differential species-specific ranges or hydraulic traits 
and responses, which are known to influence drought susceptibility 
(Anderegg et al., 2019; Anderegg et al., 2018; Bréda et al., 2006). There 
is a great deal of variability in the linear model coefficients we quantify. 
The coarse resolution of our analysis and the inability to consider 
species-specific responses likely accounts for some of this variability. 
Further research examining how model coefficients vary by plant 
physiognomic types and species traits is warranted. Lastly, the coarse 
resolution of the analysis also limits our ability to account for top-
oclimatic effects and the effect of enhanced supply in hydraulic 
convergence zones that are known to help buffer vegetation from 
climate variability (Dobrowski, 2011; McLaughlin et al., 2017; Simeone 
et al., 2018). Despite these caveats, coherent spatial patterns of canopy 
water content sensitivity still emerge. 

5. Conclusion 

We show that canopy water content dynamics have a stronger 
coupling to soil moisture than VPD variation at a majority of sites across 
the western U.S. Plant water content was decoupled from changes in 
both soil moisture and VPD at wetter environments with less climatic 
variance. In contrast, canopy water content showed the greatest sensi-
tivity to VPD and soil moisture at sites with intermediate climatic water 
deficits - sites that represent climatic transition zones between energy- 
limited and moisture-limited environments and exhibit strong land- 
atmosphere coupling. These sites occur at CWD values where there is 
a transition from tree cover towards grass cover that are consistent with 
ecotones between forest and non-forest. These areas are likely to be 
more vulnerable to increases in drought frequency and severity pro-
jected with continuing climate change. Our study outlines large scale 
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spatial and climatic patterns of daily canopy water responses to 
changing metrics of drought across the western U.S. Our findings 
highlight the importance of soil moisture dynamics to plant water re-
lations, especially in transitional ecotones. 
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