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Post-earthquake structural evaluation

After an earthquake, every damaged building needs to be properly evaluated in order to determine its capacity to
withstand aftershocks as well as to assess safety for occupants to return. These evaluations are time-sensitive as
the quicker they are completed, the less costly the disaster will be in terms of lives and dollars lost. In this di-
rection, there is often not sufficient time or resources to acquire all information regarding the structure to do a
high-level structural analysis. The post-earthquake damage survey data may be incomplete and contain missing
values, which delays the analytical procedure or even makes structural evaluation impossible. This paper pro-
poses a novel multiple imputation (MI) approach to address the missing data problem by filling in each missing
value with multiple realistic, valid candidates, accounting for the uncertainty of missing data. The proposed
method, called sequential regression-based predictive mean matching (SRB-PMM), utilizes Bayesian parameter
estimation to consecutively infer the model parameters for variables with missing values, conditional based on
the fully observed and imputed variables. Given the model parameters, a hybrid approach integrating PMM with
a cross-validation algorithm is developed to obtain the most plausible imputed data set. Two examples are
carried out to validate the usefulness of the SRB-PMM approach based on a database including 262 reinforced
concrete (RC) column specimens subjected to earthquake loads. The results from both examples suggest that the
proposed SRB-PMM approach is an effective means to handle missing data problems prominent in post-
earthquake structural evaluations.

1. Introduction collapse risk can be identified and rescue teams can take the necessary

precautions (e.g., dismantling those damaged buildings having high

After an earthquake, every damaged building needs to be properly
evaluated in order to determine its capacity to withstand aftershocks as
well as to assess safety for occupants to return. These evaluations are
time-sensitive as the quicker they are completed, the less costly the
disaster will be in terms of lives and dollars lost. Recently, many
advanced techniques have been developed to rapidly perform post-
earthquake safety and structural assessments. For example, these
include a data-driven framework for predicting the safety state of post-
earthquake buildings [1] and automated post-earthquake building
evaluations [2-7]. However, these methods cannot evaluate the residual
load bearing capacity of damaged buildings due to earthquakes, and
such evaluations are necessary for some damaged buildings to analyze
their seismic performance resisting aftershocks such that the global
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global collapse risk). The evaluation of residual capacity requires
detailed nonlinear structural analyses for each damaged building.
However, in the earthquake field, there is often not sufficient time or
resources to acquire all design information (e.g., material properties and
reinforcement details) to do such a high-level structural analysis. Thus,
post-earthquake survey data for some damaged buildings may be
incomplete and contain missing values for critical design information.
This is where the missing data problem is prevalent in post-earthquake
survey data. In turn, this can delay the structural evaluation or even
make it impossible. Therefore, it is necessary to develop approaches to
address the problems associated with incomplete data.

An incomplete data set involves observations (i.e., data points) with
missing values, as shown in Table 1. Table 1 shows an example where
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Table 1

Schematic format of an incomplete data set, where ‘NAN’ represents a missing
value, and missing values only exist in the partially observed explanatory vari-
ables Z(l), Z(z), and Z(3).

Observations X1 X, Zy Z) Zs y
(*1.71) X1 X1p X1(p+1) NAN NAN 1
(¥2,y2) X21 X2p X2(p+1) X2(p+2) NAN Y2
(x3,¥3) X31 X3p NAN NAN NAN ¥s
(x4 ,Y4) X41 Xap X4(p+1) X4(p+2) X4(p+3) Ya
(xn-,}'n) Xn1 Xnp Xn(p+1) Xn(p+2) NAN Yn

three explanatory variables (or features/predictors) are partially
observed and have missing values (represented by ‘NAN’ values),
making this data set incomplete. One common strategy to deal with this
missing data problem is to bypass the data with missing values and use
the available complete data for analysis and inference. The most popular
way for this strategy is to simply discard every incomplete observation,
transforming the incomplete data set into a reduced, but complete, data
set. Nevertheless, considering all observations in the original incomplete
data set are from realistic cases, this strategy involves throwing away a
potentially large amount of useful information when missing data ratio
is high, leading to biased inference, and finally misinterpreted conclu-
sions [8-10]. Another effective strategy is to apply information theory (i.
e., mutual information and interaction information) to derive a reli-
ability function for analysis of incomplete data set [11]. However, these
kinds of strategies are not always appropriate. In specific, in post-
earthquake structural evaluations, bypassing the data associated with
any damaged buildings with critical structural information missing
means that further structural analyses of these damaged buildings are
not feasible, and thus, the global collapse risk for these damaged
buildings will remain unknown, posing a substantial, potential threat.
Another effective scheme is to impute the missing values with plausible
candidates, resulting in an imputed, complete data set. In this way, this
type of imputation approach maintains the size of the original incom-
plete data set without risking the loss of useful information. By using
imputation methods, those damaged building data with missing values
will be imputed and further structural analyses can be performed based
on the imputed values to inform the rescue teams of the associated
global collapse risk.

The most direct imputation method is single imputation, which is
performed by filling in a candidate for each missing value, such as
imputing each missing value with a fixed value (e.g., mean imputation
where any missing values are replaced with the mean of that variable for
all other cases, which will not alter the sample mean) or a single value
estimated by regression predictions [12] or by nearest neighbor methods
[13,14] (where each missing value on some incomplete observations is
replaced by a value obtained from related cases in the whole set of ob-
servations). However, single imputation is statistically incorrect, as it
implies that those missing values are certain when in fact the missing
values have not been observed [9,15,16]. Thus, analyses of the imputed,
complete data set by single imputation methods fail to account for the
uncertainty of missing data. As an alternative, a multiple imputation
(MI) method was developed by Rubin [15] to address this drawback.
The method of MI has become a popular means for handling incomplete
data sets in statistical analyses. The MI approach involves filling in each
missing value with multiple plausible candidates, creating multiple
imputed, complete data sets for analyses. Each data set is analyzed
independently using techniques designed for the complete data set, and
then the analyzed results are combined in such a way that the uncer-
tainty of missing data may also be incorporated into the analyses [9,15].
Two popularly used approaches to create multiple candidates for MI
include joint modeling (JM) of a multivariate imputation model speci-
fication [17,18] for all of the partially observed explanatory variables
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(conditional on any fully observed variables) and fully conditional
specifications (FCS) of a series of univariate imputation models [19-22]
for each partially observed explanatory variable given the other
variables.

JM involves specifying a joint distribution for the multivariate data
and drawing candidates from the posterior predictive distribution of the
missing data [17]. The JM methodology is attractive when the specified
joint distribution provides a good fit to the multivariate data. The
commonly used joint distributions specified by JM techniques for
imputation include the multivariate normal model, the multinomial log-
linear model, and the general location model for mixed continuous and
discrete variables [17]. However, it is often challenging to specify a
correct joint distribution [22,23]. As an alternative to JM, FCS specifies
the multivariate imputation model on a variable-by-variable basis by a
set of conditional densities, one for each partially observed explanatory
variable [22]. Given starting values, FCS draws candidates by iterating
throughout all conditional densities. Compared to JM, the use of FCS is
much more flexible. This is because, for each partially observed
explanatory variable (e.g., continuous or discrete variable), an appro-
priate univariate model can be selected. This strategy is more attractive
than JM in cases where there is no evident, appropriate joint distribution
for the data. Nevertheless, FCS also has a drawback, that is, the condi-
tional densities may be incompatible. This means that there may not
exist a joint density such that the conditional densities for each of
partially observed explanatory variables are fully conditional (e.g., the
iterations cannot reach convergence) [23]. Additionally, both JM and
FCS produce candidates for missing values in terms of simulation. The
candidates obtained by simulation may be outside the observed data
range due to the model misspecification of either JM or FCS, leading to
meaningless imputation results [9]. This may lead to generated candi-
date values that cannot be used to do detailed structural analyses for
post-earthquake safety and structural assessments (e.g., negative
candidate value for reinforcement ratio of a reinforced concrete (RC)
column). Therefore, these two methods are not appropriate in such a
context.

In Bayesian parameter estimation, a joint distribution can be
factored as a product of conditional and marginal distributions [24-26].
By appropriately specifying the univariate distribution for each partially
observed explanatory variable as either a marginal or conditional dis-
tribution, the joint distribution for the entire set of explanatory variables
with missing values can be achieved. Motivated by this, we propose a
novel MI approach called sequential regression-based predictive mean
matching (SRB-PMM) to create multiple plausible candidates for
imputing each missing value with consideration of the uncertainty due
to missing data. The proposed approach simplifies the specification of a
suitable multivariate imputation model into a much easier task of
specification of a series of univariate models and is able to overcome the
possible drawback of FCS where the specification of univariate impu-
tation models may be incompatible. Further, the proposed SRB-PMM
approach ensures that the plausible candidates are from realistic
values instead of simulations, due to the use of PMM, which overcomes
meaningless imputations and ensures that the generated candidates will
never be outside the observed data range. Therefore, the proposed
approach can generate candidate values that can always be used for
post-earthquake safety and structural assessments by performing
detailed seismic analyses of damaged structures.

For the purpose of this work, a database of 262 RC column specimens
subjected to earthquake loads is used to validate the proposed SRB-PMM
approach, since RC columns are an important lateral load resisting
member in an RC frame structure. For an RC frame building damaged by
an earthquake, the lateral displacement of damaged RC columns can be
measured by a skilled triage team of structural engineers/certified in-
spectors visually, but the lateral strength at this deformation cannot be
acquired directly and its precise magnitude requires a detailed seismic
analysis. The lateral load carrying capacity is quantified by the lateral
strength of an RC column at its damage state, and is of great importance
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in determining whether the damaged RC column is safe and functional
or that immediate repair is required [27,28]. This paper utilizes the
proposed approach to advance post-earthquake safety and structural
assessments with an emphasis on strength prediction of RC columns in
the context of missing data. The rest of this paper is organized as follows.
Section 2 presents the proposed methodology. Section 3 designs and
performs two examples to validate the proposed approach based on a
database of 262 RC column specimens subjected to earthquake loads.
The experimental results are presented and discussed in Section 4.
Conclusions are made in Section 5.

2. Methodology

This section presents the formulation of the proposed SRB-PMM
method, which couples sequential regression and predictive mean
matching (PMM) to address missing data problems. First, the proposed
SRB-PMM method is used to generate several potential candidates (e.g.,
r candidates) for each missing value in an incomplete data set. In this
way, r imputed complete data sets will be formed. Second, a machine
learning (ML) approach is utilized to select the most plausible data set
from the pool of the r imputed data sets by minimizing a cost function (e.
g., mean squared error (MSE)) using K-fold cross-validation (CV). The
most plausible imputed data set will be the one that causes the fitted ML
model to have the best performance (e.g., minimum MSE), and the
candidates that filled in the most plausible imputed data set are regarded
as plausible imputation values. Last, by independently repeating the first
two procedures multiple times, multiple plausible candidates for each
missing value can be generated to consider the uncertainty of missing
data. The detailed procedure for the proposed method is presented
below.

2.1. Sequential regression-based predictive mean matching (SRB-PMM)

Assume a data set { (x;, ;) }?:1, where x; € RP*9,y; € Rand m>p +q
is collected from a domain of interest. In this data set, there are n ob-
servations, and each observation has (p + q) explanatory variables (i.e.,
x; € RP*9) and one response variable (i.e., y; € R). However, some data
points (i.e., observations) have one or more explanatory variables with

missing values, making the collected data set {(x;,y;) }._, incomplete.

n

i-1
For the remainder of this paper, we assume there are no missing values
in the response variable (as this is not relevant in the proposed appli-
cation domain) and the following notations are used. Let X0 = (Xl,
,Xp) € R™ be a matrix with n observations, and each observation has p
fully observed explanatory variables (i.e., there are no missing values for
n observations in these p explanatory variables, such as X1, ---, X, shown
in Table 1). Let X™ = (Z), -+, Z(q) ) € R™4 be a matrix with n obser-
vations and each observation has q partially observed explanatory var-
iables (i.e., there is at least one missing value for each of these g partially
observed explanatory variables, such as Z,), Z(3), Z(3) shown in Table 1),
and Zy), -+, Z(q) have been ordered increasingly in terms of the missing
data ratios. Let y € R" be a vector. Thus, the data set { (x;,y;) };':1
also be written as D = (X,y), where X = (X°% X™) ¢ R™(P+a), A
schematic format of this incomplete data set is presented in Table 1. Let
0 = (01,-+,04) € R™1 be the indicator matrix where o5 =1 if x; is
observed and o = 0 if x; is missing. Note that the indicator matrix O is

can

only applied to X™°. Thus, for the jth explanatory variable, wherej =1,
---,q, the vector Z; can be thought of as consisting of two parts: Zf};s =
{xj : 05 = 1}, the data that is observed, and Z[}* = {x; : oy = 0}, the
data that is not observed. We assume that the missing data are missing at
random (MAR) [8,26].

From a probability perspective, missing values can be reasonably
imputed only when a multivariate imputation model p(X’"’“|X°bs ,0) is

specified correctly [15], where @ = (61, -+,6y) is the model parameters.
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The multivariate imputation model p(X™*|X°*, ®) can be factored as
follows [25]:

pX0) = pl2y 2. 0)
=po(Zig|Z ), "'»Z(qfl)ﬂxnbxvofl)
X Pa-1 (Zig-n)|Zory,  Zig), X0y ) X
x pi(Z1)|X*",0,) (¢))

where p;, j =1, ---,q are the conditional density functions and 6; is a
vector of parameters in the conditional distribution (e.g., regression
coefficients, dispersion parameter). Note that when imputing the
missing values for a partially observed variable (e.g., Z(1)), only the
model parameter (e.g., 6;) related to this variable (e.g., Z(1)) is used, and
other model parameters (i.e., 85, --,6,) are not required. Therefore, The
distribution pj(Z(j)‘Z<1)7 --~,ZU,1),XObS,6j) (G>1)or pj(Z(j) |X0bs,0j) G =
1) depends only on parameter 6;.

Each conditional regression model in Eq. (1) is selected based on the
type of variable Z;. For example, if Z; is continuous, a normal linear
regression model can be selected; if Z; is binary, a logistic regression
model can be used; if Z; is categorical, a multinomial logistic regression
model can be utilized; if Z;, is count variable, a Poisson loglinear model
can be employed. Eq. (1) is initiated by regressing the variable with the
fewest number of missing values (i.e., Z(;)), Z;;) on X where the
missing values are imputed by PMM based on regression results to form
an imputed, complete data vector Z(;). Then, the complete Z ) vector is
appended with X°* to impute variable Z ) with the next fewest number
of missing values using the univariate model p, (Z(z) \Z<1>,X"bs7 0 ) This
means, Z ;) is imputed on U; = X°bs, Z 5 is imputed on U, = (X”bS,Z(l) )
where Z(;, has imputed values, Z3) is imputed on Us = (X°*,Z1),Z(2))
where Z(;) and Z ) have imputed values, and others (i.e., Z4),-,Z(5)) are
imputed in a similarly sequential manner. The detailed imputation
procedure for imputing each partially observed explanatory variable
using SRB-PMM is presented below.

2.1.1. Bayesian inference for sequential regression-based model parameter

Since missing values exist in Z;, the model for Z; cannot be
established directly. For the model p;(Z;;)|X°*,0; ), which can be
written as p; (Z?f;,l’(’ffs |X°bs,01 ), the unknown quantities include the
model parameter #; and missing values Zz'{"fs . According to Bayes rule,
the following equation can be given:

obs

m(Zd zi o0 ) = pi(Zi12. X7.00) < pi (21X 00) @

In this work, the variables in the reinforced concrete (RC) column
data set are all continuous. Therefore, we specify a normal linear model
for p; (Z‘(’fi |x°bs 9, ) as well as for all other conditional density functions.

For a linear model, the regression of Z?fj from X°* depends only on

Xt = {X : 0,y =1}, which is given by:

Zz(;f)\ — X"*nbrlﬁ] + € (3)

where §; = (f;,+f1,) is a regression coefficient vector; X" is the
design matrix including the column corresponding to the intercept term
in the regression model (i.e., the column with unity entries), &; = (eu,

---,sl(nubl)) is an error vector, Ny = length(Zﬂ’f) is the number of

observed data in Z;) (note that the number of observations in X “obsl jg
also ngp1, i.e., size(X !, 1) = size({X :0q = 1},1) = nop) and e11,
“+, E1(ngy) 11.d.N(0,6%) or &1 N(0,03I), and I is the identity matrix.
Thus, in this case, the model parameter 6; = (8,,67) and the poste-
rior distributions need to be determined. Given this setting, the likeli-
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hood function is a multivariate normal (X8, 63I) [26], which in-
cludes unknown model parameters #; and ¢2. The posterior joint dis-
tribution of these two unknown model parameters can be written as
follows:

p(Biatlx™. 2l ) = p(Bilod X" 2 ) < p (ot 237 ) @

From Eq. (4), the posterior joint distribution of unknown model
parameters (f;,07) can be made via a Monte Carlo approximation by
sampling from these two conditional distributions p(aﬂX"bSl , Zﬁ’?) and
p(ﬂ1 \af,X"bﬂ,Z‘(’f; ), respectively. Throughout this paper, a g-prior [29]
is used for these unknown model parameters (8,,067). With the use of

g-prior, the resulting conditional distributions for p(ﬁl\r;%,X"bﬂ,Z‘(’ff)

and p (aﬂX"’”1 : Z‘(’lbi) are obtained as follows [26]:

; ~ | + 1o G +SSR
{oﬁ X! ,Z;’fj‘ } inverse — gamma (M, L) %)
2 2
2 yoobsl obs |~ 8 7 _ 8 of (yrobst\Tyrobst |
{ﬁl‘”le 7Z(l)} N<g+1ﬁ17g+10-1((X ) X ) ) (6)

- ] 7 -1 * . . . .
where f; = ((X obst ) Ty "b“) (x °b51)TZﬁ’)s is a regression coefficient

vector estimated by ordinary least squares (OLS); Ef =

2
sum((Zf{’f fX*"bﬂﬂ1> ) / (nop1 — p) is an unbiased estimate of 67,

SSR = (Zz()i); >T <I _ gX*obsl <(X*obsl)TX*obsl )71 (X*obsl)T/(g + 1) >Z((Ji7_)s is

the sum of squared residuals (SSR).
Since we can sample from both of these two conditional distribu-

tions, a sample value of (8;,07) sampled from the posterior joint dis-

tribution p(ﬂl , aﬂX"bﬂ,Z‘(’ff ) can be made by first sampling the ¢3from
Eq. (5) and then sampling the #; from Eq. (6) given the sampled o2.
Thus, multiple independent sample values from p (ﬁl, o3 |x°bst Z‘(’fj ) can
be made by independently repeating the procedure. Suppose we obtain S
sample values {(ﬁl, o?), }j:1 from p (ﬂh o2 |x°t Z‘;{’; ) So, the mean of
the model parameters given the S samples can be obtained by Monte
B =1/ 1(81), and o

where oy =
(1/8)5°5 1 (03),. Given the sampled model parameters (ﬁlﬁf), a

Carlo approximation,

regression model can be established by inserting the model parameters
into Eq. (3). We now describe a hybrid procedure to generate the real-
istic candidates for missing values using PMM incorporated with a k-fold
cross-validation procedure based on an ML model.

2.1.2. Predictive mean matching (PMM) integrated with a k-fold cross-
validation (CV) algorithm

Different from other imputation approaches, the goal of the regres-
sion model for PMM is not to actually generate the imputed values.
Instead, the aim is to establish a metric for matching cases with missing
values to similar cases with observed values [30-33]. The similarity is
measured by the Euclidean distance between the fitted values for the
observed data and the predicted values for the missing data based on the
established regression model. For each missing value, the PMM first
identifies a set of cases with observed data whose fitted values are close
to the predicted value for the case with missing data in terms of the
measured similarities. From those close cases, one case is randomly
sampled and assigned its observed value as a substitute for the missing
value. Therefore, the PMM imputes the missing values based on the
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realistic observed values, and thus, never generates imputations outside
the observed value ranges. In this way, PMM overcomes the problems
associated with meaningless imputations generated by aforementioned
MI approaches. However, in this procedure, the randomly selected case
may not be a plausible candidate, since there is no standard method to
evaluate whether or not the selected one is plausible.

To solve this problem, we present a hybrid approach to select plau-
sible candidates based on the k-fold cross-validation (CV) algorithm
[34]. The purpose of this hybrid method is not to evaluate if a randomly
selected single candidate for one missing value in one partially observed
explanatory variable is plausible. Instead, it evaluates the imputed,
complete data set where the missing values in all the partially observed
explanatory variables are imputed. The evaluation criterion is based on
an ML model’s performance estimated by the CV algorithm on the
imputed, complete data set. This is because for an incomplete data set,
there is an underlying pattern that can be captured by ML methods.
Observations (i.e., data points) with and without missing values should
follow that pattern. The plausible candidates should be able to make the
imputed observations follow the underlying pattern. Conversely, inap-
propriate imputations may lead to imputed observations that become
outliers and deviate from that pattern. Therefore, plausible imputations
can result in an imputed complete data set where a fitted ML model
should have good generalization performance, while inappropriate im-
putations may cause a fitted ML model that has poor generalization
performance due to the negative effect of potential outliers. In this way,
the generated plausible candidates can be reasonably justified by the
fitted ML model that has the best performance.

We denote that X = {X° : 05 = 0}, X" is the design matrix
for X®* as explained for X"*! previously, n. is the number of cases
with missing values in Z(;) (note that the number of missing data in Xx°0bs0
is also o, i.e., size(X?0,1) = size({X** : 00 =0},1) = o), and
Ngpo + Nep1 = N. The detailed procedure regarding the donor pool (i.e.,
selected close cases) generation for the missing values in Z’(’{i)‘s using the
PMM algorithm is summarized in Algorithm 1:

Algorithm 1. (Generate realistic candidates for missing values using PMM)

1) Calculate the fitted and predicted values for Z‘Zﬁ and Z{'i’f‘, respectively:

~obs cobs1 7
70 = x"p,
£ miss

Zy)

2) Select r nearest cases as the candidates for each missing value Z’(’}L]”l in Z:’ff:

— X”obsoﬁl

foralli=1, nyy do

Sobs  Smiss

Za) = Zq)|

2.1) Calculate the Euclidian distance vector d; = '

2.2) Sort d; increasingly to obtain an increasingly ordered vector d; =

(dir).  ditngr) )-

2.3) Select r nearest cases from Zﬁff corresponding to the first r close entries (i.e.,
diry, -+, dy(p) in d;.

2.4) Assign their observed values as the r candidates for the missing value Z75.

end for i

Using Algorithm 1 above, each missing value in Z;'{L)‘S has r candidates
to impute. For each missing value, randomly sample one of the r can-
didates to impute the missing value. After all the missing values in Z;’i’fs

are imputed in the same way, an imputed Z;’}“f is obtained, which is

denoted as Z'(T)ss Then, continue this procedure within the remaining r —
1 candidates for each missing value until all candidates are used. Finally,

mis:

s r
there will be r imputed Z?ﬁs, which is denoted as {Zu)j} . Each
=1

combination <Z?f§2'gl)ssl>, I[=1,--,r forms an imputed Z;, vector,

which is denoted as Z (1).- Therefore, r imputed Z (1) vectors are formed,
r
. To impute the missing values in Z(,),

which is denoted as {2 o }
=1
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U; = X°% is updated by Uy = (U17 2(1)1), [ =1,---,r. Then Algorithm

2 is developed to impute Z;), j = 2,---, q in a sequential way.

Algorithm 2. (Sequentially impute the missing values for Z;,j = 2,---,q)

Given the {Uy,},_,, where Uy = (xobsju),, )

foralll=1,--,rdo
forallj=2, - ,qdo

1) Compute the model parameters (E], ?7]2) using Egs. (2-6) with the replacement

of variables and parameters for Z;), i.e., pj (Z(,-> Uj1,B; a]? ), and X° is replaced by
U1

2) Generate r candidates for each missing value in Z’g)i“ using algorithm 1 with
the replacement of variables and parameters for Z ;).

3) Randomly select one from the r candidates for imputing each missing value in
7

4) Denote the finally imputed Z; as 20)1 and update the Uj,1; = (Uﬂ, 2(,-),1 ) .

end for j
5) Set D; = (X}""P ute y), where D, is an imputed, complete data set and

X" = Ugiag = (Uq.l«Z<q).1)<

end for 1

By implementing Algorithm 2, one can obtain r imputed, complete
r

data sets {51} . Next, we use a k-fold cross-validation (CV) algorithm
=1

to minimize a cost function and determine which imputed data set is the

most plausible based on an ML technique. The following procedure is

used to select the most plausible imputed data set, which is defined as

the one capable of minimizing the cost function CF(y, f(X™"“*) ) by a k-

fold cross-validation procedure, where CF(-) represents the cost func-
tion and f(+) represents an ML technique:

Algorithm 3. (Selection of the most plausible imputed data set by K-fold CV
procedure)

7

Given the r imputed data sets {51} , where D; = (X;'"'P””,y>, cost function CF(-),

=1
ML technique f(-).
foralll=1,-- rdo
1) Compute the cost by K-fold CV procedure:

CVi_fold (131) = I%ZLCF(YW ,f(X;'ﬁ“‘e) )
end for [

2) Choose the imputed data set that has the min({CVK,fuld (ﬁl) } )
=1

In Algorithm 3, n; is the size of the kth group (i.e., ny = floor(n/K));
Yy, is the observed response variable for the kth group in terms of the Ith

impute
X ng,l

imputed, complete data set Dy; f ( ) is the predicted response for the

Ximputed

kth group by an ML technique f( - ) trained on < Tl y_nk> in terms of

Dy (Ximp”ted, yfnk) is the complementary set of (Xi'"pmd, y"k> in D,.

—ny,l .l

2.1.3. Generation of an ensemble of multiple most plausible imputed data
sets

Using Algorithms 1 — 3 above, the most plausible imputed, complete
data set can be determined. The m most plausible imputed, complete data
sets to constitute an ensemble can be created for MI analyses to account
for the uncertainty of missing data by independently repeating Algo-
rithms 1 - 3 m times. Each imputed, complete data set can be used to
develop an analytical model, and thus m analytical models forming an
ensemble can be developed for predictions. The final predicted results
are the average of the predicted results of m models. A schematic
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flowchart is presented in Fig. 1 to illustrate this procedure.

3. Illustrative examples

This section presents the details of the numerical experiment design
and validation for the performance of the SRB-PMM in advancing post-
earthquake safety and structural assessment in the context of missing
data. Two examples are designed. The first example is to evaluate the
capabilities of the proposed SRB-PMM in improving the maximum
lateral strength prediction performance based on an RC column data set
subjected to ten different missing data ratios. The second one intends to
illustrate the practical application of the SRB-PMM in post-earthquake
structural analysis when the target damaged RC column is missing
critical structural information. The detailed information is introduced
below.

3.1. Lateral strength of RC columns

In structural and earthquake engineering, RC columns are the pri-
mary lateral load resisting members in an RC frame building. The lateral
load-carrying capacity of RC columns is a critical factor to evaluate if a
damaged column is still safe and functional or immediate repair is
required. The loss of lateral load-carrying capacity is typically defined
by the column’s lateral displacement, where the lateral load-carrying
capacity drops below 80% of the maximum lateral strength [35]. In
the post-earthquake field, for a damaged RC frame building, the lateral
displacement and other visual damages (e.g., concrete cracking and
spalling) of the damaged columns can be measured and detected by a
skilled triage team of structural engineers/certified inspectors visually,
but their lateral load-carrying capacity corresponding to different
damage states (i.e., lateral displacement) cannot be acquired directly.
Further, a seismic analysis requires the damaged columns’ structural
feature information such as geometry and material properties. Although
the magnitudes of geometry can be measured visually, the information
regarding the material properties (e.g., concrete compressive strength
and reinforcement yield stress) is most likely unknown. The unknown
information leads to missing data problems, which can delay the
structural evaluation or even make it impossible. This work utilizes the
proposed approach to advance post-earthquake safety and structural
assessments with the emphasis of strength prediction of RC columns in
the context of missing data.

Input incomplete dataset

|

Repeat SRB-PMM m times

\ 4
Imputed complete Imputed complete
dataset 1 dataset m
v ) 4
Analytical Analytical
model 1 model m
\ 4 4 ) 4
Predicted Predicted
result 1 result m

Combination of m results

Fig. 1. Schematic flowchart for the prediction based on an ensemble of m
analytical models.
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3.2. RC column data set

The RC column data set, which is taken from the authors’ previous
work [36], is used to perform the two examples. Each column specimen
in the data set is subjected to reversed cyclic loads, which simulate the
earthquake loads. There are ten features or predictors used in this study:
the column gross sectional area A, (calculated by b x h, where b is col-
umn section width and h is column section depth), concrete compressive
strength f.’, column cross-sectional effective depth d, longitudinal
reinforcement yield stress f,;, longitudinal reinforcement area Ag,
transverse reinforcement yield stress f,;, transverse reinforcement area
Ag, stirrup spacing s, shear span a, and applied axial load P. The
response variable is the maximum lateral strength V,,, which is defined
as the maximum shear force in the hysteretic force-displacement curve.
Table 2 presents the statistical properties of the column features and
response variable. Note that some of the predictors are normalized in
Tables 2 to maintain commonly used terminologies. More detailed in-
formation regarding the data set can be found in [36].

Since the RC column data set does not contain missing values, the
two examples are performed on synthetic incomplete data sets. For the
example 1, the synthetic incomplete data sets with ten different missing
data ratios are generated from the complete column data set to
comprehensively test the performance of the proposed SRB-PMM
approach. The performance of the proposed approach is also compared
with the two widely used MI methods mentioned previously: JM and
FCS. For the example 2, an RC column randomly sampled from the RC
column data set serves as a case study of the target damaged RC column
which hypothetically is missing some critical structural information
when surveyed in a post-earthquake state. The sampled RC column’s
critical feature information regarding the material strength and rein-
forcement details is necessary to build the numerical model for further
seismic analysis; however, in this case study, this information is
removed and thus assumed unknown, as introduced in Section 3.1. The
proposed SRB-PMM approach will be used to impute this critical feature
information. The seismic analysis results obtained from the imputed
information will be compared with experimentally observed results to
illustrate the practical application of the SRB-PMM approach. The
detailed information regarding the designs of these two examples is
presented in Section 3.3.

3.3. Designs of two examples

3.3.1. Example 1

As introduced in Section 3.1, the maximum lateral strength of an RC
column is a critical factor to evaluate if damaged RC columns have lost
the lateral load-carrying capacity. Thus, it is important to accurately

Table 2
Statistical properties for the RC column data set.
Parameter Minimum  Maximum  Mean Std.
Dev

Shear span to effective depth 1.08 8.40 3.84 1.57
ratio, a/d

Stirrup spacing to effective depth ~ 0.11 1.14 0.32 0.21
ratio, s/d

Concrete compressive strength, f, 16 118 50.40 28.72
(MPa)

Longitudinal reinforcement yield 318 635 437.58  65.88
stress, f,; (MPa)

Transverse reinforcement yield 249 1424 486.91  217.57
stress, f; (MPa)

Longitudinal reinforcement 0.01 0.06 0.02 0.01
ratio, p; = Aq/bh

Transverse reinforcement ratio, 0.0006 0.03 0.008 0.005
pe=Ag/bs

Axial load ratio, P/Af, 0 0.9 0.26 0.19

Maximum shear force, V,,, (kN) 30 1339 212 182
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predict the maximum lateral strength of the RC columns subjected to
earthquake loads. The purpose of this example is to evaluate the capa-
bility of the SRB-PMM approach in improving the lateral strength pre-
diction performance of a data-driven model based on the mentioned RC
column data set subjected to ten different missing data ratios and thus,
to investigate how the missing data ratio affects its performance. Given
an incomplete data set, any standard machine learning (ML) approach
would fail to directly construct an appropriate data-driven model, as the
original analysis procedures are only valid for complete data sets and are
not designed to handle missing data [37]. This is because an incomplete
data set has no real numbers (e.g., empty or ‘NAN’) for the missing
values, but any standard ML method is essentially performed based on
matrix operations, which require a matrix with full real numbers. Thus,
the missing values must be addressed (e.g., either removing the obser-
vations with missing values or imputing the missing values) before any
standard ML methods can be employed. Additionally, the ML model
trained on a reduced complete data set serves as the baseline, where the
reduced complete data set is formed by removing the observations with
missing values in an incomplete data set. The ML model trained on an
imputed complete data set (i.e., equal size with the original incomplete
data set and maintaining all the original information) is the target model
that can improve predictions for the baseline model. This is because the
training set (i.e., the reduced data set) for the baseline model is different
from the one for the target ML model (i.e., the imputed data set), and the
reduced data set may miss useful information when compared to the
imputed data set.

The synthetic incomplete data sets are generated in the following
way. First, for the original complete RC column data set, we use the 10-
fold cross-validation procedure to generate ten different training and
test sets where the ten test sets are mutually exclusive. Then, we select
ten missing data ratios: 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%,
45%, and 50%. For each missing data ratio, we generate an incomplete
training set from each original complete training set by randomly
sampling observations. The number of sampled observations equals the
ceil(missing ratio x n,), where the ny is the size of the training set. Given
the sampled observations, we randomly sample half of the column fea-
tures (or predictors) (i.e., five features), which serve as the fully
observed explanatory variables. The remaining half of the column fea-
tures serve as the partially observed explanatory variables (e.g., it could
be the concrete compressive strength, reinforcement yield stress, or
other features). The number of explanatory variables with missing
values for each sampled observation is set randomly between 1 and 5.
Following these steps, a synthetic incomplete training set can be
generated from the complete training set. Therefore, for each missing
data ratio, there are ten incomplete training sets that are generated from
the ten complete training sets introduced above. Note that the 10
mutually exclusive test sets for each missing data ratio are held constant
(i.e., missing data is only applied to the training set).

Least squares support vector machines for regression (LS-SVMR)
[38-40] has achieved great success in structural and earthquake engi-
neering [41-47] and thus is used to construct the data-driven model
employed in this work. Other ML approaches may also be valid, but they
will not be discussed since this is not the focus of this paper. Five types of
data-driven models are designed. Delete-LS-SVMR is established as a
baseline, where the data-driven model is developed based on the
reduced, complete training set formed by deleting the observations with
missing values in the incomplete training set. SRB-PMM-LS-SVMR is the
data-driven model developed using the proposed SRB-PMM method
where the incomplete training set is first imputed using the SRB-PMM
approach presented in the Section 2 and then the SRB-PMM-LS-SVMR is
developed based on the imputed, complete training set. The third and
fourth data-driven models developed in this work are established to
thoroughly compare the performance of the proposed approach with
existing, popular MI approaches. JM-LS-SVMR and FCS-LS-SVMR are
developed using the JM (with a multivariate normal model) and FCS
(with a univariate normal model) imputation methods, respectively. The
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final data-driven model, Complete-LS-SVMR, is employed as an experi-
mental benchmark (or ground truth), where the original complete
training set is used to develop the data-driven model. The ten test sets for
all five data-driven models are the same, as introduced above. For each
developed data-driven model, the final performance is evaluated by
taking the average of the ten tests.

3.3.2. Example 2

In the second example, the objective is to illustrate the practical
application of the SRB-PMM approach in expediting post-earthquake
structural evaluations, when critical structural information required
for seismic analysis is missing. The RC column data set is also used in this
example. Specifically, we first randomly sample an RC column from the
262 column specimens, and this column then serves as the target
damaged column with missing critical feature information. The critical
feature information considered in this example is the concrete
compressive strength f.’, longitudinal reinforcement yield stress fi;,
longitudinal reinforcement area Ay, transverse reinforcement yield
stress fy;, and transverse reinforcement area Ag. This is because these
features may easily be missed in field surveys, whereas the feature in-
formation regarding the column geometry may more easily be extracted
in a routine evaluation. Thus, the information pertaining to these five
features is assumed unknown for the sampled column and requires
imputation before a seismic analysis can be carried out. The synthetic
incomplete data sets are generated based on the remaining 261 column
specimens in a similar way as in the Example 1 but with two differences.
The first difference is that this example only has one incomplete data set
for each missing data ratio and does not have the split of training and
test sets. The second difference is regarding the partially observed
explanatory variables. In this example, the partially observed explana-
tory variables are restricted to the mentioned five features.

In this example, we limit the missing data ratio to 5% and 10%.
Therefore, in total, there are two synthetic incomplete data sets. The
sampled column missing the information pertaining to the five critical
features is then added to these two synthetic, incomplete data sets. Then,
the SRB-PMM method is used to impute the missing values in the syn-
thetic, incomplete data sets. After all the missing values are imputed, we
then use the imputed feature information along with the known feature
information (e.g., column geometry) to perform a seismic analysis of this
sampled column. The performance of the SRB-PMM method is evaluated
by comparing the imputed sampled column’s simulated seismic
response with its experimentally observed response in terms of hyster-
etic force-displacement relation.

3.4. Implementations

Both examples 1 and 2 require the implementation of the proposed
SRB-PMM method. To implement the proposed approach, some pa-
rameters and the conditional density functions (CDFs) of partially
observed variables introduced in Section 2 need to be established. Since
the variables in the RC column data set are all continuous, we specify a
normal linear model for each CDF. Therefore, the dispersion parameter
o]-zand regression coefficient §; can be drawn from inverse-gamma and

multivariate normal distributions respectively, as introduced in Section
2 and Algorithm 2. The number of close cases r presented in Algorithms
1-3 is set to five. The cost function (i.e, CF(-)) presented in Algorithm 3
is mean squared error (MSE), which is evaluated by LS-SVMR based on
the 10-fold cross-validation procedure. The number of plausible candi-
dates, m presented in Section 3.1.3 is set to three. After these parameters
are determined, Algorithms 1-3 can be performed to implement the
proposed SRB-PMM method. The detailed implementation of the JM and
FCS methods can be found in [17,22]. The m candidates to account for
the uncertainty of missing data for the JM and FCS methods are also set
to three. All codes regarding the Example 1 are implemented in Matlab.
To illustrate the post-earthquake structural evaluation, the OpenSees
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[48] is used to perform the seismic analysis of the sampled column with
the imputed feature information for Example 2.

3.5. Performance quantification criteria
The predictive performance in example 1 is quantified comprehen-

sively by the coefficient of determination (Rz), mean absolute error
(MAE), and root mean squared error (RMSE) metrics. Given a response

n
variable y = {y;}|, and predicted response y = {yl} , R%, MAE,
i=1
RMSE are calculated as follows:
n ~\2
R—1— Ei;](%’ - )it)z %)
2 (i =y)
MAE = ! i\ il (8)
~a - Yi — i
©)

R? is typically in the range of [0, 1] with 1 representing a perfect
prediction. However, in some cases, R? could be negative. Note that a
negative R? value corresponds to poor prediction, which means the
model breaks down. Both MAE and RMSE values are equal to or greater
than 0, with O representing perfect prediction

4. Results and discussion

In this section, the experimental results of two examples are pre-
sented to validate the performance of the proposed SRB-PMM approach.
For the first example, results pertaining to the performance of the five
data-driven models, SRB-PMM-LS-SVMR, FCS-LS-SVMR, JM-LS-SVMR,
Delete-LS-SVMR, and Complete-LS-SVMR are all presented. Further, the
investigation of how the missing data ratio affects the performance of
these data-driven models in terms of R, RMSE, and MAE is presented.
For the second example, the hysteretic force-displacement relation of
the sampled RC column obtained with the imputed critical feature in-
formation is compared with the experimentally observed results for the
same column. At last, a discussion regarding the proposed SRB-PMM
approach in advancing the post-earthquake safety and structural eval-
uation in the context of missing data is presented.

4.1. Results for example 1

The results for each missing data ratio are averaged to reflect the
performance of SRB-PMM-LS-SVMR, FCS-LS-SVMR, JM-LS-SVMR, and
Delete-LS-SVMR in terms of the average R?, RMSE, and MAE metrics. The
average R%, RMSE, and MAE values across ten different missing data
ratios are reported in Fig. 2. Note that the results for Complete-LS-SVMR
do not vary with the variation of missing data ratios since the Complete-
LS-SVMR is developed based on the original complete training set and
serves as the benchmark for this work. By observation of Fig. 2, the
results for SRB-PMM-LS-SVMR, FCS-LS-SVMR, JM-LS-SVMR, and Delete-
LS-SVMR show that the average RMSE and MAE values increase globally
(though some values decrease locally) with increasing missing data ra-
tios, and the average R? values decrease globally (though some values
increase locally) with increasing missing data ratios. This phenomenon
suggests that the performance of all imputation methods is inversely
related to the missing data ratio, which is to be expected. Additionally,
compared to the results of Delete-LS-SVMR that serve as the baseline, the
proposed SRB-PMM-LS-SVMR improves the prediction performance for
all ten missing data ratios, while both JM-LS-SVMR and FCS-LS-SVMR
degrade the prediction performance in some cases. Moreover, the
obvious difference between Delete-LS-SVMR and Complete-LS-SVMR
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Fig. 2. The performance comparison of SRB-PMM-LSSVMR, FCS-LS-SVMR, JM-LS-SVMR, Delete-LS-SVMR, and Complete-LS-SVMR in terms of the average R?, RMSE,

and MAE metrics versus ten missing data ratios.

suggests that directly deleting the observations with missing values is
not an effective way to handle the missing data since it degrades the
prediction performance of the data-driven modeling procedure
substantially.

To further investigate these findings, the following criteria [49] are
used to quantify the R%, RMSE, and MAE improvements (%) versus
discarding the observations with missing values, for each imputation
method, across the ten different missing data ratios. The RZ, RMSE, and
MAE improvements (%) are calculated as the following:

Both JM and FCS occasionally degrade the prediction performance,
which is illustrated by the appearance of some negative values in
Table 3. The performance degradation of both JM and FCS may be
attributed to the meaningless imputations induced by simulated candi-
dates outside of the observed data range.

4.2. Results for example 2

An RC column (specimen No. 6 in Tanaka and Park [50]) is randomly

- R? with imputation sampled from the column data set, which hypothetically serves as the
R® improvement (%) = 100 x (Rz without imputation 1> a0 target damaged column collected in the earthquake field. The column’s
critical feature information introduced in Section 3.3.2 is assumed un-

. RMSE with imputation known and requires imputation prior to any seismic analysis. The
RMSE improvement (%) = 100 x (1 " RMSE without jmputation> missing data ratios considered in this case study are limited to 5% and
a1 10%, as introduced in Section 3.3.2. After the synthetic, incomplete data

MAE with imputation a2
MAE without imputation

MAE improvement (%) = 100 x (1 -

Note that the improvement is not calculated using the average R?,
RMSE, and MAE values for each missing data ratio. The improvement for
each missing data ratio is first calculated based on the original R%, RMSE,
and MAE values. Then, the calculated improvements are averaged to
reflect the average prediction performance improvements of SRB-PMM-
LS-SVMR, FCS-LS-SVMR, and JM-LS-SVMR in comparison to Delete-LS-
SVMR. The average improvements in terms of R?, RMSE, and MAE are
reported in Table 3. We then use the average improvements to compare
the prediction performance of SRB-PMM-LS-SVMR, FCS-LS-SVMR, and
JM-LS-SVMR. The greater the average improvements, the better the
performance of imputation methods. By observation of Table 3, it is
found that, in most cases, the proposed SRB-PMM-LS-SVMR outperforms
both JM-LS-SVMR and FCS-LS-SVMR and achieves the best improvement
in prediction performance, meaning that the proposed SRB-PMM
imputation method possesses the best performance in most cases.
Further, the proposed SRB-PMM method always improves the prediction
performance, which is demonstrated by all positive values in Table 3.

Table 3

sets are generated, we independently run the SRB-PMM three times for
each missing data ratio to account for uncertainty due to the missing
data. For each run, a group of plausible candidates for the five missing
values can be generated. The seismic analysis for the sampled column is
then based on the imputed feature information. Fig. 3(a,b,c) and 4(a,b,c)
present the imputed values and the seismic analysis results of the
sampled column generated from the synthetic incomplete column data
sets with 5% and 10% missing data ratios, respectively. Fig. 3(d) and 4
(d) show the average of the simulated results to account for the uncer-
tainty due to the missing data.

By observation of Fig. 3(a,b,c) and 4(a,b,c), it is evident that it is
necessary to account for the uncertainty due to the missing data. This is
because, although a single run may produce a good result, it can also
produce significant bias. For example, for the 5% missing data ratio,
Fig. 3(a,c) show that the seismic analysis results underestimate the
actual seismic performance of the sampled column, while Fig. 3(b)
overestimates the true seismic performance; and for the 10% missing
data ratio, Fig. 4(a,c) overestimate the actual seismic performance in
spite of Fig. 4(b) showing a good estimation. Thus, it is hard to judge
which single run is a reasonable estimation before knowing the actual
seismic performance. However, once considering the uncertainty, the

The average performance improvement versus discarding observations with missing values across ten missing data ratios in terms of R%, RMSE, and MAE. The bold

values represent the best performance improvements.

Indicators Models 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
R? JM-LS-SVMR 0.83 1.60 0.00 1.13 1.07 —2.67 0.31 3.40 2.16 1.17
FCS-LS-SVMR 1.43 1.41 0.84 1.33 0.73 —0.43 1.21 2.06 2.26 3.76
SRB-PMM-LS-SVMR 2.49 3.81 1.66 2.33 2.59 1.96 1.60 5.26 4.02 4.10
RMSE JM-LS-SVMR 5.86 8.99 —-0.05 7.24 8.11 —14.52 1.71 15.99 12.01 7.41
FCS-LS-SVMR 11.84 8.56 8.35 9.51 7.02 —2.43 8.49 10.10 13.17 23.67
SRB-PMM-LS-SVMR 22.99 27.64 16.37 17.90 21.37 16.52 11.71 27.62 24.81 25.57
MAE JM-LS-SVMR 3.25 4.65 1.90 6.23 3.94 6.77 9.55 14.48 10.98 12.43
FCS-LS-SVMR 8.73 10.50 11.06 13.80 12.51 14.92 16.74 16.02 15.59 23.52
SRB-PMM-LS-SVMR 14.30 14.87 12.20 11.99 12.81 12.58 13.01 16.07 15.78 21.40
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Fig. 3. Seismic analysis result for the sampled RC column missing critical feature information. (a), (b), and (c) are the three results comparison between the
experimental and simulated results, and the three simulated results are obtained from the three imputed information presented on the figures using the SRB-PMM
based on the column data set with 5% missing data ratio. The simulated result in (d) is taking the mean of the three simulated results to account for the uncertainty

due to the missing data.

estimation can be justified even if the actual seismic performance is
unknown. Both Fig. 3(d) and 4(d) account for the uncertainty of missing
data, and these results show reasonable estimations. Therefore, this
example demonstrates that the proposed SRB-PMM method performs
well for the incomplete column data sets with 5% and 10% missing data
ratios, which in turn illustrates its practical application in post-
earthquake structural evaluation subjected to missing data problems.

4.3. Discussion of results

Results from these two examples demonstrate that the proposed SRB-
PMM method is able to generate realistic, valid candidates for imputing
the missing values, without risking meaningless imputations as is
characteristic of existing, popular imputation approaches. The first
example further illustrates that the proposed SRB-PMM enhances the
generalization performance of the data-driven model for the maximum
lateral strength prediction of the RC columns subjected to earthquake
loads when compared to the baseline model (Delete-LS-SVMR). It can
also be concluded that when the missing data ratio is less than 10%, the
proposed SRB-PMM method can generate plausible candidates, which
yields the SRB-PMM-LS-SVMR model, trained on the imputed data set,
having comparable performance to the model formed using the original

complete training set (i.e., Complete-LS-SVMR).

This validation demonstrates the great potential to obtain the
missing feature information (e.g., material properties) for damaged RC
columns in the post-earthquake investigation field, which can be used
for seismic analyses to assess the safety of damaged RC columns. It is
routine that the material strength and reinforcement details can be ac-
quired only when the original column’s design information is known.
However, it is rather hard to obtain this type of information in the field,
and thus, a seismic analysis of the damaged RC column is conventionally
impossible with current procedures. However, with the proposed SRB-
PMM method, it is possible to impute the missing information for the
damaged RC columns with an established RC column data set and use
those imputed candidates to perform the seismic analysis and assess the
safety of the damaged RC column. The results from Example 1 have
demonstrated that the imputed candidates are plausible and realistic
even if the established RC column data set has a missing data ratio of less
than 10%. This fact has been validated by the R, RMSE, and MAE
values, which are close to those of the Complete-LS-SVMR (ground truth)
when the missing data ratio is less than 10% (Fig. 2). The Rz, RMSE, and
MAE values reflect the generalization performance of the proposed SRB-
PMM-LS-SVMR developed using the imputed data set, as introduced in
Section 3.5. A high R? value that approximates 1 and low RMSE and
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Fig. 4. Seismic analysis result for the sampled RC column missing critical feature information. (a), (b), and (c) are the three results comparison between the
experimental and simulated results, and the three simulated results are obtained from the three imputed information presented on the figures using the SRB-PMM
based on the column data set with 10% missing data ratio. The simulated result in (d) is taking the mean of the three simulated results to account for the uncertainty

due to the missing data.

MAE values that approximate O for the proposed SRB-PMM-LS-SVMR
can demonstrate that the imputed candidates are plausible, and the
seismic analysis results obtained based on the imputed candidates are
reliable. Nevertheless, this strategy should be employed with caution
when the RC column data set has a missing data ratio greater than 10%,
where the performance difference between the proposed SRB-PMM-LS-
SVMR and Complete-LS-SVMR is increasingly large as demonstrated by
the apparent discrepancy for the R?, RMSE, and MAE values between
them in Fig. 2. The deteriorated performance may be due to the situation
where the imputed candidates are far away from the actual missing
values, making the imputed observations become outliers. In this case,
the seismic analysis result using the imputed candidates should be
checked with physical knowledge or expert opinions.

In the post-earthquake investigation field, although the lateral
displacement and other visual damages (e.g., concrete cracking and
spalling) of damaged RC columns can be measured and detected
manually or by advanced computer vision techniques [2-7], the lateral
load-carrying capacity corresponding to different damage states (i.e.,
lateral displacement) cannot be acquired directly. Further, the infor-
mation regarding the material properties and reinforcement details for
damaged RC columns is most likely unavailable or difficult to retrieve in
a timely manner, and thus a detailed seismic analysis is not feasible
immediately after the earthquake. The second example is designed to
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address this problem. Since the results from Example 1 have demon-
strated that the proposed SRB-PMM method can result in the SRB-PMM-
LS-SVMR model with comparable performance to the Complete-LS-SVMR
model when the column data set has a missing data ratio less than 10%,
the missing data ratio for the second example is restricted to 5% and
10%. Figs. 3 and 4 showed the relation of the estimated lateral strength
versus different lateral displacement levels for a damaged RC column,
where the estimated lateral strength reflects the lateral load-carrying
capacity, and the different lateral displacement levels represent
different damage states. Thus, the estimated lateral load-carrying ca-
pacity for the damaged RC column can be obtained once the lateral
displacement is measured. Both Figures illustrated that the uncertainty
of missing data must be incorporated, since a single seismic analysis
result may over- or under-estimate the actual lateral load-carrying ca-
pacity of damaged RC columns as presented in Fig. 3(a,b,c) and 4(a,c)
for the column data sets having 5% and 10% missing data ratios,
respectively. The triage team of structural engineers will most likely
make an incorrect decision to dismantle lightly damaged RC columns if
the actual lateral load-carrying capacity is under-estimated, leading to a
waste of resources and money. When the actural load-carrying capacity
is over-estimated, an incorrect decision could also be made to keep or
retrofit seriously damaged RC columns, posing a substantial threat.
However, with the consideration of the uncertainty due to missing data
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as in the proposed SRB-PMM method, the seismic analysis results can
reasonably estimate the actual lateral load-carrying capacity of
damaged RC columns (Fig. 3(d) and 4(d)). Therefore, the triage team
can make reasonable and accurate decisions to either dismantle or
retrofit damaged RC columns according to the estimated results that
duly incorporate the uncertainty associated with the missing data.

4.4. Discussion of limitations

In the context of post-earthquake safety and structural evaluations
for damaged buildings, missing data (e.g., information pertaining to the
material properties) are unobserved values that would be meaningful for
analysis if observed. This can be especially demonstrated by Example 2,
where the seismic analysis for the damaged RC column cannot be per-
formed if the missing values related to material properties (e.g., concrete
compressive strength and reinforcement area) are not imputed (filled
in). However, it should be noted that the imputed or filled-in values (i.e.,
added data) generated by the proposed SRB-PMM method should not be
considered as the true values but rather as values that are statistically
plausible given other observed information. In this sense, the proposed
approach should not be regarded as an imputation procedure for
recovering the missing values. Instead, the proposed approach can
generate the added data that should result in physical predictions that
statistically reasonably approximate the actual results or the predictions
that would have been obtained by the case of no missing data, as
demonstrated in Examples 1 and 2.

Although the proposed SRB-PMM method is used to advance the
post-earthquake safety and structural assessment in the context of
missing data, it is a general approach and can be applied in any disci-
pline when missing data problems occur. The use of the proposed
method requires the reasonable specification of a probability density
function (PDF) for each partially observed variable, as introduced in
Section 2. The PDF depends on the choice of the conditional regression
models, which in turn, rely on the type of target variable. If the target
variable is continuous, a normal linear regression model can be selected;
if the target variable is binary, a logistic regression model can be used,; if
the target variable is categorical, a multinomial logistic regression
model can be utilized; and finally, if the target variable is a count var-
iable, a Poisson loglinear model can be employed. Once the conditional
regression model is chosen according to the target variable type, the PDF
can be determined. For example, since the variables in the RC column
data set are all continuous, a normal linear regression model is selected
for each partially observed variable, and the associated PDFs are thus
multivariate normal distributions with different mean vector and
covariance matrix as illustrated in Section 2. Therefore, for different
types of target variables, the PDFs should be carefully specified when
using the proposed approach.

Additionally, the proposed SRB-PMM method requires the incom-
plete data set that has both fully and partially observed predictors; thus,
the missing values will be restricted in the partially observed predictors.
The proposed approach will work well with large data sets and provide
imputations that possess many characteristics of the complete data set.
This is because, when the data set is very large, the number of complete
observations related to missing cases will increase. In this sense, the
proposed approach can borrow the observed data from the cases that
have the fitted values closest to those predicted values for missing cases
to fill in the missing data. However, this will also increase the compu-
tational cost and, in that sense, may cause difficulty in scaling the
approach up. The proposed SRB-PMM method may not work well in
situations where the data set is small or the proportion of incomplete
observations is high such that no or only few related complete obser-
vations could be found. Further, the proposed approach is not appro-
priate for incomplete data sets where only a small number of predictors
are available.
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5. Conclusions

This paper proposed a novel multiple imputation (MI) method called
sequential regression-based predictive mean matching (SRB-PMM) to
address missing data problems. The SRB-PMM imputes the missing
values for the partially observed explanatory variables sequentially,
starting from the variable with the fewest number of missing values to
that with the most number of missing values. To validate the usefulness
of SRB-PMM in advancing post-earthquake safety and structural
assessment, two examples are designed and performed based on an RC
column data set. The results from the two examples demonstrate the
wide-scale capabilities of the proposed approach towards expediting
post-earthquake structural evaluations, where all critical structural
properties may not be known in the field. As the proposed SRB-PMM
method is a multiple imputation (MI) method, the uncertainty due to
missing data is also incorporated into the final structural analyses. On
the basis of these two examples, the results show that by independently
running the method three times, it is sufficient to cover the variation
induced by the uncertainty of missing data. Therefore, based on the two
examples, it can be concluded that the proposed SRB-PMM method is a
useful and effective tool to handle missing data problems in post-
earthquake safety and structural assessment.
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