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A B S T R A C T   

After an earthquake, every damaged building needs to be properly evaluated in order to determine its capacity to 
withstand aftershocks as well as to assess safety for occupants to return. These evaluations are time-sensitive as 
the quicker they are completed, the less costly the disaster will be in terms of lives and dollars lost. In this di
rection, there is often not sufficient time or resources to acquire all information regarding the structure to do a 
high-level structural analysis. The post-earthquake damage survey data may be incomplete and contain missing 
values, which delays the analytical procedure or even makes structural evaluation impossible. This paper pro
poses a novel multiple imputation (MI) approach to address the missing data problem by filling in each missing 
value with multiple realistic, valid candidates, accounting for the uncertainty of missing data. The proposed 
method, called sequential regression-based predictive mean matching (SRB-PMM), utilizes Bayesian parameter 
estimation to consecutively infer the model parameters for variables with missing values, conditional based on 
the fully observed and imputed variables. Given the model parameters, a hybrid approach integrating PMM with 
a cross-validation algorithm is developed to obtain the most plausible imputed data set. Two examples are 
carried out to validate the usefulness of the SRB-PMM approach based on a database including 262 reinforced 
concrete (RC) column specimens subjected to earthquake loads. The results from both examples suggest that the 
proposed SRB-PMM approach is an effective means to handle missing data problems prominent in post- 
earthquake structural evaluations.   

1. Introduction 

After an earthquake, every damaged building needs to be properly 
evaluated in order to determine its capacity to withstand aftershocks as 
well as to assess safety for occupants to return. These evaluations are 
time-sensitive as the quicker they are completed, the less costly the 
disaster will be in terms of lives and dollars lost. Recently, many 
advanced techniques have been developed to rapidly perform post- 
earthquake safety and structural assessments. For example, these 
include a data-driven framework for predicting the safety state of post- 
earthquake buildings [1] and automated post-earthquake building 
evaluations [2–7]. However, these methods cannot evaluate the residual 
load bearing capacity of damaged buildings due to earthquakes, and 
such evaluations are necessary for some damaged buildings to analyze 
their seismic performance resisting aftershocks such that the global 

collapse risk can be identified and rescue teams can take the necessary 
precautions (e.g., dismantling those damaged buildings having high 
global collapse risk). The evaluation of residual capacity requires 
detailed nonlinear structural analyses for each damaged building. 
However, in the earthquake field, there is often not sufficient time or 
resources to acquire all design information (e.g., material properties and 
reinforcement details) to do such a high-level structural analysis. Thus, 
post-earthquake survey data for some damaged buildings may be 
incomplete and contain missing values for critical design information. 
This is where the missing data problem is prevalent in post-earthquake 
survey data. In turn, this can delay the structural evaluation or even 
make it impossible. Therefore, it is necessary to develop approaches to 
address the problems associated with incomplete data. 

An incomplete data set involves observations (i.e., data points) with 
missing values, as shown in Table 1. Table 1 shows an example where 
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three explanatory variables (or features/predictors) are partially 
observed and have missing values (represented by ‘NAN’ values), 
making this data set incomplete. One common strategy to deal with this 
missing data problem is to bypass the data with missing values and use 
the available complete data for analysis and inference. The most popular 
way for this strategy is to simply discard every incomplete observation, 
transforming the incomplete data set into a reduced, but complete, data 
set. Nevertheless, considering all observations in the original incomplete 
data set are from realistic cases, this strategy involves throwing away a 
potentially large amount of useful information when missing data ratio 
is high, leading to biased inference, and finally misinterpreted conclu
sions [8–10]. Another effective strategy is to apply information theory (i. 
e., mutual information and interaction information) to derive a reli
ability function for analysis of incomplete data set [11]. However, these 
kinds of strategies are not always appropriate. In specific, in post- 
earthquake structural evaluations, bypassing the data associated with 
any damaged buildings with critical structural information missing 
means that further structural analyses of these damaged buildings are 
not feasible, and thus, the global collapse risk for these damaged 
buildings will remain unknown, posing a substantial, potential threat. 
Another effective scheme is to impute the missing values with plausible 
candidates, resulting in an imputed, complete data set. In this way, this 
type of imputation approach maintains the size of the original incom
plete data set without risking the loss of useful information. By using 
imputation methods, those damaged building data with missing values 
will be imputed and further structural analyses can be performed based 
on the imputed values to inform the rescue teams of the associated 
global collapse risk. 

The most direct imputation method is single imputation, which is 
performed by filling in a candidate for each missing value, such as 
imputing each missing value with a fixed value (e.g., mean imputation 
where any missing values are replaced with the mean of that variable for 
all other cases, which will not alter the sample mean) or a single value 
estimated by regression predictions [12] or by nearest neighbor methods 
[13,14] (where each missing value on some incomplete observations is 
replaced by a value obtained from related cases in the whole set of ob
servations). However, single imputation is statistically incorrect, as it 
implies that those missing values are certain when in fact the missing 
values have not been observed [9,15,16]. Thus, analyses of the imputed, 
complete data set by single imputation methods fail to account for the 
uncertainty of missing data. As an alternative, a multiple imputation 
(MI) method was developed by Rubin [15] to address this drawback. 
The method of MI has become a popular means for handling incomplete 
data sets in statistical analyses. The MI approach involves filling in each 
missing value with multiple plausible candidates, creating multiple 
imputed, complete data sets for analyses. Each data set is analyzed 
independently using techniques designed for the complete data set, and 
then the analyzed results are combined in such a way that the uncer
tainty of missing data may also be incorporated into the analyses [9,15]. 
Two popularly used approaches to create multiple candidates for MI 
include joint modeling (JM) of a multivariate imputation model speci
fication [17,18] for all of the partially observed explanatory variables 

(conditional on any fully observed variables) and fully conditional 
specifications (FCS) of a series of univariate imputation models [19–22] 
for each partially observed explanatory variable given the other 
variables. 

JM involves specifying a joint distribution for the multivariate data 
and drawing candidates from the posterior predictive distribution of the 
missing data [17]. The JM methodology is attractive when the specified 
joint distribution provides a good fit to the multivariate data. The 
commonly used joint distributions specified by JM techniques for 
imputation include the multivariate normal model, the multinomial log- 
linear model, and the general location model for mixed continuous and 
discrete variables [17]. However, it is often challenging to specify a 
correct joint distribution [22,23]. As an alternative to JM, FCS specifies 
the multivariate imputation model on a variable-by-variable basis by a 
set of conditional densities, one for each partially observed explanatory 
variable [22]. Given starting values, FCS draws candidates by iterating 
throughout all conditional densities. Compared to JM, the use of FCS is 
much more flexible. This is because, for each partially observed 
explanatory variable (e.g., continuous or discrete variable), an appro
priate univariate model can be selected. This strategy is more attractive 
than JM in cases where there is no evident, appropriate joint distribution 
for the data. Nevertheless, FCS also has a drawback, that is, the condi
tional densities may be incompatible. This means that there may not 
exist a joint density such that the conditional densities for each of 
partially observed explanatory variables are fully conditional (e.g., the 
iterations cannot reach convergence) [23]. Additionally, both JM and 
FCS produce candidates for missing values in terms of simulation. The 
candidates obtained by simulation may be outside the observed data 
range due to the model misspecification of either JM or FCS, leading to 
meaningless imputation results [9]. This may lead to generated candi
date values that cannot be used to do detailed structural analyses for 
post-earthquake safety and structural assessments (e.g., negative 
candidate value for reinforcement ratio of a reinforced concrete (RC) 
column). Therefore, these two methods are not appropriate in such a 
context. 

In Bayesian parameter estimation, a joint distribution can be 
factored as a product of conditional and marginal distributions [24–26]. 
By appropriately specifying the univariate distribution for each partially 
observed explanatory variable as either a marginal or conditional dis
tribution, the joint distribution for the entire set of explanatory variables 
with missing values can be achieved. Motivated by this, we propose a 
novel MI approach called sequential regression-based predictive mean 
matching (SRB-PMM) to create multiple plausible candidates for 
imputing each missing value with consideration of the uncertainty due 
to missing data. The proposed approach simplifies the specification of a 
suitable multivariate imputation model into a much easier task of 
specification of a series of univariate models and is able to overcome the 
possible drawback of FCS where the specification of univariate impu
tation models may be incompatible. Further, the proposed SRB-PMM 
approach ensures that the plausible candidates are from realistic 
values instead of simulations, due to the use of PMM, which overcomes 
meaningless imputations and ensures that the generated candidates will 
never be outside the observed data range. Therefore, the proposed 
approach can generate candidate values that can always be used for 
post-earthquake safety and structural assessments by performing 
detailed seismic analyses of damaged structures. 

For the purpose of this work, a database of 262 RC column specimens 
subjected to earthquake loads is used to validate the proposed SRB-PMM 
approach, since RC columns are an important lateral load resisting 
member in an RC frame structure. For an RC frame building damaged by 
an earthquake, the lateral displacement of damaged RC columns can be 
measured by a skilled triage team of structural engineers/certified in
spectors visually, but the lateral strength at this deformation cannot be 
acquired directly and its precise magnitude requires a detailed seismic 
analysis. The lateral load carrying capacity is quantified by the lateral 
strength of an RC column at its damage state, and is of great importance 

Table 1 
Schematic format of an incomplete data set, where ‘NAN’ represents a missing 
value, and missing values only exist in the partially observed explanatory vari
ables Z(1), Z(2), and Z(3).  

Observations X1  ⋯  Xp  Z(1) Z(2) Z(3) y  

(x1 , y1) x11  ⋯  x1p  x1(p+1) NAN NAN y1  

(x2 , y2) x21  ⋯  x2p  x2(p+1) x2(p+2) NAN y2  
ʀ
x3, y3

)
x31  ⋯  x3p  NAN NAN NAN y3  

ʀ
x4, y4

)
x41  ⋯  x4p  x4(p+1) x4(p+2) x4(p+3) y4  

⋮  ⋮  ⋮  ⋮  ⋮  ⋮  ⋮  ⋮  
ʀ
xn, yn

)
xn1  ⋯  xnp  xn(p+1) xn(p+2) NAN yn   
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in determining whether the damaged RC column is safe and functional 
or that immediate repair is required [27,28]. This paper utilizes the 
proposed approach to advance post-earthquake safety and structural 
assessments with an emphasis on strength prediction of RC columns in 
the context of missing data. The rest of this paper is organized as follows. 
Section 2 presents the proposed methodology. Section 3 designs and 
performs two examples to validate the proposed approach based on a 
database of 262 RC column specimens subjected to earthquake loads. 
The experimental results are presented and discussed in Section 4. 
Conclusions are made in Section 5. 

2. Methodology 

This section presents the formulation of the proposed SRB-PMM 
method, which couples sequential regression and predictive mean 
matching (PMM) to address missing data problems. First, the proposed 
SRB-PMM method is used to generate several potential candidates (e.g., 
r candidates) for each missing value in an incomplete data set. In this 
way, r imputed complete data sets will be formed. Second, a machine 
learning (ML) approach is utilized to select the most plausible data set 
from the pool of the r imputed data sets by minimizing a cost function (e. 
g., mean squared error (MSE)) using K-fold cross-validation (CV). The 
most plausible imputed data set will be the one that causes the fitted ML 
model to have the best performance (e.g., minimum MSE), and the 
candidates that filled in the most plausible imputed data set are regarded 
as plausible imputation values. Last, by independently repeating the first 
two procedures multiple times, multiple plausible candidates for each 
missing value can be generated to consider the uncertainty of missing 
data. The detailed procedure for the proposed method is presented 
below. 

2.1. Sequential regression-based predictive mean matching (SRB-PMM) 

Assume a data set 
{ʀ

xi, yi
) }n

i=1, where xi ∈ Rp+q, yi ∈ R and n≫p + q 
is collected from a domain of interest. In this data set, there are n ob
servations, and each observation has (p + q) explanatory variables (i.e., 
xi ∈ Rp+q) and one response variable (i.e., yi ∈ R). However, some data 
points (i.e., observations) have one or more explanatory variables with 
missing values, making the collected data set 

{ʀ
xi, yi

) }n
i=1 incomplete. 

For the remainder of this paper, we assume there are no missing values 
in the response variable (as this is not relevant in the proposed appli
cation domain) and the following notations are used. Let Xobs =

ʀ
X1, ⋯ 

, Xp
)

∈ Rn×p be a matrix with n observations, and each observation has p 
fully observed explanatory variables (i.e., there are no missing values for 
n observations in these p explanatory variables, such as X1, ⋯, Xp shown 
in Table 1). Let Xmiss =

ʀ
Z(1), ⋯, Z(q)

)
∈ Rn×q be a matrix with n obser

vations and each observation has q partially observed explanatory var
iables (i.e., there is at least one missing value for each of these q partially 
observed explanatory variables, such as Z(1), Z(2), Z(3) shown in Table 1), 
and Z(1), ⋯, Z(q) have been ordered increasingly in terms of the missing 
data ratios. Let y ∈ Rn be a vector. Thus, the data set 

{ʀ
xi, yi

) }n
i=1 can 

also be written as D = (X, y), where X =
ʀ
Xobs, Xmiss) ∈ Rn×(p+q). A 

schematic format of this incomplete data set is presented in Table 1. Let 
O =

ʀ
O1, ⋯, Oq

)
∈ Rn×q be the indicator matrix where oij = 1 if xij is 

observed and oij = 0 if xij is missing. Note that the indicator matrix O is 
only applied to Xmiss. Thus, for the jth explanatory variable, where j = 1,

⋯,q, the vector Z(j) can be thought of as consisting of two parts: Zobs
(j) =

{
xij : oij = 1

}
, the data that is observed, and Zmiss

(j) =
{
xij : oij = 0

}
, the 

data that is not observed. We assume that the missing data are missing at 
random (MAR) [8,26]. 

From a probability perspective, missing values can be reasonably 
imputed only when a multivariate imputation model p

ʀ
Xmiss|Xobs, Θ

)
is 

specified correctly [15], where Θ =
ʀ
θ1, ⋯, θq

)
is the model parameters. 

The multivariate imputation model p
ʀ
Xmiss|Xobs, Θ

)
can be factored as 

follows [25]: 

p
ʀ
Xmiss|Xobs, Θ

)
= p

ʀ
Z(1), ⋯, Z(q)|Xobs, Θ

)

= pq
ʀ
Z(q)|Z(1), ⋯, Z(q−1), Xobs, θq

)

× pq−1
ʀ
Z(q−1)|Z(1), ⋯, Z(q−2), Xobs, θq−1

)
× ⋯

× p1
ʀ
Z(1)|Xobs, θ1

)
(1)  

where pj, j = 1, ⋯, q are the conditional density functions and θj is a 
vector of parameters in the conditional distribution (e.g., regression 
coefficients, dispersion parameter). Note that when imputing the 
missing values for a partially observed variable (e.g., Z(1)), only the 
model parameter (e.g., θ1) related to this variable (e.g., Z(1)) is used, and 
other model parameters (i.e., θ2,⋯,θq) are not required. Therefore, The 
distribution pj

ʀ
Z(j)|Z(1), ⋯, Z(j−1), Xobs, θj

)
(j > 1) or pj

ʀ
Z(j)|Xobs, θj

)
(j =

1) depends only on parameter θj. 
Each conditional regression model in Eq. (1) is selected based on the 

type of variable Z(j). For example, if Z(j) is continuous, a normal linear 
regression model can be selected; if Z(j) is binary, a logistic regression 
model can be used; if Z(j) is categorical, a multinomial logistic regression 
model can be utilized; if Z(j) is count variable, a Poisson loglinear model 
can be employed. Eq. (1) is initiated by regressing the variable with the 
fewest number of missing values (i.e., Z(1)), Z(1) on Xobs, where the 
missing values are imputed by PMM based on regression results to form 
an imputed, complete data vector Z(1). Then, the complete Z(1) vector is 
appended with Xobs to impute variable Z(2) with the next fewest number 
of missing values using the univariate model p2

ʀ
Z(2)|Z(1), Xobs, θ2

)
. This 

means, Z(1) is imputed on U1 = Xobs, Z(2) is imputed on U2 =
ʀ
Xobs, Z(1)

)

where Z(1) has imputed values, Z(3) is imputed on U3 =
ʀ
Xobs, Z(1), Z(2)

)

where Z(1) and Z(2) have imputed values, and others (i.e., Z(4),⋯,Z(q)) are 
imputed in a similarly sequential manner. The detailed imputation 
procedure for imputing each partially observed explanatory variable 
using SRB-PMM is presented below. 

2.1.1. Bayesian inference for sequential regression-based model parameter 
Since missing values exist in Z(j), the model for Z(j) cannot be 

established directly. For the model p1
ʀ
Z(1)|Xobs, θ1

)
, which can be 

written as p1

(
Zobs

(1) , Zmiss
(1) |Xobs, θ1

)
, the unknown quantities include the 

model parameter θ1 and missing values Zmiss
(1) . According to Bayes rule, 

the following equation can be given: 

p1

(
Zobs

(1) , Zmiss
(1) |Xobs, θ1

)
= p1

(
Zmiss

(1) |Zobs
(1) , Xobs

, θ1

)
× p1

(
Zobs

(1) |Xobs, θ1

)
(2) 

In this work, the variables in the reinforced concrete (RC) column 
data set are all continuous. Therefore, we specify a normal linear model 

for p1

(
Zobs

(1) |X
obs, θ1

)
as well as for all other conditional density functions. 

For a linear model, the regression of Zobs
(1) from Xobs depends only on 

Xobs1 =
{

Xobs : oi1 = 1
}
, which is given by: 

Zobs
(1) = X*obs1β1 + ε1 (3)  

where β1 =
ʀ
β11, ⋯β1p

)
is a regression coefficient vector; X*obs1 is the 

design matrix including the column corresponding to the intercept term 
in the regression model (i.e., the column with unity entries), ε1 =

ʀ
ε11,

⋯, ε1(nob1)

)
is an error vector, nob1 = length

(
Zobs

(1)

)
is the number of 

observed data in Z(1) (note that the number of observations in X*obs1 is 
also nob1, i.e., size

ʀ
X*obs1, 1

)
= size

ʀ{
Xobs : oi1 = 1

}
, 1

)
= nob1) and ε11,

⋯, ε1(nob1) i.i.d.N
ʀ
0, σ2

1
)

or ε1 N
ʀ
0, σ2

1I
)
, and I is the identity matrix. 

Thus, in this case, the model parameter θ1 =
ʀ
β1, σ2

1
)

and the poste
rior distributions need to be determined. Given this setting, the likeli
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hood function is a multivariate normal 
ʀ
X*obs1β1, σ2

1I
)

[26], which in
cludes unknown model parameters β1 and σ2

1. The posterior joint dis
tribution of these two unknown model parameters can be written as 
follows: 

p
(

β1, σ2
1|Xobs1, Zobs

(1)

)
= p

(
β1|σ2

1, Xobs1, Zobs
(1)

)
× p

(
σ2

1|Xobs1, Zobs
(1)

)
(4) 

From Eq. (4), the posterior joint distribution of unknown model 
parameters 

ʀ
β1, σ2

1
)

can be made via a Monte Carlo approximation by 

sampling from these two conditional distributions p
(

σ2
1|Xobs1, Zobs

(1)

)
and 

p
(

β1|σ2
1, Xobs1, Zobs

(1)

)
, respectively. Throughout this paper, a g-prior [29] 

is used for these unknown model parameters 
ʀ
β1, σ2

1
)
. With the use of 

g-prior, the resulting conditional distributions for p
(

β1|σ2
1, Xobs1, Zobs

(1)

)

and p
(

σ2
1|Xobs1, Zobs

(1)

)
are obtained as follows [26]: 

{
σ2

1

⃒
⃒
⃒Xobs1, Zobs

(1)

}
̃ inverse − gamma

(
1 + nob1

2
,
σ̂2

1 + SSR
2

)

(5)  

{
β1

⃒
⃒
⃒σ2

1, Xobs1, Zobs
(1)

}
̃ N

(
g

g + 1
β̂1,

g
g + 1

σ2
1

(ʀ
X*obs1)TX*obs1

)−1
)

(6)  

where β̂1 =
(ʀ

X*obs1)TX*obs1
)−1ʀ

X*obs1)TZobs
(1) is a regression coefficient 

vector estimated by ordinary least squares (OLS); σ̂2
1 =

sum

((

Zobs
(1) − X*obs1 β̂1

)2
)/

(nob1 − p) is an unbiased estimate of σ2
1, 

SSR =
(

Zobs
(1)

)T
(

I − gX*obs1
(ʀ

X*obs1)TX*obs1
)−1ʀ

X*obs1)T
/(g + 1)

)

Zobs
(1) is 

the sum of squared residuals (SSR). 
Since we can sample from both of these two conditional distribu

tions, a sample value of 
ʀ
β1, σ2

1
)

sampled from the posterior joint dis

tribution p
(

β1, σ2
1|Xobs1, Zobs

(1)

)
can be made by first sampling the σ2

1from 

Eq. (5) and then sampling the β1 from Eq. (6) given the sampled σ2
1. 

Thus, multiple independent sample values from p
(

β1, σ2
1|Xobs1, Zobs

(1)

)
can 

be made by independently repeating the procedure. Suppose we obtain S 

sample values 
{ʀ

β1, σ2
1
)

s

}S

s=1 
from p

(
β1, σ2

1|Xobs1, Zobs
(1)

)
. So, the mean of 

the model parameters given the S samples can be obtained by Monte 
Carlo approximation, where β1 = (1/S)

∑S
s=1(β1)s and σ2

1 =

(1/S)
∑S

s=1
ʀ
σ2

1
)

s. Given the sampled model parameters 
(

β1, σ2
1

)

, a 

regression model can be established by inserting the model parameters 
into Eq. (3). We now describe a hybrid procedure to generate the real
istic candidates for missing values using PMM incorporated with a k-fold 
cross-validation procedure based on an ML model. 

2.1.2. Predictive mean matching (PMM) integrated with a k-fold cross- 
validation (CV) algorithm 

Different from other imputation approaches, the goal of the regres
sion model for PMM is not to actually generate the imputed values. 
Instead, the aim is to establish a metric for matching cases with missing 
values to similar cases with observed values [30–33]. The similarity is 
measured by the Euclidean distance between the fitted values for the 
observed data and the predicted values for the missing data based on the 
established regression model. For each missing value, the PMM first 
identifies a set of cases with observed data whose fitted values are close 
to the predicted value for the case with missing data in terms of the 
measured similarities. From those close cases, one case is randomly 
sampled and assigned its observed value as a substitute for the missing 
value. Therefore, the PMM imputes the missing values based on the 

realistic observed values, and thus, never generates imputations outside 
the observed value ranges. In this way, PMM overcomes the problems 
associated with meaningless imputations generated by aforementioned 
MI approaches. However, in this procedure, the randomly selected case 
may not be a plausible candidate, since there is no standard method to 
evaluate whether or not the selected one is plausible. 

To solve this problem, we present a hybrid approach to select plau
sible candidates based on the k-fold cross-validation (CV) algorithm 
[34]. The purpose of this hybrid method is not to evaluate if a randomly 
selected single candidate for one missing value in one partially observed 
explanatory variable is plausible. Instead, it evaluates the imputed, 
complete data set where the missing values in all the partially observed 
explanatory variables are imputed. The evaluation criterion is based on 
an ML model’s performance estimated by the CV algorithm on the 
imputed, complete data set. This is because for an incomplete data set, 
there is an underlying pattern that can be captured by ML methods. 
Observations (i.e., data points) with and without missing values should 
follow that pattern. The plausible candidates should be able to make the 
imputed observations follow the underlying pattern. Conversely, inap
propriate imputations may lead to imputed observations that become 
outliers and deviate from that pattern. Therefore, plausible imputations 
can result in an imputed complete data set where a fitted ML model 
should have good generalization performance, while inappropriate im
putations may cause a fitted ML model that has poor generalization 
performance due to the negative effect of potential outliers. In this way, 
the generated plausible candidates can be reasonably justified by the 
fitted ML model that has the best performance. 

We denote that Xobs0 =
{

Xobs : oi1 = 0
}
, X*obs0 is the design matrix 

for Xobs0 as explained for X*obs1 previously, nob0 is the number of cases 
with missing values in Z(1) (note that the number of missing data in Xobs0 

is also nob0, i.e., size
ʀ
Xobs0, 1

)
= size

ʀ{
Xobs : oi1 = 0

}
, 1

)
= nob0), and 

nob0 + nob1 = n. The detailed procedure regarding the donor pool (i.e., 
selected close cases) generation for the missing values in Zmiss

(1) using the 
PMM algorithm is summarized in Algorithm 1: 

Algorithm 1. (Generate realistic candidates for missing values using PMM)  

1) Calculate the fitted and predicted values for Zobs
(1) and Zmiss

(1) , respectively:  

Ẑ
obs
(1) = X*obs1β1  

Ẑ
miss
(1) = X*obs0β1  

2) Select r nearest cases as the candidates for each missing value Zmiss
(1),i in Zmiss

(1) :  
for all i = 1, ⋯, nob0 do  

2.1) Calculate the Euclidian distance vector di =

⃦
⃦
⃦
⃦Ẑ

obs
(1) − Ẑ

miss
(1),i

⃦
⃦
⃦
⃦.  

2.2) Sort di increasingly to obtain an increasingly ordered vector di =
ʀ
di(1), ⋯, di(nob1 )

)
.  

2.3) Select r nearest cases from Zobs
(1) corresponding to the first r close entries (i.e., 

di(1) , ⋯,di(r)) in di.  
2.4) Assign their observed values as the r candidates for the missing value Zmiss

(1),i.  
end for i  

Using Algorithm 1 above, each missing value in Zmiss
(1) has r candidates 

to impute. For each missing value, randomly sample one of the r can
didates to impute the missing value. After all the missing values in Zmiss

(1)

are imputed in the same way, an imputed Zmiss
(1) is obtained, which is 

denoted as Ẑ
miss
(1) . Then, continue this procedure within the remaining r −

1 candidates for each missing value until all candidates are used. Finally, 

there will be r imputed Ẑ
miss
(1) , which is denoted as 

{

Ẑ
miss
(1),l

}r

l=1
. Each 

combination 
(

Zobs
(1) , Ẑ

miss
(1),l

)

, l = 1, ⋯, r forms an imputed Z(1) vector, 

which is denoted as Ẑ(1),l. Therefore, r imputed Ẑ(1) vectors are formed, 

which is denoted as 
{

Ẑ(1),l

}r

l=1
. To impute the missing values in Z(2), 
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U1 = Xobs is updated by U2,l =

(

U1, Ẑ(1),l

)

, l = 1,⋯,r. Then Algorithm 

2 is developed to impute Z(j), j = 2, ⋯, q in a sequential way. 

Algorithm 2. (Sequentially impute the missing values for Z(j),j = 2, ⋯,q)  

Given the 
{

U2,l
}r

l=1, where U2,l =

(

Xobs , Ẑ(1),l

)

.  

for all l = 1, ⋯, r do  
for all j = 2, ⋯, q do  

1) Compute the model parameters 
(

βj, σ2
j

)

using Eqs. (2–6) with the replacement 

of variables and parameters for Z(j), i.e., pj

(
Z(j)|Uj,l, βj , σ2

j

)
, and Xobs is replaced by 

Uj,l.  
2) Generate r candidates for each missing value in Zmiss

(j) using algorithm 1 with 
the replacement of variables and parameters for Z(j).  

3) Randomly select one from the r candidates for imputing each missing value in 
Zmiss

(j) .  

4) Denote the finally imputed Z(j) as Ẑ(j),l and update the Uj+1,l =

(

Uj,l, Ẑ(j),l

)

.  

end for j 

5) Set D̂l =
(

Ximpute
l , y

)
, where D̂l is an imputed, complete data set and 

Ximpute
l = Uq+1,l =

(

Uq,l, Ẑ(q),l

)

.  

end for l  

By implementing Algorithm 2, one can obtain r imputed, complete 

data sets 
{

D̂l

}r

l=1
. Next, we use a k-fold cross-validation (CV) algorithm 

to minimize a cost function and determine which imputed data set is the 
most plausible based on an ML technique. The following procedure is 
used to select the most plausible imputed data set, which is defined as 
the one capable of minimizing the cost function CF

ʀ
y, f

ʀ
Ximpute) )

by a k- 
fold cross-validation procedure, where CF(∙) represents the cost func
tion and f(∙) represents an ML technique: 

Algorithm 3. (Selection of the most plausible imputed data set by K-fold CV 
procedure)  

Given the r imputed data sets 
{

D̂l

}r

l=1
, where D̂l =

(
Ximpute

l , y
)

, cost function CF(∙), 

ML technique f(∙).  
for all l = 1, ⋯, r do  

1) Compute the cost by K-fold CV procedure: 

CVK−fold

(

D̂l

)

=
1
K

∑K
k=1

CF
(

ynk
, f

(
Ximpute

nk ,l

) )

end for l 

2) Choose the imputed data set that has the min
({

CVK−fold

(

D̂l

) }r

l=1

)

.   

In Algorithm 3, nk is the size of the kth group (i.e., nk = floor(n/K)); 
ynk 

is the observed response variable for the kth group in terms of the lth 

imputed, complete data set D̂l; f
(

Ximpute
nk ,l

)
is the predicted response for the 

kth group by an ML technique f(∙) trained on 
(

Ximputed
−nk ,l , y−nk

)
in terms of 

D̂l; 
(

Ximputed
−nk ,l , y−nk

)
is the complementary set of 

(
Ximputed

nk ,l , ynk

)
in D̂l. 

2.1.3. Generation of an ensemble of multiple most plausible imputed data 
sets 

Using Algorithms 1 – 3 above, the most plausible imputed, complete 
data set can be determined. The m most plausible imputed, complete data 
sets to constitute an ensemble can be created for MI analyses to account 
for the uncertainty of missing data by independently repeating Algo
rithms 1 – 3 m times. Each imputed, complete data set can be used to 
develop an analytical model, and thus m analytical models forming an 
ensemble can be developed for predictions. The final predicted results 
are the average of the predicted results of m models. A schematic 

flowchart is presented in Fig. 1 to illustrate this procedure. 

3. Illustrative examples 

This section presents the details of the numerical experiment design 
and validation for the performance of the SRB-PMM in advancing post- 
earthquake safety and structural assessment in the context of missing 
data. Two examples are designed. The first example is to evaluate the 
capabilities of the proposed SRB-PMM in improving the maximum 
lateral strength prediction performance based on an RC column data set 
subjected to ten different missing data ratios. The second one intends to 
illustrate the practical application of the SRB-PMM in post-earthquake 
structural analysis when the target damaged RC column is missing 
critical structural information. The detailed information is introduced 
below. 

3.1. Lateral strength of RC columns 

In structural and earthquake engineering, RC columns are the pri
mary lateral load resisting members in an RC frame building. The lateral 
load-carrying capacity of RC columns is a critical factor to evaluate if a 
damaged column is still safe and functional or immediate repair is 
required. The loss of lateral load-carrying capacity is typically defined 
by the column’s lateral displacement, where the lateral load-carrying 
capacity drops below 80% of the maximum lateral strength [35]. In 
the post-earthquake field, for a damaged RC frame building, the lateral 
displacement and other visual damages (e.g., concrete cracking and 
spalling) of the damaged columns can be measured and detected by a 
skilled triage team of structural engineers/certified inspectors visually, 
but their lateral load-carrying capacity corresponding to different 
damage states (i.e., lateral displacement) cannot be acquired directly. 
Further, a seismic analysis requires the damaged columns’ structural 
feature information such as geometry and material properties. Although 
the magnitudes of geometry can be measured visually, the information 
regarding the material properties (e.g., concrete compressive strength 
and reinforcement yield stress) is most likely unknown. The unknown 
information leads to missing data problems, which can delay the 
structural evaluation or even make it impossible. This work utilizes the 
proposed approach to advance post-earthquake safety and structural 
assessments with the emphasis of strength prediction of RC columns in 
the context of missing data. 

Input incomplete dataset

Repeat SRB-PMM m times

Imputed complete
 dataset 1

Imputed complete
 dataset m

...

Analytical
 model 1

Analytical
 model m

Predicted
 result 1

Predicted
 result m

Combination of m results

...

...

Fig. 1. Schematic flowchart for the prediction based on an ensemble of m 
analytical models. 
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3.2. RC column data set 

The RC column data set, which is taken from the authors’ previous 
work [36], is used to perform the two examples. Each column specimen 
in the data set is subjected to reversed cyclic loads, which simulate the 
earthquake loads. There are ten features or predictors used in this study: 
the column gross sectional area Ag (calculated by b × h, where b is col
umn section width and h is column section depth), concrete compressive 
strength fc’, column cross-sectional effective depth d, longitudinal 
reinforcement yield stress fyl, longitudinal reinforcement area Asl, 
transverse reinforcement yield stress fyt, transverse reinforcement area 
Ast , stirrup spacing s, shear span a, and applied axial load P. The 
response variable is the maximum lateral strength Vm, which is defined 
as the maximum shear force in the hysteretic force–displacement curve. 
Table 2 presents the statistical properties of the column features and 
response variable. Note that some of the predictors are normalized in 
Tables 2 to maintain commonly used terminologies. More detailed in
formation regarding the data set can be found in [36]. 

Since the RC column data set does not contain missing values, the 
two examples are performed on synthetic incomplete data sets. For the 
example 1, the synthetic incomplete data sets with ten different missing 
data ratios are generated from the complete column data set to 
comprehensively test the performance of the proposed SRB-PMM 
approach. The performance of the proposed approach is also compared 
with the two widely used MI methods mentioned previously: JM and 
FCS. For the example 2, an RC column randomly sampled from the RC 
column data set serves as a case study of the target damaged RC column 
which hypothetically is missing some critical structural information 
when surveyed in a post-earthquake state. The sampled RC column’s 
critical feature information regarding the material strength and rein
forcement details is necessary to build the numerical model for further 
seismic analysis; however, in this case study, this information is 
removed and thus assumed unknown, as introduced in Section 3.1. The 
proposed SRB-PMM approach will be used to impute this critical feature 
information. The seismic analysis results obtained from the imputed 
information will be compared with experimentally observed results to 
illustrate the practical application of the SRB-PMM approach. The 
detailed information regarding the designs of these two examples is 
presented in Section 3.3. 

3.3. Designs of two examples 

3.3.1. Example 1 
As introduced in Section 3.1, the maximum lateral strength of an RC 

column is a critical factor to evaluate if damaged RC columns have lost 
the lateral load-carrying capacity. Thus, it is important to accurately 

predict the maximum lateral strength of the RC columns subjected to 
earthquake loads. The purpose of this example is to evaluate the capa
bility of the SRB-PMM approach in improving the lateral strength pre
diction performance of a data-driven model based on the mentioned RC 
column data set subjected to ten different missing data ratios and thus, 
to investigate how the missing data ratio affects its performance. Given 
an incomplete data set, any standard machine learning (ML) approach 
would fail to directly construct an appropriate data-driven model, as the 
original analysis procedures are only valid for complete data sets and are 
not designed to handle missing data [37]. This is because an incomplete 
data set has no real numbers (e.g., empty or ‘NAN’) for the missing 
values, but any standard ML method is essentially performed based on 
matrix operations, which require a matrix with full real numbers. Thus, 
the missing values must be addressed (e.g., either removing the obser
vations with missing values or imputing the missing values) before any 
standard ML methods can be employed. Additionally, the ML model 
trained on a reduced complete data set serves as the baseline, where the 
reduced complete data set is formed by removing the observations with 
missing values in an incomplete data set. The ML model trained on an 
imputed complete data set (i.e., equal size with the original incomplete 
data set and maintaining all the original information) is the target model 
that can improve predictions for the baseline model. This is because the 
training set (i.e., the reduced data set) for the baseline model is different 
from the one for the target ML model (i.e., the imputed data set), and the 
reduced data set may miss useful information when compared to the 
imputed data set. 

The synthetic incomplete data sets are generated in the following 
way. First, for the original complete RC column data set, we use the 10- 
fold cross-validation procedure to generate ten different training and 
test sets where the ten test sets are mutually exclusive. Then, we select 
ten missing data ratios: 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 
45%, and 50%. For each missing data ratio, we generate an incomplete 
training set from each original complete training set by randomly 
sampling observations. The number of sampled observations equals the 
ceil(missing ratio × ntr), where the ntr is the size of the training set. Given 
the sampled observations, we randomly sample half of the column fea
tures (or predictors) (i.e., five features), which serve as the fully 
observed explanatory variables. The remaining half of the column fea
tures serve as the partially observed explanatory variables (e.g., it could 
be the concrete compressive strength, reinforcement yield stress, or 
other features). The number of explanatory variables with missing 
values for each sampled observation is set randomly between 1 and 5. 
Following these steps, a synthetic incomplete training set can be 
generated from the complete training set. Therefore, for each missing 
data ratio, there are ten incomplete training sets that are generated from 
the ten complete training sets introduced above. Note that the 10 
mutually exclusive test sets for each missing data ratio are held constant 
(i.e., missing data is only applied to the training set). 

Least squares support vector machines for regression (LS-SVMR) 
[38–40] has achieved great success in structural and earthquake engi
neering [41–47] and thus is used to construct the data-driven model 
employed in this work. Other ML approaches may also be valid, but they 
will not be discussed since this is not the focus of this paper. Five types of 
data-driven models are designed. Delete-LS-SVMR is established as a 
baseline, where the data-driven model is developed based on the 
reduced, complete training set formed by deleting the observations with 
missing values in the incomplete training set. SRB-PMM-LS-SVMR is the 
data-driven model developed using the proposed SRB-PMM method 
where the incomplete training set is first imputed using the SRB-PMM 
approach presented in the Section 2 and then the SRB-PMM-LS-SVMR is 
developed based on the imputed, complete training set. The third and 
fourth data-driven models developed in this work are established to 
thoroughly compare the performance of the proposed approach with 
existing, popular MI approaches. JM-LS-SVMR and FCS-LS-SVMR are 
developed using the JM (with a multivariate normal model) and FCS 
(with a univariate normal model) imputation methods, respectively. The 

Table 2 
Statistical properties for the RC column data set.  

Parameter Minimum Maximum Mean Std. 
Dev 

Shear span to effective depth 
ratio, a/d 

1.08 8.40 3.84 1.57 

Stirrup spacing to effective depth 
ratio, s/d 

0.11 1.14 0.32 0.21 

Concrete compressive strength, fc 
(MPa) 

16 118 50.40 28.72 

Longitudinal reinforcement yield 
stress, fyl (MPa) 

318 635 437.58 65.88 

Transverse reinforcement yield 
stress, fyt (MPa) 

249 1424 486.91 217.57 

Longitudinal reinforcement 
ratio, pl = Asl/bh 

0.01 0.06 0.02 0.01 

Transverse reinforcement ratio, 
pt = Ast/bs 

0.0006 0.03 0.008 0.005 

Axial load ratio, P/Agfc 0 0.9 0.26 0.19 
Maximum shear force, Vm (kN) 30 1339 212 182  
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final data-driven model, Complete-LS-SVMR, is employed as an experi
mental benchmark (or ground truth), where the original complete 
training set is used to develop the data-driven model. The ten test sets for 
all five data-driven models are the same, as introduced above. For each 
developed data-driven model, the final performance is evaluated by 
taking the average of the ten tests. 

3.3.2. Example 2 
In the second example, the objective is to illustrate the practical 

application of the SRB-PMM approach in expediting post-earthquake 
structural evaluations, when critical structural information required 
for seismic analysis is missing. The RC column data set is also used in this 
example. Specifically, we first randomly sample an RC column from the 
262 column specimens, and this column then serves as the target 
damaged column with missing critical feature information. The critical 
feature information considered in this example is the concrete 
compressive strength fc’, longitudinal reinforcement yield stress fyl, 
longitudinal reinforcement area Asl, transverse reinforcement yield 
stress fyt, and transverse reinforcement area Ast. This is because these 
features may easily be missed in field surveys, whereas the feature in
formation regarding the column geometry may more easily be extracted 
in a routine evaluation. Thus, the information pertaining to these five 
features is assumed unknown for the sampled column and requires 
imputation before a seismic analysis can be carried out. The synthetic 
incomplete data sets are generated based on the remaining 261 column 
specimens in a similar way as in the Example 1 but with two differences. 
The first difference is that this example only has one incomplete data set 
for each missing data ratio and does not have the split of training and 
test sets. The second difference is regarding the partially observed 
explanatory variables. In this example, the partially observed explana
tory variables are restricted to the mentioned five features. 

In this example, we limit the missing data ratio to 5% and 10%. 
Therefore, in total, there are two synthetic incomplete data sets. The 
sampled column missing the information pertaining to the five critical 
features is then added to these two synthetic, incomplete data sets. Then, 
the SRB-PMM method is used to impute the missing values in the syn
thetic, incomplete data sets. After all the missing values are imputed, we 
then use the imputed feature information along with the known feature 
information (e.g., column geometry) to perform a seismic analysis of this 
sampled column. The performance of the SRB-PMM method is evaluated 
by comparing the imputed sampled column’s simulated seismic 
response with its experimentally observed response in terms of hyster
etic force–displacement relation. 

3.4. Implementations 

Both examples 1 and 2 require the implementation of the proposed 
SRB-PMM method. To implement the proposed approach, some pa
rameters and the conditional density functions (CDFs) of partially 
observed variables introduced in Section 2 need to be established. Since 
the variables in the RC column data set are all continuous, we specify a 
normal linear model for each CDF. Therefore, the dispersion parameter 
σ2

j and regression coefficient βj can be drawn from inverse-gamma and 
multivariate normal distributions respectively, as introduced in Section 
2 and Algorithm 2. The number of close cases r presented in Algorithms 
1–3 is set to five. The cost function (i.e, CF(∙)) presented in Algorithm 3 
is mean squared error (MSE), which is evaluated by LS-SVMR based on 
the 10-fold cross-validation procedure. The number of plausible candi
dates, m presented in Section 3.1.3 is set to three. After these parameters 
are determined, Algorithms 1–3 can be performed to implement the 
proposed SRB-PMM method. The detailed implementation of the JM and 
FCS methods can be found in [17,22]. The m candidates to account for 
the uncertainty of missing data for the JM and FCS methods are also set 
to three. All codes regarding the Example 1 are implemented in Matlab. 
To illustrate the post-earthquake structural evaluation, the OpenSees 

[48] is used to perform the seismic analysis of the sampled column with 
the imputed feature information for Example 2. 

3.5. Performance quantification criteria 

The predictive performance in example 1 is quantified comprehen
sively by the coefficient of determination (R2), mean absolute error 
(MAE), and root mean squared error (RMSE) metrics. Given a response 

variable y =
{
yi

}n
i=1 and predicted response ŷ =

{

ŷi

}n

i=1
, R2, MAE, 

RMSE are calculated as follows: 

R2 = 1 −

∑n
i=1(yi − ŷi )

2

∑n
i=1(yi − y)

2 (7)  

MAE =
1
n

∑n

i=1
|yi − ŷi | (8)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(yi − ŷi )

2

n

√
√
√
√
√

(9) 

R2 is typically in the range of [0, 1] with 1 representing a perfect 
prediction. However, in some cases, R2 could be negative. Note that a 
negative R2 value corresponds to poor prediction, which means the 
model breaks down. Both MAE and RMSE values are equal to or greater 
than 0, with 0 representing perfect prediction 

4. Results and discussion 

In this section, the experimental results of two examples are pre
sented to validate the performance of the proposed SRB-PMM approach. 
For the first example, results pertaining to the performance of the five 
data-driven models, SRB-PMM-LS-SVMR, FCS-LS-SVMR, JM-LS-SVMR, 
Delete-LS-SVMR, and Complete-LS-SVMR are all presented. Further, the 
investigation of how the missing data ratio affects the performance of 
these data-driven models in terms of R2, RMSE, and MAE is presented. 
For the second example, the hysteretic force–displacement relation of 
the sampled RC column obtained with the imputed critical feature in
formation is compared with the experimentally observed results for the 
same column. At last, a discussion regarding the proposed SRB-PMM 
approach in advancing the post-earthquake safety and structural eval
uation in the context of missing data is presented. 

4.1. Results for example 1 

The results for each missing data ratio are averaged to reflect the 
performance of SRB-PMM-LS-SVMR, FCS-LS-SVMR, JM-LS-SVMR, and 
Delete-LS-SVMR in terms of the average R2, RMSE, and MAE metrics. The 
average R2, RMSE, and MAE values across ten different missing data 
ratios are reported in Fig. 2. Note that the results for Complete-LS-SVMR 
do not vary with the variation of missing data ratios since the Complete- 
LS-SVMR is developed based on the original complete training set and 
serves as the benchmark for this work. By observation of Fig. 2, the 
results for SRB-PMM-LS-SVMR, FCS-LS-SVMR, JM-LS-SVMR, and Delete- 
LS-SVMR show that the average RMSE and MAE values increase globally 
(though some values decrease locally) with increasing missing data ra
tios, and the average R2 values decrease globally (though some values 
increase locally) with increasing missing data ratios. This phenomenon 
suggests that the performance of all imputation methods is inversely 
related to the missing data ratio, which is to be expected. Additionally, 
compared to the results of Delete-LS-SVMR that serve as the baseline, the 
proposed SRB-PMM-LS-SVMR improves the prediction performance for 
all ten missing data ratios, while both JM-LS-SVMR and FCS-LS-SVMR 
degrade the prediction performance in some cases. Moreover, the 
obvious difference between Delete-LS-SVMR and Complete-LS-SVMR 
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suggests that directly deleting the observations with missing values is 
not an effective way to handle the missing data since it degrades the 
prediction performance of the data-driven modeling procedure 
substantially. 

To further investigate these findings, the following criteria [49] are 
used to quantify the R2, RMSE, and MAE improvements (%) versus 
discarding the observations with missing values, for each imputation 
method, across the ten different missing data ratios. The R2, RMSE, and 
MAE improvements (%) are calculated as the following: 

R2 improvement (%) = 100 ×

(
R2 with imputation

R2 without imputation
− 1

)

(10)  

RMSE improvement (%) = 100 ×

(

1 −
RMSE with imputation

RMSE without imputation

)

(11)  

MAE improvement (%) = 100 ×

(

1 −
MAE with imputation

MAE without imputation

)

(12) 

Note that the improvement is not calculated using the average R2, 
RMSE, and MAE values for each missing data ratio. The improvement for 
each missing data ratio is first calculated based on the original R2, RMSE, 
and MAE values. Then, the calculated improvements are averaged to 
reflect the average prediction performance improvements of SRB-PMM- 
LS-SVMR, FCS-LS-SVMR, and JM-LS-SVMR in comparison to Delete-LS- 
SVMR. The average improvements in terms of R2, RMSE, and MAE are 
reported in Table 3. We then use the average improvements to compare 
the prediction performance of SRB-PMM-LS-SVMR, FCS-LS-SVMR, and 
JM-LS-SVMR. The greater the average improvements, the better the 
performance of imputation methods. By observation of Table 3, it is 
found that, in most cases, the proposed SRB-PMM-LS-SVMR outperforms 
both JM-LS-SVMR and FCS-LS-SVMR and achieves the best improvement 
in prediction performance, meaning that the proposed SRB-PMM 
imputation method possesses the best performance in most cases. 
Further, the proposed SRB-PMM method always improves the prediction 
performance, which is demonstrated by all positive values in Table 3. 

Both JM and FCS occasionally degrade the prediction performance, 
which is illustrated by the appearance of some negative values in 
Table 3. The performance degradation of both JM and FCS may be 
attributed to the meaningless imputations induced by simulated candi
dates outside of the observed data range. 

4.2. Results for example 2 

An RC column (specimen No. 6 in Tanaka and Park [50]) is randomly 
sampled from the column data set, which hypothetically serves as the 
target damaged column collected in the earthquake field. The column’s 
critical feature information introduced in Section 3.3.2 is assumed un
known and requires imputation prior to any seismic analysis. The 
missing data ratios considered in this case study are limited to 5% and 
10%, as introduced in Section 3.3.2. After the synthetic, incomplete data 
sets are generated, we independently run the SRB-PMM three times for 
each missing data ratio to account for uncertainty due to the missing 
data. For each run, a group of plausible candidates for the five missing 
values can be generated. The seismic analysis for the sampled column is 
then based on the imputed feature information. Fig. 3(a,b,c) and 4(a,b,c) 
present the imputed values and the seismic analysis results of the 
sampled column generated from the synthetic incomplete column data 
sets with 5% and 10% missing data ratios, respectively. Fig. 3(d) and 4 
(d) show the average of the simulated results to account for the uncer
tainty due to the missing data. 

By observation of Fig. 3(a,b,c) and 4(a,b,c), it is evident that it is 
necessary to account for the uncertainty due to the missing data. This is 
because, although a single run may produce a good result, it can also 
produce significant bias. For example, for the 5% missing data ratio, 
Fig. 3(a,c) show that the seismic analysis results underestimate the 
actual seismic performance of the sampled column, while Fig. 3(b) 
overestimates the true seismic performance; and for the 10% missing 
data ratio, Fig. 4(a,c) overestimate the actual seismic performance in 
spite of Fig. 4(b) showing a good estimation. Thus, it is hard to judge 
which single run is a reasonable estimation before knowing the actual 
seismic performance. However, once considering the uncertainty, the 

Fig. 2. The performance comparison of SRB-PMM-LSSVMR, FCS-LS-SVMR, JM-LS-SVMR, Delete-LS-SVMR, and Complete-LS-SVMR in terms of the average R2, RMSE, 
and MAE metrics versus ten missing data ratios. 

Table 3 
The average performance improvement versus discarding observations with missing values across ten missing data ratios in terms of R2, RMSE, and MAE. The bold 
values represent the best performance improvements.  

Indicators Models 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 

R2 JM-LS-SVMR  0.83  1.60  0.00  1.13  1.07 −2.67  0.31  3.40  2.16  1.17 
FCS-LS-SVMR  1.43  1.41  0.84  1.33  0.73 −0.43  1.21  2.06  2.26  3.76 
SRB-PMM-LS-SVMR  2.49  3.81  1.66  2.33  2.59 1.96  1.60  5.26  4.02  4.10 

RMSE JM-LS-SVMR  5.86  8.99  −0.05  7.24  8.11 −14.52  1.71  15.99  12.01  7.41 
FCS-LS-SVMR  11.84  8.56  8.35  9.51  7.02 −2.43  8.49  10.10  13.17  23.67 
SRB-PMM-LS-SVMR  22.99  27.64  16.37  17.90  21.37 16.52  11.71  27.62  24.81  25.57 

MAE JM-LS-SVMR  3.25  4.65  1.90  6.23  3.94 6.77  9.55  14.48  10.98  12.43 
FCS-LS-SVMR  8.73  10.50  11.06  13.80  12.51 14.92  16.74  16.02  15.59  23.52 
SRB-PMM-LS-SVMR  14.30  14.87  12.20  11.99  12.81 12.58  13.01  16.07  15.78  21.40  
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estimation can be justified even if the actual seismic performance is 
unknown. Both Fig. 3(d) and 4(d) account for the uncertainty of missing 
data, and these results show reasonable estimations. Therefore, this 
example demonstrates that the proposed SRB-PMM method performs 
well for the incomplete column data sets with 5% and 10% missing data 
ratios, which in turn illustrates its practical application in post- 
earthquake structural evaluation subjected to missing data problems. 

4.3. Discussion of results 

Results from these two examples demonstrate that the proposed SRB- 
PMM method is able to generate realistic, valid candidates for imputing 
the missing values, without risking meaningless imputations as is 
characteristic of existing, popular imputation approaches. The first 
example further illustrates that the proposed SRB-PMM enhances the 
generalization performance of the data-driven model for the maximum 
lateral strength prediction of the RC columns subjected to earthquake 
loads when compared to the baseline model (Delete-LS-SVMR). It can 
also be concluded that when the missing data ratio is less than 10%, the 
proposed SRB-PMM method can generate plausible candidates, which 
yields the SRB-PMM-LS-SVMR model, trained on the imputed data set, 
having comparable performance to the model formed using the original 

complete training set (i.e., Complete-LS-SVMR). 
This validation demonstrates the great potential to obtain the 

missing feature information (e.g., material properties) for damaged RC 
columns in the post-earthquake investigation field, which can be used 
for seismic analyses to assess the safety of damaged RC columns. It is 
routine that the material strength and reinforcement details can be ac
quired only when the original column’s design information is known. 
However, it is rather hard to obtain this type of information in the field, 
and thus, a seismic analysis of the damaged RC column is conventionally 
impossible with current procedures. However, with the proposed SRB- 
PMM method, it is possible to impute the missing information for the 
damaged RC columns with an established RC column data set and use 
those imputed candidates to perform the seismic analysis and assess the 
safety of the damaged RC column. The results from Example 1 have 
demonstrated that the imputed candidates are plausible and realistic 
even if the established RC column data set has a missing data ratio of less 
than 10%. This fact has been validated by the R2, RMSE, and MAE 
values, which are close to those of the Complete-LS-SVMR (ground truth) 
when the missing data ratio is less than 10% (Fig. 2). The R2, RMSE, and 
MAE values reflect the generalization performance of the proposed SRB- 
PMM-LS-SVMR developed using the imputed data set, as introduced in 
Section 3.5. A high R2 value that approximates 1 and low RMSE and 

(a) (b) 

(c) (d) 

Fig. 3. Seismic analysis result for the sampled RC column missing critical feature information. (a), (b), and (c) are the three results comparison between the 
experimental and simulated results, and the three simulated results are obtained from the three imputed information presented on the figures using the SRB-PMM 
based on the column data set with 5% missing data ratio. The simulated result in (d) is taking the mean of the three simulated results to account for the uncertainty 
due to the missing data. 
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MAE values that approximate 0 for the proposed SRB-PMM-LS-SVMR 
can demonstrate that the imputed candidates are plausible, and the 
seismic analysis results obtained based on the imputed candidates are 
reliable. Nevertheless, this strategy should be employed with caution 
when the RC column data set has a missing data ratio greater than 10%, 
where the performance difference between the proposed SRB-PMM-LS- 
SVMR and Complete-LS-SVMR is increasingly large as demonstrated by 
the apparent discrepancy for the R2, RMSE, and MAE values between 
them in Fig. 2. The deteriorated performance may be due to the situation 
where the imputed candidates are far away from the actual missing 
values, making the imputed observations become outliers. In this case, 
the seismic analysis result using the imputed candidates should be 
checked with physical knowledge or expert opinions. 

In the post-earthquake investigation field, although the lateral 
displacement and other visual damages (e.g., concrete cracking and 
spalling) of damaged RC columns can be measured and detected 
manually or by advanced computer vision techniques [2–7], the lateral 
load-carrying capacity corresponding to different damage states (i.e., 
lateral displacement) cannot be acquired directly. Further, the infor
mation regarding the material properties and reinforcement details for 
damaged RC columns is most likely unavailable or difficult to retrieve in 
a timely manner, and thus a detailed seismic analysis is not feasible 
immediately after the earthquake. The second example is designed to 

address this problem. Since the results from Example 1 have demon
strated that the proposed SRB-PMM method can result in the SRB-PMM- 
LS-SVMR model with comparable performance to the Complete-LS-SVMR 
model when the column data set has a missing data ratio less than 10%, 
the missing data ratio for the second example is restricted to 5% and 
10%. Figs. 3 and 4 showed the relation of the estimated lateral strength 
versus different lateral displacement levels for a damaged RC column, 
where the estimated lateral strength reflects the lateral load-carrying 
capacity, and the different lateral displacement levels represent 
different damage states. Thus, the estimated lateral load-carrying ca
pacity for the damaged RC column can be obtained once the lateral 
displacement is measured. Both Figures illustrated that the uncertainty 
of missing data must be incorporated, since a single seismic analysis 
result may over- or under-estimate the actual lateral load-carrying ca
pacity of damaged RC columns as presented in Fig. 3(a,b,c) and 4(a,c) 
for the column data sets having 5% and 10% missing data ratios, 
respectively. The triage team of structural engineers will most likely 
make an incorrect decision to dismantle lightly damaged RC columns if 
the actual lateral load-carrying capacity is under-estimated, leading to a 
waste of resources and money. When the actural load-carrying capacity 
is over-estimated, an incorrect decision could also be made to keep or 
retrofit seriously damaged RC columns, posing a substantial threat. 
However, with the consideration of the uncertainty due to missing data 

(a) (b) 

(c) (d) 

Fig. 4. Seismic analysis result for the sampled RC column missing critical feature information. (a), (b), and (c) are the three results comparison between the 
experimental and simulated results, and the three simulated results are obtained from the three imputed information presented on the figures using the SRB-PMM 
based on the column data set with 10% missing data ratio. The simulated result in (d) is taking the mean of the three simulated results to account for the uncertainty 
due to the missing data. 
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as in the proposed SRB-PMM method, the seismic analysis results can 
reasonably estimate the actual lateral load-carrying capacity of 
damaged RC columns (Fig. 3(d) and 4(d)). Therefore, the triage team 
can make reasonable and accurate decisions to either dismantle or 
retrofit damaged RC columns according to the estimated results that 
duly incorporate the uncertainty associated with the missing data. 

4.4. Discussion of limitations 

In the context of post-earthquake safety and structural evaluations 
for damaged buildings, missing data (e.g., information pertaining to the 
material properties) are unobserved values that would be meaningful for 
analysis if observed. This can be especially demonstrated by Example 2, 
where the seismic analysis for the damaged RC column cannot be per
formed if the missing values related to material properties (e.g., concrete 
compressive strength and reinforcement area) are not imputed (filled 
in). However, it should be noted that the imputed or filled-in values (i.e., 
added data) generated by the proposed SRB-PMM method should not be 
considered as the true values but rather as values that are statistically 
plausible given other observed information. In this sense, the proposed 
approach should not be regarded as an imputation procedure for 
recovering the missing values. Instead, the proposed approach can 
generate the added data that should result in physical predictions that 
statistically reasonably approximate the actual results or the predictions 
that would have been obtained by the case of no missing data, as 
demonstrated in Examples 1 and 2. 

Although the proposed SRB-PMM method is used to advance the 
post-earthquake safety and structural assessment in the context of 
missing data, it is a general approach and can be applied in any disci
pline when missing data problems occur. The use of the proposed 
method requires the reasonable specification of a probability density 
function (PDF) for each partially observed variable, as introduced in 
Section 2. The PDF depends on the choice of the conditional regression 
models, which in turn, rely on the type of target variable. If the target 
variable is continuous, a normal linear regression model can be selected; 
if the target variable is binary, a logistic regression model can be used; if 
the target variable is categorical, a multinomial logistic regression 
model can be utilized; and finally, if the target variable is a count var
iable, a Poisson loglinear model can be employed. Once the conditional 
regression model is chosen according to the target variable type, the PDF 
can be determined. For example, since the variables in the RC column 
data set are all continuous, a normal linear regression model is selected 
for each partially observed variable, and the associated PDFs are thus 
multivariate normal distributions with different mean vector and 
covariance matrix as illustrated in Section 2. Therefore, for different 
types of target variables, the PDFs should be carefully specified when 
using the proposed approach. 

Additionally, the proposed SRB-PMM method requires the incom
plete data set that has both fully and partially observed predictors; thus, 
the missing values will be restricted in the partially observed predictors. 
The proposed approach will work well with large data sets and provide 
imputations that possess many characteristics of the complete data set. 
This is because, when the data set is very large, the number of complete 
observations related to missing cases will increase. In this sense, the 
proposed approach can borrow the observed data from the cases that 
have the fitted values closest to those predicted values for missing cases 
to fill in the missing data. However, this will also increase the compu
tational cost and, in that sense, may cause difficulty in scaling the 
approach up. The proposed SRB-PMM method may not work well in 
situations where the data set is small or the proportion of incomplete 
observations is high such that no or only few related complete obser
vations could be found. Further, the proposed approach is not appro
priate for incomplete data sets where only a small number of predictors 
are available. 

5. Conclusions 

This paper proposed a novel multiple imputation (MI) method called 
sequential regression-based predictive mean matching (SRB-PMM) to 
address missing data problems. The SRB-PMM imputes the missing 
values for the partially observed explanatory variables sequentially, 
starting from the variable with the fewest number of missing values to 
that with the most number of missing values. To validate the usefulness 
of SRB-PMM in advancing post-earthquake safety and structural 
assessment, two examples are designed and performed based on an RC 
column data set. The results from the two examples demonstrate the 
wide-scale capabilities of the proposed approach towards expediting 
post-earthquake structural evaluations, where all critical structural 
properties may not be known in the field. As the proposed SRB-PMM 
method is a multiple imputation (MI) method, the uncertainty due to 
missing data is also incorporated into the final structural analyses. On 
the basis of these two examples, the results show that by independently 
running the method three times, it is sufficient to cover the variation 
induced by the uncertainty of missing data. Therefore, based on the two 
examples, it can be concluded that the proposed SRB-PMM method is a 
useful and effective tool to handle missing data problems in post- 
earthquake safety and structural assessment. 
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