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Abstract. We propose an efficient PDE based approach for solving the first-arrival traveltime
tomography problem in irregular domains. We consider the mismatch functional based on the L1 or
L2 fidelity term, respectively, and we compute both functional gradients with respect to the sound
speed by the adjoint-state method. The novelty of the proposed method consists of two aspects. First,
since the tomography problem is formulated in an irregular domain, we develop new efficient level-
set based fast sweeping methods for solving the eikonal and adjoint-state equations in the irregular
domain. Second, since the computed adjoint state is associated with a source singularity originated
from the gradient of a point source eikonal solution, we propose a novel decomposition approach to
remove this singularity, which just requires solving the same adjoint-state equation again but with a
different boundary condition. Finally, we show the performance of the proposed algorithm on several
numerical examples including a synthetic data set from ultrasound computerized tomography.
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1. Introduction. As an important class of inverse problems, traveltime tomog-
raphy arises from a variety of applications, such as seismic imaging, medical imaging,
nondestructive testing, and underwater acoustics. Given traveltime data between
sources and receivers, traveltime tomography posed as an inverse problem is to re-
cover the sound speed of an underlying interior medium between sources and receivers
from traveltime measurements. Since there may exist multiple ray paths to connect
a source and a receiver, traveltime tomography may be formulated as first-arrival
(single-arrival) or multiarrival inverse problems, which correspond to boundary rigid-
ity or lens rigidity problems in differential geometry, respectively. In this paper, given
first-arrival traveltime boundary data, we develop a normalized adjoint-state level-set
method for eikonal based traveltime tomography in irregular domains.

In medical imaging, ultrasound computed traveltime tomography uses time-of-
flight data between transducers and receivers to invert for the speed of sound [11]; the
resulting speed of sound can be further used in photoacoustic tomography to compen-
sate for acoustic heterogeneities [14]. In seismic imaging, traveltime tomography is an
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essential method for obtaining subsurface velocity models so that seismic migration
can be carried out or full waveform inversion can be initialized [19, 43]. Most of these
available traveltime tomography methods are either based on Lagrangian ray-tracers
or based on Eulerian eikonal solvers.

Traditional traveltime tomography methods mostly rely on ray-tracing to compute
traveltimes between sources and receivers so as to fit the traveltime data [30]. Ray-
tracing based approaches have at least two shortcomings: first, since the Hamiltonian
system for computing ray paths is very sensitive to initial conditions and it is generally
difficult to control where a ray goes, it is a nontrivial task to assign traveltimes from
a source to all receivers by ray-tracing in numerical simulations; second, Fermat-
principle based shooting methods for two-point boundary value problems between a
source and a receiver may fail to converge. Consequently, some alternative methods
are sought to avoid explicit ray-tracing.

Based on the eikonal solvers for first-arrival traveltimes [47], Ammon and Vidale
[1] developed a traveltime tomography method without rays by computing explic-
itly the discretized Frechet derivative of first-arrival traveltime with respect to sound
speed. To avoid computing Frechet derivatives directly, Sei and Symes [36, 37] pro-
posed an adjoint-state method for traveltime tomography based on paraxial eikonal
equations. Later on, Leung and Qian [19] developed adjoint state methods system-
atically for traveltime tomography based on eikonal equations. Because it enjoys a
simple implementation, low computational cost, and low memory requirement, this
adjoint state method has been further developed in [43, 15, 22, 23]. The success of
all these eikonal based first-arrival traveltime tomography methods heavily relies on
robust and efficient eikonal solvers which have been extensively developed in the last
two decades [47, 46, 35, 38, 32, 52, 45, 16, 50, 33, 34, 17, 13, 26, 24].

Nevertheless, most implementations of eikonal solver tomography methods are
based on finite-difference meshes of rectangular domains [19, 43, 15, 22, 23], which
may hinder their applications to problems posed in irregular domains. In this work,
we develop a level-set based fast sweeping method for eikonal based adjoint-state
traveltime tomography, which is able to handle irregular domains naturally.

Moreover, since an eikonal solver based traveltime tomography method usually
solves an adjoint-state equation to define an updating gradient which is singular at
the source point, the resulting velocity model is in fact singular at the source point;
consequently, the final reconstruction result is of low resolution and has some kind of
``footprint"" near the source point. Such a singularity is actually linked to that of the
underlying traveltime field. Since solving the point source isotropic eikonal equation
intrinsically corresponds to emanating rarefaction rays from the source point, the
resulting traveltime gradient is singular at the source point, and we dub such a singular
pattern the imprint of ray illumination. Because the adjoint state equation propagates
traveltime residuals back to the source point according to the negative traveltime
gradient, the resulting adjoint state will inherit such an imprint of ray illumination,
leading to singular gradient descent directions when updating the velocity model in the
adjoint-state traveltime tomography. To mitigate this imprint, we propose to solve
the adjoint state equation twice but with different boundary conditions, one being
taken to be regular data residuals, and the other taken to be ones uniformly, so that
we are able to use the latter adjoint state to normalize the regular one and we further
use the normalized quantity to serve as the gradient direction to update the velocity
model. We mention that a similar idea has been used in [3] for estimating the Hessian
of the misfit functional with respect to the slowness. Although our formulation is
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analogous to that in [3], our mathematical understanding of the problem is different.
We will show the mathematical meaning of this normalized quantity.

Theoretically, viewed as a boundary rigidity problem, first-arrival traveltime to-
mography consists in determining a compact Riemannian manifold with boundary up
to an action of a diffeomorphism which is the identity at the boundary by knowing
the geodesic distance function between boundary points (see [28, 29, 27, 31, 39] and
references therein). One needs an a priori hypothesis to do so since it is easy to find
counterexamples if the speed of sound is too low in certain regions. An a priori con-
dition that has been proposed is simplicity of the metric [27]. A manifold is simple if
the boundary is strictly convex with respect to the Riemannian metric and there are
no conjugate points along any geodesic. So far it seems to be difficult to handle the
case with conjugate points since they are related to the so-called caustics and multi-
arrivals in geometrical optics [39, 40, 41]. In practice, we do not know in advance
whether the Riemannian metric defined by the underlying sound speed is simple or
not. Consequently, the available first-arrival traveltime information may not suffice
to determine the sound speed so that the resulting sound speed model may have lim-
ited resolution when the to-be-imaged structure is very complicated, and this can be
observed in numerical results for the Marmousi model as shown in [12]. To improve
resolution of traveltime tomography, we have to take into account multiarrivals as
demonstrated in [20, 7, 8, 53].

The rest of the paper is organized as follows. Section 2 summarizes the adjoint-
state method for traveltime tomography and develops the algorithm for removing the
singularity of adjoint variables due to the singularity of a point source. Section 3
gives implementation details of algorithms for the normalized adjoint-state method
of traveltime tomography in irregular domains. In section 4 we carry out various
numerical experiments to demonstrate effectiveness of the proposed new algorithm.
Section 5 concludes the paper with some remarks.

2. Mathematical formulations.

2.1. Background. We start from the eikonal equation with a point source condi-
tion in an isotropic medium which occupies an open and bounded domain \Omega p enclosed
by a rectangular domain \Omega p \cup \Omega e; see Figure 1. By isotropy here we mean the wave
velocity has no directional dependence. The eikonal equation is

Fig. 1. Setup of the inverse problem.
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| \nabla T | = 1

c
(2.1)

with the point source condition

T (xs) = 0 ,(2.2)

where T (x) is the traveltime of wave from the source xs to the point x = (x, z), and
c \in C1(\Omega ) is a positive velocity function. For a given velocity model c, the viscos-
ity solution of this equation can be computed efficiently by fast sweeping methods,
and such solutions correspond to the least traveltime or the first-arrival traveltime
according to [25].

In this work we are interested in the related inverse problem, the so-called trans-
mission traveltime tomography problem: given both the first-arrival travel-time mea-
surements on the boundary \partial \Omega p and the location of the point source xs \in \Omega p, invert
for the velocity field c(x) inside the domain \Omega p.

To achieve this, two of the authors proposed in [19] to invert for the velocity
model by minimizing the following mismatching functional (energy):

E(c) =
1

2

\int 
\partial \Omega p

| T  - T \ast | 2d\Gamma ,(2.3)

where T \ast | \partial \Omega p is the measurement and T | \partial \Omega p is computed by solving (2.1) with a point
source condition (2.2). In other words, this energy measures the L2-difference between
the experimental measurement, T \ast , and the solution from the eikonal equation, T , on
the boundary of the computational domain.

To minimize this energy, we use the method of gradient descent. We first perturb
the velocity field c by \epsilon \~c, which causes a corresponding change in T by \epsilon \~T . The change
in the energy is then given by \delta E = \epsilon 

\int 
\partial \Omega p

\~T (T - T \ast )+O(\epsilon 2). From the state equation

(2.1), the perturbations in c and T are related by \nabla T \cdot \nabla \~T =  - \~c/c3. To efficiently
compute \~c which minimizes E, we propose to use the adjoint state method as in [19].
The idea is to introduce an adjoint variable \lambda satisfying

\nabla \cdot (\lambda \nabla T ) = 0 ,(2.4)

with the boundary condition,

(n \cdot \nabla T )\lambda = T \ast  - T,(2.5)

on the boundary \partial \Omega p, where n is the unit outward normal of the boundary. Ignoring
the higher than linear order terms in the energy perturbation, we have

\delta E

\epsilon 
=

\int 
\Omega p

\~c\lambda 

c3
dx .

Finally, the energy is minimized using the method of gradient descent, and one could
choose the perturbation \~c =  - \lambda /c3. This implies that \delta E =  - \epsilon 

\int 
\Omega p

\~c2dx \leq 0 and the

equality holds when | | \~c| | H0(\Omega p) = 0. However, it is not straightforward how one can
guarantee the following two properties:

1. \~ck| \partial \Omega p
= 0;

2. ck+1 = ck + \epsilon \~ck smooth.
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The first condition assumes that we know c on the boundary \partial \Omega p, denoted by
c\ast | \partial \Omega p

, which is a reasonable assumption. This means that the variations of the
velocity function on the boundary should be zero. The second condition is a regularity
condition on ck. This regularity seems to be too restrictive in practice. In general, one
only needs ck \in C1 to guarantee well-posedness of the state equation (2.1). However,

assuming that one uses \~ck =  - \lambda /
\bigl( 
ck
\bigr) 3

directly, it is not clear whether this function
would give us the desired regularity. Even if this perturbation is in C1, the numerical
solution may have jumps or spikes. These irregularities will force one to pick a very
small step-size, \epsilon k, in the minimization process. Therefore, to have faster convergence,
we impose the above regularity in each iteration.

Following [19], we use the descent direction

\~c =  - (I  - \nu \Delta ) - 1

\biggl( 
\lambda 

c3

\biggr) 
,(2.6)

where I is the identity operator, \Delta is the Laplacian operator, and \nu \geq 0 controls
the amount of regularity that one wants. The homogeneous boundary condition is
imposed in inverting the operator (I  - \nu \Delta ). With this particular \~c, we have \delta E =
 - \epsilon 
\int 
\Omega p

(\~c2 + \nu | \nabla \~c| 2) \leq 0.

2.2. Removing the singularity in adjoint-state solutions. Since solving
the point-source isotropic eikonal equation intrinsically corresponds to emanating rar-
efaction rays from the source point, the resulting traveltime gradient is singular at
the source point, and we dub such a singular pattern the imprint of ray illumination.

Because the adjoint state equation propagates traveltime residuals back to the
source point according to the negative traveltime gradient, the resulting adjoint state
will inherit such an imprint of ray illumination, leading to singular gradient descent
directions when updating the velocity model in the adjoint-state traveltime tomogra-
phy.

To mitigate this imprint, we propose to solve the adjoint state equation twice but
with different boundary conditions: one being taken to be regular data residuals, and
the other taken to be ones uniformly, so that we are able to use the latter adjoint state
to normalize the regular one and we further use the normalized quantity to serve as
the gradient direction to update the velocity model.

The idea is the following. To carry out traveltime tomography, we need to solve
the following adjoint state equation after solving the eikonal equation:

 - \nabla \cdot (\lambda \nabla T ) = 0,(2.7)

\partial T

\partial n
\lambda | \partial \Omega p

= f,(2.8)

where f is the traveltime residual. We denote \lambda f the solution of this equation.
To normalize the singular behavior of the adjoint state, we propose to solve the

adjoint state equation (2.7) once more with a different boundary condition,

\partial T

\partial n
\lambda | \partial \Omega p = 1,(2.9)

and we denote the resulting solution to be \lambda 1.
Next we propose to normalize \lambda f by \lambda 1 so that we have a new function

\beta (x) =
\lambda f (x)

\lambda 1(x)
.(2.10)

To validate this normalization procedure, we next prove that \beta is nonsingular.
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We start from the following lemma.

Lemma 1 ([2, 42]). For the eikonal equation (2.1) with the point source condition
(2.2), there exists a neighborhood of the source xs through each point x of which,
other than the source itself, there passes one and only one ray so that the eikonal
solution T (x;xs) at point x is well defined, and the ray direction at point x is given
by \nabla \bfx T (x;xs).

Assume that Lemma 1 holds in a domain under consideration. Then in such a
domain, we introduce ray coordinates in the following sense:

(t0, \tau )\rightarrow x = x(t0, \tau ),(2.11)

where for a given unit vector t0 the curve x(t0, \tau ) parametrized by the arc length s
or \tau with ds = c d\tau is the ray emanating from xs with direction t0. Both s and \tau are
taken to be zero at the source xs.

Lemma 2 (conservation for a field parallel to the rays). Assume that Lemma 1
holds in a domain under consideration. Let t be the unit vector tangent to a typical ray
emanating from the source xs. Consider the vector field V t parallel to t representing
the flux of a conserved quantity. Then the conservation equation

\nabla \cdot (V t) = 0(2.12)

implies that V (\tau ) is inversely proportional to d\sigma (\tau ) the cross-sectional area of an
infinitesimal tube of rays surrounding the given ray at \tau , where ray coordinates are
used.

Proof. Let us integrate the conservation equation (2.12) over a volume interior to
a narrow tube G of rays terminated at the ends by wave fronts \tau = \tau 0 and \tau 1, i.e.,
surfaces everywhere normal to the field of rays. Note that ds = c d\tau . Then, writing
d\sigma for the area element on a section \sigma (\tau ) of the tube of rays by the wave front \tau =
constant, we may write dx = c d\sigma d\tau . So

0 =

\int 
G

\nabla \cdot (V t)dx =

\int \tau 1

\tau 0

\int 
\sigma (\tau )

\nabla \cdot (V t) c d\sigma d\tau 

=

\int 
\partial G

m \cdot (V t)dS

=

\int 
\sigma (\tau 1)

V d\sigma  - 
\int 
\sigma (\tau 0)

V d\sigma ,(2.13)

where S = \partial G, and m is the unit outward normal to the ray tube G: m is parallel to
t in the transverse section of the ray tube and is perpendicular to t in the longitudinal
section of the ray tube.

It follows from the arbitrariness of the cross section of the tube of rays (or by
letting the cross section shrink to an area of very small diameter) that

0 = V (\tau 1)d\sigma (\tau 1) - V (\tau 0)d\sigma (\tau 0) ,(2.14)

so that

V (\tau 1)

V (\tau 0)
=

d\sigma (\tau 0)

d\sigma (\tau 1)
.(2.15)

Therefore, along a ray, V (\tau ) is inversely proportional to d\sigma (\tau ) the cross-sectional area
of an infinitesimal tube of rays surrounding the given ray at \tau .
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We have the following theorem, which is one of the main results of the paper.

Theorem 1. Assume that Lemma 1 holds. The function \beta defined in formula
(2.10) is nonsingular.

Proof. Since Lemma 1 holds, we let (t0, \tau 0) correspond to a boundary point at x0

and let (t0, \tau 1) correspond to an interior point at x1, where x1 and x0 are connected by
the unique ray with the tangent \nabla \bfx T (x(t0, \tau );xs). Applying Lemma 2 with t = c\nabla \bfx T
and V = \lambda 

c , we have

\lambda (\tau 1)

\lambda (\tau 0)
=

c(\tau 1)d\sigma (\tau 0)

c(\tau 0)d\sigma (\tau 1)
.(2.16)

Then applying boundary conditions (2.8) and (2.9), we have, respectively,

\lambda f (\tau 1) =
f(\tau 0)
\partial T
\partial \bfn (\tau 0)

c(\tau 1)d\sigma (\tau 0)

c(\tau 0)d\sigma (\tau 1)
,

\lambda 1(\tau 1) =
1

\partial T
\partial \bfn (\tau 0)

c(\tau 1)d\sigma (\tau 0)

c(\tau 0)d\sigma (\tau 1)
,

so that we have by formula (2.10) of \beta ,

\beta (\tau 1) =
\lambda f (\tau 1)

\lambda 1(\tau 1)
= f(\tau 0).(2.17)

We see that, along the ray, \beta (\tau 1) =
\lambda f (\tau 1)
\lambda 1(\tau 1)

is nonsingular and uniformly distributes the

traveltime residual f(\tau 0), which exactly serves our purpose to remove the singularity
of the adjoint-state field. The above argument justifies formula (2.10).

In general, in a generic medium, there exist multiple rays connecting the source
xs to an arbitrary point x [48]. However, the concept of viscosity solution for the
eikonal equation [9] singles out a unique ray to connect the source to the point x
among all possible rays, except those points x in a set of measure zero. However,
a monotone scheme [10] designed to compute such a viscosity solution will limit the
influence of the measure-zero set to a set of measure zero. Accordingly, since the
adjoint-state equation uses the gradient of \nabla T (defining the ray direction) as the
advection coefficient, the influence of the measure-zero set will be restricted to a
measure-zero set as well. Therefore, we will apply formula (2.10) globally in the sense
of viscosity solution.

Therefore, instead of the original \~c =  - \lambda /c3, we will take

\~c =  - \lambda f

\lambda 1

1

c3
=  - \beta (x)

c3
(2.18)

as the gradient descent direction to minimize the energy.

2.2.1. An illustrative example. We use an example to illustrate this point
further. We consider the eikonal equation on a unit sphere D = B(0, 1) in the two-
or three-dimensional space, where d = 2, 3:

| \nabla T | = s0 on D \setminus \{ 0\} ,(2.19)

T | \bfx =\bfzero = 0,(2.20)

where the slowness s0 is constant.
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We need to solve the following adjoint state equation after solving the eikonal
equation:

 - \nabla \cdot (\lambda \nabla T ) = 0,(2.21)

\partial T

\partial n
\lambda | \partial D = f,(2.22)

where f is the traveltime residual, and \partial D = \partial B(0, 1). We denote \lambda f the solution of
this equation.

To normalize the singular behavior of the adjoint state, we solve the adjoint state
equation (2.21) once more with a different boundary condition,

\partial T

\partial n
\lambda | \partial D = 1,(2.23)

and we denote the resulting solution to be \lambda 1. It is easy to check that

\lambda 1 =
1

s0| x| d - 1
,(2.24)

which is singular at the source (the origin).
Next we normalize \lambda f by \lambda 1 so that we have a new function

\beta (x) =
\lambda f (x)

\lambda 1(x)
,(2.25)

which is nonsingular, as we have shown that

\beta (x) = f

\biggl( 
x

| x| 

\biggr) 
.(2.26)

2.3. Multiple point sources. In the above calculation, we use the first-arrivals
at different receivers associated with a single point source. If we perform multiple
such experiments, namely, we have many such data sets, then those can be easily
incorporated into the formulation. For example, we can assume that there are N
point sources located at xi

s, for i = 1, . . . , N, and N sets of first-arrival travel-time
measurements T \ast 

i associated with these N sources are available. Then we can simply
define a new energy

EN (c) =
1

2

N\sum 
i=1

\int 
\partial \Omega p

| Ti  - T \ast 
i | 2 ,

where Ti is the solution from the eikonal equation with the corresponding point source
condition T (xi

s) = 0. Utilizing the same approach as above, we have the following
perturbation in the energy:

\delta EN

\epsilon 
=

\int 
\Omega p

\~c

c3

N\sum 
i=1

\lambda i ,

where \lambda i is the adjoint variable of Ti satisfying  - \nabla \cdot (\lambda \nabla T ) = 0 with the boundary
condition, (n \cdot \nabla Ti)\lambda i = T \ast 

i  - Ti for i = 1, . . . , N.
Consequently, after normalization, we can choose the following gradient direction

to minimize the energy EN (c):

\~c =  - (I  - \nu \Delta ) - 1

\Biggl( 
1

c3

N\sum 
i=1

\beta i

\Biggr) 
,

where \beta i = \lambda f
i /\lambda 

1
i .
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2.4. Mismatch functional based on the \bfitL \bfone norm. Other mismatch func-
tionals are also possible. A popular choice is the L1 mismatch functional widely used
in various applications from image processing, to high dimensional data processing,
to sparse signal recovery.

Mathematically, one replaces the L2 least-squares problem by the L1 mismatch
between the measurements and the synthetic data obtained from the model, i.e.,

E(c) =

\int 
\partial \Omega p

| T  - T \ast | d\Gamma .(2.27)

Following a similar derivation as in the least-squares functional, we obtain the
same adjoint state equation but with a different boundary condition given by

(n \cdot \nabla T )\lambda = sgn (T \ast  - T ) ,(2.28)

where sgn(\cdot ) is the signum function that is approximated by sgn(x) = x/
\surd 
x2 + \epsilon 2 for

some parameter \epsilon > 0 to avoid division-by-zero.
Other needed ingredients are similar to the case in the L2 least-squares sense.

3. Algorithm and numerical implementations. In this section, we first sum-
marize the overall algorithm for solving the inverse problem. Then we will give nu-
merical details for each step of the algorithm.

3.1. Tomography algorithm. Here we first summarize the algorithm in Algo-
rithm 3.1 for solving this tomography problem in irregular domains.

Algorithm 3.1 Tomography algorithm.

Input: The source location (xs, zs) and convergence parameters \delta and kmax.
Output: Ti,j in \Omega p \cup \Omega e.
Initialization: obtain c0 by solving (I  - \nu \Delta )c0 = 0 with the boundary condition
c0| \partial \Omega p = cexact| \partial \Omega p .
While | | \~ck(x, z)| | 2 > \delta and k < kmax do

Obtain T (x, z) by solving (2.1) with the point source condition (2.2) using c = ck;
Obtain \lambda f (x, z) and \lambda 1(x, z) by solving (2.4) with the boundary condition (2.5)

and (2.9);
Construct \lambda (x, z) = \lambda f (x, z)/\lambda 1(x, z);
Obtain \~ck using (2.6);
Determine \epsilon k using, for example, the Armijo--Goldstein rule or simply \epsilon k = \epsilon ;
Update ck+1 = ck + \epsilon k\~ck;
Update k \leftarrow k + 1.

End while.

To start the iteration, we need to initialize c0. Here in the algorithm, we assume
that we know the velocity at receivers, giving c0| \partial \Omega p

= cexact| \partial \Omega p
. This condition can

be replaced by other assumptions. In practice, due to the nonlinearity of the problem,
different initial guesses will generally converge to different energy minimizers. This
nonuniqueness can be overcome by some a priori knowledge of the model.

3.2. Extension to \Omega \bfite . Because of the domain being irregular, there are two
main numerical issues in implementing the above algorithm. The first one is how to
solve the eikonal equation in an irregular domain. The second one is how to impose
the boundary condition (2.5) on \partial \Omega p so that the mismatch information can be back-
propagated into the interior. These two issues are in general challenging tasks for
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Fig. 2. Extension to \Omega e.

standard finite-difference methods. In this work, we propose to apply the level-set
method to handle these difficulties in an irregular domain.

The first step is to embed the domain \Omega p into a rectangular domain \Omega p \cup \Omega e so
that computations can be done in a rather straightforward way; see Figure 1. We
introduce a level set function \phi with \phi (x) < 0 if x \in \Omega p and \phi (x) > 0 if x \in \Omega e such
that the boundary of \Omega p is represented implicitly by the zero level set. Then we follow
the standard level-set approach to extend the traveltime function T from \Omega p to \Omega e so
that the function is constant in the normal direction from \partial \Omega p. Mathematically, this
orthogonal extension idea can be achieved by extending the outward normal vector
n defined on \partial \Omega p using the level-set function which is defined everywhere so that
n(x) = \nabla \phi /\| \nabla \phi \| is now defined everywhere in the rectangular domain.

Then, we solve the extension equation

n \cdot \nabla T = 0 for x \in \Omega e(3.1)

for T , where n = \nabla \phi /\| \nabla \phi \| and the boundary condition T\partial \Omega p
is given by the solution

to the eikonal equation; see Figure 2. This extension equation is a hyperbolic PDE
with characteristics following the normals of contours of the level-set function, namely,
n. Since \phi < 0 in \Omega p and n is a vector field pointing away from the boundary defined
by \{ x : \phi (x) = 0\} , the equation enforces that the traveltime function T is constant
along the characteristics and the information will be propagated from the boundary
\partial \Omega p outward to \Omega e.

As a side remark, we may try to first extend the velocity field c (instead of the
traveltime T ) from \Omega p to \Omega e by solving n \cdot \nabla c = 0, followed by the eikonal equation
in the whole rectangular domain. However, in this case, there is no control in the
causality and the characteristics might first leave the domain and come back later.
This might lead to a wrong causality and further lead to a wrong solution.

3.3. A fast sweeping method for eikonal in \Omega \bfitp and extension in \Omega \bfite .
The fast sweeping method was originated in Boue and Dupis [4], and its first PDE
formulation was used in implicit and nonparametric shape reconstruction from un-
organized points [51]; Zhao [52] proved the O(N) convergence of the method for the
eikonal equation with constant speed based on the Godunov Hamiltonian on Cartesian
meshes; later on, the fast sweeping method was extended to treat Hamilton--Jacobi
equations with convex Hamiltonians based on the Godunov numerical Hamiltonian
[45] and to handle Hamilton--Jacobi equations with nonconvex Hamiltonians based on
the Lax--Friedrichs numerical Hamiltonian [16]; see [45, 16] and references therein for
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the fast sweeping method on Cartesian meshes and [33] for the method on triangulated
meshes.

To be self-contained, we give a short summary of the fast sweeping method for
eikonal equations. To avoid cluttered notation we present the algorithm for the two-
dimensional case only; see [52] for more details. First we discretize the rectangular
domain \Omega \subset \scrR 2 into a uniform mesh with mesh points xi,j and mesh sizes \Delta x = \Delta z =
h, and we denote the numerical solution at xi,j by Ti,j . The mesh size is assumed to
be small enough to resolve the geometry and the regularity of the boundary \partial \Omega p. In
particular, we require that the mesh size is smaller than the reciprocal of the largest
curvature along the boundary so that the grid has enough resolution to reasonably
approximate the \partial \Omega p. In most of the applications discussed in this work, on the
other hand, we are looking at a circular region. This consideration of the boundary
resolution does not have a significant impact on how to decide the computational
mesh.

Applying the Godunov numerical Hamiltonian to the eikonal equation, for i =
2, . . . , I  - 1, j = 2, . . . , J  - 1, we have

[(Ti,j  - Txmin)
+]2 + [(Ti,j  - Tzmin)

+]2 =
h2

c2i,j
,(3.2)

where Txmin = min(Ti - 1,j , Ti+1,j), Tzmin = min(Ti,j - 1, Ti,j+1), and (x)+ denotes the
positive part of x. At the boundary of the computational domain one-sided difference
is used.

When solving the extension equations n \cdot \nabla T = (p, q) \cdot (Tx, Tz) = 0, we follow the
ideas in [19, 22, 23] to develop a simple upwind differencing to discretize the equation
and derive the update formulas accordingly. At each point (xi, zj) \in \Omega e, we define
p\pm = 1

2 (pi,j \pm | pi,j | ) and, therefore, obtain the update formula given by

Ti,j \leftarrow 
p+Ti - 1,j  - p - Ti+1,j + q+Ti,j - 1  - q - Ti,j+1

| pi,j | + | qi,j | 
.(3.3)

A straightforward implementation consists of two stages: at the first stage, we
obtain the solution to the eikonal equation in \Omega p without any modification to grid
points in \Omega e; at the second stage, we sweep through the grid points in \Omega e to update
the traveltime value by (3.3).

For ease of implementation, typical fast sweeping methods on Cartesian meshes
sweep through the structured grid points for each of total 2d orderings, where d
represents the dimension of the computational space. Therefore, when implementing
the first stage of the above approach, one is required to set a logic check to decide if
the grid point is located inside \Omega p. If the check is false, the code does not update any
grid value. Similarly, the code updates any grid value only if it is located inside \Omega e

at the second stage of the algorithm. This code is therefore less compact and might
seem to be computationally less efficient. Another possibility is to combine these two
iterative schemes by following a similar approach as in [49] for solving the surface
eikonal equation. The idea is to combine two stages into one so that one updates
the grid value depending on the logic statement if the location is inside \Omega p or not.
Mathematically, one incorporates this idea into an iterative formulation to obtain the
following algorithm:

Ti,j \leftarrow 

\left\{               

p+Ti - 1,j  - p - Ti+1,j + q+Ti,j - 1  - q - Ti,j+1

| pi,j | + | qi,j | 
if (xi, zj) \in \Omega e,

min(T x
min, T

z
min) + \Delta x/ci,j if (xi, zj) \in \Omega p and | T x

min  - T z
min| > \Delta x/ci,j ,

1

2

\biggl[ 
T x
min + T z

min +
\sqrt{} 

2\Delta x2/c2i,j  - (T x
min  - T z

min)
2

\biggr] 
if (xi, zj) \in \Omega p

and | T x
min  - T z

min| \leq \Delta x/ci,j .

(3.4)
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Algorithm 3.2 A fast sweeping method for coupling the eikonal equation in \Omega p and
the extension equation in \Omega e.

Input: The source location (xs, zs), the mesh size \Delta x, and the level set representation
of the surface \phi i,j .
Output: Ti,j in \Omega p \cup \Omega e.
Initialization: Set Ti,j = 0 if (xi, zj) is at the point source, otherwise Ti,j =\infty .
While not converge do

For each of the four sweeping directions
If \phi i,j \leq 0 and Ti,j \not = 0,
update Ti,j using (3.2);

else if \phi i,j > 0
update Ti,j using (3.3) with v = (p, q) = sgn(\phi )n.

end If
end For

end While

The algorithm is given in Algorithm 3.2.
This Godunov fast sweeping method for the eikonal equation and the extension

equation is computationally efficient. Since the numerical scheme follows the causality,
the overall computational complexity is given by O(N), where N is the total numerical
of grid points in the rectangular domain \Omega p \cup \Omega e.

3.4. A fast sweeping method for the adjoint state in \Omega \bfitp . Next we design a
fast sweeping method for the adjoint-state equation (2.4). Once again to simplify nota-
tion, we give a two-dimensional formulation only; the extension to a three-dimensional
formulation is straightforward. The adjoint-state equation (2.4) can be written in the
following form:

(a\lambda )x + (b\lambda )z = 0 ,

where a and b are given functions of (x, z). Considering a computational cell centered
at (xi, zj) and discretizing the equation in conservation form, we have

1

\Delta x

\bigl( 
ai+1/2,j\lambda i+1/2,j  - ai - 1/2,j\lambda i - 1/2,j

\bigr) 
+

1

\Delta z

\bigl( 
bi,j+1/2\lambda i,j+1/2  - bi,j - 1/2\lambda i,j - 1/2

\bigr) 
= 0 .

The values of \lambda on the interfaces, \lambda i\pm 1/2,j and \lambda i,j\pm 1/2, are determined according
to the propagation of characteristics. In the case when ai+1/2,j > 0, the characteristic
for determining \lambda goes from the left-hand side of the interface to the right-hand side,
and this suggests that we use the value \lambda i,j to define \lambda i+1/2,j ; otherwise, we have
\lambda i+1/2,j = \lambda i+1,j . The terms \lambda i,j\pm 1/2 can be defined in a similar way. Introducing
the notation

a\pm i+1/2,j =
ai+1/2,j \pm | ai+1/2,j | 

2
, a\pm i - 1/2,j =

ai - 1/2,j \pm | ai - 1/2,j | 
2

,

b\pm i,j+1/2 =
bi,j+1/2 \pm | bi,j+1/2| 

2
and b\pm i,j - 1/2 =

bi,j - 1/2 \pm | bi,j - 1/2| 
2

,
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we have

1

\Delta x

\Bigl[ 
(a+i+1/2,j\lambda i,j + a - i+1/2,j\lambda i+1,j) - (a+i - 1/2,j\lambda i - 1,j + a - i - 1/2,j\lambda i,j)

\Bigr] 
+

1

\Delta z

\Bigl[ 
(b+i,j+1/2\lambda i,j  - b - i,j+1/2\lambda i,j+1) - (b+i,j - 1/2\lambda i,j - 1  - b - i,j - 1/2\lambda i,j)

\Bigr] 
= 0 ,

which can be rewritten as

\lambda i,j =

\Biggl( 
a+i+1/2,j  - a - i - 1/2,j

\Delta x
+

b+i,j+1/2  - b - i,j - 1/2

\Delta z

\Biggr)  - 1

\times 

\Biggl( 
a+i - 1/2,j\lambda i - 1,j  - a - i+1/2,j\lambda i+1,j

\Delta x
+

b+i,j - 1/2\lambda i,j - 1  - b - i,j+1/2\lambda i,j+1

\Delta z

\Biggr) 
.(3.5)

This gives an expression to build up a fast sweeping-type iterative method.
To apply this iterative scheme to (2.4), we need to specify the function values

of a and b not at the cell centers (xi, zj) but on the cell interfaces (xi\pm 1/2, zj) and
(xi, zj\pm 1/2). This can be done easily using central differences. For example, we have
ai+1/2,j =  - (Ti+1,j  - Ti,j)/\Delta x and ai - 1/2,j =  - (Ti,j  - Ti - 1,j)/\Delta x. In addition, we
have to incorporate the boundary condition (2.5) into the above linear system for \lambda 
as well. Then we can show that the coefficient matrix of the resulting linear system
for \lambda is irreducibly diagonally dominant, and therefore the alternating symmetrical
Gauss--Seidel iteration converges.

For grid points in \Omega e, we simply assign the value \lambda i,j based on the boundary
condition given by (2.5). While the right-hand side of the expression is already defined
according to Algorithm 3.2, we have to pay attention to the coefficient in front of \lambda in
the expression. The quantity n\cdot \nabla T is actually computed in the previous algorithm by
assigning n\cdot \nabla T = 0 which, unfortunately, cannot be used in detemining the boundary
condition. We here propose the following approach to extend the quantity from the
interior \Omega p to the boundary so that it can be used in the boundary condition. To
simplify notation, we first introduce U(x) = n \cdot \nabla T for x \in \Omega p. Now, we extend
this quantity to the exterior by solving the extension equation n \cdot \nabla U = 0 in \Omega e

using the fast sweeping method. Once the iteration converges, we assign \lambda i,j =\bigl( 
T \ast 
i,j  - Ti,j

\bigr) 
/Ui,j , which is the needed boundary condition.

Algorithm 3.3 A fast sweeping algorithm for (2.4) and (2.5).

Input: The mesh size \Delta x, the level set representation of the surface \phi i,j , and a
convergence criterion \epsilon > 0.
Output: \lambda i,j in \Omega p.
Initialization: Set \lambda i,j = 0 in \Omega p.
Compute U = n \cdot \nabla T in \Omega p.
Solve n \cdot \nabla U = 0 for U in \Omega e and assign \lambda = (T \ast  - T ) /U .
While | | \lambda n+1  - \lambda n| | L1 \leq \epsilon do

For each of the four sweeping directions
If \phi i,j \leq 0

update \lambda i,j using (3.5);
end If

end For
end While
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This fast sweeping method for hyperbolic conservation laws in \Omega p has been pro-
posed in [19]. A more general formulation based on the Lax--Friedrichs flux has been
recently discussed in [6]. Although there is no theoretical convergence proof available,
we have observed that the numerical scheme converges in a handful of iterations (for
example, two or three iterations for the sinusoidal model) in our numerical tests.

3.5. Regularization of \~\bfitc \bfitk in irregular domains. To update the velocity, we
regularize the perturbation by the same elliptic operator (I  - \nu \Delta ) in the bounded
irregular domain \Omega p with the zero Dirichlet boundary condition.

The idea to discretize the Laplacian is to follow the approach described in [5] for
solving the Stefan problem for crystal growth simulation. The first step is to classify
grid points in \Omega p into two groups. The first group consists of mesh points where all
four immediate neighbors stay inside \Omega p, and the rest of the mesh points define the
second group. For those points in the first group, one can follow the usual five-point
finite difference to approximate the Laplacian. For the second group, one imposes
the Dirichlet boundary condition by extrapolating the solution from \Omega p to \Omega e. In
particular, consider the one-dimensional case and assume that \phi i \cdot \phi i+1 < 0 so that
xi \in \Omega p and xi+1 \in \Omega e. Using linear extrapolation, we enforce \~c = 0 at \phi = 0
and obtain \~c\ast i+1 = \~ci \phi i+1/\phi i. Then we substitute this in the approximation of the
Laplacian at x = xi, i.e.,

\partial 2\~c

\partial x2

\bigm| \bigm| \bigm| \bigm| 
x=xi

=
\~ci - 1  - 2\~ci + \~c\ast i+1

\Delta x2
.

3.6. Partial measurements. In all discussions above, we have assumed that
full measurements are provided on the boundary \partial \Omega p whenever it is necessary in
various parts of the overall algorithm. In this section, we consider a simple approach
to relax such a condition. Following the approaches proposed in [18, 19, 20], we denote
\Gamma the set of locations where measurements are provided. The least-squares mismatch
functional (2.3) can, therefore, be replaced by

E(c) =
1

2

\int 
\partial \Omega p

| T  - T \ast | 2\delta (\Gamma )d\Gamma ,(3.6)

where \delta (\cdot ) is the Dirac's delta function. The adjoint state equation to be solved will
be kept unchanged. The corresponding change in the implementation will be on the
right-hand side of the boundary condition (2.5). Instead of having (T \ast  - T ) on the
boundary \partial \Omega p, we now have (T \ast  - T )\delta (\Gamma ) so that the contribution from the mismatch
comes solely at the locations where we have the measurement, while the boundary
condition is zero when we do not have any information. Numerically, one can simply
regularize the delta function for ease of implementation using the finite-difference
approaches.

4. Numerical examples. In this section, we consider several two- and three-
dimensional examples to demonstrate effectiveness and robustness of the algorithm.
We will also compare the adjoint variables constructed by the original formulation
in [19] and the proposed normalization approach. One can then observe that such
a simple normalization approach can effectively remove the singularity at the point
source. We are also going to test the algorithm on a synthetic dataset from an ultra-
sound CT experiment.

For all the examples, unless otherwise stated, we use the normalized adjoint-state
solution to update the velocity.
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4.1. A constant model. In this example, we consider the constant model where
the true velocity is given by the constant c(x, z) = 1. The domain \Omega p is a disk of
radius r = 0.75, while all computations are done on an underlying Cartesian mesh of
size 129\times 129 in the domain [ - 1, 1]2. We locate 20 point sources uniformly near the
boundary of the circular domain. Measurements are given on \partial \Omega p whenever necessary.

We have chosen two different initial guesses to demonstrate the performance of
the algorithm. In Figure 3, we consider the initial guess c0 = 1.75  - 

\sqrt{} 
x2 + y2

so that it matches with the exact velocity on the boundary of \Omega p. However, since
the initial guess contains a singularity at the origin, our method has difficulty in
converging to the exact solution since the perturbation at each iteration is a smooth
function. In Figure 4, we replace the singular initial guess by a smooth function
c0 = 1+0.1 cos(\pi 

\sqrt{} 
x2 + y2/1.5). Our approach converges to the exact solution nicely

with an error of O(10 - 4).
We have also looked into the construction of the velocity perturbation in Figure

5 based on the proposed algorithm to remove the singularity in the adjoint state. For
each of the sources, we have an adjoint variable by solving the adjoint equation. In
Figure 5(a), we have plotted the adjoint variable associated with the first, the eighth,
and the fifteenth source at the first iteration. As the misfit along the boundary

(a) (b)

Fig. 3. Example 4.1. Twenty sources are located uniformly on a circle of radius 0.7 with the
initial condition given by c0 = 1.75  - 

\sqrt{} 
x2 + y2. (a) The inverted velocity. (b) The cross section

of the solution along x = 0. The inverted solution is plotted in a blue solid line, while the exact
solution is shown in a red dashed line.

(a) (b)

Fig. 4. Example 4.1. Twenty sources are located uniformly on a circle of radius 0.7 with the
initial condition given by c0 = 1+0.1 cos(\pi 

\sqrt{} 
x2 + y2/1.5). (a) The inverted velocity. (b) The cross

section of the solution along x = 0. The inverted solution is plotted in a blue solid line, while the
exact solution is shown in a red dashed line.
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(a)

(b)

(c) (d)

Fig. 5. Example 4.1. The adjoint variables in the first iteration. (a) The original adjoint
variable for the perturbation associated to the first, eighth, and fifteenth sources. (b) The proposed
normalized adjoint variable associated to the first, eighth and fifteenth sources. (c) The sum of the
original adjoint solution from all sources. (d) The sum of the proposed adjoint solution from all
sources.

propagates backward toward the source, we can see that the solution develops a sin-
gularity and blows up at the corresponding source location. Therefore, using the
original approach, the sum of these adjoint variables will lead to an undesired pertur-
bation as shown in Figure 5(c). This requires us to impose rather strong Tikhonov
regularization when updating the velocity. On the other hand, the normalization ap-
proach allows us to obtain both a much more regular adjoint variable associated with
each individual point source as shown in Figure 5(b) and a much more regular sum
of the adjoint variables as shown in Figure 5(d).

4.2. A Gaussian model. In this example, we consider the Gaussian model
[18, 19, 12] given by

c(x, y) = 3 - 1

2
exp

\biggl( 
 - x2 + (y + 0.5)2

0.52

\biggr) 
 - exp

\biggl( 
 - x2 + (y  - 0.25)2

0.52

\biggr) 
.

We use the same domain \Omega p as in section 4.1. We also discretize the computational
domain [ - 1, 1]2 using the same number of mesh points.

We investigate the robustness of the proposed algorithm to noise in measurements.
Figure 6 shows the inverted solutions and their cross sections when measurements on
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(a)

(b)

(c)

Fig. 6. Example 4.2. Measurements with noise. Twenty sources are located uniformly on a
circle of radius 0.7. (a) We invert for the velocity using measurements with 5\% Gaussian noise.
From left to right: The cross section of the solution along x = 0 and along y = 0, and also the contour
plot of the absolute error in the solution. (b)--(c) We invert for the velocity using measurements
with (b) 10\% and (c) 20\% Gaussian noise.

Fig. 7. Example 4.2. L1 mismatch functional. Twenty sources are located uniformly on a
circle of radius 0.7. From left to right: The cross sections of the inverted velocity along x = 0 and
along y = 0, and the contour plot of the absolute error in the solution.

the boundary \partial \Omega p are added with 5\%, 10\%, and 20\% Gaussian noise. When the noise
level is relatively low, such as 5\%, as shown in Figure 6(a), the obtained solution
seems to be mildly degraded with the maximum relative error (defined in a pointwise
fashion given by | c  - c\infty | /c) increased to approximately from 0.01 (for the noiseless
case we have tested) to 0.035 as shown in Figure 6(a). When we double the amount
of noise in the measurements, the maximum relative errors increase correspondingly
as shown in Figures 6(b) and (c). Nevertheless, the solutions still match reasonably
well with the exact velocity model.

As discussed earlier, one can easily replace the least-squares mismatch by other
functions. Figure 7 shows the inverted velocity based on the L1 mismatch (2.27) with
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clean measurements. We show the cross sections of the solution along both the line
x = 0 and the line y = 0, and also the contour plots of the absolute error. We find that
our inverted velocity based on the L1 functional matches well with the exact solution
with quality similar to the one obtained by the least-squares mismatch function (2.3).

4.3. A sinusoidal model. Here we consider the following sinusoidal model used
in [42, 12]:

c(x, y) = 1 + 0.2 sin
\Bigl[ \pi 
2
(y + 1)

\Bigr] 
sin [3\pi (x+ 0.55)] .

This is a challenging example since the velocity model has relatively large varia-
tions to cause a lot of caustics. The computational setup is the same as that in section
4.1. The solution from the data set of 20 sources is shown in Figure 8. The maximum
absolute error is around 0.01 near the center of the computational domain far away
from the location of the receivers. Figure 9 shows the solution to the adjoint state
equation associated to several sources in the first iteration. Similar to what we have
observed in the constant model case in section 4.1, the solution develops singularity
at the corresponding source location. With the proposed normalization approach, we
can remove the singularities in the adjoint variables, as shown in Figure 9(d).

In all examples above, we have assumed that we can obtain full and complete
measurements on \partial \Omega p. In Figure 10, on the other hand, we assume that we are
provided with measurements on only certain parts of the boundary.

(a) (b)

(c) (d)

Fig. 8. Example 4.3. Circular domain. Twenty sources are located uniformly on a circle of
radius 0.7. (a) The final inverted velocity. (b) The contour plot of the absolute error in the solution.
(c) The cross section of the solution along x = 0. The inverted solution is plotted in a blue solid
line, while the exact solution is shown in a red dashed line. (d) The cross section of the solution
along y = 0.
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(a)

(b)

(c) (d)

Fig. 9. Example 4.3. The adjoint variables in the first iteration. (a) The original adjoint
variable for the perturbation associated to the first, eighth, and fifteenth sources. (b) The proposed
normalized adjoint solution associated to the first, eighth, and fifteenth sources. (c) The sum of the
original adjoint variables from all sources. (d) The sum of the proposed normalized adjoint variables
from all sources.

In Figure 10(a), we keep 20 uniformly located point sources on r = 0.7 but carry
out measurements only on a part of the boundary \partial \Omega p, which is specified by | x| > 0.65,
i.e.,

\partial \Omega (a)
p = \{ (r, \theta ) : r = 0.75, \theta \in [ - \theta \ast , \theta \ast ] \cup [\pi  - \theta \ast , \pi + \theta \ast ]\} ,

where \theta \ast = cos - 1
\bigl( 
65
75

\bigr) 
.

In Figure 10(b), we carry out measurements only on a part of the boundary \partial \Omega p

which is specified by | y| > 0.65, i.e.,

\partial \Omega (b)
p =

\biggl\{ 
(r, \theta ) : r = 0.75, \theta \in 

\Bigl[ \pi 
2
 - \theta \ast ,

\pi 

2
+ \theta \ast 

\Bigr] 
\cup 
\biggl[ 
3\pi 

2
 - \theta \ast ,

3\pi 

2
+ \theta \ast 

\biggr] \biggr\} 
.

The accuracy in the inversion is dropped significantly compared to the full measure-
ments as shown in Figure 8.

Figure 11 shows the inverted velocity obtained by replacing the least-squares
functional with the L1 functional (2.27) with clean measurements. The inverted
solution also matches well with the exact solution. To demonstrate the effect of
the proposed normalization approach for the adjoint variable, we show the sum of
all the original adjoint variables from each individual source and the sum of all the
normalized adjoint variables from all sources in Figure 12. Similar to the least-squares
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(a)

(b)

Fig. 10. Example 4.3. Partial measurements on a circular domain. Twenty sources are located
uniformly on a circle of radius 0.7. (a) The error in the inverted velocity with measurements given

along the two arcs | x| > 0.65 defined by \partial \Omega 
(a)
p . The cross section of the solution along x = 0 and

y = 0. (b) The error in the inverted velocity with measurements given along the two arcs | y| > 0.65

defined by \partial \Omega 
(b)
p . The cross sections of the solution along x = 0 and y = 0.

Fig. 11. Example 4.3. L1 mismatch functional. Twenty sources are located uniformly on a
circle of radius 0.7. From left to right: The cross sections of the inverted velocity along x = 0 and
along y = 0, and the contour plot of the absolute error in the solution.

(a) (b)

Fig. 12. Example 4.3. The adjoint variables in the first iteration. (a) The sum of the original
adjoint variables from all sources. (b) The sum of the proposed normalized adjoint variables from
all sources.
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(a) (b)

(c)

Fig. 13. Example 4.3. Seven-folded star-shaped domain. Twenty sources are located uniformly
on a circle of radius 0.7. The inverted solution is plotted in a blue solid line, while the exact solution
is shown in the red dashed line. (a) The cross section of the solution along x = 0. (b) The cross
section of the solution along y = 0. (c) The contour plot of the absolute error in the solution.

formulation, the normalized approach is able to remove the singularity in the L1-based
adjoint variable.

Our algorithm for irregular domains can be easily applied to other shapes of the
domain \Omega p. In Figure 13, we replace the circular domain by a seven-folded star-shaped
domain with the boundary parameterized by r = (1 + \epsilon cos 7\theta )r0 with r0 = 0.85 and
the magnitude of perturbation \epsilon = 0.075. The overall reconstruction is still reasonably
accurate.

4.4. A three-dimensional model. In this example, we consider a three-
dimensional case, where the velocity model is given by

c(x, y, z) = 3 - 1

2
exp

\biggl( 
 - x2 + (y + 0.5)2 + z2

0.52

\biggr) 
 - exp

\biggl( 
 - x2 + (y  - 0.25)2 + x2

0.52

\biggr) 
.

We consider inverting the velocity inside a sphere of radius R\Omega = 0.75. Similar to all
previous examples, we assume that we are given perfect measurements on the sphere
R\Omega whenever needed in the algorithm. Ten sources are located uniformly on a sphere
of radius Rs = 0.6. Such a uniform distribution is obtained by the solution of the
so-called Thomson problem which tries to put N electrons on the surface of a sphere
that minimizes the electrostatic potential energy governed by the Coulomb's law [44].
In this example, we consider N = 10 sources. These locations are explicitly known
and the corresponding polyhedron is the so-called gyroelongated square di-pyramid.
Figure 14 shows the initial condition and an intermediate solution and the converged
inverted velocity of the model. As we can see, the maximum absolute error is dropped
from close to 0.8 initially to 0.014 in the final solution.

4.5. Ultrasound CT time-of-flight datasets. In this example, we apply our
algorithm to two time-of-flight (TOF) datasets from an ultrasound computed to-
mography (USCT) phantom experiment [21], where the TOF data are picked from
simulated sonograms by using two different methods: one is based on the Akaike infor-
mation criteria (AIC) picker method, and the other the differential cross-correlation
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(a)

(b)

Fig. 14. Example 4.4. Ten sources are located uniformly on a sphere of radius 0.6. (a) The
initial velocity and the corresponding error in the initial condition. (b) The final inverted velocity
and its corresponding error.

(DXC) method, yielding two TOF datasets. We will apply our algorithm to both
datasets.

First, we consider the TOF data from the AIC picker method. The two-dimensional
USCT system consists of a circular transducer array of radius 110.0mm. The array
consists of 1024 equally spaced transducers. In polar coordinates, the angular differ-
ence between two consecutive transducers is 2\pi /1024. The speed of sound experimen-
tal phantom is shown in Figure 15, which contains several small objects with sharp
changes in the intensity. A pulse wave is emitted by each transducer located on the
circle plotted in a dashed line and received by all other transducers. That is, every
transmitter is also a receiver, so this will generate 1024 sets of TOF data correspond-
ing to 1024 transducers (sources). To better visualize the recovered solution in the
following numerical results, we only concentrate on the inner region near the phantom
in the squared region marked by solid black lines as shown in Figure 15(a).

To apply our algorithm to this dataset, we subsample from these 1024 sets of
measurements to obtain two subsets: one containing 256 transducers and the other
512 transducers, respectively. Figure 16 shows our inverted solutions based on the L1

mismatch functional and the normalized adjoint variables, where we have solved the
eikonal and adjoint state equations with different mesh sizes. To compare with the
synthetic phantom, we have also plotted the contour lines of the exact solution on top
of our numerical solutions.

Figures 16(a) and (b) show the tomography results for the two subsets of the
TOF data, where we have solved the eikonal and adjoint state equations using a
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(a)

(b) (c)

Fig. 15. Example of USCT TOF data. (a) The true phantom data to be recovered. The
transducers are located on the circle plotted using a black dashed line. To visualize our numerical
results for this TOF experiment, we will concentrate only on the boxed zoom-in interior region.
Reference solutions with (b) 256 transducers and (c) 512 transducers from [21].

(a) (b)

(c) (d)

Fig. 16. Example of USCT AIC-TOF data. The inverted velocity model with the L1 misfit
using (a) 256 transducers and (b) 512 transducers uniformly distributed along the circle of radius
110mm on a mesh of resolution 257 \times 257; (c)--(d) follow the same setting as (a)--(b) but with
resolution 513 \times 513. We plot the contour of phantoms using black solid lines on the top of our
solutions.
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low-resolution mesh of 257 \times 257 points. Since the forward solver is only first-order
accurate, the traveltime solution contains relatively large errors and, therefore, we are
not able to obtain an accurate adjoint variable. As a result, the tomography solu-
tion has relatively low accuracy. However, as we increase the number of mesh points,
the tomography resolution improves significantly, since the accuracy of the eikonal
and adjoint variable improves. We have also noticed that increasing the number of
transducers from 256 to 512 does not significantly improve the resolution of the in-
verted solution. Our approach can already effectively capture the overall structure
of the phantom using a relatively small subset of the original data set. Figures 16(c)
and (d) show the tomography results for the two subsets of the TOF data, where we
have solved the eikonal and adjoint state equations using a high-resolution mesh of
513 \times 513 points. To further illustrate the inversion results, the cross-section com-
parisons in Figure 17 show that our normalized adjoint-state method equipped with
high resolution modeling and L1 regularization is able to resolve fine details in the
phantom structures.

We have also tested the robustness of our approach by adding a multiplicative
Gaussian noise to the AIC-TOF data. Figures 18(a)--(b) show our inverted solutions
based on the TOF data with 1\% multiplicative Gaussian noise, while Figures 18(c)--(d)
contain solutions from measurements with 2\% multiplicative noise. We consider the
case with only 256 transducers uniformly sampled along the circle of radius 110mm.
Our inverted solutions are shown in Figure 18.

Figure 19 shows the tomography results based on the L2 mismatch functional
for the clean TOF data. Since the L2 regularization imposes excessive regularity in
the inverted solution, we do not expect these solutions to match with the phantom
structures as well as those by the L1 regularization since the phantom structures
contain many sharp discontinuous interfaces.

Next, we consider the TOF data from the DXC method [21]. We have applied our
approach to this data set by repeating the same experiments as described in Figures 16
and 19. Figure 20 shows our inverted solutions using both L1 and L2 regularizations
computed on the fine mesh of resolution 513\times 513. To further illustrate the inversion
results, the cross-section comparisons in Figure 21 show that our normalized adjoint-
state method equipped with high resolution modeling and L1 regularization is able to
resolve fine details in the phantom structures.

(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

Fig. 17. Example of USCT AIC-TOF data. The inverted velocity model with the L1 misfit.
Cross-sections of the solutions in Figure 16 along (a1)--(d1) y = 0 and (a2)--(d2) x = 0. (a1)--(b1)
and (a2)--(b2) are from the 257\times 257 mesh; (c1)--(d1) and (c2)--(d2) are from the 513\times 513 mesh.
The exact phantom is plotted in red dashed lines and our inverted solutions are plotted in blue solid
lines.
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(a) (b)

(c) (d)

Fig. 18. Example of USCT AIC-TOF data. The inverted velocity model from measurements
containing 1\% multiplicative Gaussian noise with the L1 misfit using 256 transducers uniformly dis-
tributed along the circle of radius 110mm on a mesh of resolutions (a) 257\times 257 and (b) 513\times 513,
respectively; (c)--(d) follow the same setting as (a)--(b) but the measurements contain 2\% multiplica-
tive Gaussian noise. We plot the contour of phantoms using black solid lines on the top of our
solutions.

(a) (b)

(c) (d)

Fig. 19. Example of USCT AIC-TOF data. The inverted velocity model with the L2 misfit
using (a) 256 transducers and (b) 512 transducers uniformly distributed along the circle of radius
110mm on a mesh of resolution 257 \times 257; (c)--(d) follow the same setting as (a)--(b) but with
resolution 513\times 513. We plot the contour of the phantom using black solid lines on the top of our
solutions.
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(a) (b)

(c) (d)

Fig. 20. Example of USCT DXC-TOF data. The inverted velocity model with the L1 misfit
using (a) 256 transducers and (b) 512 transducers uniformly distributed along the circle of radius
110mm on a mesh of resolution 513 \times 513; (c)--(d) follow the same setting as (a)--(b) but with the
L2 regularization.

(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

Fig. 21. Example of USCT DXC-TOF data. The inverted velocity model with L1 and L2

misfits on the 513 \times 513 mesh. Cross sections of the solutions in Figure 20 along (a1)--(d1) y = 0
and (a2)--(d2) x = 0. (a1)--(b1) and (a2)--(b2) are from the L1 misfit; (c1)--(d1) and (c2)--(d2) are
from the L2 misfit. The exact phantom is plotted in red dashed lines and our inverted solutions are
plotted in blue solid lines.

5. Conclusion. We have developed a new algorithm to carry out the adjoint-
state first-arrival traveltime tomography in irregular computational domains. The
classical singular adjoint variable due to the point source is normalized to remove
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such singular behavior, which is accomplished by solving another adjoint-state equa-
tion. We also developed an easy-to-implement finite-difference algorithm to carry out
eikonal-based first-arrival traveltime tomography in irregular domains. Numerical
examples demonstrate that the new method works extremely well.
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