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Abstract. Starting from Hadamard’s method, we develop Babich’s ansatz for the frequency-
domain point-source elastic wave equations in an inhomogeneous medium in the high-frequency
regime. First, we develop a novel asymptotic series, dubbed Hadamard’s ansatz, to form the fun-
damental solution of the Cauchy problem for the time-domain point-source elastic wave equations
in the region close to the source. Using the properties of generalized functions, we derive governing
equations for the unknown asymptotics of the ansatz including the travel time functions and dyadic
coefficients. In order to derive the initial data of the unknowns at the point source, we further propose
a condition for matching Hadamard’s ansatz with the homogeneous-medium fundamental solution at
the point source. To treat singularity of dyadic coefficients at the source, we then introduce smoother
dyadic coefficients. Directly taking the Fourier transform of Hadamard’s ansatz in time, we obtain
a new ansatz, dubbed Hadamard-Babich ansatz, for the frequency-domain point-source elastic wave
equations. To verify the feasibility of the new ansatz, we truncate the ansatz to keep only the first two
terms, and we further develop partial-differential-equation—based Eulerian approaches to compute
the resulting asymptotic solutions. Numerical examples demonstrate the accuracy of our method.
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1. Introduction. Green’s tensors for elastic wave equations are fundamental in
many applications. For a generic inhomogeneous medium, an analytic form of the
Green’s tensor is in general not available. Direct methods such as finite-difference
or finite-element methods are usually employed to numerically compute such tensors.
However, at high frequencies, the direct methods suffer from the so-called pollution
errors [4], so that it is very costly to directly resolve these highly oscillatory waves.
Therefore, we seek alternative methods, such as asymptotic methods or methods of
geometrical optics (GO), to carry out scale separation so that we can solve (1.1) at
large frequencies. In this article, we propose a novel Hadamard-Babich GO ansatz
consisting of an infinite series of dyadics and generalized functions for solving point-
source elastic wave equations in an inhomogeneous medium at high frequencies.

We consider the following frequency-domain point-source (FDPS) elastic wave
equations in R3:

(1.1)
P2 G+A+p)V(V-G)+uVEGHVANV-G)+Vux (VxG))+2(Vu-V)G = —I5(r—r),
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where G = G(7;7g,w) is the so-called Green’s tensor at the source rq, I is the 3 x 3
identity dyad, w is the frequency, p(r) is the mass density, A(r) and p(r) are so-called
Lamé’s stiffness parameters, and r = (21,72, 23)7. To avoid cluttered notations, we
will suppress w in the notation of G. In the following derivations, we assume that
the density and Lamé’s parameters are smooth and are constants at infinity, which
allow us to impose the Sommerfeld radiation condition at infinity so as to compute
outgoing waves only.

An intuitive approach is to use the following Wentzel-Kramers—Brillouin GO
ansatz

. _ = Al . iwT(r7ro)
(1.2) G(r;rg) = ; " (r;ro)e ,
where the unknowns A! and 7 are independent of w. Karal and Keller [13] derived the
governing equations for A! and 7 without specifying how to initialize these quantities
in computation. However, since the overall isotropic elastic waves consist of superpo-
sitions of two waves, the compressional (P) wave and the shear (S) wave, the common
GO wisdom of keeping only the leading-order term does not suffice to capture correct
singularities of the Green’s tensor at the source which in turn will affect the overall
accuracy of the asymptotic solution, as will be seen in our numerical examples. Our
recent work [22] for Maxwell’s equations confirmed such defects for inhomogeneous
media as well.

Moreover, such drawbacks cannot be easily resolved by using two or more terms in
(1.2), since a critical challenge is how to initialize A' at the source ro. To resolve these
issues for solving the scalar point-source Helmholtz equation, Babich in [2] proposed
an asymptotic series based on Hankel functions, dubbed Babich’s ansatz, to expand
the highly oscillatory wavefield. This new ansatz yields a uniform asymptotic solution
as w — oo in the region of space containing the point source but no other caustics.
It is worth mentioning that his method of finding such an ansatz is closely bound up
with Hadamard’s method of forming the fundamental solution of the Cauchy problem
for the time-domain point-source acoustic wave equation; details were given in [10]
and then were outlined by Courant and Hilbert [5]. While Babich’s ansatz allows us to
systematically initialize scalar amplitude coefficients for scalar Helmholtz equations,
in [25, 16] we have developed systematic computational approaches to implement this
ansatz for solving the point-source Helmholtz equation. Nevertheless, as stated by
Babich himself on page 105 in [6], his ansatz cannot be trivially extended to the FDPS
elastic wave equations (1.1).

To address these initialization issues for the FDPS Maxwell’s equations, in [15] we
proposed a novel ansatz, dubbed the Babich-like ansatz, based on the spherical Hankel
functions, and we have demonstrated that our Babich-like ansatz gives a uniform
asymptotic expansion of the underlying solution in the region of space containing
a point source but no other caustics. Later on, by using Hadamard’s method, we
further showed in [17] that our Babich-like ansatz in fact is Babich’s ansatz for the
FDPS Maxwell’s equations, and we have dubbed it the Hadamard—-Babich ansatz
for the FDPS Maxwell’s equations. We remark in passing that, knowing about our
work in [15], Babich [3] tried to develop his own asymptotic ansatz for the FDPS
Maxwell’s equations, but his construction of second- and higher-order approximations
faces significant difficulties: his second- and higher-order amplitude coefficients have
singularities at the source point, and he further admitted that he could not overcome
these difficulties. With the above as the backdrop, we are motivated to develop the
Hadamard-Babich ansatz for the FDPS elastic wave equations (1.1).
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Consequently, we start by developing a new ansatz based on generalized functions,
dubbed Hadamard’s ansatz, for solving the time-domain point-source elastic wave
equations using Hadamard’s method in a region close to the source but no other
caustics. Since the singularity induced by the point source is absorbed into the basis
functions, this new ansatz enables us to develop systematic approaches to initialize
the GO ingredients easily so that source singularities of Green’s functions can be
captured faithfully.

Based on the properties of generalized functions, we derive eikonal equations
for both S and P waves and recursive systems of advection equations for dyadic
coefficients. Next, by comparing Hadamard’s ansatz with the homogeneous-medium
fundamental solution, we propose a matching condition at the source which in turn
gives the initial data for the unknown asymptotic coefficients. By taking the Fourier
transform of Hadamard’s ansatz in time, we immediately obtain the ansatz in the
frequency domain, dubbed the Hadamard—Babich ansatz for the FDPS elastic wave
equations (1.1). To verify the feasibility of the newly obtained ansatz, we truncate the
ansatz to keep only the first two terms so that we are able to compute the resulting
asymptotic solutions.

The rest of the article is organized as follows. In section 2, we develop Hada-
mard’s method for elastic wave equations. In this long section, we first derive the
fundamental solution for elastic wave equations in a homogeneous medium, and this
fundamental solution motivates us to propose a novel generalized-function—based Ha-
damard’s ansatz for solving elastic wave equations. This new ansatz leads us to solve
governing equations for asymptotic ingredients of S and P waves. We further propose
matching conditions to derive initial conditions so as to initialize those asymptotic
ingredients. Section 3 gives the Hadamard—Babich ansatz for the frequency-domain
elastic wave equations. Section 4 discusses numerical implementations. Section 5 gives
some numerical examples to validate our methodology. Section 6 concludes the paper
with some remarks. In Appendix A, we give derivations of some needed ingredients
for S and P waves. In Appendix B, we develop Hadamard’s method for anisotropic
elastic wave equations, and we further show that Hadamard’s method for isotropic
elastic wave equations developed in the context is a special case of the anisotropic
one.

2. Hadamard’s method. To apply Hadamard’s method, we consider the fol-
lowing Cauchy problem in time of the point-source elastic wave equations:

(2.1) PG — A+ p)V(V-G) — uV3G — VAV - G)
—Vux (VxG))=2(Vu-V)G =I6(r —19)d(t),
(22) G('I",t;’l“())|t<0 == 07

and we may write it in the form

(2.3)
pGij — (A4 1) Grjki — BGijkk — XNiGrjk — o xGije — 1k Grji = 0i0(r — 10)d(1),
(2.4) G;; =0, fort <0.

Here, the subscript and comma notation are employed, and r = (x1,z2,23)7. Specif-
ically, G;; denotes the ijth entry of G, G;j, denotes the xj-derivative of G;j, so
Gijr denotes 92, Gi; for 1 < i,j,k,1 < 3. Furthermore, the Einstein summation
convention is assumed so that G = AGyj, and ;5 is the Kronecker delta.
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We seek the solution to (2.3) and (2.4) in terms of the generalized functions f_(f)
defined to be

k
(k) oz | x forz>0,
(2.5) f+ (w) 5 with x4 = { 0 otherwise

for k > —1; for other values of k, f(f)is defined by analytic continuation. Also, since

(2.6) (B _ k1)
fJ(rk) can be defined for negative integer values of k by successive differentiation in the
sense of distribution. Since fJ(rO)(m) = H(xz), the Heaviside unit function, fiﬁk*l) (x) =

5" (z), the kth derivative of the é-function for £ = 0,1,2,.... For further discussion

of fik) and related functions, see Chapter I, sections 3.4 and 3.5 of [9].
Using Duhamel’s principle (pp. 202 and 729-730 in [5]), we may rewrite (2.3) and
(2.4) for t > 0 as

(2.7) pGis — AN+ 1)Grjki — 1Gijrk — NiGrjx — wxGijr — xGrji =0
with initial conditions

(2.8) Gij(r,0;m0) =0,

(2.9) Gy, 0:m0) = —3(r = 7o),
0

where pg is the density at the source point rq.

2.1. The case of a homogeneous medium. In the case when all elastic pa-
rameters are constants, we may write the isotropic elastic wave equations in a homo-
geneous medium in the form

(2.10) pé,;j — ()\ + N)ij,ki - ,LLGij,kk =0
with initial conditions

(211) Gij(’l’,o;’!’o) = 0,

1
(2.12) Gij(T, 0; To) = ;(51‘]6(7" — ’l"o).

Following a suggestion of Friedlander [8] as we have done in [17], we will seek a
solution to (2.10)—(2.12) in the form

(2.13) Gij = ¢, + 05k — Y5 = Sijthpn + (0,5 — Vi),
where ¢ and 1 are to be determined. On substituting this into (2.10), we obtain
(2.14) 0:0;1p3 — (A + 2u) Ag] + [6:5A — 0,0;][p) — pAy] = 0.

Let us now decompose the initial condition (2.12) in a similar way using the fact

(2.15) 5(r —mo) :A(_1>,

4mr
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where 7 = |r — 7g|. Thus we may write

-1 -1
(216) (5@'(5(7’ - 7'0) = 818] (471'7“) + [5”A - 818]} (47‘(’!‘) .
Consequently, we see that G;; given by (2.13) will satisfy (2.10)—(2.12) if
(2.17) pp— (A +2u)Ap =0, t>0,
. -1
(2.18) 90 - 07 SO - 4pﬂ"l"7 t ]
and
(2.19) pb — pAp =0, t>0,
: -1
2.2 = = =
(220) p=0 b=l =0

We easily verify that (2.17)—(2.20) are satisfied by

R(t —~F t =2 AP <
(2.21) oo BT = T Y sh
4dmpr 4dmpr Teprs VT >0
— S g
(2.22) v = R(t—v°r) —{ T ’YST’ <t,
4 pr 4dmpr Taprs V7T > 1
where
_]&E>0,
(2.23) ro-{ 520
and

P P P
2.24 S= /15 and = )
(2.24) gl ’/u nd v ’//\+2u

Carrying out the differentiations indicated in (2.13), we finally arrive at

52 S
77" (035 — tity) s (65 — 3titj) [ s 1 s
N S A VY Y i 7o)\ T e — Rt —
Gij drpr St —~"r)+ Irp 2 (t—~°r)+ 7ﬁgR(t ¥>r)
P2 P
bty o poy (0 = 3tity) [y PN L P
(225) + Tor 5t —~"r) p =)+ SR

where r = |r — rg| and t = (r — ) /r.
Now we need to figure out the relation between G;; and the generalized func-
tions f_(‘_k). It turns out that the second-order time derivative of G;; has a simple

relation with fJ(r_B) and f_([2). In fact, adopting similar techniques as used in proving
Proposition 2.1 in [17], we can obtain

2.26 Gij=G% +GE
J J

R
where

S3
.. ¥ 2 _ 2 — 2
(2.27) G = e [275 (85 — tity) FUV (2 = 572 — 20, 1P (12 — 45 r2)]
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and
p3
. 2 2
(228)  GF :Lm (2972, 10 @2 70 = P (2 =)

Here the superscripts S and P refer to the S and P waves, respectively, and v° and
+F are the S and P wave slowness, respectively, as will become apparent later; the
vector ¢ = (t1,t2,t3)7 is the unit tangent vector to the S or P ray as the case may be,
and the S and P rays coincide in this special case of a uniform medium.

To be convenient, we rewrite the above two functions in the following concise

forms:

S
2 _ 5 B )
Com = o [y =) 00 —55%0) 20170 =977

where t is the unit tangent vector to the S ray, and

p3
2 _ 2 B )
Clom = (207520t 700 =700 - 1D )

where t is the unit tangent vector to the P ray.

We remark in passing that in the above derivation, we have constructed functions
@ and 9 to represent the P-wave and the S-wave related information, respectively, in
the spatial-temporal domain, so that we are computing outgoing waves at infinity. In
the time domain, since g and «yp are positive, (2.25) indicates that, as ¢ > 0 increases,
the singularities of G move along either the outgoing cone {r = 7§1t} or along the
outgoing cone {r = ’y;lt} so that the waves are indeed going outward. Taking the
Fourier transform in time of the Green’s function G;; in (2.25), we can check that the
usual Sommerfeld radiation condition for elastic waves holds so that outgoing waves
are guaranteed at infinity [1].

2.2. The case of an inhomogeneous medium. When the elastic coefficients
vary with =, the formulas (2.27) and (2.28) for the constant case motivate us to seek
the solution of (2.1) in the following form of asymptotic series

(2.29) G(r,t;r9) = i Al(r; 7'())]‘J(:3+l)(t2 —T(r;70)),
1=0

or in subscript notation
(2.30) ZA 32 _ ),

where T(r;r9) = 72(r;70), and 7(r;70) is the travel time from the source ro to 7.
We shall define A(r;7y) =0 for I < 0.

Here, since the medium properties do not depend upon time, A'(r;rq) are as-
sumed to be time independent. This assumption can be justified from two perspec-
tives. On one hand, we could prove this by arguing that one would get the same
solution delayed if the source were delayed and so the wave operator commutes with
time shifts, where it is clear that J; can be passed through the wave operator when
the medium properties do not depend upon time. On the other hand, since G in
a homogeneous medium can be expressed as the sum of terms which separates time
and spatial variables, we believe that G in an inhomogeneous medium in a neighbor-
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hood of the source point should inherit such a property so that we seek unknowns A'
depending upon spatial variables only.

To derive the governing equations for A' and T, we need to use two simple prop-
erties of fik) (z),

!/

(2:31) @) = 1),
(2.32) 2f P (@) = (k+ DA ().

Taking double time derivatives of (2.7) yields
(2.33) p0}Gij = A+ 10)Grjki + 1Gijr + XNiGrjn + 1xGijr + 1rGryi-

To write (2.33) in terms of the generalized functions f_(f), we compute the follow-
ing double time derivative of G,

(2.34) G = Z AL (2 )
= Z APAL I - 7) 24 T2 - )
= Z ATAL (@2 7y 2020 - )AL UV (2 - )
Z FU 2 - TATAL 4 2(20 - 9) ALY,

and the following spatial derivatives of G,

(2.35) m—Z ~TRAL @2 Ty AL f T 2 )

=55 - T Al ALY

1=0
(2.36) Grji = Z fi_5+l)(t2 - 7)[—7,iA€c L Ak] 2,
1=0
(2.37) ékj,k = foSH)(tQ - 7)[_7,1@142]1 Aécjzk]
1=0

(2.38)
Grjki = Z‘IkTA SN (AR o T 97 L el ()

Wf( @2 Ty~ T AL LT - T+ AL T - T

_ Zf( 5+l) )[‘J‘k‘j Ak; TkAk]z T Aéjlk ‘IkiAL]l +Ak3 kz]
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(2. 39)

Glijok = Z P = DT AT Al — TRAl L = TaAl L — TaeAT + AT

i,

Inserting the above derivatives into (2.33) and according to the meaning of an

f_(;,__5+l)

asymptotic series being zero, we vanish the coefficients of successively to

obtain

0=4pTAL — (A + )T kT AL, — uT 1T kAL
+20(2 = DAG + A+ WTAGE + A+ T rAGE+ O+ 0T il

kj,i
+2uT R AL L+ 1T ik AL+ N TR A + kT AL + T AL
(240) = (A @) AT — BAG R — NaAlGE — ra AL — kAL

Setting I = 0 in (2.40) and remembering that Aij is zero for | < 0, we obtain
(2.41) ApTAY; — A+ )T 1T A — uT kT xAY; =0
or, in vector notation,
2y A0 _ 0
(2.42) (4pT — p|VT|F)A; = (A + ) VI(VT - AJ).

Here AY denotes the jth column of the coefficient matrix A°, which means A° =
(A9, A9, A)

Two cases arise, and we will call them Case I and Case II.

Case I, both sides of (2.42) are zero; since Ag for 1 < j < 3 is assumed to be
nonzero, we have

0_ 2 _

(2.43) VT-A; =0, and 4pT — p|VT|" =0
Case II, both sides of (2.42) are nonzero; then we have

0 2 _

(2.44) A7 || VT, and 4pT — (A +2u)|VT|" =

where the latter equation can be obtained by taking the scalar (or dot) product of
(2.42) with V7.

2.3. Case I, the S wave: VT - A? = 0 and 4pT — p|VT|* = 0. Here

4pT
(2.45) VT2 = 2=
Let us set T = 72. Then we see that
(2.46) vrz=2

the usual eikonal equation for the S-wave travel time, and so T is the square of the
S-wave travel time 7. The rays are obtained in the process of solving (2.45) or (2.46)
by the method of characteristics, which gives

dr; dt dp;

(2.47) = =

Di ﬁ %(5)17
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where p; = 7, and from (2.46),

(2.48) %(|p|2 - 5) 0.

In our development whenever convenient we shall use T rather than the more
usual 7. The advantage is that the argument I' = ¢ — T = ¢ — 72 is linear in T but
quadratic in 7 so that in using 7, differentiation with respect to x; does not generate
factors of 2 and 7, leaving the resulting formula easier to read.

For reference here we repeat (2.40), omitting the first and third terms as they
cancel by (2.45). Thus

— A+ w)T kT AL

+2p(20 — )AL + A+ )T A L+ A+ )T kAL S+ A+ )T AL

+2uT R A |+ 1T ik A+ N TR A + kTR AL + T AL
(249)  —(A+ /’[’)Aicjzkz MA” Kk )‘ﬂAém%c K, kAzy kM kAkg i

2.3.1. S-wave transport equations for A° and Al. First, we derive the
governing equation for A°. Setting [ = 1 in (2.49) and knowing that A;jl =0, we get

(2.50) 0=— A+ u)T kT Ay — 4pAY; + (X + )T AY,
+ 25T R AY . + 1T kAL + 1k T RAY + T AR,

where we have made use of ‘J"kAgj =0by VT - A} =0, and its derivative
(T,kAgj),i = T7kA2,j,i + T,kiA%j =0.
Form the scalar product of (2.50) with T; to get

(251) 0= —(A+ )T T3 T o Ag; + A+ )T TiAY . + 20T kT AY . + T T AL

But
0=2(TxTiA%) & = 2T er T3 AY; + TwT i AY; + T T AY 1)
= (T3 T 1) i AY; + 27,7 ;A%
(2.52) = <4/pf> AY +2T 1T AY s
I
so that
(2.53) QMT,iT,kA?j7k =—u <45I> A?j'
i

Thus (2.51) becomes

4pT p‘.T

4 1 _ 4pT 0
()\‘FM)TL TreAp; = A+ ) Ak]k M (M )l A+ m Ak]
4pT
(2.54) =(A+ ) p Akjk p? (ug> ARjs
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so that we can obtain the following relationship between AO and T, A} >

3
2.55 TeAL = A9 “<p) A9
( ) kA ki, k p()\_’_u) MQ 7]@ kj

Inserting (2.55) into (2.50) results in the following transport equation for AY;,
2.56 T LAY (T 14p) A% + L (2) A7, =0
(2.56) k ij,kJrﬂ((.u &)k — 14p) ij+27p m . kjd,i = 0.
Or, in vector notation,
1
257) (VT-V)A° + 2 (¥ (9T) = 14p) A° 4 2ﬂpv7 {V(Z) : AO] -0

where V(£) - A% = ((2) ;A% (£),:A%, (£4),iAf) results in a row vector.
Next, we will derlve the governing equation for the amplitude coefficient A'.

Setting [ = 2 in (2.49), all terms exist, so that we can get a relationship between
VT - A2, A' and A°:
(258) 0= (A4 1) (—TAl + AL )T — 10pAL + (A4 1) (T AL

+ 20T R Aj e + 0T Ay + N aT R Ay + T AL+ T A

- (A + M)Akj,ki - MAij,kk - )‘,iAkj,k - M,kAij,k - ﬂ,kAkj,¢~

To make our formulas easy to read, we introduce some notations. By the relation
(2.55), we define

p p
2.59 O=g A =AY —— (5] A%,
(2:59) * SR (A4 ) <u2),k *
so that a® = (a9, a9, al) is a row vector depending only on Akj, and
(2.60) B?j =+ M)Agj,ki + MAgj,kk + )‘,iAgj,k + :“JCA?j,k + M,kAgj,i-

Next we take the scalar product of (2.58) with T ; to get

0=+ pu)(~TrAZ; + A x)TiT s — 10pad + (A + p)ad , Ti + 2uT AL 1T
(2.61) 4 pTeral + Xad T + ppT kad + T i Ag T B?J‘T,l
Introduce

(2.62) b(; = 10pa(; —(A+ u)‘Ji —uT, kka — AT a — T a + B”‘J"l,
where b° = (b9, 09, 59) is also a row vector. Consequently, (2.61) becomes

0= (A+p)(=TAL)T T i+ (A + )AL, T T
(2.63) + 20T o Af T + T AL T — 09,

Inserting (2.63) into (2.58) and employing the following relationship,

179

(2.64) 2T kAL 1 T = 2uT (T AL)  — 4pT AL — 4MT(Z> AL
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1

we obtain the following transport equation for Azj7

1

1

Tk —100A + a4t (2) 5. =R0
((/J’ ,k),k p) Zj+2p kj ) ) i

where

a?ﬂ'ﬁi N ,ua?’k‘T,k‘T,i B b?‘J'ﬂ- A+ u)a?)i B )\ﬂ-ag N i%

2.66 R). = — -
(2.66) K 2T 4pT 8pT 24 2u 24

Or, in vector notation,

1
(2.67) (VT-V)A' + ﬂ[V - (uVT) — 10p] A" + ;—;V‘I {V (Z) : Al} =R,

where

VIa®  pVI(VT-V)a®] VI Via’® (A+pVa® B

2. 0=_
(268) R 2T 4pT 8pT 21 20 2u

Here VTa® = (T ;a})3x3 and Va® = (af,;)3x3 are 3 by 3 matrices.

2.3.2. S-wave transport equations for general A!. By proceeding in a sim-
ilar manner to the above, we can derive the governing equations for other A’ when
[ > 2. Hence we may conclude that the general amplitude coefficients A satisfy

1 H p -1
(2.69) (VT-V)A' + @[V (uVT) + (41 — 14)p| A" + ?pw {v (u) -Al} =R\,

where
R-1— VTal! N pVI[(VT-V)al~l]  VvIbl-1  Vaae'!
o 27 4pT 8pT 2u
A+ u)Val~t B!
2. — :
(2.70) 2 =y

Here B'~1, a!~!, and b'~! are given by

Bl =\ 4+ )V(V- AT 4 uVZAT vV - A
(2.71) +Vux (Vx ATYH +2(Vp-V)AS?,

(2.72)

a~l=v7. Al

=V A1 ¢ Lvu AR 4 LV‘I- (VT -V)AY — LH
A+ p (A + p)4pT A+ p)dpT’
bt =2p(-20+T)a" — (A4 p)(VT - V)a' ™! — uVv3Ta' !

(2.73) — (VT -VN)a'~! — (VT -Vp)a'~t + VT - B!,

where b!, a', B!, and R' are zero for all [ < 0.
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2.3.3. S wave: Verification in a homogeneous medium. In a homogeneous
medium, the parameters p, A\, and p are constants so that we have the exact solution
(2.27) for the S-wave, which we rewrite here as

S3
(@7 G = 2T 0y — it STV %) 20 17 =55,
To simplify the derivation, we assume that ry = 0 in this subsection. From the exact
solution we know that
3

(2.75) 40— 978725, )
. 1] T p7T ’y (%) vy )
s3

In this case, the last term of (2.57) disappears, and also, since in a homogeneous
medium T = 7527“2 = ﬁrZ, we see that V - (uVT) = 6p. Hence (2.56) reduces to

(2.77) TR AY, — 4§A2j —0

From the exact formula for A; in (2.75), we see that

s3
P v S22
77kA?- =22k [ 2—~7"7r%(0;5 — tity)
7,k U pT J J .
p 7Y s
= 271%27’}/5 21‘]481 —x~5ik —l'ié‘k
U pT ( J J J )

p 5
= 2;4P7WS (85 — tit))
p
(2.78) = 4;A?j.

This verifies (2.56).
Now we verify (2.55) in a homogeneous medium, i.e., 7;4

5
A0 — Qﬁ 2((5~—t‘t‘)
iji pwr ij ity
i

s

1:A0

] 1,0

We have

call
= 2p7(r26ij - l‘in)J‘
5
= 2ﬁ(2{1ﬁ2(5” - 3.’Ej - .’Ej)
pm

(2.79) =4 g

Again using T = 272 and T; = 22x;, we obtain
" ’ "

SO
(2.80) T AL = 4l
pT

which is the same as (2.79), thus verifying (2.55).
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Finally we may check the governing equation (2.67) for A! in a homogeneous
medium. Using formulas (2.75) and (2.79), we obtain

SS
g
(2.81) aj = —4[73;]-,
S5
(2.82) a0, = —4175%,
A $° 8u~yS°
(2.83) B = 4l +p’;)7 N

Also using the fact that T = ﬁrQ, T, = 2ﬁzi, and T g1 = 6}%, we can get

bjo- = 10pa2 - (A + u)ﬂ',ia?,i — M‘J',kkag + B%‘J‘,i

B 40755 8(A+ u)’ys5xj 24755%- 8(A+ u)vssxj 1675552]-
= - zj + + - +
™ w T ur v

(2.84)  =0.

Hence we can obtain R?j as the following,

a’T; BT (A+mpal, BY
RO — it M0 g g T Sty
i o7 T apgtakt ki T Ry o 2
55 55 55 55 55
L i BN O D i TN O % o ) ) B a7
=4 prr? - pmr? 2 ppm 2 ppm e pm
S5,
(2.85) =422
pT
For the left-hand side of (2.67), we use formula (2.76) to get
5
(2.86) TRAL L+ i((MTk) r—10p)AL = 2241 = 4ﬁ5i -,
s 17, 2# K, 17 L 1] P J

which is the same as R?j derived above. Similarly, we can also verify the amplitude
coefficients Aéj =0 for [ > 2 in a homogeneous medium.

2.3.4. S wave: Initial conditions for A!. In this section, we shall initialize
those amplitude coefficients A! for the S wave at the source 7 in the three dimensional
space. In a center-deleted neighborhood of 7, say 0 < |r — rg| < 2o, where x¢ is a
positive constant, we propose the following matching condition

(2.87) (GZ(r31) = GRom(m:0))t" € L' ({t; (0,7)})

over any finite time period (0,7T) for any nonnegative integer n, where

733 2 2 2
- -3 —2
(288)  Gilo = (205 (T — tt7) D2 457 =20 f TP (12— 457

with ¢t = I:::gl being the unit tangent vector to the S ray. Here tt7 = (titj)sxs

is a matrix. And 7{? = ,/% is the slowness for the S wave with py = p(rg) and
to = p(ro).
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Since fj__3+l)(t2 —T) € L'({;(0,T)}) for I > 3, the above matching condition
can be reduced to

(289) G = [G°(rit) — Gy (m )"

hom
= A FTV @2 T+ AP (2 - T ()
+ A2 T () — Gt

hom

= A% 2 —T(r)t" 4+ A (12 — T(r))t" + A25(t2 — T(r))t"

53 2 2 2
- ’;(;7[2769 r2(I —tt7)0@ (12 — 45r2) — 206 (12 — 75 r2) |t

€ L'({t; (0,1)})

for any r satisfying 0 < |r — r¢| < xo.
For r sufficiently close to rg such that all d-related functions do not vanish, one
gets

’ TZ_‘I(T) ™ ]- g n 1 .~
(2.90) / SWI? — T(r))tndt = / W@ =(F+T(r)) 33 di
0 ~T(r) 2
(—1)* -
9 [(t+T(r)) ](k)‘t:o
1 L k=1 1 .
- O (55 -t
7=0
Since k is at most 2 in our situation, % — % —k >0 for n > 5 so that we are concerned

about the five cases n =0, 1,2, 3,4 only. Therefore, we enforce

T 0 55, 2
- 3| A 295 r
2.91 / Gigdt = = - I—tt"
(291) o uf 8 l‘.T(r)g P(JW(’YégT)S( :
1] At 275° A?
+ 5 3 S 3I 1
41 T(r)z  por(rgT) 27 (r)>
o 3A 1A A? 1

== — + ~+ - I-3tt") =0(),
8T(r)z  4T(r)z  2T(r): 4P07T7"3( ) L)

T . A2
(2.92) /0 Gaigdt = -5 = 0(1),
T 0 S5 2
.. 1] A 29 r
2.93 / GPgdt = —= - — —2 I—t”
(2.98) f, Gar 8 lﬂ'(r)z por(o ) )
1[ At 2~5? A%,
L . ’YOS + 2 T(r)2
4172 pom(rpT) 2
1 A 1 Al A, A8
= e+ T - (T + 7)) = 0(),
8T(r):  4T(r)2 2 ™) 4po7rr( ) ()
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T .. S3
(2.94) / Gigdt = L a + 2 1 + 1A“'fr(r) =0(1),
0 2 PoT 2
T 0 S5 2
(205 [ ¢étoar—3| A 20 (1 —t")
0 8| T(r)z  pom(ypT)
3
3 giget o 28 s A
1 [A T(r)z + . (vor)I| + 5 T(r)
3 AO 3 1 A2 3 3"/547'
-2 - — SAYT(r) 4+ —T(r): - L3I -ttt = 0(1
STogT AT+ Tt = G er—u) = o)

for 0 < |7 — ro| < zo.
Hiding O(1) terms above, we get

3 A° 1 Al A?
2.96 e =+ — -+ - — I-3tt7) =0(1),
(2.96) 8T(r)z  4T(r)z  2T(r)z  4pomrd ( ) (1)
1A 1Al S0 .
2.97 -z -2 I+tt7) =0(1),
(2.97) 8 ‘J'(r)% 47(r)2 4p07r7"( ) (1)
3 A°
2.98 2 —0o().
29%)  yrap=00

Considering (2.96) x T(r) + (2.97), we can obtain the initial condition for A° as
r — To,

3
2

0 J2 T 7(3?27 T 3
(2.99) A0 = S =)+ () O(T),

Moreover, since 7 is the travel time from the source r¢ to r which is proportional to
r=|r—mrg|, T = 72 is proportional to r? as r — rg, leading to A’ = O(1) as r — 7.
Next (2.96) x 4T(r)?2 gives rise to the initial condition for A as r — rq,

3

1 3AY T2

Al =2 7 (1 —31T) + 24T RE]
57 +pW3( 3tt') + () +0(T2)
3 A0 T3
2.1 =2 4 71— 31T 7).
(2.100) 57 +pW3( 3tt7) +0(7)

Substituting (2.99) into (2.100), we could obtain

1 T% 3 7‘092‘3'%

(2.101) Al = (I — 3ttT) (I +tt7) +0(T?).
2 pomr

2 pomrd
Similarly to the case for AY, we may conclude that A = O(1) as r — 7.
Finally, (2.96) x 2T(r)2 gives rise to the initial condition for A2 as 7 — g,

3A° 14l T3
472 2T  2pgmr3
When substituting (2.100) into (2.102), the first three terms on the right-hand side

of (2.102) will be canceled. Hence we may conclude that A? = O(1) as » — 7o which
is also consistent with (2.92).

(2.102) A? = (I —3ttT) + O(T?).
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2.3.5. S wave: Governing equations for desingularizing A'. We enforce
the condition that A! is bounded at the source for all [ > 0, which may not be
amenable to numerical computation. Therefore, we define new dyadic coefficients to
be

(2.103) Al = Al
so that

Al =0(1) as r — 7,

Al = 0(r%) as r — 7.

We introduce A! here since A' may not be smooth at the source ro for an in-
homogeneous medium; this can be seen from the initial conditions (2.99)—(2.102). It
is easy to derive governing equations for A! from those for Al for | = 0,1 as the
following,

o, 1 _ 0 M P\ . zof| _
(2.104) (VT-V)A +@[V'(NV‘T) 14p]A +2pV‘T {V <M) A] 0,

(2.105) (VT -V)A! + i[v (uVT) — 18p] A" + Q%V‘T {v <p) : Al] =R,

o
where
(2.106)

R0 = _v7a’ N pVT[(VT-V)a’]  vIs®  Tviaa’ (A +p)Tva’ N TB°

2 4p 8p 2up 2u 2u
Here B°, a°, and b° are given by

B’ =\ +p)V(V- A% + uv2A° + VAV - A7)

(2.107) + Vi x (Vx A% +2(Vu-V)A°,
- ~ 1 ~ 20 -
2.108 '=v. A"+ —vVpu A"+ — L _VT[(VT-V)A",
b’ = 10pa’ — (A + p)(VT - V)a® — pv37Ja’
(2.109) —(VT-vNa’ — (VT - Vpa® + VT - B,

The governing equations for general Al for | > 2 are

(2.110)
~ 1 ~ ) i
(VT-V)Al + —[V - (uVT) — (4l + 14)p] A + vT {v (P) .Al} _ R
21 2 i
where
Rt VIAT o pVI(YT - V)a T VIbl YA
= 2 4p 85 2
A+pva'~t , B!
(2.111) o 7T

Here the explicit formulas for B!, a'~!, and b'~! are given in Appendix A.
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Now we consider the initialization for A!. First, we can obtain the following initial
conditions for A%, Al and A? from (2.99) to (2.103),

10 T% T 7(?27% T 3
(2.112) AV =—— (I -3tt") + 2—— (I +tt") + O(T2),
poTT poTT
(2.113) Al 3404 ki (I —3tt") + 0(7?)
' 2 poTrs ’
. 3., 1= T3 5
2.114 A2=_2A0_2-24! I-3tt")+0(73).
( ) 1 5 +2p(m3( ) +0(T2)

Next, we give the details to initialize the general A! from the governing equations
(2.110) and the initial conditions (2.112)(2.114) for A’ with 0 <1 < 2.

In an isotropic medium, the travel time function 7(+;7g) solving the eikonal equa-~
tion |V7(r;rg)| = v7(r) is locally smooth near the source except at the source point
ro itself [19, 27].

Assuming that the refractive index v* 2(r) is analytic, v 2(r) can be written as
the following power series centered at the source point,

(2.115) 7 ) =3 @r(riro),
k=0

where @4 is the homogeneous polynomial of degree-k term in the Taylor expansion of
'ySQ about the source rg and &y = 7592 with 75 = 7% (o).
Assuming that T = 72 is analytic, we have in the source neighborhood [15]

1 1 1
2.116 2 [ D+ =P+ Py — ——
@116) o= (P04 38+ 30 o

This in fact gives rise to the following estimate: for any k € R, as r — 0,
k
T k(@1 @y [V, k(k o7 3
2117) (—) =14 — (2 +2— 22 o1) =L +ou?).
(2.117) (’y@gr) +2<I>0(2+3 B, | ) T1\2 107 O
Then using formulas (2.116) and (2.117), we can rewrite (2.112)—(2.114) as follows.

(a) The sequence { Ay} is initialized by

|V(I>12r2> r? = O(r®).

~ - . 2’7357‘2
(2.118) A =0, Agy =0, Agy = “ 20— (I —tt7).
PoT
(b) The sequence {A;;} is initialized by
B ~ ~ 2 S5 2
(2.119) Ap=0, Ay =0, Ap=—0"p
pPoT
3
~ 3 = 5’y5g o2 T
Asz;=—-A —— (I — 3tt").
13 54103 + Apo ( )

(c) The sequence { Ay} is initialized by
(2.120)

AQO = 07 AQI = OaAQQ = 07 AQ?) = 07

’YOS3 5P 150¢ , 5[Ve 4

- 3 - 1 -
Ay =—"Agy — A + I—3tt”
> 04 " ( ) 6 320, 96D,

4 2 2p0m
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If we further assume that log u(r), A', and R'~! for all [ > 0 are analytic at
the source rg, then those asymptotic behaviors (2.112)—(2.114) for A% A and A2,
respectively, can be further clarified, and the exact solutions of A! for general I near
the source can be constructed recursively.

We first expand these ingredients as Taylor series about the source as

(2.121) log pu(r) = U(r),
(2.122) Al(r) = i Ay(r),
(2.123) R'=(r) = f: Ry 4(r),

where the term with subscript & denotes a homogeneous polynomial of degree k. As
T = 72 is analytic near the source neighborhood, we denote its Taylor series as

(2.124) T(r)=7%(r) = i Ty (7).
k=0

We see from the eikonal equation that Ty = 77 = 0 and Th = ®¢r2. Thus the
transport equation (2.110) for the S wave can be rewritten as

i @k(’l“) (i VTk(r) . V) iAlk(r) + = io: VTk(r) i V(I)k(’l“) . i Alk(r)
k=0 k=2 k=0 k=2 k=0 k=0
+)®p(r) [; > ATy(r) + % N VTh(r) - Y VULr) [ Y Aw(r)
k=0 k=2 k=2 k=0 k=0
+) Bi(r) [-21+T)) ‘I’k(r)] > Ap(r)
k=0 k=0 k=0
(2.125)
= Z @k(’l") Z Rl—l,k(r)
k=0 k=0

Comparing the gth degree polynomial of both sides, we have

- 1 -
0=20(VIz-V)A,, + q’o(iﬁTz — 214+ T7)Dy) Ay

qg—1 q—1
+ % Z Z VTQ-‘rk(v(I)j : AZS) + Z Z ‘I)j(VT2+k . V)Als

s=0 j+k=q—s,5,k>0 5=0 j4+k=q—s,j,k>0
- ATy | 1
2+k 1

22 Wyt D VI VUl (U4 T)0 | Ay

s=0 j+k=q—s,5,k>0 m+n=k,m,n>0

(2.126)

- > R

Jt+k=q,5,k>0
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Using the fact that (V7% - V)Alq = 2q<I>OAlq and ATy, = 6Pg, we get

0=(2q— (20 +4)D2A,,

g—1 q—1
+%Z S VRVl A Y Y (VT V) A

5=0 j+k=q—s,j,k>0 5=0 j+hk=q—s,j,k>0

q—1

ATo.) 1 "

2 2 U5ty X VI VU (2470 A
s=0 j+k=q—s,j,k>0 m-+n=k,m,n>0

(2.127)

- > R

Jt+k=q,j,k=0

Hence we obtain a recursive formula to compute the gth degree polynomial Alq
of the Ith amplitude coefficient A'.

It is clear that (2.127) is not valid for computing Alq* when ¢* = [ + 2, since
the coefficient of Alq* becomes 0. However, in this case, we first notice that when
I >3, Al has been assumed to be O(T!) = O(r?) = o(r'*2) due to 21 > [ + 2, so that
Alq* = 0 when ¢* = [ + 2. In addition, we have three special cases: (1) | = 0 so that
¢* = 2, but Ay, has been initialized according to (2.118); (2) I = 1 so that ¢* = 3,
but A3 has been initialized according to (2.119); (3) I = 2 so that ¢* = 4, but Ay,
has been initialized according to (2.120).

In the recursive formula (2.127), R;_1  depends on A'~! but does not depend on
A!: therefore, the power series of Al is computable via (2.127) once A1 is available
near the source.

2.4. Case IL, P wave: A? || VT and 4pT — (A + 2u)|VT|? = 0. Let us
repeat (2.40) here for reference,
0 =4pTAL — (A + )T kT A}, — pT 1T kAL
+2p(20 = 9)AG + (A + H)7 A+ A+ )T, kAkJ L A+ )T A
+2uT kAL A+ T kAL N T A+ pa TR AL+ T AL

(2128) ()‘ + M)Aié‘] 2kz ILLAZ] kk )\:iAgc;,zk kAlj kT kAk] 7’

Rewriting the first line using the fact that in Case II,
(2.129) — uT T AL = N+ )T RT R AL — 4pT AL,
we have
0=+ u)(TrTrAl; — TrTA})
+2p(20 — AL + (A + M)LA,CJ L+ (>\ + )T, kAk“ A+ )T ki Ayt
+ 2,&‘:]' kAl + /.LT kkA —|— /\,i‘I kA . + K, k‘I kA‘ ST+ K, k‘I’iAgC;l
(2.130) — (A + u)A;J%“ PAL R = NiAL G — BrAL T — Bk AL

z]k k]z

2.4.1. P-wave transport equations for A® and A!'. First, we derive the
governing equation for A°. We set [ = 1 in (2.130) and then take the scalar product
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of (2.130) with T; to obtain

(2.131)
0= —14pT ;A% + A+ )T T AR g + A+ )T Tk ARy + A+ )T T i Ay
+ 20T TR AY o+ 1T T e Ay + X T T ALY + T Tk AY + T T AY,
where we have made use of the eikonal equation, 4pT = (A + 24)7T ;T ;. Also the last
line does not contribute since A;jl =0.
Since A? is parallel to VT for 1 < j < 3, we may write it as

(2.132) AY = a)T,,

J

where a® = (a9, a9, al) is a row vector.

Inserting (2.132) into (2.131), we get
(2.133) 0=—14pT ;00T ; + 2(A + 20)T; T 50 1 T o + 2(A + 200)T ;T k) T i
+ A+ 2u)7,i7,i7,kkoé? + (A g+ 2u,k)7,k7,¢7,¢a9~
Employing the following relations

(2.134)  [(A+20) T3 T3] kT e = (A +20) kT T3 T + 2N + 20) T3 T 3T
(2.135) (4[)‘31),;13':]:/C =4p 1T 1T+ 40T 1T 1,

we can get

0=—14pafT;T; + 2(A + 2)T; T ;T pal 4 + (A +20) )T 1 T3 T 4
(2.136) +4p kT kTaf + 4pT kT .

Simplifying the result, we obtain

1 o5p
2.1 Ta% + | —(pT )i — 0 _0.
( 37) ,,O[jﬂ + 2p (p 5 )7' )\ + 2/1‘ a_] 0

Next, we can derive the governing equation for A'. Here we use vector notation
instead of subscript notation for simplicity. To determine A, we set [ = 1 in (2.130)
and form the cross product of the resulting equation with VTJ:

0=—(\+p)|VIPVT x A' = (A + p)VT x V(VT - A?)
(2.138) —2uVT x [(VT - V)A"] — (VT x VA)(VT - A°).

To go further, we need to use the following relations which can be verified directly,

(2.139) VT x (VT - V)A"] = 2TV T x (v <A f2u> a0>

and

4pT P
. 0 = 0 O
(2.140) VI xV(VT-A") )\+2#VT X Vo +4TVT x (V ()\+2M> « ) .

Inserting the above two relations into (2.138), we can obtain

A+ 2u)? P Vo'
2.141 VT x (Al +va® 4 ¢ v 0+ =0
( ) X( Ve +p()\+,u) A+2u * A+
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From (2.141) we may conclude that
(2.142) Al =C%+VTal,

where a! = (al,ad, al) is a row vector to be determined, and

A+ 2p)? p Vo'
2.143 Cc’=-v 0_ | \Y 0_ .
( ) * p(A+ ) A+2u * A p

To find o', we set [ = 2 in (2.130) and form the scalar product of the resulting
equation with V7, yielding

0=10p(VT-AY) = AN+ p)VT-V(VT - A) — A+ p)|[VTA(V - AY
—2uVT - [(VT - V)A'] — uV2T(VT - AY) — (VA-VT)(VT - AY
— (V- AYVTP = (V- VT)(VT - AY)
+ A+ ) VT-V(V- A% 4 uVT - (VZA) + (VA-VT)(V- A%
(2.144) + VT [V x (Vx A% +2VT - [(Vu-V)A"].

Inserting (2.142) into (2.144), we obtain

0=[10p — V2T = VT - VA + w)]|[VTPal = (A + p)VT - V([VT?at)
— A+ )| VIRV - (VTal) — 2uVT - (VT - V)(VTah)] — (Vi - VT)|VT et
+ [10p — uV2T = VT -VA + p)|(VT - C°) — (A + p)VT - V(VT - C?)
(2.145) — (A + p)|VTA(V - C°) — 2uVT - [(VT - V)C°] — (Vi - C°)|VT|* + d°,

where

d"=A\+p)VT-V(V-A%) +uVT-V2A? + (VA VT) (V- AY)
(2.146) + VT [Vux (Vx AN +2VT - [(Vu-V)A°].

Using the following relations

1
(2.147) VT - [(VT-V)(VTal')] = (VT - Va')|VT? + SVT- V(VT?)a!
and

(2.148) V. (VJal) = VT - Va! + V*Tal,

we may simplify (2.145) into

1 3p
2.14 T-Va' + =V (pVT) - t=¢0
(2.149) VT -Va' + 2pV (pVT) 2 a =c’,

where ¢? is defined to be

1
c =57 [10p — uV2T = VT - VA + w)](VT - C°) — (A + p)VT - V(VT - C?)

(2.150)  — A+ p)|VTX(V - C%) —2uVT - [(VT - V)C°] — (Vi - C°)|VT|* 4 d°}.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/22/21 to 35.8.11.3. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

HADAMARD-BABICH ANSATZ 67

2.4.2. P-wave transport equations for general A!. Similarly, we can derive
governing equations for A' when ! > 2, which are stated as the following:

(2.151) Al =C'7 +vTd,

where a! is to be determined, and C'~1 is available from already computed quantities
by using the following formula,

cll = m{—p@u _18)A!
— A+ )V(VT-ATY —2u(VT - V)AL — i v2T Al
—VAVT-A"Y — (V- VAT (A + p)V(V - A2

(2.152) +uVZATZ L VANV - A7) 1V x (V x A72) +2(Vp - V) A2

Accordingly, we can derive the recursive equations for o,

1 (21 —5)p _
1 ual o |t 1_ -1
(2.153) VT -Va'+ 2pV (pVT) + Nt a'=c7
where ¢!~! satisfies
1
= 7 (14 —4l)p — pV2T = VT -VA + )] (VT -C'7h)

— A+ VT -V(VT-C™ Y = A+ p)|VTP(V-C )

—2uVT - [(VT-V)C Y — (V- C7H| VTP

+ A+ VT -V(V-ATY 4 uVT-V2AS (VA VT (V- A
(2.154) + VT [Vux (Vx ATH +2VT - (V- V)AT)}

with C!' =0 and ¢! =0 for [ < 0.

2.4.3. P wave: Verification in a homogeneous medium. In a homogeneous
medium, the parameters p, A, and p are constants. In this case, (2.137) reduces to

2p

0 0

(2.155) Tia;,; — p 2Maj =

Here we have T = o7 2 = X _fQHTQ in a homogeneous medium. We have the exact

Green’s function for the P wave, which we rewrite here as

3

P
- Yy 2 -3 2 -2 2
(2.156) Gl = F[QVP P2t (2 = AP S P (82— 4T,
To simplify the derivation, we assume that the source is at the origin in this subsection.
5 3
From this, we obtain A?j = Q%xixj and A}j = —%5”'. So for any 1 < j < 3,
P3 P3 P3
A?j = %T,iﬂfj, and the corresponding Cv? = 'Yp—ﬂxj. Since a?,i = 'Yp—ﬂéij, we have
5 5
2p ol ol
0 0
(2157) ‘J'7iaj7i - P 2/,Laj = 2p733i5ij - 2p7$j = O7

which verifies (2.155).
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Now we verify (2.142) in a uniform medium, i.e., Aj; = Cfs +a;7 ;. From (2.143),
we have

p3
0 _ o _ 7 B
(2.158) Cij = —aj; = —p—W(SW’
yielding
1 o _ 7 gl _
215 Al = O = =5t 0 =0,

which implies that ozjl- =0.
To see that a]l = 0 satisfies (2.149) in a homogeneous medium, we just need to
check that 02 defined in (2.150) vanishes,

(2.160) = o (100 = HTL)CYT: = A+ 0T A(CYTa)s + ).
First we find that d° in (2.146) is given by

d? =\ + N)T,iAgj,m' + N(‘T,iA?j,kk
(2.161) =160\ + )+ sﬂp—ﬂxj.

Inserting this into (2.160), we can obtain

5 7 7 7 7
o_ L 207"y N 12uyF z; N 4N+ pyP N 16(\ + p)vP 'z N Suyt z;
7 8pT T o p p P
(2.162)
=0.

Similarly, we can verify that the coefficients Aﬁj are 0 for [ > 2 in a homogeneous
medium.

2.4.4. P wave: Initial conditions for A!. In this section, we shall initialize
those amplitude coefficients A' for the P wave at the source r¢ in the three dimensional
space. In a center-deleted neighborhood of 7, say 0 < |r — rg| < 2o, where x¢ is a
positive constant, we propose the following matching condition,

(2.163) (GP(rit) — G, (rO)" € LY({t: (0,T)})

over any finite time period (0,7") for any nonnegative integer n, where

p3
. 2 _ 2 _ 2
(2164)  GE,. = Z?Tr 292t F0 02 A — TP (2 - )]

hom

with t = =70 being the unit tangent vector to the P ray. Here tt7 = (titj)sxs

[r—ro]

Po
Ao+2p0

Mo = M(To), and )\0 = )\(T‘o).

is a matrix, and 7 = is the slowness for the P wave with py = p(70),

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/22/21 to 35.8.11.3. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

HADAMARD-BABICH ANSATZ 69

Since fi_3+l)(t2 —T) € L'({;(0,T)}) for I > 3, the above matching condition
can be reduced to

(2.165) Gl =[G (r:t) — GL, (r0)]t"
=A%V (2 - ‘I(r»mAlf( 22— T(r))e
+ A2 FCV 2 - T — Gt

= A% (@2 — T(r)t" + AWD (2 — T(r))t" + A25(t2 — T(r))t"

'yP3 2 2 2
— ,0?)777[275 A (t? =~ 7r?) — I5(1)(t2 — &

€ L'({t;(0,7)})

for any r satisfying 0 < |r — r¢| < xo.
For r sufficiently close to rg such that all d-related functions do not vanish, one
gets

T T2 —T(r) 1 L
(2.166) / SB[ — T(r))t"dt :/ SE @) Z(F+T(r)E2di
0 —T(r) 2
k-1
(_1)k n 1 . n_1_
=" H 5 5 J [T(r)]2727"
j=0
Since k is at most 2 in our situation, 7 — 5 —k > 0 for n > 5 so that we are concerned
about the five cases n =0, 1,2, 3,4 only. Therefore, we enforce
T 0 PS5 2
- 31 A 2
(2.167) / GO pdt = 2 c 0 7
0 81 T(r)z  pom(rpT)
L) oar A? ! A?
4Tz pom(ygT)® | 2T7(r)?
3 A° 1 Al A? 1
2 -+ . (I —3ttT) = 0(1),

T . A2
(2.168) Gligdt = - =0(),
0
T 0 P52
(2.169) / G?pdt = . r = Gl Stt”
0 8| T(r):  por(ygT)
1 Al ’}/0 A2 1
—- -+ + =T(r)2
4 [tr(r)z pom (7§ r) 7 7r)
1 A 1 A A2 4P
= S —+ = T(r)z - tt") = 0(1),
8‘3’(7-)5 4‘3’(7~)§ 2 (r) 4p07r7‘( ) (1)

T .. P3
(2.170) / Ggdt = —= |A' + + A2‘I() 0o(1),
0

Po
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T, 3
(2.171) / Giigdt = =
0 8

A° 276357’2 T
- — —tt
T(r)z  pom(vr)

3 p3 A2
— 2 AT+ X1 | + ST
4 Lo 2
3 A° 3 . A? 2
== —SAT(r)2 + =T(r): - (I + ") = O(1
STogr AT ST Tt = o)
for 0 < |r — ro| < o.
Hiding the O(1) terms above, we get
3 A° 1 Al A?
2.172 = — 4= — + -+ I-3tt")=0(1),
( ) 8T(r)s  4T(r)z  2T(r)z 4P07T7"3( ) e
1 A 1 A! A2
2.173 - — -0 (71— =0(1),
3 AY
2.174 = =0(1).
(2170 S707 =00

Considering (2.172) x T(r) + (2.173), we can obtain the initial condition for A°
as r — 1o,

0 T8 T ’7527% T 3

Moreover, since 7 is the travel time from the source ¢ to r which is proportional to
r=|r—mrg|, T =72 is proportional to r? as r — 7, leading to A’ = O(1) as r — 7.
Next, (2.172) x 4T(r)? gives rise to the initial condition for A! as r — 7,

3

0 bl
Al=- gAT - %U —3tt7) + 2A°T + O(T*3)
3A4° T3
(2176) =T e 3D O

Substituting (2.175) into (2.176), we get

1 7% P73
(2.177) A =E T gy 320 T2

- I—ttT)+0(T2).
2p071’7'3 2 po,ﬂ_,r, ( )+ ( )

Similar to the case for A, we have A = O(1) as r — 7.
Finally, (2.172) x 2T(r)? gives rise to the initial condition for A% as 7 — rq,

1

3A° 1A' T3

2_ 904 2 o T 1
(2.178) A= 5T 2poﬂ'r3(I 3ttT) + O(T2).

When substituting (2.176) into (2.178), the first three terms on the right-hand side
of (2.178) will be canceled. So we have A? = O(1) as r — 7y which is also consistent
with (2.168).
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2.4.5. P wave: Governing equations for desingularizing A!. Although
we enforce the condition that A’ are O(1) near the source for all [ > 0, they are
not necessarily smooth at the source ry in an inhomogeneous medium; this can be
seen from the initial conditions (2.175)-(2.178). Therefore, we desingularize A' by
introducing a new set of dyadic coefficients,

(2.179) Al = A%
so that

A =0(1) as r — 1,

Al = 0% as r — .
According to (2.151) and (2.179), we can set
(2.180) Al = 1 vTéa,

where C'=1 = C'=17" and &' = o!T?. Hence, we can derive transport equations for
&' from transport equations for o' for [ = 0,1 as the following,

. 1 5p .
2.181 VT-Va'+ | —V - (pVT) — =0
(2.181) &+ |57 v - ;] et =
(2.182) VTVal + |4V (pVT) — [ PYR
. 2p A+2u ’
where é° can be computed by the following formula,

& Eé{l()p —uV2 T = VT -V A+ w](VT - C°%) — A+ p)VT - V(VT - C)
(2.183)  — (A +p)|VTX(V-C% —2uVT - [(VT-V)C°] — (V- C°)|VT|* +d°},

where C° and d° are defined in (2.143) and (2.146) since A% = A°,
For general [ > 2, we can similarly derive the following governing equations,

21
(20+5)p &l =&,

1
2.184 T.Val+ |—V- T) —
(2.184) VT -Val + 2pv (pVT) "o

where &~ = Tlc!=! and ¢!~ is the same as (2.154). The detailed formula for é'—*
is given in Appendix A.

We are interested in the initialization for &', but we only have the relation (2.180)
between &' and A!. It will become apparent later that we can initialize both &' and
Al based on the relation (2.180) and the governing equations (2.184) for &'.

First, we consider the initialization for Al, 0 <1< 2. We can get the following
initial condition for A%, A', and A2 from (2.175)—(2.179),

5 2.3
(2.185) A’ =— L(I —3tt") + Ak (I —tt") + O(T?)
porr? pomT ’
(2.186) A= 340 Tt (I —3tt") + 0(7?)
' 2 pomr3 ’
. 3. 1: T3 5
2.187 A?=—-"A" - A - I-3tt") + 0(72).
( ) 1 > 2powg( )+ 0(7T2)
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Assuming that the refractive index v 2(7') is analytic, y* 2(r) can be written as
the following power series

(2.188) V) = 3 W),
k=0

where ¥, are homogeneous polynomials of degree k in the Taylor expansion of ¥ ?
about the source 7y and ¥y = 7632 with v = 7P (ro).

In an isotropic medium, when % is smooth, the travel time function 7(-;)
solving the eikonal equation |V7(r;rg)| = 7 (r) is locally smooth in the source
neighborhood except at the source itself [19, 27]. Therefore, we may assume that 72
is analytic, so that we have in the source neighborhood [15],

1 L2r? _ 5
Similarly to the case for the S wave, we can derive the initial conditions for the
first three dyadic coefficients.
(a) The sequence { Ay} is initialized by

- . . 27P5r2
(2.190) Aoy =0, Ayy =0, Agy = 2 —¢t7.
poT
(b) The sequence { A} is initialized by
PS5 2
Ap=0, A;1 =0, A LGNS |
PoT
. 3. 5w
(2.191) Ay = —2Agy — 20 Z10 (1 3447
2 4p07’(’

(c) The sequence { Ay} is initialized by
(2.192)
Ay =0, Ay =0,An =0, A23:07

%szL 15‘1’17,2 IV 4
6 320, 96,

A24 = 7*A04 — A14 — ;0 (I — 3ttT) |:
poT

If we further assume that log p(r), &, C!'=! and é-! for I > 0 are all analytic
in a neighborhood of the source 7y, we can expand these functions as Taylor series at
the source,

(2.193) log p(r Z Py(r
(2.194) al(r) = Z aup ()

(2.195) CY( ch L
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(2.196) d M r) =) & 1k(r)
k=0

where the term with subscript k denotes a homogeneous polynomial of degree k.
As T = 72 is analytic near the source neighborhood, we denote its Taylor series
as

(2.197) T(r)=72(r) = > _ Ti(r)
k=0

Moreover, from the formula (2.180), &' can be expanded

(2.198) DAL= Ciik+ D VIi > .
k=0 k=0 k=0 k=0

Equating the (¢ 4+ 1)th degree polynomials of both sides, we can get

q—1
(2.199) VTabug = Aigi1—Ciirgi1— > VT4 kb,
k=0

and forming the dot product of the above with VTJ; yields

qg—1
(2.200) &y = <v72 Apgi1 = VT2 Criigp — Y (Vo V‘J‘q+2k)dlk> ,

1
2.2
4Wgr —

which is useful for initializing the computation of &;.
On the other hand, the transport equations (2.184) for &' can be expanded,

ZVTk vak
ZATk ZVTk( ) VP(r) - (2L +5) Z\pk
k=0

k 2 k=0

o0

2 G

(2.201)

oo

= & 1x(r)

k=0

Equating ¢th degree polynomials of both sides, we have

g—1 q 1
(2q — 2] — Z)Toalq = Cl 1,q Z VTQJ,_(I k- Valk - = Z AT2+,1 kalk
k=1 k 0
q—1 1= 1 q—k
(2202) + (2[ + 5) \I/q QR — — Z (e 718 ZVT2+q -k VP
k=0 k 0 Jj=1

Hence we obtain a recursive formula to compute the gth degree polynomial &y,. It
is clear that (2.202) is not valid for computing éy4- for ¢* = I+ 1 since the coefficient
of &g+ vanishes. Two cases arise here: case (a) for [ > 3 and case (b) for 0 <1 < 2.
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Consider case (a) for [ > 3 first; in this case, A’ have been assumed to be O(T%)
O(r?!). From the formula (2.180), it implies that &' behaves at least O(r?~1) =
o(r'*™1) due to 21 > [ + 2, and we further have that é,- = 0 for ¢* =1 + 1.

Next, consider case (b) for 0 < I < 2; in this case, &p1, &12 and &o3 can be
directly initialized from initial conditions (2.190)—(2.192) and the recursive formula
(2.200), respectively.

In the recursive formula (2. 202) ¢-1,4 depends on &'~ but does not depend on
&!'; therefore, the power series of &' is computable via (2.202) once &!~! is obtained
near the source.

3. Hadamard—Babich ansatz in the frequency domain. The Fourier trans-
form of (2.29) in time yields the FDPS elastic wave equations (1.1) with

(3.1) G(r;ro):/ G(r,t;m)e™dt,
0

so that by (2.29), (2.103), and (2.179), we get the following frequency-domain asymp-
totic ansatz,

(3.2) G(r;ro) Z Al(ri o) / et D2 22 ()t
0

— 2Tl

The integral in (3.2) has the following closed form [17],

(3.3) / ei‘”tfiu_%)(t2 — 72 (1r;10))dt = %zﬁ (2T> e“VHM (wr) = f,(w, 1),
. w

where f,(w,T) is exactly the basis function used in Babich’s ansatz [2].
By (3.2) and (3.3), we immediately find that the frequency-domain Hadamard’s
ansatz should be

> Al T
(3.4 Glring) = S ATy (o rlrsa)),

which we refer to as the Hadamard-Babich ansatz.
4. Numerical implementation.

4.1. Numerical computation for S waves. Numerically, it is impossible to
construct {Al } for all I > 0 so that we have to truncate the ansatz in our implemen-
tation. To make sure that this truncated ansatz is at least capable of reproducing
the homogeneous fundamental solution (2.26), we truncate the formula to obtain the
following ansatz,

Ao(r ro) Al(r;ro)

(4.1) GS(ryr) = WQT(T_TO)LH 1 (w, 7(r; 7o)

— [ (Wi (rimo)) +

Therefore, we have to compute 7, A° and A! to approximate the Green’s function
G”°.

_ For the sake of convenience, we restate the governing equations for 7g, A° and
Al along with their initial conditions. We have that Tg satisfies

(4.2) V1| = o

with the initial condition 7g(rp; 7o) = 0.
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We have that A° satisfies

o, 1 0 M P\ i
4.3 V‘I~VA0+V~uV‘I—14pAO+VT[V<>~AO]:0
(13)  (VT-V)A" 4 SV (i9T) ~ 144"+ v |V (£
with the initial condition

~ ‘J'g 7527% 3
4.4 A= —— (T -3tt")+ 2 — (T +tt" T
(44) Tty £ D () o),
where ¢ is the unit tangent vector to the S ray.
We also have that Al satisfies

- 1 ~ - .

(4.5) (VT -V)A! + E[v (uVT) — 18p] A" + Q%VT {v (Z) : Al] =R’

with the initial condition

5

- 3 . T2
4.6 Al =_Z4° I-3tt") +0(7?
(4.6) R )+0(T%),
where
(4.7)

2 4p 8p 21 2u 2u

-, V7a’ N pVI(VT-V)a’] VI TVia® (A +p)TVa’ N TB°

Here BY, a°, and b° are given by

B’ = A+ p)V(V- A% 4+ uV2A° + VAV - A?)

(4.8) + Vi x (Vx A% +2(Vyu-V)A°,
N ~ 1 ~ 21 ~
4.9 V=V - A+ — v A+ — " ___VT[(VT-V)AY],
b0 = 10pa’ — (A + p)(VT - V)a® — pv37Ja’
(4.10) —(VT-vNa’ — (VT -Vpa® + VT - B°.

To compute (4.1) numerically, we need to solve the eikonal equation to obtain 7g,
and the vectorial transport equations (4.3)-(4.5) to obtain A° and A for S waves. To
obtain a first-order accurate approximation of A!, we have to achieve a third-order
accurate approximation of A° due to the term AA° appearing in (4.5). However, to
obtain a third-order accurate approximation of AO, we need a fifth-order accurate 7 as
A7? appearing in (4.3) for A Therefore, we employ fifth-order weighted essentially
nonoscillatory (WENO) [20, 14, 11] Lax—Friedrichs fast sweeping schemes developed
in [12, 26, 29, 30, 25, 16] to solve the eikonal equation (4.2), where the upwind source
singularity at the source point is treated by the factorization idea [21, 28, 7, 18, 25,
16]. As for A° and Al, their components are coupled in the transport equations,
and we cannot directly employ high-order Lax—Friedrichs schemes developed [25, 16].
However, since the transport equations for Al are analogous to those of Maxwell’s
equations in [15], we will directly use the method developed in [15] to transform these
strongly coupled systems into decoupled scalar equations and then use high-order
Lax—Friedrichs WENO schemes to compute those solutions accordingly.
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4.2. Numerical computation for P waves. Similarly, to compute the Green’s
function for P waves, we can also truncate the formula to obtain the following ansatz

A° (r;m0)
— 2

(4.11) GP(T;TO) = f—3+%(wa T(r;7T0)) + ﬁf_%%(wﬂ'(r; 70))-

Therefore, we also have to compute 7, AO, and A to approximate the Green’s function
GP.

However, in the P-wave case, we can decouple related transport equations easily
due to the property of P waves. Here we restate the governing equations for those
related ingredients. We have

(4.12) |V7p| =~"

with the initial condition 7p(ro;79) = 0;

- 1 op -
413 VT -V’ + | =V - (pVT) - 0=
(4.13) &'+ |9 v - 12 la

3

with the initial condition &° = ZE’%(T —Tg) as T — 1o;

B 1 7p - -
4.14 T-Va'+ | =V (pVT) - t=¢
(4.14) VT.-Va + [va (pVT) )\+2u}a é

with the initial condition &' = 0 as r — rg, where ¢&° is

& :8—1p{10p —uV2T = VT -V + ] (VT -C% — (A + p)VT - V(VT - C")
(4.15) = A+ p)|VTA(V-C°) —2uVT - [(VT-V)C°] — (Vi - C°)VT|? +d°},

where C? and d° are defined in (2.143) and (2.146).
Numerically, we apply similar considerations as those for computing S waves to
compute the ingredients of P waves, and we omit the details here.

5. Numerical examples. In this section, we will study several numerical ex-
amples. To obtain a reference solution, if necessary, we apply the finite-difference
time-domain (FDTD) method directly to the time-domain elastic wave equations to
obtain a numerical solution in time, and then take the Fourier transform in time to
obtain a numerical solution in the frequency domain.

In the following, G1 and G5 indicate the one-term and the two-term truncations
of the Hadamard—Babich ansatz, respectively.

Example 1: Constant model. We take A = 1, p = 1, and p = 1. The
computational setup for our asymptotic method is the following:

e The computational domain is [0, 0.5] x [0,0.5] x [0, 0.5].

e The mesh size is 51 x 51 x 51 with grid size h = 0.01.

e The angular frequency w = 167 or w = 327.

e The source point is (0.25,0.25,0.25)7".
In this example, since all elastic parameters are constants, we use the exact solution
to check the accuracy of our numerical solutions.
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FIG. 5.1. Ezample 1 with ro = (0.25,0.25,0.25)7 and w = 16w. The yy-component of G(r;ro)
at x = 0.25 computed via (a) one-term ansatz G1; (b) two-term ansatz Ga; (c) exact solution Grom,-

0.4

027 %
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-0.2
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&
°
Wavefield
Wavefield
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0.2 0.4 0.6

(a) : (b)

FI1G. 5.2. Ezample 1 with ro = (0.25,0.25,0.25)7 and w = 167. The yy-component of G(r;7o)
at x = 0.25 and at (a) y = 0.25; (b) y = 0.23; (c) y = 0.15. Green dash line: G1; black circle line:
Ga2; red solid line: exact solution Gpom -

m

FI1G. 5.3. Ezample 1 with ro = (0.25,0.25,0.25)T and w = 327. The zz-component of G(r;70)
at y = 0.25 computed via (a) one-term ansatz G1; (b) two-term ansatz Ga; (c) exact solution Gpom, -

We first compare the results at w = 16m. Figure 5.1 shows the contour plots of
the yy-component of G1, G2, and Gpen, at x = 0.25. Figure 5.2 shows the detailed
comparisons along three different lines. These results clearly show that the two-term
ansatz can correctly capture singularities near the source.

Next, we consider frequency w = 327 so that there are roughly eight waves
propagating in the computational domain and about five to six points are used per
wavelength. Figure 5.3 shows the zz-components of G1, G2, and G} at y = 0.25.
Figure 5.4 shows the detailed comparisons along three different lines. Therefore, in
a homogeneous medium, the two-term approximation is able to faithfully reproduce
source singularities of the exact solution.

In Table 5.1, we list numerical errors in the L?-norm between our new ansatz-
based solutions and exact solutions for the component G, in the computational
domain excluding a neighborhood of the source at which the Green’s functions G is
singular. In terms of G, although the one-term ansatz-based solution approximates
the exact solution asymptotically in terms of O(1/w), our two-term ansatz-based
solution approximates the exact solution not only asymptotically in terms of O(1/w)
but also with very high accuracy.
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FIG. 5.4. Ezample 1 with ro = (0.25,0.25,0.25)T and w = 327. The zz-component of G(r; 1)
at y = 0.25 and at (a) z = 0.25; (b) z = 0.23; (c) x = 0.15. Green dash line: G1; black circle line:
Ga2; red solid line: exact solution Gpom -

TABLE 5.1
Ezample 1: L?-norm errors between the new ansatz-based solutions and the FDTD solution in
a region excluding a neighborhood of the source.

w 81 167 327 64

1/w 4E-2 2E-2 1E-2 5E-3
one-term LQny error | 3.4E-2 | 1.6E-2 8.9E-3 4.3E-3
two-term LZ, ~error [ 3.2E-9 [ 1.6E-9 | 8.3E-10 [ 4.3E-10

Example 2: A variable density model. We take A = 1 and p = 1 but variable

1
05— (y—0.25))2

In this case, the exact solution is not available, so we compute the FDTD-based
solution to check the accuracy of our method.

The computational setup for our asymptotic methods is the following:

e The computational domain is [0, 0.5] x [0, 0.5] x [0, 0.5].
e The mesh size is 51 x 51 x 51 with grid size h = 0.01.
e The angular frequency w = 87 or w = 167.

e The source point is (0.25,0.25,0.25)7.

We first compare the results at frequency w = 8w. Figure 5.5 shows the contour
plots of the yy-component of Gy, G2, and Grprp at x = 0.25. Figure 5.6 shows the
detailed comparisons along three different lines. We can see that G5 matches GrpTp
much better than G;.

Next, we compare the results at frequency w = 167. Figure 5.7 shows the contour
plots of the yy-component of G1, G2, and Ggprp at z = 0.25. Figure 5.8 shows
the detailed comparisons along three different lines. At high frequencies, the discrep-
ancy between G; and Gyprp concentrates near the source, and such a discrepancy
disappears between the two-term solution G5 and GrpTp. Therefore, in an inhomo-
geneous medium the two-term approximation is able to faithfully reproduce source
singularities of the exact solution and yields a uniform asymptotic expansion in the
region of space containing the point source but no caustics.

P

Example 3: A Gaussian model. We take p = 9 but variable A and p. Here
we set A = u and

W= <3.0 —1.75e

2
(2—0.25)24+(y—0.25)2+(2-0.125)2
- 0.125

In this example, we compute the FDTD-based solution to check the accuracy of our
method.
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FIG. 5.5. Ezample 2 with ro = (0.25,0.25,0.25)T and w = 87. The yy-component of G(r;ro) at
x = 0.25 computed via (a) one-term ansatz G1; (b) two-term ansatz Ga; (¢) FDTD-based solution.
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FIG. 5.6. Ezample 2 with ro = (0.25,0.25,0.25)T and w = 8x. The yy-component of G(r;ro)
at ¢ = 0.25 and at (a) y = 0.25; (b) y = 0.23; (c) y = 0.15. Green dash line: G1; black circle line:

G2; red solid line: FDTD-based solution.
0 \\ 0.1 0 L o \\\ 0L
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FIG. 5.7. Ezample 2 with ro = (0.25,0.25,0.25)T7 and w = 16w. The yy-component of G(r;ro)
atx = 0.25 computed via (a) one-term ansatz G1; (b) two-term ansatz Gz; (c) FDTD-based solution.

(a)

50 2

Wavefield
Wavefield
Wavefield

0.2 0.4 0.6 o 01 02 03 04 05 ) 01 02 03 04 05

FIG. 5.8. Ezample 2 with 1o = (0.25,0.25,0.25)T and w = 167. The yy-component of G(r;ro)
at ¢ = 0.25 and at (a) y = 0.25; (b) y = 0.23; (c) y = 0.15. Green dash line: G1; black circle line:
G2; red solid line: FDTD-based solution.

The computational setup for our asymptotic methods is the following:
e The computational domain is [0,0.5] x [0,0.5] x [0,0.5].
e The mesh size is 51 x 51 x 51 with grid size h = 0.01.
e The angular frequency w = 167 or w = 327.
e The source point is (0.25,0.25,0.25)7.
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FIG. 5.9. Ezample 3 with ro = (0.25,0.25,0.25)T and w = 16w. The zz-component of G(r;7o)
at y = 0.25 computed via (a) one-term ansatz Gi; (b) two-term ansatz G2; (c) FDTD method.
Mesh in (a) and (b): 51 x 51 x 51; mesh in (c): 101 x 101 x 101.

o

s

Wavefield
Wavefield
Wavefield

FIG. 5.10. Ezample 3 with ro = (0.25,0.25,0.25)T and w = 167. The zz-component of G(r;ro)
at y = 0.25 and at (a) x = 0.25; (b) = = 0.23; (c) # = 0.15. Green dash line: G1; black circle line:
G2; red solid line: FDTD-based solution.
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FI1G. 5.11. Ezample 3 with o = (0.25,0.25,0.25)T and w = 167. The yy-component of G(r;7¢)
at x = 0.25 computed via (a) one-term ansatz G1; (b) two-term ansatz G2; (¢) FDTD method. Mesh
in (a) and (b): 51 X 51 x 51; mesh in (c): 101 x 101 x 101.
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FIG. 5.12. Ezample 3 with ro = (0.25,0.25,0.25)T and w = 16m. The yy-component of G(r;ro)
at ¢ = 0.25 and at (a) y = 0.25; (b) y = 0.23; (c) y = 0.15. Green dash line: G1; black circle line:
G2; red solid line: FDTD-based solution.

We compare the results at frequency w = 167. Figures 5.9 and 5.10 show the
solutions of the zz-component of G1, G2, and Grprp at y = 0.25. Figures 5.11 and
5.12 show the solutions of the yy-component of Gy, G2, and GypTp at x = 0.25.
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TABLE 5.2
Ezample 3: L2-norm errors between the two-term ansatz solution and the FDTD solution in a
region excluding a neighborhood of the source.

w 81 167 327
1/w 4E-2 2E-2 1E-2
2.4E-3 | 2.4E-3 | 2.9E-3
6.3E-3 | 3.6E-3 | 6.3E-3

2
LGW
2

G?J?J

Table 5.2 shows numerical differences between our two-term ansatz-based solution
and the FDTD solution for the two particular components, G, and G,,. Since
the computed FDTD solution is a numerical rather than “exact” solution which is
not accurate enough, the numerical comparison did not indicate a clear asymptotic
convergence pattern in terms of O(1/w), but we can still conclude that our numerical
solutions agree well with the FDTD solution with accuracy on the order of O(1/w).

6. Conclusion. Based on Hadamard’s method, we develop a novel ansatz for
the vectorial three dimensional point-source elastic wave equation in inhomogeneous
media at high frequencies. We develop a new Hadamard’s ansatz to form the fun-
damental solution of the Cauchy problem for the time-domain point-source elastic
wave equations (2.3) and (2.4) in the region close to the point source. We derive the
governing equations for asymptotics involved in the ansatz, such as travel time and
the dyadic coefficients. We further propose matching conditions to deduce initial con-
ditions of amplitude coefficients at the source. Consequently, the Fourier transform of
Hadamard’s ansatz in time directly yields the Hadamard-Babich ansatz for the FDPS
elastic wave equations (1.1). Finally, to validate our method, we truncate the ansatz
after two terms and apply high-order Lax—Friedrichs WENO schemes to compute the
involved asymptotic ingredients. Numerical results demonstrate that our new ansatz
is capable of producing accurate asymptotic solutions in the region of space containing
the point source but no other caustics. Incorporating this new ansatz into Huygens’
principle to treat caustics consists of an ongoing project. Another ongoing project is
to implement the Hadamard—Babich ansatz for anisotropic elastic wave equations.

Appendix A. Derivation of some ingredients for governing equations of
S and P waves.

A.1. The formula of R~ for the S wave in (2.110). Let us rewrite the
governing equation for A! as the following:

- 1 5 " P R -
(A1) (VT-V)A! + ﬂ[v-(wir) — (41 + 14)p] A" + TPW [v () .Az} _ R

I
where
I S LA Al (A TS R L B Ay
’ 4o 8p 20
A+ pval-t_, B,
A2 - e -
2 2p T
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Here B'=1, @' !, and b~! are defined as

I1-1)
i+

Bl=(\+ ){ V‘I(ViT-Al—l)—l;—llV(val—l)

(A.3)
-1 ~1_q
- VIV AT 4 o
W=14p 4o (L= DV?T
uJ! Tt

]

+ p { A1

2(l B 1) Al—1 1 2 Al—1
- S (VT VAT 4 VA

—i+ A

+ VA [ -Al—l}

Fi-1

(VT x A1)

+ WV,U/ X (V X Al_l) —

-1 -
+2 [—W(VM-V‘I)AI Ly (V- V)A~ 1}

71 1

dl71 = _(l_ 1)V‘I’Al71 +

1 -
. s . Alfl
(A.4) T T T ot

2p(l — 1) Q-1 IS i1 pb' 2
- T ATy VT (VT V)AT -
A+ p)T? (A + u)2pT! ( ) ] (A + p)4pT
b=t =2p(=20+7)a "t — A+ p)(VT - V)al~t — pv2Tal "t

(A5) —(VT-VvNa ™t —(VT-Vpa ' +vT. Bl

A.2. The formula of &~ for the P wave in (2.184). We rewrite the gov-
erning equation for &' as the following:

(A.6) VT V&l + %v (pVT) — m al=ét,
and &1 = Tl¢!~1, where ¢! is the same as (2.154). The formula for &1 is
&= i{[(m —Al)p — pV3T = VT - V(A + u)]%(vv- c'
(a_tg)ipl(w ey - (A;”) VT V(VT - C)
s oo - Gat o
+ %(V‘I- c\-h - %MV‘I- (VT -V)C' Y
(A7) (Vp-CH +7-1vT. D1,

)\+2

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/22/21 to 35.8.11.3. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

HADAMARD-BABICH ANSATZ 83

where C'=! = C'=17! satisfies
A+ 2u
(A+n)dp

- 1 -1 - -
— A+ p)V(VT- A ¢ WA” —2u(VT-V)A!

(A-8) — pV2TAIT — VA(VT - AN — (V- VT)AT 4+ T71DI2),

(=D +p

~1-1
¢ T

{—p(4l —18) At 4 VI(VT- AT

and D'~! satisfies

I(1-1)

i+

1—1 o
- VIV AT 4
I=1)dp 5y (=DV?T 4

e[ -
2(1—1)

Tl
—l+1 -1 1 {i-1

s VI AT VA

1 0 -1 o
+FVM><(V><AI 1)—Tvux(V‘I><Al h
!

(A.9) +2 [— =

. -1 .
VI(VT- A7) — Z—ZV(V‘I Al

bl‘lz(AJru)[ 5

=i V(Y- Al—l)]

— 1 —
(VT - V)AL 4 WV2A1 1}

+V)\[

1
Ji-1

(Vi - V)AL 4 (V- V)Al‘l} .

Appendix B. Hadamard’s ansatz for anisotropic wave equations.

B.1. Derivation of eikonal equations and transport equations. To de-
velop Hadamard’s ansatz for waves in anisotropic elastic solids, we start with the
fundamental equations. Hooke’s law states that the stress o;; is related to the strain
e, through a stiffness tensor Cjjx; by the relation

(B.1) oij = Cijkiexl-

Therefore, the motion equation without body force takes the form

0?°U
(B2) P o =V- o,
where U = (U;) is the displacement vector. By the relation between strain and
displacement,
1 /00U, oU;
B.3 S
(B:3) ek 2(3xl+6xk>’

and the symmetry of the stiffness tensor, the motion equation leads to the wave
equation

(B.4) OU; _ 8(0 aU"‘).

P or2 = B, \ T oy,
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Inspired by our work for isotropic elastic waves, we shall seek an asymptotic
solution of (B.4) in the following form:

oo

(B:5) Uiw.1) = Y Ul@) /(1 ~ T()).
=0

To derive the governing equations for the unknowns Uil and T, we shall need 9;U;
and spatial derivatives of U;. Since this is quite similar to our derivations for the
isotropic elastic case, we can just use the formulas (2.34)—(2.39) directly. Inserting
those formulas into the following equation

(B.6)

o, 0 (o ol
P ot = B, \ oy, )

which is the second time derivative of (B.4), and equating individual coefficients of
J(FZ_S) to zero successively, we can obtain

0— 4,07UJ1~ — CijuT T UL +2p(20 — 9)UJlf1 + Cijrr T UL
4 Cijle,lU]lc;l + Cijkl‘J'JU,lC;l + Cijle,liU]i_l
(B.7) - Cz‘jkl,z'U/lg,—ﬁ - CijklUIlc,_liQ'

Setting I = 0 and remembering that U' = 0 for I < 0, we obtain the Christoffel’s
equation

(B.8) (CijiT 1T — 4pTé)UR = 0,
which leads to the anisotropic eikonal equation for 7,
(B.9) det(CijrT 1T — 4pTd51) = 0,

where T(x) = 72(z), and 7 is the travel time. So we can obtain the eikonal equation
for T,

(B.10) det(CijmT T — 4pTdj1) = det(aijrapipi — 0jx) = 0,

which is the same as the eikonal equation in [23, 24]. Here p = (p;) = V7T, ajjm =
Cijrl /p are the density-normalized elastic parameters.
Next setting [ = 1 yields
0= 4pTUj1 — Cijklgi,lj,iU]i — 14/)(._]](-J —+ Cijkl,iT,ZUlg
(B.11) + CijuTUR ; + CijuaT UL + Cijia T UR.
By (B.8), UY is a multiple of the normalized eigenvector g of the matrix (@ijripipi),

UY = U%. By the symmetry of the stiffness tensor Cj;; and (B.8), we can obtain
the equation for the amplitude U?,

0=~ 14pU° + Cijp1iT1U g1y,
(B.12) + CiguT (U1 095 + CijiT i (U°gk) 195 + CijiaT 1iU° 919
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B.2. Verification of (B.9) in an isotropic medium. When the wave prop-
agates in an isotropic medium, the stiffness tensor Cjjx; has the following form:

(B.13) Cijrr = X0ijOrr + p(0ikdj1 + 0:10jk).

This involves only two independent parameters, A and u, known as Lamé’s moduli.
So (B.8) reduces to

(B.14) (A + )T ;T g+ pT 1Ty — 4pT65)Up =0
or, in vector notation,
(B.15) (A +p)VIVIL + (uVT - VT — 4pT) U = 0.

Since VIVIT is a rank-one matrix, the eigenvalues are VJI'- VT, 0, and 0. Hence
if det(A+p)VIVTITL + (uVT-VT —4pT)I) = 0, we can obtain two eikonal equations,

(B.16) p| VT2 = 4pT
and
(B.17) (A +2u)| VT2 = 4p7.

The corresponding eigenvectors are U? L VT for (B.16) and U° || VT for (B.17). We
can see that these are actually the two cases that we find in section 2.2. Hence we
have verified (B.9).
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