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Eulerian partial-differential-equation methods for complex-valued eikonals

in attenuating media
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ABSTRACT

Seismic waves in earth media usually undergo attenuation,
causing energy losses and phase distortions. In the regime of
high-frequency asymptotics, a complex-valued eikonal is an es-
sential ingredient for describing wave propagation in attenuat-
ing media, where the real and imaginary parts of the eikonal
function capture dispersion effects and amplitude attenuation
of seismic waves, respectively. Conventionally, such a com-
plex-valued eikonal is mainly computed either by tracing rays
exactly in complex space or by tracing rays approximately in
real space so that the resulting eikonal is distributed irregularly
in real space. However, seismic data processing methods, such
as prestack depth migration and tomography, usually require

uniformly distributed complex-valued eikonals. Therefore, we
have developed a unified framework to Eulerianize several
popular approximate real-space ray-tracing methods for com-
plex-valued eikonals so that the real and imaginary parts of
the eikonal function satisfy the classic real-space eikonal equa-
tion and a novel real-space advection equation, respectively, and
we dub the resulting method the Eulerian partial-differential-
equation method. We further develop highly efficient high-order
methods to solve these two equations by using the factorization
idea and the Lax-Friedrichs weighted essentially nonoscillatory
schemes. Numerical examples demonstrate that our method
yields highly accurate complex-valued eikonals, analogous to
those from ray-tracing methods. Our methods can be useful
for migration and tomography in attenuating media.

INTRODUCTION

Because of the influence of material properties and fractures and
because of the porosity and granularity of subsurface rocks, seismic
wave propagation in earth media is intrinsically attenuating (Aki
and Richards, 1980; Cerveny, 2001; Carcione, 2015). Without
properly accounting for attenuation effects, seismic data processing
may produce unreliable delineation of geologic structures. There-
fore, it is crucial to develop efficient modeling methods for wave
propagation in attenuating media. On one hand, although direct
modeling methods such as finite-difference and finite-element
methods are highly accurate, they are sometimes computationally
expensive to use (Robertsson et al., 1994; Blanch et al., 1995;
Blanch and Robertsson, 1997; Carcione, 1999, 2009; Carcione
et al., 2002; Zhang et al., 2010; Xie et al., 2015); on the other hand,

although ray methods (Gajewski and P§en¢ik, 1992; Cerveny, 2001;
Vavrycuk, 2008a; Hao and Alkhalifah, 2017; Huang and Green-
halgh, 2018; Huang et al., 2018) are of lower accuracy in compari-
son to direct methods, they are highly efficient and are able to
provide adequate accuracy for many geophysical scenarios. Conse-
quently, we seek high-frequency asymptotic ray-theory methods to
develop efficient numerical tools for modeling attenuating wave
motions. Consider applying such an asymptotic method to visco-
elastic isotropic wave equations with complex-valued frequency-
dependent elastic parameters. Vanishing the leading-order singular-
ity in terms of the reciprocal of large frequency yields the complex
eikonal equations satisfied by the complex-valued eikonal functions
for the P- and S-wave, respectively. Then, the question reduces to
how to solve such a complex eikonal equation efficiently. In this
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paper, we propose a unified framework to Eulerianize several popu-
lar real-space Lagrangian ray-tracing methods so that we can de-
velop efficient Eulerian partial-differential-equation (PDE) methods
for computing complex-valued eikonals, in which the real and
imaginary parts of the eikonal function describe wave propagation
and attenuation effects, respectively.

As a first-order nonlinear PDE, the complex eikonal equation can
be solved by the method of characteristics to yield complex-valued
eikonal functions, leading to the so-called complex-space ray-trac-
ing method, which theoretically enables us to solve the complex
eikonal equation without any approximation. However, because
sources and receivers are usually located in real space in most
applications, the complex-space ray-tracing method brings about
unusual complications in that rays are now situated in complex
space so that the dimension of the ambient space becomes doubled;
consequently, the resulting ray-tracing system is high-dimensional
and is costly to solve. Moreover, it is hard to build complex-valued
elastic-parameter models from real-valued models that are usually
available from measurements in real space (Vavrycuk, 2008a; Hao
and Alkhalifah, 2017). Therefore, some further approximations are
pursued to develop real-space ray-tracing methods for computing
complex-valued eikonal functions.

In viscoacoustic media, the widely used weakly attenuating
approximation (i.e., the inverse of quality factor < 1) (Gajewski
and PSencik, 1992; Cerven}'/, 2001; Keers et al., 2001; Xie et al.,
2009; Xin et al., 2014; Hu et al., 2018) can be used to reduce the
complex-space ray-tracing system to a real-space ray-tracing sys-
tem approximately in terms of the quality factor. Numerical experi-
ments in Gajewski and PSencik (1992) demonstrate that the weakly
attenuating assumption is applicable to a substantial range of quality
factors encountered in exploration geophysics. Keers et al. (2001)
show that the raypath under the weakly attenuating approximation
is identical to that in the corresponding nonattenuating medium, so
that the ray-tracing method in a nonattenuating medium can be used
to obtain the real and imaginary parts of the complex-valued eiko-
nal, where the ray-tracing system is defined in real space because
the reference velocity and quality factor are real. In this approximate
real-space ray-tracing model, the real and imaginary parts of the
complex-valued eikonal at each receiver have to be found indirectly
via solving nonlinear systems or numerical quadratures.

Viewing a viscoelastic medium as the perturbation of a perfectly
elastic medium, one may account for attenuation effects by using
the first-order perturbations and tracing rays in the elastic reference
medium that is specified in real space (Vavrycuk, 2008b; Klimes
and Klimes, 2011; Hao and Alkhalifah, 2017). Vavrycuk (2012)
calls this method the real-elastic ray-tracing method. Here again
the real part of the complex-valued eikonal at each receiver has
to be found indirectly, and, accordingly, the corresponding imagi-
nary part has to be found from numerical quadratures.

Another real-space ray-tracing method for viscoelastic media, the
real viscoelastic ray-tracing method, is proposed by Vavrycuk
(2008a). This method modifies the Hamiltonian for viscoelastic
media so that the rays are constrained as trajectories in real space
(Vavrycuk, 2012). The resulting ray-tracing system is based on a
certain real-valued reference velocity calculated from the complex-
valued phase velocity for the P- or S-wave, respectively. Although
this approach is still approximate, this method is highly accurate
and is applicable to strongly attenuating media (Vavrycuk, 2012;
Hao and Alkhalifah, 2017), where the real and imaginary parts
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of the complex-valued eikonal are obtained in the same way as
the real elastic ray-tracing method.

To date, because all of the rays are traced from an arbitrary source
point to receivers by solving an initial value problem for ordinary
differential equations (ODEs), all of these real-space ray-tracing
methods yield the real and imaginary parts of the complex-valued
eikonal at irregularly distributed points, and such irregular distribu-
tions of complex-valued eikonals hinder their applications to seis-
mic migration and tomography because these applications are
usually posed on regular mesh points. Therefore, we are motivated
to develop efficient methods to produce complex-valued eikonals
on regular grids by formulating the above three real-space ray-trac-
ing systems into PDEs.

Assuming that there is a unique ray connecting any source to any
receiver, one possibility is to solve an eikonal equation with an ap-
propriate reference velocity for the real part of the complex-valued
eikonal and solve an advection equation with an appropriate qual-
ity-factor function for the imaginary part of the complex-valued
eikonal, where the advection equation is weakly coupled to the
eikonal equation in the sense that the advection coefficients are de-
fined by the gradient of the real part of the complex-valued eikonal;
the resulting Eulerian method yields a single-valued approximate
solution for the complex eikonal equation. Because the unique-
ray assumption is very restrictive, we in fact will solve the afore-
mentioned eikonal equation for the real part in the sense of a vis-
cosity solution (Lions, 1982; van Trier and Symes, 1991) so that our
resulting computation is with the first-arrival-based real part of the
complex-valued eikonal.

Now the question is how to solve the weakly coupled eikonal and
advection equations efficiently with high-order accuracy so as to
obtain the real and imaginary parts of the complex-valued eikonal.
Supposing that we wish to compute the imaginary part to first-order
accuracy, which is in fact a minimum requirement, we need to have
at least a first-order accurate gradient of the real part because the
numerically differentiated gradient of the real part serves as coef-
ficients for the advection equation satisfied by the imaginary part.
This in turn implies that the computed real part be of at least second-
order accuracy so that its numerical gradient is of first-order accu-
racy; the consequence is that we need high-order accurate eikonal
solvers. Such an accuracy requirement has been first observed by
Qian and Symes (2002a) for solving transport equations of ampli-
tudes. Although first-order accurate eikonal solvers are abundant
(Vidale, 1988; Podvin and Lecomte, 1991; van Trier and Symes,
1991; Qin et al., 1992; Pica, 1997; Sethian and Popovici, 1999;
Qian and Symes, 2002a; Kao et al., 2004, 2008; Zhang et al.,
2005; Zhao, 2005; Qian et al., 2007a, 2007b; Fomel et al., 2009;
Serna and Qian, 2010; Luo and Qian, 2012; Waheed et al., 2015),
only a few high-order accurate point-source eikonal solvers are
available (Kim and Cook, 1999; Qian and Symes, 2002a; Zhang
et al., 2006; Serna and Qian, 2010; Luo et al., 2014; Lu et al.,
2016; Qian et al., 2016). Following the work in Qian et al. (2016)
in which the eikonal and transport equations are solved to high-
order accuracy with proper initializations at the point source, we
develop high-order Lax-Friedrichs weighted essentially nonoscilla-
tory (LxF-WENO) schemes for the eikonal and advection equations
under consideration. The WENO approximation of derivatives
(Jiang and Peng, 2000; Qian et al., 2016) provides better numerical
stability when complex wavefronts are encountered. Moreover, the
point-source singularities of the eikonal and advection equations are
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treated by systematic factorizations (Pica, 1997; Zhang et al., 2005;
Fomel et al., 2009; Luo et al., 2014; Lu et al., 2016; Qian
et al., 2016).

The rest of the paper is organized as follows. In the “Methodol-
ogy” section, we propose a unified framework to compute the real
and imaginary parts of the complex-valued eikonal, and we put
three popular real-space ray-tracing models for viscous wave mo-
tion into this framework; we further develop factorized PDEs to
solve the resulting eikonal and advection equations by using the
LxF-WENO schemes. Numerical experiments demonstrate the fea-
sibility of the proposed method.

METHODOLOGY
Eulerian PDE framework for complex-valued traveltimes

The correspondence principle indicates that we can treat wave
propagation in a viscoelastic (or viscoacoustic) medium as wave
propagation through an elastic (or acoustic) medium with com-
plex-valued elastic parameters (or a complex-valued velocity). To
model wave motion in such a medium efficiently, high-frequency
asymptotic approximations provide an effective alternative to direct
numerical methods. One of the essential ingredients for high-fre-
quency asymptotics of viscous wave motion is the complex-valued
eikonal function. We propose a unified Eulerian framework to com-
pute complex-valued eikonal functions for several popular high-fre-
quency asymptotic models of viscous wave motions.

‘We assume that the complex-valued eikonal function 7 consists of
the real part T and the imaginary part 7%, which satisfy the follow-
ing eikonal and advection equation, respectively:

1
IVT| = ") T(x,) =0, M

where x is the real-valued position vector, v(x) is the real-valued
reference velocity, and Q(x) is a quality-factor-related real-valued
function.

Assuming that there is a unique ray connecting any source to any
receiver, we put three popular asymptotic models into our frame-
work. Provided that we choose an appropriate reference velocity
and an appropriate quality-factor related function, our framework
is applicable to weakly and strongly attenuating media.

Case 1: Viscoacoustic ray tracing and Eulerian
equations

Wave motion in a viscoacoustic medium can be characterized as
wave propagation through an acoustic medium with a complex-val-
ued velocity. The complex-valued velocity is given in terms of the
real acoustic velocity ¢, and the quality factor g, the latter repre-
senting the attenuation. If the attenuation is small (¢~' < 1, the
weakly attenuating approximation), then an appropriate definition
of the complex-valued velocity c is

e(x) = ¢o(x) 1+1"+11n(‘”)}, 3)

2¢q(x) 7 \wy

where w is the angular frequency, , is a reference angular fre-
quency, and the dispersive term in the real part of the velocity
ensures causality of wave-equation solutions (Aki and Richards,
1980).

If ¢! < 1, then to the first-order approximation in ¢~!, the ray-
paths defined in the high-frequency approximation by the real
acoustic velocity ¢, can be considered to be unaffected by attenu-
ation and remain unchanged during the viscoacoustic wave motion,
but the traveltime function becomes complex valued and frequency
dependent due to the attenuation effect, which takes the following
form by Futterman’s dispersion relation (Futterman, 1962; Gajew-
ski and PSencik, 1992; Cerven)’/, 2001; Keers et al., 2001):

nur:nm—irwwm<w)_ﬂzm,

“)

where

T(x) = / L, 5)

y €0 (x)

*(x) = 71 K}
T”‘Awwmwd' ©

Here, T is the traveltime in acoustic media from the source x; to X,
and it satisfies the following eikonal equation:

IVT(x)| =

; )

co(x)

the arc-length integrations in equations 5 and 6 are over the same
raypath connecting the source X; to x defined by the real acoustic
velocity cg. The raypath can be either determined by Fermat’s prin-
ciple or implicitly defined by solving the eikonal equation 7. Be-
cause the directional derivative along the raypath defined in
equation 7 is (Lu et al., 2016)

d
—=¢o(X)VT(x) - V, (8)
ds

we can take the directional derivative along the raypath on both
sides of equation 6 to have the following advection equation for 7*:

VT(x) - VT*(x) = 7c%(x;q(x) . )

This corresponds to our case that v(Xx) = ¢((x) and Q(x) = ¢(x) in
equations 1 and 2.

Case 2: Real viscoelastic ray tracing and Eulerian
equations

‘Wave motion in a viscoelastic medium can be described by a real-
valued density p of the medium, complex-valued and frequency-
dependent Lamé elastic coefficients 4 and p, and a real-valued
angular frequency. The real parts, A® and uR, describe the elastic
properties of the medium, and the imaginary parts, A/ and u/, de-
scribe the attenuation. The P- and S-wave velocities, respectively,
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10)

A+2p [
CP = EE— CS = -,
P P

are complex-valued and frequency-dependent. The strength of at-
tenuation is evaluated using the quality factor for the P- and S-wave
(Carcione, 2015), respectively,

=

/IR—FZ/JR_
/'LI+2”I -

—~

(@)
@ BT TR @
1

qp =

Vavrycuk (2008b, 2012) proposes to solve the P- and S-wave
complex-valued eikonal equations using real ray-tracing methods,
and such methods modify the Hamiltonians for viscoelastic media
so as to keep rays as trajectories in real space. The resulting real
viscoelastic ray-tracing equations in isotropic media are (Vavrycuk,
2008b)

1 1
By Ly, ATy
drR d® 14 d® R
where p is the slowness vector, 7% and 7/ are the real and imaginary
parts of the complex eikonal, respectively, c® and ¢ are the real and
imaginary parts of the complex velocity, respectively, and V is the
real-valued ray velocity calculated from the complex-valued phase
velocity,

13)

with ¢ = ¢p or ¢ = cg for the P- or S-wave, respectively.
The real part of the complex-valued eikonal, 7%, of the ray-tracing
system in equation 12 satisfies the following eikonal equation:

1
Vif| = ——. 14
Ve = 7 (14)
The imaginary part of the complex-valued eikonal 7/ takes the fol-
lowing integration form:

TI(X):[ay_

Similar to the viscoacoustic ray-tracing case, using the directional
derivative defined by equation 14 to take the directional derivative
along the raypath on both sides of equation 15, we can have the
following advection equation for the imaginary part of the com-
plex-valued eikonal, 7':

c'(x)

ViR . Ve = — (16)

This corresponds to our case that T = %, T* = ¢!, v(x) = V(x),
and Q(x) = —((c®(x))/(c!(x))) in equations 1 and 2.

Hu et al.

Case 3: Real elastic ray tracing and Eulerian
equations

In the real elastic ray-tracing theory, a viscoelastic medium is
considered as the perturbation of a perfectly elastic medium so that
the rays are traced in the elastic reference medium and the effects of
attenuation are calculated by first-order perturbations. The resulting
real elastic ray-tracing equations are (Cerveny, 2001)

dx dp 1 dr!
=V, = —— WV, =,
ak = VP R T Ty Ve R T 5,

a7
where V| is the real-valued reference velocity in the reference elas-
tic medium. Gajewski and PSencik (1992) take the weakly attenu-
ating approximation and ignore (c¢’)? in equation 13, and V,
becomes
Vo= c*, (18)
with ¢® = (cp)R and ¢ = gp or c¥ = (cg)® and g = g for the P- or
S-wave, respectively.
Similar to the real viscoelastic ray-tracing case, we can have the
following eikonal and advection equations for the real part, 7%, and
the imaginary part, 7/, of the complex-valued eikonal, respectively,

R| _
Ve = 19)
ViR oyl =L (20)
2q(x)V5(x)

This corresponds to our case that T = =&, T* = ¢/, v(x) = V,(x),
and Q(x) = 2¢(x) in equations 1 and 2.

Factorized Eulerian PDEs

Finite-difference schemes to the point-source eikonal equation 1
are widely used (Vidale, 1988; Podvin and Lecomte, 1991; van
Trier and Symes, 1991; Qin et al., 1992; Qian and Symes, 2002a),
but without proper treatment of the point-source singularity, most of
these schemes only yield low accuracy near the source point (Qian
and Symes, 2002a). Such initial errors at the source will spread out
to the entire computational domain due to the upwind nature of
these schemes (Qian and Symes, 2002a). Adaptive refinement near
the source (Qian and Symes, 2002a) and factorizing out the point-
source singularity explicitly from the point-source eikonal (Pica,
1997; Zhang et al., 2005; Fomel et al., 2009; Luo and Qian, 2012;
Luo et al., 2014; Lu et al., 2016; Qian et al., 2016) provide two
effective strategies for treating this singularity. Moreover, compar-
ing equation 2 with equation 1, we realize that the imaginary part of
the complex eikonal shares a similar singularity with the real part of
the complex eikonal so that we will apply the factorization idea as
well to the advection equation to treat the source singularity.

We adopt a multiplicative factorization (Pica, 1997; Zhang et al.,
2005; Fomel et al., 2009; Luo and Qian, 2012; Lu et al., 2016; Qian
et al., 2016) to the real part of the complex eikonal,

T(x) = 7o(x)7 (%), @1
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where 7, is the analytic traveltime function for a known homo-
geneous velocity model, which captures the source singularity, and
the unknown factor 7 is computed from a finite-difference scheme.
The analytic factor 7 is taken to be

ro(x) = X=Xl 22)

Vs

where v, is the velocity at the source location, and this choice cor-
responds to the first-order factorization (Lu et al., 2016; Qian et al.,
2016). Inserting equation 21 into equation 1, we obtain the factored
eikonal equation:

75(%)| Ve (%) + 27(%) 71 (X) V7o (X)
1

: VTI (X) + T%(X)|VTO(X)|2 = Uz(X) .

(23)

Once the gradient of the real part of the complex eikonal, VT'(x),
is available, we can use it as coefficients in the advection equation to
compute the imaginary part of the complex eikonal. To treat the
source singularity, we apply a multiplicative factorization to the
imaginary part:

T*(x) = T(x)T7(x), 24)

where T is the (just computed) real part of the complex eikonal cap-
turing the source singularity, and the unknown perturbation factor
T7 is computed by a finite-difference scheme. We remark in passing
that, to capture the source singularity, we use 7, which is solely
related to the velocity, rather than Q, the reciprocal of which
O~! may be zero near the source because the Q-based factorization
may render 7 to be zero everywhere, which is ineffective. Follow-
ing Qian et al. (2016), we also derive high-order factorization in
Appendix A. Here, we use first-order factorization. Inserting equa-
tion 24 into equation 2, we obtain the factored advection equation:

TERVI(R) - VTi(3) + TI (VT () = ooy
(25)

Once the factorized Eulerian PDEs are derived, we can design
finite-difference schemes to solve these equations.

Third-order LxF-WENQO sweeping method

We will apply a third-order LxF-WENO sweeping method (Kao
et al., 2004; Zhang et al., 2006; Qian et al., 2016) to solve the fac-
tored eikonal equation 23, in which high-order WENO approxima-
tions (Jiang and Peng, 2000; Qian et al., 2016) are essential for the
success of the sweeping scheme. The third-order WENO scheme
will yield real parts of the complex eikonal with high-order accu-
racy so that the numerical gradient VT(x) is also of high-order ac-
curacy. Once the high-order accurate real part of the complex
eikonal is obtained, we can use it as coefficients in the factored ad-
vection equation 25 so that a third-order LxF-WENO sweeping
method can be applied to solve equation 25.

The LxF sweeping method (Kao et al., 2004; Zhang et al., 2006)
offers a versatile and powerful approach for solving generic iso-

tropic and anisotropic eikonal equations, such as quasi-P- and
quasi-S-wave eikonal equations (Qian and Symes, 2001, 2002b).
To simplify the presentation, we will only discuss 2D discretizations
of equation 25, and similar strategies apply to the discretization of
equation 23 (Qian et al., 2016). The extension to the 3D case is not
difficult. To apply the LXF sweeping scheme to equation 25, we
rewrite the equation into the following form:

H(x,z,T7,pi,.ri.) = 1. (26)

where pj, = 0T} /0ox, pj. = 0T} /0z, and the functions H and f are
defined by, respectively,

H(x,z, T}, pi.. pi,) = T(x)VT(x)
- VT;(x) + T{(x)(VT(x))?, (27

1
ST @8)

The third-order LxF-WENO sweeping method for T is defined
by the following steps:

1) Initialization: The initialization is done by assigning values at
a few grid points centered at the source point. In Appendix A, we
provide a systematic high-order factorization for computing 77.
Here, we use the first-order factorization to assign these values.
These values are fixed during iterations.

2) Iterations: Because 77 is computed by a third-order WENO
scheme, we will use grid indexing (i.e., (i, j)) instead of spatial co-
ordinates to demonstrate the iteration process. The LxF sweeping
method computes 77} via Gauss-Seidel iteration with four alter-
nating directions: (1) i=1:1:/ and j=1:1:J, 2) i=1:1:1
and j=J:-1:1, 3) i=1I1:-1:1 and j=1:1:J, and
@) i=1I:-1:1and j=J: —1:1, where i and j are the indices
for the x- and z-coordinates, respectively, and / and J are the total
number of grid points in the x- and z-directions, respectively.

At a grid point (i, j), the Lax-Friedrichs Hamiltonian (Osher and
Shu, 1991; Kao et al., 2004) allows us to obtain a new value 77"%
from old values T;°¢ in the following way:

T (i))
- <7L> (ﬂ,-‘ =) T 1D THI=LA) Tilhd 1) =T 1))
+GXTT(i+1,.i)2;rXTT(i—14./')+arTT(i-j+1>2:Z‘T7(i,j—1)>y (29)

where dx and dz are the grid sizes in the x- and z-directions, respec-
tively, and a, and «, are the artificial viscosities in the x- and z-
directions, respectively. Following Zhang et al. (2006), Qian et al.
(2016), and Lu et al. (2016), we choose the following artificial vis-

cosities:
OH | | oH
_ , 30
o mﬁ"(@pn 'OTT) G0
oH | | oH
azmax< * ‘ ) G1)
Q aplZ oT;
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where Q is the entire computational domain. Following Zhang et al.
(2006), we carry out the following replacement in equation 29 to
introduce the third-order WENO approximation into the sweeping
iteration:

Ti(i+1.j) = T{™(i. j) + dx(pi,(i. /). (32)
Ti(i—1,j) = T, j) — dx(pi,(i./)".  (33)
Ti(i,j+1) = T, j) + dz(pi (i, )", (34)
Ti(i,j—1) = T{, j) = dz(pi.(i. /)", (35)

where (pj,(i,/))" and (p}.(i,j))” are the third-order upwind
WENO approximations of pj.(i,j) and (pj,(i,j))* and
(pi,(i,j))~ are the third-order upwind WENO approximations of
pi,(i,j) (Jiang and Peng, 2000). The terms (pj.(i,j))” and
(pi,(i,j))" are defined as follows:

Ti(i+1,j)-T;(i-1,j
(PTx(i,j))‘:(l—ﬂ—)< — J)del(l j))
3710 (4, j) =4T5(i—=1,)) + T35 (i=2.5)
+ﬂ—< 1 12d)c l >’
(36)
1
P-=1ap
_ et (TP 22T (= L) A Ti(i =2 )P o)

T e (TH(i+1,)) =293, j) + Ti(i — 1, /)2

(i) =(1 —[}+)(TT(i+ l’j)Z;XTT(i— Lj))

=3T3 (i, )+ 4T (i + 1,§) = Ti(i + 2, j)
+ﬂ+ E)

2dx
(38)
1
=T
e+ (114 ) =277 (i+ 1)) + Ti(i +2.)))?
}/+: [+ . wold [+ * [+ . 2; (39)
e+ (Ti(i+1,)) = 2177000, ) + Ti(i = 1.)))
similarly, we can define (p},(i,j))~ and (p7,(i, j))*.
3) Convergence: If the following condition is satisfied,
T (i, j) = TiP4 (i j)] < 6. (40)

the iteration converges and we terminate the iteration, where ¢ is a
predefined threshold value.

Once T is computed, the imaginary part is available from equa-
tion 24. Compared with a first-order scheme, a high-order scheme
can yield the corresponding numerical derivatives with high-order
accuracy in the Eulerian PDEs. Therefore, to achieve a certain
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specified accuracy, a high-order scheme only needs to use a much
coarser mesh than a first-order scheme does (Qian and Symes,
2002a; Luo et al., 2014); because the number of grid points is
greatly reduced, the computational cost can be reduced (Qian
and Symes, 2002a; Luo et al., 2014). This consideration justifies
our choice of using a high-order WENO scheme here.

NUMERICAL EXPERIMENTS
Eulerian examples for viscoacoustic ray tracing

We apply our proposed algorithm to four cases of the viscoacous-
tic attenuating model, in which the model is prescribed by a real-
valued acoustic velocity and a real-valued quality factor.

For the first case, we choose a velocity v with a constant vertical
gradient. The velocity model is specified by v = 2000.0 + 0.5z (m/s).
The Q model is homogeneous with Q = 50. Because Cerveny
(2001) provides an analytic solution of the eikonal equation 1
for this constant-gradient velocity model, we may use this solution
to validate our algorithm for the eikonal equation. Moreover, be-
cause the Q model is homogeneous, the exact solution of the ad-
vection equation 2 can be obtained by dividing the exact traveltime
by the Q value according to equations 5 and 6. The model dimen-
sion is 5 km in depth and 5 km laterally. One advantage of high-
order WENO approximations is their high accuracy, which allows
us to solve the eikonal and advection equations using large grid
sizes. Therefore, we use a grid size of 50 m in the x- and z-direc-
tions. The total number of grids is 101 x 101. We place a source at
x = 2500 m and z = 0 m. Figure la and 1b shows the computed
real and imaginary parts of the complex eikonal for the first attenu-
ating model, respectively. To validate their accuracies, we compare
numerical solutions with the corresponding analytic solutions, as
shown in Figure 1c and 1d. The errors in the computed real part
are of a magnitude of 107, which is much smaller than a time sam-
pling interval, such as 1 ms in a typical seismic record. The errors in
the imaginary part of the complex eikonal are of a magnitude of
1077, which is also quite accurate. This shows that the proposed
method yields highly accurate complex eikonals under the weakly
attenuating approximation for this case.

In the second case, the velocity model as shown in Figure 2a is
extracted from the BP tilted transversely isotropic velocity model.
We further construct a Q model according to the extracted velocity
model: we fill the zone of low velocity in the shallow region with
low Q values to simulate the gas cloud, and we set the Q value in
other places to be 10,000 (as shown in Figure 2b). Note that in dis-
playing Figure 2b, we clip the maximum Q value to 100. The model
dimension is 8 km in depth and 10 km laterally. The grid size is
50 m in the x- and z-directions. The total number of grid points
is 201 x 161. The source is located at x = 5000 m and z = 0 m.
The proposed method is used to compute the real and imaginary
parts of the complex eikonal, as shown in Figure 3. The imaginary
part of the eikonal in Figure 3b shows that only raypaths passing
through the gas cloud suffer from dispersion and absorption, where
the maximum value of the imaginary part is approximately 5 ms.
This demonstrates the strong seismic attenuation below the gas
cloud. Because in this inhomogeneous attenuating model we do
not have an analytic solution to validate the result, we use the wave-
field snapshot obtained by a finite-difference wavefield extrapolator
to validate the real part of the complex eikonal. The wavefield
snapshot is obtained on a grid with a mesh size of 10 m in the
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Figure 2. An attenuation model with a gas cloud. (a) The acoustic
velocity and (b) Q. The two black curves in (a) are two raypaths

with the takeoff angles being 0° and 20°.

Eulerian PDE for complex eikonal

0
0

= 2000

Deptl

4000

Imaginary part (s)

Error of imaginary part (s)

o

Velocity (m/s)
Depth (m)

Depth (m)

N
o
o
o

x10~7

N
o
o
o

6000

8000

T185

Figure 1. The real and imaginary parts of the com-
plex-valued eikonal for the constant-gradient
velocity model. (a) The real part and (c) its differ-
ence with the analytic solution. (b) The imaginary
part and (d) its difference with the analytic solution
under the weakly attenuating approximation.

X (m) x10*
0.8

Real part (s)

0.005

0.004

0.003

0.002

Imaginary part (s)

0.001

o

Figure 3. The real and imaginary parts of the complex-valued ei-
konal for the gas clouded attenuating model. (a) The real part and

(b) the imaginary part.



Downloaded 06/07/21 to 172.5.43.192. Redistribution subject to SEG license or copyright; see Terms of Use at http://library.seg.org/page/policies/terms

DOI:10.1190/ge02020-0659.1

T186
X (m)
2000 4000 6000 8000
0
2000
E
£ 4000
[
(=]
6000
8000

Figure 4. Wavefield snapshot overlaid by the contour of the real
part at 3 s. The red curve is the contour of the real part.
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x- and z-directions. Figure 4 shows the wavefield snapshot overlaid
by the contour of the computed real part of the eikonal at 3 s, where
the red curve is the contour of the real part. Because the contour of
the real part matches well with the first-arrival wavefront in the
wavefield snapshot, this demonstrates that the real part of the eikonal
is highly accurate, even though it is computed on a grid of relatively
large mesh size. To validate the computed imaginary part, we carry
out ray tracings with a fourth-order Runge-Kutta ODE integrator to
obtain imaginary parts along two raypaths, where the two black
curves shown in Figure 2a pass through the gas cloud. Here, the
ray tracing is performed on a fine grid with a mesh size of 10 m.
‘We use a nonlinear interpolation method to obtain the imaginary parts
along these two raypaths from the result shown in Figure 3b. The
comparison between the imaginary parts obtained by the proposed
method and the ray-tracing method is shown in Figure 5, and the
two results match well. This shows that the imaginary part obtained
by the proposed method is highly accurate under the weakly attenu-
ating approximation. In addition, Figure 5 also shows that the attenu-
ation increases rapidly as seismic rays pass through the gas cloud.

In the third case, we build an attenuating model based on a land
scenario, in which the velocity and Q models are shown in Figure 6.
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Figure 6. The attenuation model for a land scenario. (a) Acoustic
velocity and (b) Q. Two black curves in (a) are two raypaths with
the takeoff angles being 0° and 20°.
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Figure 7. The real and imaginary parts of the complex-valued ei-
konal for the land attenuating model. (a) The real part and (b) the
imaginary part.
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Figure 8. Wavefield snapshot overlaid by the contour of the real
part at 2 s. The red curve is the contour of the real part.

In the Q model, the Q value is very low in the shallow area to sim-
ulate the strong attenuation caused by the near-surface region. The
model dimensions are 5 km in depth and 5 km laterally. The grid
size is 50 m in the x- and z-directions. The total number of mesh
points is 101 X 101. The source is located at x = 2500 m and
z =0 m. Figure 7 shows the computed real and imaginary parts
of the complex eikonal by the proposed method. The maximum
value of the imaginary part in Figure 7b is approximately
30 ms, which shows a very strong attenuation due to the low Q
zone in the near-surface region. To validate the result, we also
use a wavefield snapshot and a ray-tracing result on a fine grid with
mesh size of 10 m. Figure 8 shows the wavefield snapshot overlaid
by the contour of the real part at 2 s, where the contour matches well
with the first-arrival wavefront in the wavefield snapshot. Figure 9
shows a comparison between the imaginary parts obtained by the
proposed method and the ray-tracing method along two raypaths as
shown in Figure 6a, and these two results match well. This dem-
onstrates that the proposed method produces highly accurate com-
plex eikonals under the weakly attenuating approximation.

In the fourth case, we show a 3D example. We build a 3D in-
homogeneous attenuating model with the velocity and Q varying
vertically. The velocity and Q models are specified by v = 1500.0+
0.5z (m/s) and Q = 50 + 0.016z, respectively. The model dimen-
sion is 5 km in the x-, y-, and z-directions. The grid size is
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Figure 9. Comparison between the imaginary parts obtained by the
Eulerian PDE method and the ray-tracing method for the land at-
tenuating model. The imaginary parts for rays with (a) 0° and (b) 20°
takeoff angle. The red curve and the blue dotted curve are the imagi-
nary parts obtained by the ray-tracing method and the Eulerian PDE
method, respectively.
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50 m in the x-, y-, and z-directions. The total number of mesh points
is 101 x 101 x 101. The source is located at x = 2500 m,
y =2500 m, and z =0 m. Figure 10 shows the computed real
and imaginary parts of the complex eikonal by the proposed
method. This demonstrates that the proposed method performs well
in 3D applications.

Eulerian examples for real-elastic and real-viscoelastic
ray tracing

‘We now apply our proposed real-elastic and viscoelastic Eulerian
PDE methods to a particular velocity-attenuation model in Vavry-
¢uk (2012), which is smoothly inhomogeneous with a constant
gradient of the square of the complex slowness. The model is speci-
fied by

c(x) = vy +Ax+ Az, (41)
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E 0
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Figure 10. The real and imaginary parts of the complex-valued ei-
konal for the 3D model. (a) The real part and (b) the imaginary part.
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where v, is the background velocity and A, and A, are the gradients
in the x- and z-directions, respectively. This complex velocity can
also be converted into v and Q in equations 1 and 2 accordingly.
VavryCuk (2012) also proposes an analytic solution of the complex
eikonal to this model by using complex ray tracing.

In our computation, we set the model dimension to be 4 km in
depth and 10 km laterally. We choose the grid size to be 50 m in the
x- and z-directions, so that the total number of mesh points is
81 x 201. The source is located at x = 0 m and z = 0 m. We con-
sider two cases, case A and case B.

In case A, vy =1 km/s, A, = 0.1i, A, = 0.0, and the complex
velocity is shown in Figure 11. This model is relatively simple with
only a lateral gradient along the x-direction, but its quality factor
can take a value as low as one, which represents strong attenuation.
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Figure 11. (a) The real and (b) imaginary parts of the complex
velocity in case A.
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Figure 13. The complex-valued eikonal for the
real-viscoelastic Eulerian PDE method in case
A. (a) The real part and (c) its difference with
the analytic solution. (b) The imaginary part
and (d) its difference with the analytic solution.

co2NN
mowowm
Imaginary part (s)

4
02 04 06 08 X10

X (m) b X (m)
a 4
) 0 02 04 06 08 x10 )
0
—~ 0% —~
E § = E
£ 2000 6 S <2000
g 45 8
[=) 2 2 [s]
0
4000 4000
X (m) d X (m)
C 4
) 02 04 06 08 X10 )
0
E E
£ 2000 ® £2000
o) 2 @
[a] T 0O
°
4000 4000
a) 4
0
1600
1400 2
— €
E =
£ 2000 1200 3
o [}
) °
o 1000 >
800
4000
b) X (m) x10*
0 0.2 0.4 0.6 0.8
0
@
€ £
< z
£ 2000 5
. °
o >
4000
Figure 14. (a) Real and (b) imaginary parts of the complex velocity
in case B.
a) X (m) <t b) X (m)
0 0.2 04 06 038 0
0
—~ 10 &
E 8 =
%2000 g ‘_éi
a 2 9
0 ['4
4000
X (m X (m)
<) 02 0.4 (o.)s 0.8 x10* _ d)
0 S
— 157
£
- [0
%2000 5 2
a ®
0

4000

02 04 06 08 x10

02 0.4 06 0.8 x10

0.15<

=

erroi

[

Relativ

Figures 12 and 13 are the real and imaginary parts of the complex
eikonal computed by our real-elastic and real-viscoelastic Eulerian
methods, respectively. To validate these computed results, we also
compute their differences with the corresponding analytic solution.
Note that we denote these differences according to the relative
errors to make them comparable with those in Vavrycuk (2012).
The differences in Figures 12 and 13 show that the errors from
the real-viscoelastic Eulerian method are less than 0.2%, and the
real-viscoelastic Eulerian method yields higher accuracy than the
real-elastic Eulerian method in this strongly attenuating model.
The differences in Figures 12 and 13 are also comparable with those
in VavryCuk (2012), which shows that the proposed methods can
produce results comparable with those from the corresponding ray-
tracing methods.

In case B, vg = 1 km/s, A, = 0.1i, A, = —0.15, and the com-
plex velocity is shown in Figure 14. This model becomes more
complicated due to the nonzero gradients in the x- and z-directions,
and it also represents strong attenuation. Figures 15 and 16 show
the real and imaginary parts of the complex-valued eikonal com-
puted by the real-elastic and real-viscoelastic Eulerian methods,
respectively. We also compute their differences with the corre-
sponding analytic solutions. Similarly, in comparison with the
solution provided by the exact complex ray tracing, the real-visco-
elastic Eulerian method yields higher accuracy than the real-elastic
Eulerian method. Comparing the errors in case B with those in case

4 Figure 15. The complex-valued eikonal for the
real-elastic Eulerian PDE method in case B.
(a) The real part and (c) its difference with the ana-
lytic solution. (b) The imaginary part and (d) its
difference with the analytic solution.

Imaginary part (s)
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Figure 16. The complex-valued eikonal for the a)

real-viscoelastic Eulerian PDE method in case 0
B. (a) The real part and (c) its difference with
the analytic solution. (b) The imaginary part
and (d) its difference with the analytic solution.
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A, we can conclude that the approximation error due to the real-
space modeling increases as the model complexity in attenuation
increases. The differences in Figures 15 and 16 are also comparable
with those in Vavrycuk (2012), which shows that the proposed
methods can produce results comparable with those from the cor-
responding ray-tracing methods.

CONCLUSION

Computing complex-valued eikonals efficiently in attenuating
media is essential for seismic imaging and tomography. We propose
a Eulerian PDE method to compute complex-valued eikonals in at-
tenuating media as an alternative solution to the ray-tracing method.
One major advantage of the proposed Eulerian method is that it
computes complex-valued eikonals on regular grids, which can
be directly used by imaging and tomography methods. Our pro-
posed method uses two Eulerian PDEs to govern the evolution
of the real and imaginary parts of complex-valued eikonals. The
real-space eikonal equation governs the evolution of the real part
of the complex-valued eikonal, and a novel real-space advection
equation governs the evolution of the imaginary part of the com-
plex-valued eikonal. The factorization strategy is further applied
to obtain factorized Eulerian PDE:s to treat source singularities. Fur-
thermore, a third-order LxF WENO sweeping method is proposed
to solve these Eulerian PDEs. We applied the proposed Eulerian
method to several attenuation models and have obtained satisfying
results.
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APPENDIX A

HIGH-ORDER FACTORIZATION FOR
COMPUTING T*

According to ray theory, we have the following relation from the
eikonal equation 1 and the advection equation 2:

ar 1

ds v’

ar- 1 (A1)
ds  vQ’
where d/ds corresponds to the tangential derivative along a raypath
and s is the arc length.
When v and Q are constants, we can obtain the relation between
T and T*: T* = (1/Q)T. Therefore, to compute high-order approx-
imations to 7% near the source (here set at the origin), we factorize
T* as
T =TTj, (A-2)
where the singularity of 7™ at the source is captured by 7, and so the
underlying factor 77 is smooth in the neighborhood of the source.
Inserting the above factorization into equation 2 and multiplying
both sides by two, we can obtain the corresponding equation for 77;:

2 2
VT?-VTi + 5T = ——. A-3
R (A-3)
Assuming that 1/2? and 1/Q are smooth, we can expand 72, T*%,
1/v?, and 1/Q into a power series near the source as illustrated in

Qian et al. (2016):

T?=% Ty Ti=) Us %:Zsk; é:ZQk-
v=0 v=0 v=0 v=0

(A-4)
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The term T is given in Qian et al. (2016), and we know that Ty = 0,
T, =0, and T, = Sy|x|?. Inserting the above expansions into equa-
tion A-3, we can get

(i Vi) (f: vo)+2(Ys ) (S u)

v=0 v=0

-(%%)(%9)

(A-5)

We can now equate the pth degree terms to get the following
recursive equation:

i: VT, 2 VU, +2 Ep: S,.,U,=2 Ep: S,Qp-v-
v=0 v=0 v=0

(A-6)

Using the relation T, = Sy|x|> and VT, - VU, =2pSyU,, we
can obtain the following recursive formulas for {U,} for p > 0:

4 p-l
2([7 + 1)SOUp =2 Z Sva—y - Z VTp—v+2
v=0 =0

v
p—1

VU, -2)"S,.,U

p—v¥u-
v=0

(A-7)

We list some special cases for p =0, 1,2, 3,4, respectively:

p = O:ZSOU() = 2S0Q0 = UO = Qo, (A-S)

1
p = 1:4SOU1 = ZSOQI +2SlQ0 —2S1U0 = Ul :EQI’
(A-9)

p =2:65.U; =2(80Q> + 5101 + $,00) — VT3
- VU, —2(SZU0 +SlU1)

@ 510 VI5-VO,
3 765, 128,

(A-10)
= U2 =

p=3:85U; =2(S003 + S0, + 5,0, + $300) — VT,
. VUI - VT3 * VUQ
—2(S3Uq + S,U; + S,U>)

S S SU, VT, -V
=>U3:%+ 1Q2+ 201 iU, VT4 -VQ,
4 a5, 78S, 45, 165,
VT - VU,
8S,

(A-11)

p = 4:108,U,
=2(S0Q4 + 5103 + 5,0, + 8301 + 840Q0) — VTs
YU, - VT, - VU,
— YTy - VU = 2(S4Up + S3U, + S,U, + S,Us)

S S S SU, SU
=>U4:%+ 1Q3+ 20> 5301 SU, S50
5 755, 58, 105, 55, _ 55,
VTs-VQ, VT, -VU, VTs-VU,
205, 10S, 10S,

(A-12)
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