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Abstract: We propose a data and knowledge driven approach for SPECT by combining a classical iterative
algorithm of SPECT with a convolutional neural network. The classical iterative algorithm, such as ART and
ML-EM, is employed to provide themodel knowledge of SPECT. Amodified U-net is then connected to exploit
further features of reconstructed images and data sinograms of SPECT. We provide mathematical formula-
tions for the architecture of the proposed networks. The networks are trained by supervised learning using
the technique of mini-batch optimization. We apply the trained networks to the problems of simulated lung
perfusion imaging and simulated myocardial perfusion imaging, and numerical results demonstrate their
effectiveness of reconstructing source images from noisy data measurements.
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1 Introduction

The single photon emission computerized tomography (SPECT) is a nuclear medicine imaging technique
designed to visualize the functional level of a part of the body. SPECT works in the following way: a radioac-
tive chemical is injected into the bloodstream, which accumulates in a place of interest in the body, and
emitted gamma rays attenuated by the body are detected outside. The measurements of attenuated rays can
be modeled by the attenuated Radon transform

Ra f(x, θ) = ∫
R

f(x + tθ)e−Ba(x+tθ,θ) dt, x ∈ R2, θ ∈ S1 (1.1)

whereBa denotes the beam transform of a,Ba(x, θ) = ∫∞0 a(x + τθ)dτ. In equation (1.1), a(x) is the attenu-
ation function due to themass density of tissue, and f(x) is the source function that reveals the concentration
of the radioactive chemical within the body. Themain task of SPECT is to reconstruct the source function f(x)
from data measurements Ra f(x, θ).

In typical applications of SPECT, the attenuation function a(x) is assumed to be known, e.g., from an
additional CT scan. In this setup, f(x) can be reconstructed directly by means of explicit formulas. The first
analytic reconstruction method is developed in [3], and the first Radon-type explicit inversion formula is
given in [18]. The filtered back-projection (FBP) algorithm is the representative direct inversion method that
is widely used in medical imaging. The direct inversion approach is fast and has proven convergence [8],
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but it is sensitive to noise so that the inversion result relies heavily on the completeness and high quality of
measurement data. Problems of this type are more amenable to solution by iterative algorithms.

The attenuated Radon transform is linear with respect to f(x) if a(x) is known, and an iterative recon-
struction algorithm solves the system of linear equations after discretization. In computerized tomography,
the algebraic reconstruction technique (ART) [9] is widely used, which reconstructs the solution from a series
of projections and is known as Kaczmarz method in numerical linear algebra. In SPECT, statistical iterative
reconstruction algorithms are favorable, and among them, the most successful ones are the maximum-
likelihood expectation maximization (ML-EM) algorithm [21], the ordered subset expectation maximization
(OS-EM) algorithm [11], and the maximum a posteriori (MAP) reconstruction method [16]. The iterative
algorithms can include additional regularization terms, such as l1 or total variation regularization [4, 22],
to enhance sparsity or sharp edges of the reconstructed solution. The tomography problem is then solved by
minimizing an objective function consisting of data discrepancies and regularization terms, and optimization
algorithms such as the gradient descent method, the ADMM method [23], and the primal-dual method [24]
can be used in this scenario.

In recent years, utilizing deep learning neural networks has arisen as a new trend in imaging science.
The deep learning methods have provided overwhelming performance for image segmentation [6, 19], clas-
sification [15], and recognition [10, 20]. The convolutional neural network architecture plays a key role in
state-of-the-art deep learning approaches. Comparing to traditional fully connected networks, the convo-
lutional neural network has a lower scale of connectedness and complexity, which makes it less prone to
over-fitting. Therefore, researchers are beginning to embrace the use of convolutional neural networks in
medical image reconstructions. For example, [1] proposes a partially learned gradient descent approach for
computerized tomography reconstruction, where the convolutional network is employed to learn the gra-
dient component in each iteration; [2] further proposes a learned primal-dual algorithm for tomographic
reconstruction, where the convolutional network is used to replace proximal operators in the primal-dual
optimization method; [13] combines the filtered back-projection (FBP) with the convolutional neural net-
work to solve normal-convolutional inverse problems, such as the computerized tomography reconstruction;
[7] uses the same idea of [13] to accelerate image reconstructions of SPECT. In the aboveworks, both the deep
learning approaches and the classical iterative or direct inversion algorithms are employed when developing
reconstruction methods. In [1, 2], the convolutional network is incorporated into the iterative optimization
algorithms; in [7, 13], the direct-inversion FBP algorithm is applied before using the neural network learn-
ing approach. While classical iterative or direct inversion algorithms utilize the knowledge of tomographic
modelswhich captures themathematical relationbetween reconstructedobjects andmeasurementdata, con-
volutional neural networks are able to exploit hidden features of the input data by providing a sophisticated
architecture between its input and output. As a result, the combination of a learning approach and a classical
inversion algorithm leads to a data and knowledge driven approach that is able to use both features of data
and knowledge of models.

Inspired by the works of [1, 2, 7, 13], we propose a reconstruction method for SPECT using convolu-
tional neural networks and iterative algorithms. The basic structure of the proposed method is to apply the
classical iterative algorithms to themeasurement data at first, and then use the result as the input of a convo-
lutional neural network which is trained to refine the solution to the ground truth image, yielding a data and
knowledge driven approach. In the knowledge driven part, only a small number of iterations are performed
when using the classical iterative algorithms. A rough prediction of the ground truth is adequate to exploit
the knowledge of tomographic models. In the deep learning part, we propose a modified U-net architecture
to link the prediction of the iterative algorithm to the final reconstructed image. The U-net is a convolutional
neural network that was originally designed for biomedical image segmentation [19], and it is able to exploit
more precise features with fewer training samples. In this work, we only reconstruct the source function f(x)
by assuming that the attenuation coefficient a(x) is known. The framework of the proposed method can be
extended to solve the identification problem of SPECT [17], where both the source and attenuation functions
are to be determined, and it is an ongoing work.
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The rest of the paper is organized as follows. In Section 2, we provide the classical iterative algorithms
which will be used in this work. In Section 3, we develop the data and knowledge driven approach for SPECT,
where both an ART U-net and an ML-EM U-net are developed. In Section 4, we apply the proposed method to
simulated lung perfusion imaging and myocardial perfusion imaging. In Section 5, we draw our conclusion
and discuss future works.

2 Iterative algorithms

The discretized version of SPECT is a linear system when a(x) is known,

p = Af , (2.1)

where f = (fj)N×1 denotes the vector of a source image, p = (pi)M×1 simulates the measurement data in the
sinogram, and A = (ωi,j)M×N is the kernel matrix of the ray integral. The component ωi,j represents the con-
tribution of the j-th pixel of the source image to the i-th datum in the sinogram. We provide two classical
iterative algorithms for (2.1) that will be used in this paper. Themotivation is that even if the applied iterative
algorithm does not yield a perfect fit to the data of the tomographic problem, feeding the imperfect recon-
struction into the convolutional neural network will be able to achieve a decent overall reconstruction. As
a result, we choose two simple and widely used iterative algorithms in tomographic reconstructions.

2.1 ART algorithm

The algebraic reconstruction technique (ART) computes the reconstruction image froma series of projections.
Although it was intended for tomographic problems using transmission rays, such as traditional computer-
ized tomography (CT), it can be applied to SPECT as well. Starting from an initial guess of the source image,
such as f(0) = 0, the method updates f according to the following formula:

f(k) = f(k−1) + rk
pi − aif(k−1)

‖ai‖22
aTi , k ∈ ℕ+, i = 1, 2, . . . ,M, (2.2)

where ai denotes the i-th rowof thematrixA, ai = (ωi,1, . . . , ωi,N), and rk is an optional relaxation parameter
of the range 0 < rk < 2. We are not trying to adjust the value of rk in this work, but simply set it to be 0.5 when
applying the ART algorithm. One round of ART iterations implies one complete sweep of the measurement
data pi, where i goes from 1 to M.

2.2 ML-EM algorithm

The maximum-likelihood expectation maximization (ML-EM) algorithm calculates the most likely distribu-
tion of the solution from data measurements. The method is widely used for image reconstruction in the
emission tomography such as PET and SPECT. We adopt a standard version of the ML-EM algorithm which
uses the following formula to update f:

f (k)j =
f (k−1)j

∑Mi=1 ωi,j

M
∑
i=1

ωi,j
pi

∑Nj󸀠=1 ωi,j󸀠 f (k−1)j󸀠
, 1 ≤ j ≤ N, k ∈ ℕ+.

The initial guess of the source function can be taken as f(0) = 1, and the ML-EM algorithm ensures the posi-
tivity of f in iterations.
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3 Proposed method: ART U-net and ML-EM U-net

3.1 Framework of the algorithm

We propose a data and knowledge driven approach for SPECT using both iterative algorithms and convolu-
tional neural networks. Denote the measurement data by p∗ ∈ ℝM and the true image by f∗ ∈ ℝN . We have
the following model equation:

p∗ = Af∗ + δp, (3.1)

where δp represents the contamination of noises.
Firstly, we establish an architecture that combines an iterative algorithmwith a learning approach. Let F

represent the operation of one round of iterations of a classical iterative algorithm,

f(k) = F(p∗; f(k−1)),

and ΛΘ denotes the operation of a convolutional neural network, ΛΘ : ℝN → ℝN , with Θ being the vector of
network parameters to be estimated. The combined operation is written as the following:

A
†
Θ = ΛΘ ∘ Fn , (3.2)

whereFn = F ∘ Fn−1 andF1 = F, so thatA†Θ will provide an inverse operator for the SPECTmodel as shown in
equation (3.1), where the approximate inverse operator is composed of themodel-driven part captured byFn

and the data-driven part captured by ΛΘ. We propose to use a modified U-net for constructing ΛΘ and use
the ART and ML-EM, respectively, for constructing F. It leads to two combined networks for the solution of
SPECT, which are named “ART U-net” and “ML-EM U-net”, and denoted byA†(art)Θ andA

†(mlem)
Θ , respectively.

In formula (3.2), the parameter n controls the number of iterations when using one of the classical iterative
algorithms. For ART, n = 1means a full round of iterationswhich uses the complete set of datameasurements
as shown in equation (2.2). The value of n must be small enough for efficiency and large enough to let the
iterationswork. Ideally, n shouldbe the smallest number that allows the iterations to explore the tomographic
model adequately.

Weuse a supervised learning approach to train thenetworkA†Θ anddetermine the vector of parametersΘ.
Let {(f∗s , p∗s ) | s = 1, . . . , S} be the set of training samples which includes simulated source images and data
measurements. The loss function of one training sample is defined as the following:

Ls(Θ) = ‖A†Θ(p
∗
s ) − f∗s ‖22 + λ‖Θ‖22,

where the first term measures the misfit between the output solution and the sample image, and the second
one provides an l2 regularization for Θ aiming to suppress overfitting. The parameter λ controls the amount
of regularization applied. The total cost function is then the average of the loss functions,

J(Θ) = 1S

S
∑
s=1

Ls(Θ) =
1
S

S
∑
s=1
‖A†Θ(p

∗
s ) − f∗s ‖22 + λ‖Θ‖22,

and the vector Θ is determined by solving the optimization problem argminΘJ(Θ).
We propose to use a mini-batch optimization technique which employs a small batch of the set of train-

ing samples at each iteration to update the parameter Θ. The mini-batch approach can achieve a balance
between the efficiency and the robustness of training algorithms [5], and it is widely used for solving large-
scale optimization problems in deep learning. Let n0 denote the batch size so that the training samples are
split into N0 = S

n0 batches,

{(f∗s , p∗s ) | s = 1, . . . , S} =
N0

⋃
t=1
{(f∗s , p∗s ) | s ∈ Σt},

where Σt = {n0(t − 1) + 1, . . . , n0t}. Accordingly, the iteration update for Θ will be carried out based on the
cost function for each batch,

Jt(Θ) =
1
n0
∑
s∈Σt
‖A†Θ(p

∗
s ) − f∗s ‖22 + λ‖Θ‖22. (3.3)
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The training vector Θ is updated according to the Adam algorithm [14], which is a state-of-the-art technique
for the first-order gradient-based stochastic optimization. The formulas for updating Θ are given as follows:

g(k) = ∇ΘJt(Θ(k−1)), (3.4)
m(k) = β1m(k−1) + (1 − β1)g(k), (3.5)
v(k) = β2v(k−1) + (1 − β2)(g(k))2, (3.6)

m̂(k) = m(k)

1 − βk1
, (3.7)

̂v(k) = v(k)

1 − βk2
, (3.8)

Θ(k) = Θ(k−1) − α m̂(k)

√ ̂v(k) + ϵ
, (3.9)

where k denotes the iteration number, k ∈ ℕ+, and the batch number t is consecutively taken as 1, 2, . . . , N0,
i.e. t ≡ k (mod N0). In formulas (3.4)–(3.9), the products and quotients between vectors indicate element-
wise operations. The good default settings for the constant parameters are α = 0.001, β1 = 0.9, β2 = 0.999,
and ϵ = 10−8 (see [14]). In equation (3.4), the gradient of the cost function is evaluated in the following way:

∇ΘJt(Θ) =
2
m ∑s∈Σt
(∇ΘA†Θ(p

∗
s ))

T(A†Θ(p
∗
s ) − f∗s ) + 2λΘ,

where ∇ΘA†Θ(p∗s ) = ∇ΘΛΘ(Fn(p∗s )) and ∇ΘΛΘ is evaluated by the back-propagation algorithm for supervised
learning. Once the training of the parameter vector Θ is completed, the combined networkA†Θ : ℝM → ℝN is
available, leading to

f(solution) = A†Θ(p
∗). (3.10)

3.2 U-net for ΛΘ

Recalling equations (3.2) and (3.10), the input of ΛΘ is Fn(p∗s ), which is an intermediate prediction of the
source image, and the output of ΛΘ is the refined reconstruction of the source image. We propose to use
a modified U-net for constructing ΛΘ.

The U-net is a convolutional neural network that was originally designed for biomedical image seg-
mentation [19]. The network consists of a contracting path and a symmetric expanding path so that it has
a U-shaped architecture. The contracting path is a typical convolutional network that consists of repeated
applications of convolution, each followed by a rectified linear unit (ReLU) and a max pooling operation.
The expanding path is designed to enable precise localization combined with contextual information from
the contracting path. Every step in the expanding path consists of an upsampling followed by a convo-
lution, a concatenation with the cropped feature map from the contracting path, and two convolutions,
each followed by a ReLU. The U-net has the strength of exploiting more precise features with fewer training
samples. In [13], some advantageous properties of the U-net for applications in computerized tomography
are discussed.

Figure 1 shows the architecture of themodified U-net that is used in this work. Although the network has
the same topology as the originally designed U-net in [19], there are some major differences. Firstly, the last
layer leads to a single output image which expresses the source image, but the original U-net results in two
channels: foreground and background. In addition, we add a sigmoid activation function so that the output
value is between 0 and 1, which fits to features of the normalized source function taking values in [0, 1].
Secondly, since the input and output source images have the same size, we use zero-padding before each
convolution so that the size of each feature map does not decrease. The concatenation operation consists of
only copying instead of copying and cropping, as well. Thirdly, we add a batch normalization after each con-
volution, which is a state-of-the-art technique for accelerating training speed and improving the performance
of optimization [12].



6 | W. Ao, W. Li and J. Quian, A data and knowledge driven approach for SPECT

25
6x

25
6

25
6x

25
6

25
6x

25
6

12
8

2

12
8

2

12
8

2

64
2

32
2

64
2

64
2

32
2

32
2

16
2

16
2

16
2

32
2

32
2

32
2

64
2

64
2

64
2

12
8

2

12
8

2

12
8

2
25

6x
25

6

25
6
x2

56

25
6
x2

56

25
6
x2

56

1 64

1024

64 64

128

128

512

128128 256

256 256256

512

512

512

1024

Input Output

conv 3x3, BN, ReLU

copy

max pool 2x2

up-conv, BN, ReLU

conv 1x1, BN, sigmoid

64 1

Figure 1: A modified U-net for the design of ΛΘ.

4 Implementation and results

We apply the proposed method to the problems of simulated lung perfusion imaging and simulated myocar-
dial perfusion imaging, respectively. In this section, we illustrate the reconstruction of source images with
piecewise constant structures.

4.1 Data preparation

We will train the ART U-net and the ML-EM U-net in the context of lung perfusion imaging. The attenuation
map is given inFigure2,which is aCT imageof lungswith256 × 256pixels.Weprepare1400 synthetic source
images, denoted as {f∗s | s = 1, . . . , 1400}, and Figure 3 (a) shows six of them. Each source image consists of
ellipses of random sizes and locations, and the resolution is uniformly of 256 × 256 pixels. The correspond-
ing data sinograms, denoted as {p∗s | s = 1, . . . , 1400}, are of size 256 pixels by 60 views and are created by
equation (3.1), where random noises are added to simulate the situation of practical measurements. To illus-
trate the capability of the combined network in fitting random noises, we use two types of noises and create
two sets of data sinograms. Sinograms in the first set are contaminated by 5% to 25%Gaussian noises,which
will be used for training, validation, and test of the ART U-net; Figure 3 (b) shows six of them. Sinograms in
the second set are contaminated by 5% to 25% pepper and salt noises, which will be used for the ML-EM
U-net, and Figure 3 (c) shows six of them.

4.2 Process of training

For each network (A†(art)Θ or A†(mlem)
Θ ), we have 1400 pairs of samples including source images f∗s and the

corresponding sinograms p∗s . We separate the 1400 samples into three sets: the training set of 1000 samples,
{(f∗s , p∗s ) | s = 1, . . . , 1000}, the validation set of 200 samples, {(f∗s , p∗s ) | s = 1001, . . . , 1200}, and the test
set of the remaining 200 samples, {(f∗s , p∗s ) | s = 1201, . . . , 1400}. To train the combined network as shown
in equation (3.2),wemust fix thehyperparameter nwhich indicates thenumber of iterationswhen employing
the classical iterative algorithm.As discussed in Section3.1, n should be small enough for efficiency and large
enough to explore the model space adequately. In the context of supervised learning, such a hyperparameter
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Figure 2: Attenuation map of lungs.

(a)

(b)

(c)

Figure 3: Six of the 1400 samples of source images and data sinograms. (a) Source images (256 × 256 pixels);
(b) corresponding sinograms contaminated by 5% to 25% Gaussian noises; (c) corresponding sinograms contaminated
by 5% to 25% pepper and salt noises. The sinograms are of size 256 pixels by 60 views.

can be tuned according to the performance of the trained network on the validation set. We take n = 1 for the
ART U-net A†(art)Θ , which is the smallest number allowing ART to utilize all sinograms in the training set at
least once. And for the ML-EM U-net A†(mlem)

Θ , we take n = 10. We remark that just taking n = 1 for the ART
will not guarantee that the iterative algorithm converges, and the same can be said when just taking n = 10
for the ML-EM. For example, Figure 4 shows the convergence history of the ART algorithm when applied to
one of the prepared sinogram samples, where the discrepancy term used to evaluate the convergence of ART
is defined as

D(k) = √ 1
M

M
∑
i=1

|pi − Aif(k)|2

‖Ai‖22

with Ai denoting the i-th row of the matrix A as shown in equation (2.1).
The combined network is trained on an Nvidia Tesla V100 GPU using the training set of 1000 samples.

Meanwhile, the validation set of 200 samples is used to evaluate the training. The validation set does not
contribute to the updating of Θ, but simply monitors the performance of the network in the training process.
To implement the mini-batch optimization, we set the batch size n0 to be n0 = 10 so that 10 samples are
employed in the network at each iteration. The regularization parameter in themini-batch cost function Jt(Θ)
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Figure 4: A convergence history of the ART algorithm. It is far from convergence at k = 1.

(a) (b)

Figure 5: Convergence plots of the training process. (a) Convergence of Jt(Θ) forA†(art)Θ ; (b) convergence of Jt(Θ) forA†(mlem)Θ .

(equation (3.3)) is taken to be λ = 0.004. Figure 5 (a) shows the convergence history of Jt(Θ) for the training
of A†(art)Θ , and Figure 5 (b) shows the convergence history for the training of A†(mlem)

Θ . In the convergence
plots, the red line indicates the mini-batch cost function on the training set, and the blue line indicates the
mini-batch cost function on the validation set.

Finally, we use the test set of 200 samples to evaluate the trained network. Themean squared error (MSE)
on the source image is used to measure the performance of reconstructions, and it is defined in the following
way:

MSE = 1N ‖f
∗ − f(solution)‖22, f∗, f(solution) ∈ ℝN .

Figure 6 shows the values of MSE on the test samples, where Figure 6 (a) plots MSE for the trained ART U-net,
and Figure 6 (b) plots MSE for the trainedML-EMU-net. We conclude that both networks are well trained and
have decent performance on the samples from their corresponding test sets.

(a) (b)

Figure 6:Mean squared error (MSE) of the trained network when applied to the test samples.
(a) MSE forA†(art)Θ ; (b) MSE forA†(mlem)Θ .
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4.3 Reconstruction results

4.3.1 An example of lung perfusion imaging

The trained networks A†(art)Θ and A
†(mlem)
Θ are applied to the problem of simulated lung perfusion imaging.

The attenuation map of lungs is given in Figure 2, which is assumed to be known in the reconstruction. Fig-
ure 7 (a) shows the exact source image, and Figure 7 (b) shows the clean sinogram data. The trained ART
U-net A†(art)Θ is applied to the clean sinogram and the sinograms contaminated by 10% and 20% Gaussian
noises, respectively. Figure 8 shows the reconstruction results, where Figure 8 (a)–(c) plot the final solutions
of the source image, and Figure 8 (d)–(f) plot the intermediate outputs of the ART iterations for illustration
purpose. To quantitatively evaluate the performance of reconstructions, we compute the mean squared error
(MSE) and the peak signal-to-noise ratio (PNSR), where a lower MSE and a higher PNSR correspond to a bet-
ter reconstruction; Table 1 shows the results. The intermediate outputs of ART show fuzzy images with line
artifacts, especially when Gaussian noises are added to the sinogram data. The combined ART U-net signifi-
cantly refines the intermediate solutions and leads to correct reconstructions of the source image which has
a piecewise constant structure.

Similarly, we apply the trained ML-EM U-netA†(mlem)
Θ to the clean sinogram data and the sinograms con-

taminated by 10% and 20% pepper and salt noises. Figure 9 shows the final solutions of the source image
and the intermediate outputs of ML-EM. Table 2 provides the values of MSE and PNSR. Again, the trained
network significantly improves the intermediate outputs of ML-EM and achievesmuch better reconstructions
even when large amounts of pepper and salt noises are introduced.

(a) (b)

Figure 7: Lung perfusion imaging: source function and data sinogram.
(a) Exact source image; (b) clean data sinogram without noises.

MSE PNSR

Gaussian noises Final solution Intermediate output Final solution Intermediate output

0 0.001781 0.009208 27.5 13.88
10% 0.002417 0.018409 26.17 11.28
20% 0.005447 0.046377 22.62 9.72

Table 1: Lung perfusion imaging: MSE and PNSR of the final solutions and the intermediate outputs ofA†(art)Θ .

MSE PNSR

Pepper and salt noises Final solution Intermediate output Final solution Intermediate output

0 0.005123 0.008485 22.90 19.76
10% 0.004992 0.013466 23.01 12.11
20% 0.004997 0.018745 23.01 11.08

Table 2: Lung perfusion imaging: MSE and PNSR of the final solutions and the intermediate outputs ofA†(mlem)Θ .
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(a) (b) (c)

(d) (e) (f)

Figure 8: Lung perfusion imaging: solutions byA†(art)Θ . (a)–(c) Final solutions when applyingA
†(art)
Θ to the sinograms

with 0, 10%, and 20% Gaussian noises; (d)–(f) intermediate outputs of ART inA
†(art)
Θ .

4.3.2 An example of myocardial perfusion imaging

Weapply the trained networksA†(art)Θ andA†(mlem)
Θ to the problemof simulatedmyocardial perfusion imaging.

This example aims to illustrate the transferable feature of the proposed networks since they are only trained
in the context of lung perfusion imaging.

Figure 10 (a) shows the attenuationmap,which is a CT image ofmyocardiumand is assumed to be known
in the reconstruction. Figure 10 (b) shows the exact source image, and Figure 10 (c) shows the clean sinogram
data.

TheARTU-netA†(art)Θ is applied to the clean sinogramand the sinograms contaminated by 10%and20%
Gaussian noises, respectively. Figure 11 shows the reconstruction results, where Figure 11 (a)–(c) plot the
final solutions of the source image, and Figure 11 (d)–(f) plot the intermediate outputs of the ART iteration.
Table 3 shows the values of MSE and PNSR for these solutions and intermediate outputs. The trained ART
U-net successfully recovers the source image from noisy sinograms in the context of myocardial perfusion
imaging. Although only one round of the ART iteration is employed and the intermediate outputs are con-
taminated by artifacts, the combined network is able to explore the feature of the source image, yielding
good reconstructions even when 20% Gaussian noises are introduced.

Similarly, the trained ML-EM U-net A†(mlem)
Θ is applied to the clean sinogram and the sinograms con-

taminated by 10% and 20% pepper and salt noises. The recovered solutions and intermediate outputs are
shown in Figure 12; the values of MSE and PNSR for these results are provided in Table 4. We conclude that
the reconstructions are successful, which recover very well the shape and concentration values of the source
image.We conclude that the network trained in the lung perfusion imaging can be transferred to the problem
of myocardial perfusion imaging.

MSE PNSR

Gaussian noises Final solution Intermediate output Final solution Intermediate output

0 0.000402 0.002535 34.17 18.09
10% 0.000528 0.003340 32.93 15.69
20% 0.000854 0.005521 30.77 14.35

Table 3:Myocardial perfusion imaging: MSE and PNSR of the final solutions and the intermediate outputs ofA†(art)Θ .
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(a) (b) (c)

(d) (e) (f)

Figure 9: Lung perfusion imaging: solutions byA†(mlem)Θ . (a)–(c) Final solutions when applyingA
†(mlem)
Θ to the sinograms

with 0, 10%, and 20% pepper and salt noises; (d)–(f) intermediate outputs of ML-EM inA
†(mlem)
Θ .

(a) (b) (c)

Figure 10:Myocardial perfusion imaging: setup of problem. (a) Attenuation map; (b) exact source image;
(c) clean data sinogram without noises.

(a) (b) (c)

(d) (e) (f)

Figure 11:Myocardial perfusion imaging: solutions byA†(art)Θ . (a)–(c) Final solutions when applyingA
†(art)
Θ to the sinograms

with 0, 10%, and 20% Gaussian noises; (d)–(f) intermediate outputs of ART inA
†(art)
Θ .



12 | W. Ao, W. Li and J. Quian, A data and knowledge driven approach for SPECT

(a) (b) (c)

(d) (e) (f)

Figure 12:Myocardial perfusion imaging: solutions byA†(mlem)Θ . (a)–(c) Final solutions when applyingA
†(mlem)
Θ to the sinograms

with 0, 10%, and 20% pepper and salt noises; (d)–(f) intermediate outputs of ML-EM inA
†(mlem)
Θ .

MSE PNSR

Pepper and salt noises Final solution Intermediate output Final solution Intermediate output

0 0.000341 0.001652 35.20 27.35
10% 0.000600 0.002380 32.51 20.84
20% 0.000817 0.003155 31.08 20.55

Table 4:Myocardial perfusion imaging: MSE and PNSR of the final solutions and the intermediate outputs ofA†(mlem)Θ .

5 Conclusion and future work

We have proposed a data and knowledge driven approach for SPECT that combines classical iterative algo-
rithms with convolutional neural networks. The classical iterative algorithms, such as ART and ML-EM, are
employed to include the model knowledge of SPECT, and the modified U-net is used to explore additional
features of the source images and the sinogram data. We have developed an ART U-net and an ML-EM U-net,
correspondingly. The proposed networks are trained according to supervised learning, where the mini-batch
technique is used in the optimization process. We have applied the trained networks to the problems of simu-
lated lung perfusion imaging and simulatedmyocardial perfusion imaging, respectively. Numerical examples
demonstrate that the proposed networks are capable of reconstructing clean source functions even though
a large amount of noise is introduced to the sinogram data.

In this work, we have assumed that the attenuation function is known so that we only reconstruct the
source function in SPECT. The framework of the proposed networks, however, can be generalized to solve
the identification problem of SPECT, where both the attenuation and source functions are to be determined.
Firstly, the combined network will employ an iterative algorithm in the model-driven part so that it has the
potential to handle the identification problem if an appropriate iterative algorithm is chosen.

Our work demonstrates that the performance of the combined network does not heavily rely on the selec-
tion of classical iterative algorithms since both ART and ML-EM lead to successful networks; therefore, it
gives large flexibilities to the design of networks within the proposed framework. Secondly, our numerical
examples illustrate that the combined networks are capable of reconstructing source images with piecewise
constant structures. In the identification problem of SPECT, a piecewise constant source function is helpful
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to alleviate ill-posedness and achieve uniqueness of the solution. In short, the proposed approach has the
potential to solve the identification problem of SPECT, and we will study it in a future work.
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