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Abstract
This paper presents a continuous-time model of intraday trading, pricing, and liquidity with
dynamic TWAP and VWAP benchmarks. The model is solved in closed-form for the com-
petitive equilibrium and also for non-price-taking equilibria. The intraday trajectories of
TWAP trading targets cause predictable intraday patterns of price pressure, and randomness
in VWAP target trajectories induces additional randomness in intraday price-pressure pat-
terns. TWAP and VWAP trading both reduce market liquidity and increase price volatility
relative to just terminal trading targets alone. The model is computationally tractable, which
lets us provide a number of numerical illustrations.

Keywords Dynamic trading · TWAP · VWAP · Portfolio rebalancing · Liquidity ·
Market-maker inventory · Equilibria ·Market microstructure

JEL Classification G12 · G14
Dynamic order-splitting strategies are a prominent feature of present-day financial markets.
As described in O’Hara [35], large asset managers use sequences of small child orders to
trade on large latent meta parent demands. These strategies include heuristically mimicking
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the time-weighted average price (TWAP) or volume-weighted average price (VWAP) and
also optimized strategies from formal execution-costminimization problems (see, e.g., [1,2]).
The scale of order splitting in present-day markets is substantial. The Financial Insights [18]
trading survey reports that one popular strategy, VWAP execution orders, represents around
50%of all institutional trading.1 Dynamic trading strategies can be price-sensitive in that they
respond to the price of liquidity as investors trade off price improvement and trading profits vs.
tracking error relative to intraday trading targets.2 In addition, high frequency market makers
use dynamic strategies to supply liquidity while attempting to keep their inventory close to
an intraday target of zero.3 The result is a complex ecosystem in which asset managers, other
position-taking traders, and high frequency market makers all use dynamic trading strategies
to supply and demand liquidity given different benchmarked intraday targets.

Our paper is the first tomodel the equilibrium impact of TWAP, VWAP, and other dynamic
benchmarks on intraday trading and liquidity. Specifically, we focus on liquidity effects of
order splitting rather than on information aggregation as in Kyle [30]. We take intraday
trading target trajectories and penalties as inputs to our model, and then show how they
affect price dynamics and liquidity over the trading day via their effect on aggregate order
imbalances. In particular, we model a market with multiple price-sensitive investors with
heterogeneous trading targets who follow optimal continuous-time dynamic strategies. We
solve for equilibria in closed-form. Our main results are as follows:

• Order-splitting benchmarks like TWAP, Almgren-Chriss targets, and VWAP lead to pre-
dictable intraday price pressure due to persistant latent trading-demand imbalances. In
particular, aggregate latent buy (sell) imbalances lead to positive (negative) price pressure
at themarket open that then decays, i.e., trends down (up) on average, over the trading day.

• Trading benchmarks reduce intraday liquidity and increase price volatility relative to
when investors just have terminal end-of-day trading targets. This is because penalties
for intraday deviations from trading target trajectories reduce the inventory-holding flex-
ibility of investors over the day.

• Comparative static results lead to empirical predictions about price dynamics. For exam-
ple, market illiquidity and price volatility in a competitive Radner equilibrium are
increasing in investor order-execution costs and inventory penalties for trading devia-
tions from trading target trajectories.

• In a competitive Radner equilibrium, price-sensitive investors deviate from their ideal
trading targets by a fraction of the aggregate latent trading-demand imbalance. In non-
price-taking equilibria, investor target deviations can also depend on individual investor
targets.

Our research is related to several prior research literatures. First, there is a large optimal
control literature on optimal order execution with exogenous price impact. This includes
Bertsimas and Lo [6], Almgren and Chriss [1,2], Gatheral and Schied [22], Engle et al. [17],
Predoiu et al. [37], Boulatov et al. [8] and other research surveyed in Gatheral and Shied

1 Large asset managers conduct dynamic trading strategies using in-house trading desks and also via principal
and agency trading with external brokers.
2 Madhavan [32] discusses price improvement on order execution relative to VWAP.Domowitz andYegerman
[13] estimate empirical order-execution costs benchmarked relative to VWAP.
3 Hagströmer and Nordén [26] and Menkveld [34] show that high-frequency (HFT) market makers are an
important source of intraday liquidity. A common feature of HFT market makers is that they have “very
short time-frames for establishing and liquidating positions” SEC [41], which is consistent with a zero target
inventory level. Weller [45] shows further that liquidity over the trading day is provided by a network of
liquidity providers with slower and faster trading latencies who shift inventory between themselves over
holding periods of different lengths. This behavior is also consistent with zero intraday inventory targets.
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[23]. In contrast, we model dynamic trading benchmarks and their effects in an equilibrium
framework. Second, the practice of benchmarking order-execution quality with VWAP and
other metrics is described in Berkowitz et al. [5] andMadhavan [32].4 Baldauf et al. [3] show
that VWAP benchmarking is optimal for certain principal-agent problems in delegated order
execution. In contrast, we model the market effects of trading benchmarks rather than the
reasons why investors have such benchmarks. Third, Korajczyk andMurphy [29], van Kervel
and Menkveld [43], and van Kervel et al. [42] document empirical interactions between
dynamic trading by different investors. Our work is most closely related to van Kervel et
al. [42], which shows theoretically and empirically how dynamic trading strategies interact
across multiple strategic investors. In contrast, we model the equilibrium price effects of
dynamic trading as well as trading interaction effects.

Our analysis extends the costly inventory model of market making—see, e.g., Garman
[21], Stoll [40], and Grossman and Miller [24]—by allowing for endogenous arriving orders
from optimized order-splitting strategies. In particular, our model highlights the idea that,
with endogenous investor trading demand, price pressure in equilibrium prices is not just due
to inventory-holding costs of liquidity providers on executed transactions. Rather, equilibrium
price pressure also depends on the underlying latent investor trading-demand imbalances. In
order for markets to clear, equilibrium prices deter investors from trading on trading demands
for which there is no counterparty. This is a new perspective relative to more transactional
market microstructure models, but one that is consistent with empirical evidence in van
Kervel et al. [42] that large investors trade less in the direction of aggregate imbalances in
underlying parent trading demands. Ourmodeling approach is related to previous research by
Brunnermeier and Pedersen [9] and Carlin et al. [10] on optimal rebalancing and predatory
trading. There are two main differences: First, investors in our model are subject to penalties
tied to intraday trading target trajectories rather than to just a single hard terminal constraint
at the end of the day. Second, there are no ad hoc intraday liquidity providers in our model.
Instead, all intraday liquidity is provided endogenously by rational optimizing investors. As
a result, there is no predatory trading in our model even when investors are strategic.5 Our
paper also builds on the Vayanos [44] dynamic trading model. Like Vayanos [44]—and the
continuous-time extension in Sannikov and Skrzypacz [39]—our model includes investors
who smooth a series of random intraperiod shocks but, in addition, we also have investors
with private heterogeneous trading target trajectories they would like to follow over the day.
The discrete-time model in Du and Zhu [14] also has quadratic penalties but with zero targets
and has private dividend information (whereas dividend information is public in our model).

Ourmodel is also related toGârleanu and Pedersen [20] and themulti-investor extension in
Bouchard et al. [7]. In these competitive equilibriummodels, traders incur penalties based on
their stock holdings and their trading rates. Our model differs because we allow for possible
price-impact of individual trades and for non-zero trading targets that are ex ante private
information.

Lastly, there is no asymmetric information about future asset cash-flow fundamentals
in our model. Thus, our analysis here on trading and non-informational price pressure is
complementary to Choi et al. [11], which studies order-splitting and dynamic rebalancing
in a Kyle [30] style market in which a strategic informed investor with long-lived private

4 Implementation shortfall is another alternative trading benchmark; see Perold [36].
5 Predatory trading is a manipulative strategy to buy (sell) to raise (lower) prices artificially and then unwind
these positions at a profit given price support from predictable persistent buying (selling) by a large investor
rebalancing its portfolio. In Brunnermeier and Pedersen [9], predatory trading is possible because of ad hoc
liquidity providers who trade using exogenous linear schedules that do not rationally anticipate predictable
future price changes later in the day given earlier trading.
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information and a strategic rebalancerwith a hard terminal trading target both follow dynamic
trading strategies.

1 Model primitives

Thegoal of our analysis is tomodel the equilibriumeffects ofTWAPandother intraday trading
benchmarks on prices and trading. Thus, the necessary model ingredients are investors who
have heterogeneous trading targets and penalties for deviating from their intraday targets
and who are price-sensitive so that market-clearing can be endogenized. Moreover, given the
high empirical frequency of child orders in dynamic order-execution strategies in Korajczyk
and Murphy [29] and van Kervel and Menkveld [43], modeling these effects in continuous
time is appropriate.

We develop a continuous-time equilibrium model with a unit time horizon in which trade
takes place at each time point t ∈ [0, 1]. This can be interpreted as one trading day. There are
two securities: A money market account with a constant unit price (i.e., the account pays a
zero interest rate) and a stockwith an endogenously determined price process S = (St )t∈[0,1].
Information about future dividends is generated by an exogenous standard Brownian motion
D = (Dt )t∈[0,1]with a given known initial value D0 ∈ R, zero drift, and volatility normalized
to one. Here Dt denotes the expected present value at time t ≤ 1 of subsequent future
dividends, where D1 is the expectation at the end of the day. The market microstructure
literature calls Dt the “fundamental asset value.” In our model, the difference St − Dt is
price pressure required to clear the stock market.

Investors in our model all follow optimal trading strategies that trade off trading prof-
its/costs and different types of inventory-holding penalties. For a generic investor i , let θi,t
denote the investor’s actual stock holdings at time t ∈ [0, 1]. By subtracting any initial stock
position, we can, without loss of generality, normalize initial stock positions θi,− to zero.
Let θci,− denote the trader’s initial cash money-market balance. Formally, the optimal stock
holdings for each investor i over the day solve an optimization problem

Vi (Xi,0) := sup
θi∈Ai

E
[
Xi,1 − Li,1

∣∣∣Fi,0

]
, (1.1)

where Xi,1 is the investor’s terminal wealth at t = 1 given her trading gains or losses over
the day given by the wealth process

Xi,t := θci,− +
∫ t

0
θi,udSu, t ∈ [0, 1], (1.2)

where Xi,0 := θci,− is investor i’s initial wealth (i.e., initial cash balance in her money market
account) and where Li,1 in (1.1) is an investor-specific terminal cumulative inventory penalty
at t = 1 that accrues over the day. The initial information set Fi,0 in (1.1) is formally defined
below in (1.12), and the admissible set of controls Ai is defined below in Definition 2.1.

Two types of investors trade in our model with different holding penalties:

• There are M ∈ N price-sensitive targeted investors whose terminal penalty Li,1 accrues
via a penalty process

Li,t :=
∫ t

0
κ(s)

(
θi,s − γ (s)ãi

)2ds, t ∈ [0, 1], i ∈ {1, . . . ,M}, (1.3)

where ãi is investor i’s end-of-day target stock holdings and γ (t)ãi is a trajectory of
intraday target stock holdings. The function κ(t) describes the severity of penalties for
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deviations of actual holdings θi,t over time from the target trajectory γ (t)ãi . The variables
(ãi , θci,−) are private knowledge of trader i but are partially revealed in equilibrium to
other investors. At this point, we make no distributional assumptions about (ã1, . . . , ãM )

except that they are independent of the dividend-information Brownian motion D.6

We differentiate between two types of targeted investors based on their trading targets ãi .
We refer to traderswith targets ãi $= 0 as rebalancers. These are large assetmanagerswho
use dynamic order-execution algorithms to trade on their targets. Traders with ãi = 0 do
not need to trade per se but can provide liquidity, and so we call these intraday liquidity
providers.
The target ratio γ (t) is a deterministic function that gives how much of her daily target
ãi investor i would ideally hold at each time t during the day. The trajectory γ (t)ãi can
be thought of as a time-weighted average price (TWAP) strategy or as, more generally,
a variation on an Almgren-Chriss trading strategy.7 Realistically, the target ratio γ (t)
should be non-decreasing over the day with γ (1) = 1 at the end of the day. For example,
for a standard TWAP strategy, the target ratio grows linearly with time as γ (t) := t .
Alternatively, for amore generalized strategy, γ (t)might follow the shape of the expected
cumulative volume curve over the trading day. The assumption that γ (t) is deterministic
simplifies the analysis. Later, Section 5 extends the model to allow for stochastic target
ratios γt that are then related to VWAP trading in Section 6.

• There are M ∈ N price-sensitive realtime hedgers indexed by i ∈ {M+1, . . . ,M+M}.
These hedgers have no private information. Their cumulative penalty Li,1 in (1.1) accrues
via the process

Li,t :=
∫ t

0
κ(s)

(
θi,s − εBs

)2ds, t ∈ [0, 1], i ∈ {M + 1, . . . ,M + M}, (1.4)

which is similar to the common-value specification in Sannikov and Skrzypacz [39].
In (1.4), the process B = (Bt )t∈[0,1] with B0 = 0 is a standard Brownian motion
representing a publicly observable risk-factor that is independent of all other random
variables, and ε ≥ 0 scales the hedger target holdings relative to the risk-factor Bt .8

The hedgers’ penalty-severity function κ(s) is potentially different from κ(s) in (1.3).
In the special case κ(s) := 0, the hedgers reduce to risk-neutral Merton investors with
potential price impact. Another special case is ε := 0 in which the hedgers coincide with
the intraday liquidity providers discussed above but with a possibly different penalty-
severity function κ .
Trading by the hedgers injects intraday randomness (due to Bt ) in the aggregate trading-
demand imbalances over the day. However, unlike noise traders, the hedgers are price-
sensitive and optimize their trades.

Investors optimize their trading in actual markets given a variety of considerations. These
include both the underlying utility gains from changing their holdings and also bid-ask and
other order-execution costs (if taking liquidity) or profits (if providing liquidity), inventory
and risk-management costs, and predictable wealth effects due to trading with/against price

6 We do not need to impose a Gaussian structure on the private information variables because our investors’
optimal strategies do not involve filtering. This is because—as we shall see in (1.11) below—the equilibria
we construct initially reveal a sufficient statistic for how investor rebalancing targets affect price dynamics.
7 It is a “variation” in the sense that Almgren and Chriss [1,2] solve for optimal orders given specific risk and
cost objectives, whereas we represent investor i’s risk and execution-cost objectives implicitly via the Li,t
penalty.
8 For simplicity, we assume ε is constant. Alternatively, it could be a time-dependent function ε(t).
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pressure. Our analysis decomposes trading optimization for targeted investors into two parts:
First, we interpret the intraday trajectory γ (t)ãi as a partially optimized strategy given the
end-of-day latent target ãi and given order-execution, inventory, and risk-management costs
but omittingwealth effects due to price pressure.9 Second, the targeted investor’s optimization
problem in (1.1) then adjusts the partially optimized strategy γ (t)ai for price-pressure effects
to obtain the fully optimized strategy θi,t . In particular, (1.1) includes the expected gain/loss
from how the holdings θi,t comove with/against price pressure and also an expected penalty,
given Li,t in (1.3), which is a reduced-form representation of incremental increased order-
execution, inventory, and risk-management costs given the deviation of θi,t from the partially
optimized trajectory γ (t)ãi over the day.10 An analogous logic justifies the hedger trading
optimization (1.1) with the penalty in (1.4) except that now the partially optimized hedger
strategy—givenorder-execution, risk-management, and inventory costs and inefficiency costs
from incomplete hedging but not wealth effects from price pressure—is the stochastic process
εBt .

Given this motivation, there are several specific points to note: First, the decomposition
leading to (1.1) makes our model mathematically tractable, because the quantities γ (t), ε,
κ(t), and κ(t) describing investor trading preferences are inputs in our analysis rather than
something to be solved for formally.

Second, our analysis makes a distinction between price pressure St − Dt , which is explic-
itly modeled, and order-execution costs—like bid-ask spread add-ons, brokerage fees, and
exchange fees—that are implicitly modeled as one of the determinants of the penalties Li,t in
(1.3) and (1.4).11 In particular, the target ratio function γ (t), hedging scalar ε, and penalty-
severity functions κ(t) and κ(t) all implicitly depend on order-execution costs as well as on
inventory and other costs. Intuitively, variation in the target ratio γ (t) and penalty severity
κ(t) over the day reflects, in part, time patterns in order-execution costs (e.g., U -shaped
average bid-ask spreads, see McInish and Wood [33], and price impacts, see Barardehi and
Bernhardt [4]) and an intensifying inventory-holding preference to reach the target ãi towards
the end of the day. Our analysis allows, in particular, for penalty-severity functions κ(t) that
explode towards the end of the trading day as t ↑ 1 as well as for bounded penalty severities.

Third, the targeted investors and hedgers are all price-sensitive, and so they adjust their
stock holdings θi,t relative to their intraday trading targets in response to premia and discounts
in prices in order to clear the market over time given the aggregate latent trading-demand
imbalances γ (t)ã% + M̄εBt . In particular, their intraday targets are soft rather than hard con-
straints. Thus, there are two competing drivers in the objective (1.1). On one hand, neglecting
the penalty term Li,1 in (1.1), investor i would maximize her expected trading profit from
liquidity provision. On the other hand, neglecting thewealth term Xi,1 in (1.1)means investor
i would minimize the penalty Li,1. In this case, targeted investors i ∈ {1, . . . ,M} would use
the strategy γ (t)ãi , and the hedgers i ∈ {M + 1, . . . ,M + M} would hold εBt . The equi-
librium strategies θ̂i,t in (3.8) below strike an optimal balance between these two competing

9 In other words, γ (t)ãi is the ideal trading trajectory if investor i could trade at prices Dt with just order-
execution, risk, and inventory costs but without the price impact of order-flow imbalances.
10 To keep the model parsimonious, we assume rebalancers and liquidity providers have the same penalty-
severity function κ(t) (where γ (t) does not matter for liquidity providers for whom ãi = 0). In a richer model,
the liquidity-provider penalty severity might differ due to additional market-making considerations such as
funding costs, risk-aversion, moral hazard costs due to risk limits arising from in-firm principal-agent conflicts,
and the fact that liquidity providers are more likely than rebalancers to earn than to pay the bid-ask spread.
11 The implicit order-execution costs are add-ons on top of St for individual transactions of individual
investors, whereas St − Dt is market-wide price pressure in all transactions for all investors.
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forces where the penalty-severity functions κ(t) and κ(t) determine the relative importance
of these two forces over the trading day [0, 1].

Fourth, an important point about the targeted investors is that they care, not just about their
terminal trading targets ãi , but about the entire path of their holdings over the day relative to
their intraday target trajectories γ (t)ãi . In other words, the rebalancers’ latent stock demand
over the day given ãi $= 0 has a time-varying trend controlled by γ (t). This aspect of our
model—which allows us to study TWAP and other forms of targeted trading—is new relative
to the previous literature, which has modeled constant zero targets Du and Zhu [14], driftless
stochastic targets Sannikov and Skrzypacz [39], Vayanos [44], and fixed terminal targets but
no intraday targets Brunnermeir and Pedersen [9].

Market clearing in themodel takes the following form:Recall that all initial stock positions
θi,− have been normalized to zero. Given an aggregate stock supply normalized to zero,
market clearing requires equilibrium investor-holdings θ̂i,t over the day to satisfy12

M+M∑

i=1

θ̂i,t = 0 for all times t ∈ [0, 1]. (1.5)

Themoneymarket is also normalized to be in zero supply. ByWalras law, clearing in the stock
market implies clearing in the money market because investors use self-financing strategies.
In particular, we assume the initial money-market endowments θc1,−, . . . , θ

c
M+M,− clear the

money market

M+M∑

i=1

θci,− = 0. (1.6)

The analysis below distinguishes between conceptually different stock-price processes.
Let S = (St )t∈[0,1] denote a generic stock-price process defined in terms of its dynamics

dSt := µt dt + dNt , S0 := Ŝ0, (1.7)

whereµ = (µt )t∈[0,1] is a generic drift process, N = (Nt )t∈[0,1] is a fixed martingale, and Ŝ0
is a fixed initial stock price. The equilibrium price process we seek to determine is denoted
by Ŝ = (Ŝt )t∈[0,1] and has two boundary conditions at times t ∈ {0, 1}:

First, the equilibrium stock price Ŝ1 at the end of the trading day at t = 1 is pinned down
by a reduced-form end-of-day requirement13

Ŝ1 = D1 + ϕ0εB1 + ϕ1ã% (1.8)

where ϕ0,ϕ1 ∈ R are exogenous constants and the total target imbalance is denoted by

ã% :=
M∑

i=1

ãi . (1.9)

12 It is possible to extend our model to include noise-trader orders such that the floating stock supply becomes
an exogenous stochastic process a(t)+ b(t)Zt + c(t)Bt where a, b, and c are deterministic functions of time
t ∈ [0, 1], Bt is the risk-factor Brownian motion in (1.4), and Zt is a Brownian motion independent of all
other random variables.
13 If the terminal restriction (1.8) is eliminated, our model becomes simpler because the stock volatility
becomes a free parameter and can, for example, be set to be one. The fact that competitive Radner equilibrium
models without dividends have free volatilities is well-known; see, e.g., Theorem 4.6.3 in Karatzas and Shreve
[28].
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When our model is applied to a short time horizon (e.g., a trading day), the end-of-day
price Ŝ1 is assumed to be the overnight valuation that clears the stock market given the latent
trading-demand imbalances due to the aggregate rebalancer and hedger targets. In particular,
market-clearing at t = 1 at the end of the day is assumed to reflect overnight stock-holding by
the rebalancers, market-makers, and hedgers and also possibly additional net stock demand
from overnight liquidity providers who do not trade during the day. If ϕ1 > 0, then a positive
aggregate latent target ã% pushes up the end-of-day price Ŝ1 relative to D1 in order formarkets
to clear. Similarly, if ϕ0 > 0, then a positive hedging target εB1 also raises Ŝ1 relative to D1.
Both effects are qualitatively natural for how latent trading-demand imbalances might affect
end-of-day prices. A special case of (1.8) is

Ŝ1 = D1. (1.10)

This case applies if D1 is a liquidating dividend paid at time t = 1 (as in, e.g., Grossman
and Stiglitz [25], Kyle [30]) or, alternatively, if there are no overnight liquidity effects in
pricing at t = 1. For (Ŝt )t∈[0,1] to satisfy (1.8) or (1.10), the price dynamics in (1.7) must be
restricted as time approaches maturity (i.e., as t ↑ 1). As we shall see in Theorem 3.2 below,
the equilibrium stock-price process is linear in (Dt , ã%, Bt ) with time-varying deterministic
coefficients. The terminal restriction (1.8) gives boundary conditions for these time-varying
coefficient functions. This allows us to derive endogenous intraday price and investor-holding
processes that are consistent with the assumed end-of-day price in (1.8).

Second, all investors act as price-takers at time t = 0. This means the initial price S0 = Ŝ0
in (1.7) is unaffected by individual investor holdings θi,0. This is for tractability. In addition,
in equilibrium, the initial orders of investors cause the endogenous opening price Ŝ0 to adjust
to clear themarket given the underlying latent trading-demand imbalance due to the aggregate
target ã% . From a modeling perspective, the initial stock price Ŝ0 at time t = 0 is required to
reveal the aggregate target ã% defined in (1.9) in the sense that

σ (Ŝ0) = σ (ã%). (1.11)

The measurability requirement (1.11) allows investors to avoid filtering and thereby keeps
the model tractable.

The information structure of our model is as follows: For tractability, all traders have
homogeneous beliefs in the sense that they all believe the processes (D, B) are the same
independent Brownian motions. At each time t ∈ [0, 1] over the trading day, the dividend-
information process Dt and the real-time hedging factor Bt are publicly observed. At each
time t ∈ [0, 1], each investor i chooses a stock-holding position θi,t adapted to the filtration14

Fi,t :=
{

σ (Su, Du, Bu, ãi , θci,−)u∈[0,t], i = 1, . . . ,M,

σ (Su, Du, Bu, θ
c
i,−)u∈[0,t], i = M + 1, . . . ,M + M .

(1.12)

While the risk factor Bt is observable, the requirement S0 = Ŝ0 in (1.7) and themeasurability
property (1.11) ensure the total latent target ã% can be inferred from S0.

14 As usual in continuous-time models, certain stochastic integrals need to be martingales; see Definition 2.1
below for details. Also, as usual, we have implicitly augmented (1.12) with null-sets to ensure that the “usual
conditions” hold (see, e.g., Protter [38] for details).
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2 Individual optimization problems

This section gives a precise description of the optimization problem in (1.1) for the targeted
investors and hedgers. Our analysis proceeds in two steps: first, we describe technical proper-
ties of the set of admissible holding strategies Ai in (1.1). Second, we construct perceptions
of off-equilibrium market-clearing prices for a generic investor i in (1.1) when using an arbi-
trary holding strategy θi ∈ Ai . Section 3 then derives equilibrium strategies θ̂i,t for investor
i given these price beliefs.
Step 1 The set of admissible strategies Ai for investor i in (1.1) is defined as follows where
a càglàd process is a left-continuous process with right limits:

Definition 2.1 For a given stock-price process St with drift µt and martingale Nt as in (1.7)
with a predictable quadratic variation process 〈N 〉t , we define Fi,t by (1.12). A càglàd
process θi = (θi,t )t∈[0,1] adapted to Fi,t is admissible, and we write θi ∈ Ai , if the following
integrability condition holds:

E
[∫ 1

0

(
|θi,tµt |dt + θ2i,t d〈N 〉t

) ∣∣∣Fi,0

]
< ∞, i ∈ {1, . . . ,M + M}. (2.1)

*+

It is well-known that an integrability condition like (2.1) rules out doubling strategies (see,
e.g., Chapters 5 and 6 in [15]). The equilibrium stock-holding process in (3.8) below is
not bounded (because it depends linearly on Bt ) but does still satisfy (2.1). There are two
reasons for the left-continuity requirement placed on θi,t . First, left-continuity of the investor
holding paths is sufficient to ensure that the state-process Yt appearing in (2.2) below is
left-continuous (ultimately, Yt in (2.2) becomes the solution Y θi

t to the stock-market clearing
equation (2.5)). In turn, Yt ’s left-continuity is sufficient for investors to infer Yt from past and
current stock-price observations (see Lemma A.1 in “Appendix A”). Second, in Example 5.3
in Section 5, which is an extension of our model to stochastic targets, the martingale Nt is
only càdlàg (i.e., right-continuous with left limits). When Nt has such points of discontinuity,
left-continuity of θi,t and the integrability condition (2.1) are sufficient to ensure martingality
of the stochastic integral

∫ t
0 θi,udNu , t ∈ [0, 1] (see, e.g., p. 171 in Protter [38]).15

Step 2 This step constructs perceptions for a generic investor i about the market-clearing
prices Sθi

t she faces given arbitrary holdings θi,t . In equilibrium, price dynamics and price
perceptions must agree. Off equilibrium, however, price perceptions must be reasonable.
We describe two different cases of reasonable off-equilibrium price beliefs. One case is
standard pricing-taking. This is the simplest version of our model. The second case has
price-impact in the sense that investors are strategic and believe their individual holdings
affect off-equilibrium market-clearing prices. In particular, although we assume investors
are price-takers at the market open at t = 0, our second case allows for price impact of
investor holdings θi,t over the rest of the day for t ∈ (0, 1). In other words, our strategic
traders actively take into account the price-impact their trades have when they solve for their
individual optimal trading strategies.
Case of price-taking perceptions Optimal holdings for investors with price-taking beliefs
are derived from (1.1) under the assumption that the off-equilibrium prices Sθi

t each investor
i perceives herself as facing, the martingale Nt , and the perceived price drift µθi

t given

15 Verification of optimality of conjectured optimizers in continuous-time stochastic control problems always
involves proving certain stochastic integrals are martingales. This is illustrated in Duffie [15, Chapter 9C].
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holdings θi,t for investor i are all unaffected by her arbitrary holdings θi,t . The equilibrium
construction for this case in Sections 3 and 4 then derives an equilibrium price process such
that the market clears given investor optimal holdings given the equilibrium price process
with price-taking beliefs.
Case of price-impact perceptionsThere aremanyways tomodel price-impact. For example,
stock prices are affine functions of investor orders in the discrete-timemodels in Vayanos [44,
Eq. (4.2)], and Kyle [30, Eq. (3.12)]. A discrete-time version of our model also takes price
changes (Stn as affine functions of the holdings θi,tn . However, modeling off-equilibrium
prices in continuous-time as functions of the levels of arbitrary holdings over time is techni-
cally difficult because, while θi,t can serve as an integrand, integration with respect to dθi,t
might be ill-posed. Thus, in our continuous-time model of price impact, we assume that
the perceived price drift µθi

t is an affine function of the holdings θi,t , but that the martingale
Nt in (1.7) and the initial value S0 = Ŝ0 are both independent of the holding process θi,t .
Thus, our model of price-impact is an affine drift specification in the general continuous-time
price-impact setting in Cvitanić and Cuoco [12]. Given the perceived off-equilibrium price
impacts, we derive optimal holding strategies for investors in our model.

Our eventual goal is to construct a Subgame Perfect Nash equilibrium, so the off-
equilibrium prices associated with off-equilibrium holdings by a given investor i must be
consistent with off-equilibrium beliefs for other investors such that, given the other investors’
optimal off-equilibrium holdings given their beliefs, the market clears to produce the prices
perceived by investor i . We denote the other investors who respond to off-equilibrium hold-
ings by investor i using an index j $= i . In this setting, we construct perceivedmarket-clearing
prices for investor i and the associated perceived responses θ j,t of other investors j $= i to
arbitrary holdings θi,t by investor i .

Our derivation of optimal investor holding strategies involves two different off-equilibrium
stock-price processes in the filtrations in (1.12) and in the investor wealth dynamics in (1.2).
First, let SYt denote the off-equilibrium prices as perceived by a generic investor j with
j $= i given investor j’s own holdings θ j,t and given a general state-process Yt representing
the perceived net effect of arbitrary holdings by other investors.16 Second, let Sθi

t denote
off-equilibrium prices perceived by investor i given investor i’s holdings θi,t and given the
state-process Y θi

t induced by the market-clearing responses of investors j $= i to i’s holdings
θi,t . The difference between these two perceived price processes is that SYt is for an arbitrary
exogenous state-process Yt whereas Sθi

t is for an endogenous state-process Y θi
t given the

effect of θi,t on market-clearing. The prices SYt and Sθi
t are linked with each other and

with the equilibrium prices Ŝt . First, the initial stock prices SY0 and Sθi
0 are always pinned

down to be Ŝ0 in (1.7). Thus, all investors act like price takers at time t = 0. However,
the perceived off-equilibrium terminal prices Sθi

1 and SY1 are not required to satisfy the
equilibrium terminal condition (1.8). This is permissible because these are perceived off-
equilibrium prices that can differ from equilibrium prices. Second, the equilibrium holdings

θ̂i,t for all traders i ∈ {1, ..,M+M}must produce the same equilibrium stock price Sθ̂i
t = Ŝt ,

which in turn must satisfy condition (1.8) at time t = 1.
The aspect of price beliefs thatmatters formodeling the impact of off-equilibriumholdings

on market-clearing is how θi,t for an investor i at time t affects the market-clearing stock-
price drift µt and, thus, the investment attractiveness of holding stock at time t . Thus, we
start this step with an assumption that the perceived general price process SY = (SYt )t∈[0,1]

16 The filtrationFi,t in (1.12) also depends on S and thusFi,t varies depending on which stock-price process
S ∈ {Ŝ, Sθi , SY } we consider in the various steps of the equilibrium construction.
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for other investors j $= i in trader j’s optimization problem (1.1) has the form in (1.7) where
the perceived stock-price drift µ = µY is defined as17

µY
t :=

{
ν0(t)Yt + ν1(t)γ (t)ã% + ν2(t)Bt + ν3(t)θ j,t + ν4(t)γ (t)ã j , j ∈ {1, . . . ,M},
ν̄0(t)Yt + ν̄1(t)γ (t)ã% + ν̄2(t)Bt + ν̄3(t)θ j,t , j ∈ {1+ M, . . . ,M + M},

(2.2)

where Y = (Yt )t∈[0,1] is an exogenous state-process with càglàd paths and ν0(t), . . . , ν4(t)
and ν̄0(t), . . . , ν̄3(t) are continuous deterministic functions with ν0(t) $= 0, ν̄0(t) $= 0 such
that

ν3(t) < κ(t) when M ≥ 1 and ν̄3(t) < κ(t) when M ≥ 1, t ∈ [0, 1). (2.3)

The martingale N in the price process (1.7) for SY has dynamics

dNt := dDt + ζ(t)εdBt , N0 := 0, (2.4)

where ζ(t) is a continuous deterministic function of time for t ∈ [0, 1].
The coefficients ν0(t), . . . , ν̄3(t) and ζ(t) in (2.2) and (2.4) describe the subjective per-

ceptions (i.e., off-equilibrium beliefs) of investor j about the price process she faces. We
assume all investors perceive the same pricing coefficients. The coefficients ν3(t) and ν̄3(t)
represent, specifically, an investor’s perception of how her own holdings θ j,t directly affect
prices off-equilibrium. In the discussion here, the perceived price coefficients are taken as
given. However, they are endogenized in the equilibrium construction in Sect. 3.

Because the state-process Yt is general (e.g., Yt need not be Markovian), it is crucial for
tractability that investors have linear utilities as in (1.1). With linear preferences, investors’
optimal holding decisions at each time t ∈ [0, 1] only depend on the perceived price drift and
the associated holding penalties accruing at that time t . Thus, investors optimize pointwise
given the impact their holdings have on the perceived price drift.18,19 These arguments lead
to Lemma A.1 in “Appendix A”, which gives the optimal response holdings θYj,t in (A.1)
for targeted investors and hedgers given a perceived price process for investor j of the form
described in (2.2) through (2.4).20 The restrictions in (2.3) ensure the second-order condition
for optimality of (A.1) is satisfied (without the second-order condition there is no optimizer).

The optimal-response holdings θYj,t in Lemma A.1 in “Appendix A” are for an arbitrary
left-continuous state-process Yt . However, to construct perceived prices for investor i that
also clear the stock market, the price perceptions of investor i must take into account the fact

17 The equilibrium construction in Sect. 3 explicitly solves for perceived prices with this conjectured form
that are consistent with equilibrium.
18 More specifically, investors maximize the expectation of the integrand of a Riemann integral of a quadratic
function of θi,t at each time t ∈ [0, 1]. See Eqs. (A.2) and (A.3) in “Appendix A”.
19 An optimal trading strategy is typically computed as the solution to a Hamilton-Bellman-Jacobi equation
that takes intertemporal trade-offs into account. However, in our model the intraday target trajectory γ (t)ãi
and hedge positions εBt are interpreted as the solutions to the targeted investors’ and hedgers’ intertemporal
partial optimization problems with order-execution, risk, and inventory costs but when price pressure from
aggregate order-flow imbalances is ignored. As a result, the full optimization problem in (1.1) involves a series
of separable trade-offs between incremental penalties for deviations of θi,t from the target trajectory and hedge
positions at each time t ∈ [0, 1] and the contemporaneous price drift (expected capital gain) at time t when
investors adjust their position to trade on price pressure.
20 In Lemma A.1 in “Appendix A” with price-impact, the state-process Yt must be inferable, which is ensured
by Yt having left-continuous paths, which follows from investor holdings having left-continuous paths as
required by Definition 2.1.
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that her holdings θi,t also affect the state-process Yt perceived by other investors j $= i via
the market-clearing condition:

θi,t +
M+M∑

j $=i, j=1

θYj,t = 0, t ∈ [0, 1], (2.5)

where θYj,t denotes optimal responses of investors j $= i in (A.1) in Lemma A.1 in
“Appendix A” to a state-process Yt . Thus, given arbitrary holdings θi,t , we can then solve
(2.5) for the associated state-process, which we denote by Y θi

t . The state-process Y θi
t ensures

that the off-equilibrium optimal-response holdings for traders j ∈ {1, . . . ,M + M}\{i}
clear the stock market as trader i varies her off-equilibrium holdings θi,t . The perceived off-
equilibrium market-clearing stock-price process Sθi

t associated with θi,t has a drift process
µ

θi
t given by (2.2) with Yt := Y θi

t . However, the initial price Sθi
0 := Ŝ0 and martingale Nt in

dSθi
t in (1.7) do not depend on θi,t .

Lemma 2.2 Assume that ν0(t) $= 0, ν̄0(t) $= 0, t ∈ [0, 1], and that (2.3) holds. The off-
equilibrium stock-price process perceived by investor i ∈ {1, . . . ,M + M} for arbitrary
holdings θi ∈ Ai is defined by

Sθi
t := Ŝ0 +

∫ t

0
µθi
u du + Nt , t ∈ [0, 1], (2.6)

where the stock-price drift is defined by

µ
θi
t :=






2κν0(ν̄3−κ)+(ν̄3−κ)ν0ν4+M(κ−ν3)(ν1ν̄0−ν0 ν̄1)

(M−1)ν0(κ−ν̄3)+M ν̄0(κ−ν3)
γ ã% − M(κ−ν3)(ν0 ν̄2−ν2 ν̄0+2κν0ε)

(M−1)ν0(κ−ν̄3)+M ν̄0(κ−ν3)
Bt

+ κ(−2κν0+2ν0 ν̄3+ν3M ν̄0)−ν3((M+1)ν0(ν̄3−κ)+ν3M ν̄0)

(M−1)ν0(κ−ν̄3)+M ν̄0(κ−ν3)
θi,t

+ 2κν0(κ−ν̄3)+Mν0ν4(κ−ν̄3)+ν4M ν̄0(κ−ν3)

(M−1)ν0(κ−ν̄3)+M ν̄0(κ−ν3)
γ ãi , i ∈ {1, . . . ,M},

− (κ−ν̄3)(ν̄0(2κ+Mν1+ν4)−Mν0 ν̄1)

Mν0(κ−ν̄3)+(M−1)ν̄0(κ−ν3)
γ ã% − M(κ−ν̄3)(ν2 ν̄0−ν0 ν̄2)+2κ(M−1)ν̄0ε(κ−ν3)

Mν0(κ−ν̄3)+(M−1)ν̄0(κ−ν3)
Bt

+ 2κν̄0(ν3−κ)+κMν0 ν̄3−Mν0 ν̄
2
3+(M+1)ν̄0 ν̄3(κ−ν3)

Mν0(κ−ν̄3)+(M−1)ν̄0(κ−ν3)
θi,t , i ∈ {M + 1, . . . ,M + M},

(2.7)

and where the martingale Nt is as in (2.4), and given an initial stock price Ŝ0 that satisfies
(1.11). The price process (2.6) clears the stock market in the sense that (2.5) holds.

We note three consequences of Lemma 2.2: First, because the state-process Y θi
t in (A.5)

in “Appendix A” is affine in θi ∈ Ai , we see that Y θi
t has left-continuous paths because

θi,t has left-continuous paths (see Definition 2.1). Furthermore, from (A.1) in Lemma A.1
in “Appendix A”, investor j’s optimal response θY

θi
j,t for j $= i is also affine in trader i’s

off-equilibrium holdings θi,t . Second, because the price drift (2.7) is affine in θi,t , the corre-
sponding optimization problem (1.1) is a quadratic problem when the stock price is defined
as in (2.6). These two properties are used to derive the equilibrium holdings θ̂i ∈ Ai in
Theorem 3.2 in Section 3. Third, the case of price-taking perceptions is a special case of the
price-impact case in which the coefficients multiplying θi,t in (2.7) are zero. Our equilibrium
construction inSection 3 is for the general price-impact case. Section 4 then derives conditions
on the price-perception coefficients in (2.2) for equilibrium with price-taking perceptions.
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3 Equilibria with deterministic targets

Having described the individual investor optimization problems in Sect. 2, this section for-
mally defines and constructs an equilibrium.

Definition 3.1 (Equilibrium)ASubgamePerfectNash equilibrium consists of perceivedprice
coefficients given by deterministic functions ν0(t), . . . , ν4(t), and ν̄0(t), . . . , ν̄3(t) in (2.2)
with ν0(t) $= 0 and ν̄0(t) $= 0, an initial stock price Ŝ0 satisfying (1.11), and a martingale
N = (Nt )t∈[0,1] such that, given the perceived stock-price process (2.6), the resulting optimal
stock-holding processes θ̂1,t , . . . , θ̂M+M,t from (1.1) satisfy the following conditions:

(i) The optimal holdings θ̂i ∈ Ai , i ∈ {1, . . . ,M+M}, satisfy the intradaymarket-clearing
condition (1.5).

(ii) When θi,t is set to the optimizer θ̂i,t in (2.7), the resulting stock-price drifts µθ̂i
t are

the same µ̂t for all investors i ∈ {1, . . . ,M + M}. The corresponding equilibrium
stock-price process from (2.6) with θi,t = θ̂i,t is denoted by Ŝt .

(iii) The stock-price process Ŝt satisfies the terminal price condition (1.8) at time t = 1 for
given constants ϕ0,ϕ1 ∈ R.

*+

Our equilibrium concept is stronger than Nash because it involves beliefs for each investor i
about the perceptions of other investors j $= i that determine investor j’s optimal responses
to hypothetical off-equilibrium holdings by investor i .

Our main result is Theorem 3.2 below, which gives restrictions ensuring equilibrium
existence (proof is in “Appendix A”). As we shall see, there are two degrees of freedom in the
perceived price coefficients ν0(t), . . . , ν4(t) and ν̄0(t), . . . , ν̄3(t), and so there are multiple
(indeed, infinitely many) equilibria. This situation is similar to Vayanos [44, Sec. 5] and
Sannikov and Skrzypacz [39]. Keeping the price impact coefficients ν3(t) and ν̄3(t) as the
two free parameters simplifies the exposition. In Sect. 4 we use themathematical flexibility of
these free functions to consider equilibria with different amounts of competition and strategic
behavior.

The equilibrium stock-price process Ŝt will be shown to have the form

Ŝt := Dt + g(t)ã% + ζ(t)εBt , (3.1)

for two continuously differentiable deterministic functions g, ζ : [0, 1] → R. Consequently,
the equilibrium stock-price drift µ̂t and martingale Nt in (1.7) are given by

µ̂t = g′(t)ã% + ζ ′(t)εBt ,

dNt = dDt + ζ(t)εdBt , N0 = 0.
(3.2)

We note three features about (3.1). First, equilibrium prices are expressed in (3.1) as functions
of the underlying trading-demand variables ã% and Bt . In particular, prices are functions
of market-clearing investor holdings, which are functions of the underlying latent trading-
demand variables ãi (which aggregate to ã%) and Bt . The intuition is that equilibrium prices
depend on the underlying latent total trading demand, which includes both trades that occur
in equilibrium and also trading-demand imbalances that prices deter so that markets clear.
Making the role of latent trading demand—and especially demand imbalances due to intraday
TWAP trading targets—explicit is one of the contributions of our analysis. Second, given ã% ,
the equilibrium stock-price process is Gaussian. More specifically, the price process (3.1)
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is a Bachelier model with time-dependent coefficients.21 Third, the individual investors’
perceived price processes in (2.6) exhibit path dependency in the sense that the path of
(Bu)u∈[0,t] is needed to determine Sθi

t for t ∈ [0, 1] for an arbitrary holding process θi,t .
However, only the current value of Bt affects the equilibrium prices Ŝt in (3.1).

Theorem 3.2 Let γ : [0, 1] → [0,∞) be a continuous function, let ν3, ν̄3 : [0, 1) → R be
continuous functions, let κ, κ : [0, 1) → (0,∞) be continuous and integrable functions; i.e.,

∫ 1

0

(
κ(t)+ κ(t)

)
dt < ∞, (3.3)

that satisfy the second-order conditions (2.3), and let there be at least M+M ≥ 2 investors.
In addition, assume that (1.6) holds in the money market. Define the functions in (3.1) by

g(t) := ϕ1 −
∫ 1

t
µ1(u)γ (u)du,

ζ(t) := ϕ0 −
∫ 1

t
µ2(u)du,

(3.4)

for t ∈ [0, 1] where22

µ1 := − 2κ
(
2(M + M)κ − (1+ M + M)ν̄3

)

M
(
2(M + M)κ − (1+ M + M)ν̄3

)
+ M

(
2(M + M)κ − (1+ M + M)ν3

) ,

µ2 := − 2Mκ
(
2(M + M)κ − (1+ M + M)ν3

)

M
(
2(M + M)κ − (1+ M + M)ν̄3

)
+ M

(
2(M + M)κ − (1+ M + M)ν3

) .

(3.5)

Provided that g(0) $= 0, price-perception functions ν0 $= 0, ν1, ν2, ν4, and ν̄0, ν̄1, ν̄2 satisfy-
ing

ν̄0 =
ν0(κ − ν̄3)

κ − ν3
. (3.6)

and

ν4 = − 2κ
(
2κ+(M+M−2)(1+M+M)ν3

)

(M+M)
(
2(M+M)κ−(1+M+M)ν3

) ,

ν̄1 = (κ−ν̄3)ν1
κ−ν3

+ (κ−ν̄3)(ν3−ν̄3−(M+M)(2κ−2κ−ν3+ν̄3))(2κ+ν4)

(κ−ν3)(MM(2(κ+κ)−ν3)+M(2Mκ−(1+M)ν3)+M2(2κ−ν̄3)−M(1+M)ν̄3)
,

ν̄2 = (κ−ν̄3)ν2
κ−ν3

+ 2εκ(−2M(M+M)(κ−κ)−2κ+M(1+M+M)ν3+2ν̄3−((M−1)M+3MM+2M
2
)ν̄3)

MM(2(κ+κ)−ν3)+M(2Mκ−(1+M)ν3)+M2(2κ−ν̄3)−M(1+M)ν̄3
,

(3.7)

together with Nt in (3.2) form an equilibrium in which:

(i) Investor equilibrium holdings are given by

θ̂i,t =
{

α1(t)γ (t)ã% + α2(t)εBt + α3(t)γ (t)ãi , i ∈ {1, . . . ,M},
ᾱ1(t)γ (t)ã% + ᾱ2(t)εBt , i ∈ {M + 1, . . . ,M + M}, (3.8)

21 While the equilibrium stock price can be negative with positive probability, such Gaussian models have
been widely used in the market microstructure literature by, e.g., Grossman and Stiglitz [25] and Kyle [30].
Gaussian models are also widely used in the optimal order-execution literature including Almgren and Chriss
[1]; see, e.g., the discussion in the Gatheral and Schied [23, Section 3.1] survey.
22 For notational brevity, the time arguments for µ1(t), µ2(t), κ(t), κ(t), ν3(t), and ν̄3(t) are suppressed.
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where

α1 :=
(M + M − 1)µ1

2(M + M)κ − (1+ M + M)ν3
,

α2 :=
(M + M − 1)µ2

2(M + M)κ − (1+ M + M)ν3
,

α3 :=
2κ(M + M − 1)

2(M + M)κ − (1+ M + M)ν3
,

ᾱ1 :=
(M + M − 1)µ1

2(M + M)κ − (1+ M + M)ν̄3
,

ᾱ2 := − M(M + M − 1)µ2

M
(
2(M + M)κ − (1+ M + M)ν3

) .

(3.9)

(ii) The equilibrium stock price Ŝt is given by (3.1) with g(t) and ζ(t) from (3.4). The
associated equilibrium price drift in (3.2) is

µ̂t := µ1(t)γ (t)ã% + µ2(t)εBt , (3.10)

with µ1(t) and µ2(t) from (3.5).

Remark 3.1 We note several properties of this equilibrium here:

1. From (3.1), the initial equilibrium stock price at t = 0 is

Ŝ0 = D0 + g(0)ã% + ζ(0)εB0

= D0 + g(0)ã%,
(3.11)

where the second equality follows because B0 = 0. Therefore, whenever g(t) from
(3.4) satisfies g(0) $= 0, the aggregate target ã% can be inferred from Ŝ0 and vice versa
given that D0 is public information. Thus, when g(0) $= 0, we have σ (Ŝ0) = σ (ã%) as
required in (1.11). By (3.4), the condition g(0) $= 0 is equivalent to

ϕ1 $=
∫ 1

0
µ1(u)γ (u)du, (3.12)

whereµ1 is from (3.5). Consequently, for given functions (γ , κ, κ, ν3, ν̄3) satisfying the
second-order conditions (2.3), there is just one value of the terminal-price coefficient
ϕ1 for which g(0) = 0. For all other ϕ1, we have g(0) $= 0 and an equilibrium exists.

2. The equilibrium stock-price drift µ̂t and price levels Ŝt have the following qualitative
properties: The second-order conditions (2.3) ensure

2(M + M)κ − (1+ M + M)ν3 > κ > 0,

2(M + M)κ − (1+ M + M)ν̄3 > κ > 0,
(3.13)

so that the equilibrium price-drift coefficients in (3.5) can be signed with µ1(t) < 0
and µ2(t) < 0. This is intuitive. Larger latent aggregate trading-demand targets ã% and
larger hedging needs εBt mean that the equilibrium price drift µ̂t must be lower in order
to incentivize price-sensitive targeted investors and hedgers to adjust their holdings to
clear the market. Given negative price-drift coefficients µ1(t) and µ2(t), it then follows
from (3.4) that, given end-of-day terminal pricing coefficients ϕ0,ϕ1 ≥ 0, the intraday
price-level coefficients g(t) and ζ(t) are both positive.
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3. The investor holding coefficients α1(t), . . . , ᾱ2(t) in (3.9) can also be signed using (3.5)
and (3.13). The targeted-investor coefficientsα1(t) andα2(t) on the aggregate imbalance
state variables ã% and εBt are both negative. This is intuitive because investors reduce
their personal holdings in response to the lower price drifts induced in equilibrium by
positive latent aggregate imbalances. A similar intuition applies for the negative hedger
coefficient ᾱ1(t) on the latent aggregate rebalancer imbalance ã% . The coefficient α3(t)
on the targeted investor’s personal target ãi is, as expected, positive. Similarly, the sign
of the hedger’s coefficient ᾱ2(t) on the hedging imbalance state variable is positive. This
is the net effect of εBt both as a personal target in the hedger penalty Li,t in (1.4) and
as a state variable for the impact of the aggregate latent hedger imbalance on the price
drift in the investor trading profits Xi,t in (1.2). Recall that all initial stock positions
have been normalized to zero for all traders (with no loss of generality). Therefore, from
(3.8), there are initial discrete orders (i.e., block trades θi,0 − θi,− $= 0) at t = 0. This is
related to why the initial price Ŝ0 fully reveals ã% . However, afterwards trading evolves
continuously for t ∈ (0, 1].23

4. Inserting ν̄0(t) from (3.6) into (2.7) and rearranging using (3.8) and (3.9) for the equilib-
rium holdings θ̂i,t and (3.5) and (3.10) for the equilibrium price drift µ̂t lets us express
the perceived price drift for an investor i in (2.7) as

µ
θi
t =





µ̂t + ν3(t)(M+M+1)−2κ(t)

M+M−1

(
θi,t − θ̂i,t

)
, i ∈ {1, . . . ,M},

µ̂t + ν̄3(t)(M+M+1)−2κ(t)
M+M−1

(
θi,t − θ̂i,t

)
, i ∈ {M + 1, . . . ,M + M}.

(3.14)

This is not surprising given the equilibrium requirement that each investor perceives the

same price drift in equilibrium, i.e., µθ̂i
t = µ̂t for all i ∈ {1, . . . ,M + M}. Because

the equilibrium holdings θ̂i,t include an ãi term, the representation (3.14) explains why
there is an investor-specific ãi term in the perceived price drift µθi

t in (2.7).
5. The specific price-perception functions ν0, ν1, and ν2 for the targeted investors are

irrelevant in Theorem 3.2 in the sense that, given ν3 and ν̄3 and provided ν0(t) $= 0, all
different ν0 $= 0, ν1, and ν2 produce the same equilibrium prices and investor holdings.
To provide some intuition, consider the drift in (2.2) for j ∈ {1, . . . ,M+ M̄}. This drift
is overparameterized because bothY and θ j are expressible in terms of (ã j , ã%, B)when
Y is replaced by the solution Y θ j of (2.5). We also note here that, while ν0, ν1, and ν2 do
not affect equilibrium prices and investor holdings in (3.1) [given (3.4) and (3.5)] and
(3.8) [given (3.9)], they do pin down the other perceived price coefficients ν4, ν0, ν1, and
ν2 via (3.6) and (3.7), which are related to market-clearing and the common perceptions
of equilibrium price conditions from Definition 3.1.

There is an important difference between prices in equilibrium and perceived off-
equilibrium prices. Both in-equilibrium and off-equilibrium, the stock-price drifts µ̂t and
µ

θi
t are determined such that the market clears at each time t . In the one case, this is part of

the definition of equilibrium, and, in the other case, it is a reasonable off-equilibrium belief.
However, in equilibrium, the price level Ŝt adjusts at time t to be consistent with the required
market-clearing drift µ̂t and the terminal price condition in (1.8). For example, a large target
ã% leads from (3.1) and (3.4) to a high opening price Ŝ0 at t = 0 so that the intraday drift µ̂t
from (3.5) and (3.10) can be predictably low with prices drifting down in expectation over
the day to the terminal price Ŝ1 in (1.8). Similarly, a positive random shock to Bt at time t
leads from (3.1) and (3.4) to a random increase in prices Ŝt such that the market-clearing

23 The discontinuous model in Example 5.3 below has optimal discrete orders throughout the trading day.
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drift µ̂t can have a random decrease as required in (3.5) and (3.10). In contrast, for perceived
off-equilibrium prices for investors with price-impact, we only specify how the perceived
off-equilibrium price drifts µθi

t in (2.7) change at each time t so that the market clears given
an investor’s holdings θi,t . However, the perceived off-equilibrium price level Sθi

t at time t is
not affected by θi,t at time t . This simplifies the specification of off-equilibrium beliefs and
is still reasonable for price beliefs since market-clearing depends on the price drift at time
t , not on the contemporaneous price level (as per the discussion about the off-equilibrium
price-impact model before (2.7)).

Price pressure Ŝt − Dt is the effect of intraday imbalances in latent trading demand. It can
be positive or negative depending on the aggregate target imbalance ã% and the hedging need
εBt . From (3.1), price pressure has a deterministic trend g(t)ã% over the day given the total
rebalancing target imbalance ã% and a stochastic component ζ(t)εBt due to the randomly
evolving hedging target. For example, g(0)ã% is the initial price impact of the aggregate latent
trading-target imbalance ã% revealed by the opening order-flow at time t = 0. Thereafter, the
price impact g(t)ã% of the given aggregate imbalance ã% varies predictably over time with
g(t). A similar phenomenon applies to price pressure due to hedging demand. In particular,
ζ(t)εdBt is the immediate impact of an innovation εdBt in hedging demand at time t , and
then ζ(s)εdBt is the predictable continuation impact of εdBt at times s > t later in the day.
From (3.4) and (3.5), we see that g(t) (the ã% coefficient in Ŝt ) is affine in γ (t), and that ζ(t)ε
(the Bt coefficient in Ŝt ) is linear in ε (because ζ(t) does not depend on (γ , ε)). Thus, the
path of intraday price pressure Ŝt −Dt at different times t during the day has an intertemporal
factor-type structure where ã% is a common factor (which is different on different days but
fixed over the course of a given day) that causes price pressure to change deterministically
over the day given intraday variation in g(t), and Bt is a martingale that cause price pressure
Ŝt − Dt to change randomly over the day. Thus, at a given time s ∈ [0, 1), the future random
price pressure at subsequent times t ∈ (s, 1] given ã% have the following conditional means
and variances:

E[Ŝt − Dt |σ (ã%, Bu)u∈[0,s]] = g(t)ã% + ζ(t)εBs,

V[Ŝt − Dt |σ (ã%, Bu)u∈[0,s]] = ζ(t)2ε2(t − s).
(3.15)

As a result, positive (negative) latent aggregate trading targets ã% lead to predictable positive
(negative) price-pressure trends E[Ŝt |σ (ã%)] − Dt over the day. In addition, randomness in
the intraday hedging factor Bt produces randomness in equilibrium price pressure, where
higher hedging factors Bt are associate with higher prices and lower price drifts. Again, this
is intuitive.
Empirical predictions Security prices are often decomposed econometrically into an infor-
mational component that follows a martingale and a residual liquidity effect (as in, e.g.,
Hasbrouck [27]). A standard interpretation is that liquidity effects in prices decay predictably
over time as liquidity supply from initial liquidity providers is first depleted by arriving order-
flow imbalances and then replenished as order-flow imbalances are subsequently dispersed
and absorbed by the broadermarket. Ourmodel has two new empirical implications: First, our
price pressure Ŝt − Dt is driven by both arriving orders and also by what those orders reveal
about the underlying latent trading-demand imbalances ã% and εBt . Second, the source of
intraday predictability in our price pressure differs from the standard liquidity-supply inter-
pretation. Price predictability here reflects the net effect of predictable time variation in latent
trading demand (i.e., the targets γ (t)ã% and εBt ) as well as predictability in liquidity supply
(controlled by κ(t) and κ̄(t)).
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Empirical predictions from our model are testable using different types of data. First, the
formula for equilibrium prices in (3.1) predicts that intraday prices are driven by three com-
ponents: (1) time-varying intraday price pressure (controlled by g(t)) due to a daily aggregate
parent target ã% that is constant over the day but varies across days (depending on each day’s
different realized ã%), (2) additional intraday price pressure due to a Brownian motion (Bt )
with heteroscedastic price effects (controlled by ζ(t)ε), and (3) a homoscedastic random
walk reflecting fundamental information (controlled by the dividend state-process Dt ). This
representation imposes restrictions that can be estimated and tested using standard intraday
price and order-flow data (e.g., TAQ). In particular, it is not necessary for the econometrician
to know the realized daily imbalances ã% . Rather, a multi-day sample of intraday data can
be viewed as a collection of panels of intraday data (i.e., one intraday path for each day in
the sample) and then to identify the functions g(t) and ζ(t)ε using cross-day and intraday
variance decompositions.

Second, the first testing strategy can be further refined given individual-investor order
data (e.g., from IIROC), in which case it would be possible to measure the daily realizations
of the aggregate large-investor imbalance ã% for investors following dynamic strategies on
different days.

Third, the price coefficients g(t) and ζ(t) in (3.4) alongwith (3.5) give predictions for how
the intraday effects (g and ζ ) vary across different days given daily variation in the numbers
of targeted rebalancers and hedgers (M and M̄) and given daily variation in order-execution
costs due to variation in bid-ask spreads (since order-execution costs implicitly affect κ and
κ̄). This relation can be estimated using standard data on bid-ask quotes (to identify days
with lower or higher liquidity on which benchmark deviations are more or less costly) and
given individual-trader data (e.g., from IIROC) to identify investor types and then to use that
identification to measure the changing number of identified hedgers and rebalancers who
actively trade on any given day.

4 Competitive equilibrium andwelfare

From Theorem 3.2, the deterministic functions ν3(t) and ν̄3(t) for perceived own-order
price-impacts are twodegrees of freedom inourmodel.By imposing additional economically-
motivated structure on ν3(t) and ν̄3(t), we can identify unique equilibria corresponding to
different forms of competition and market power. From Section 2, price taking is a special
case of interest.

In the competitive Radner equilibrium, investors act like price-takers over thewhole day—
not just at the market open—in that the perceived prices Sθi

t for each investor i are unaffected
by her holdings θi,t . Hence, the competitive Radner equilibrium is obtained by requiring that
the coefficient in front of θi,t in the perceived drift (2.7) for dSθi

t is zero. From (3.14), this
requirement on ν3(t) and ν̄3(t) is seen to imply

ν3(t)(M + M + 1) − 2κ(t)

M + M − 1
= 0,

ν̄3(t)(M + M + 1) − 2κ(t)

M + M − 1
= 0,

(4.1)
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which gives the competitive-equilibrium perceived pricing coefficients24

ν∗
3 (t) =

2κ(t)

1+ M + M
, ν̄∗

3 (t) =
2κ(t)

1+ M + M
. (4.2)

We show next that the competitive Radner equilibrium is the welfare-maximizing equilib-
rium. While there are many ways to measure social welfare (see, e.g., Section 6.1 in Vayanos
[44]), we follow Du and Zhu [14, Eq. 42] and consider maximizing the expected aggregate
certainty-equivalent for the M +M investors. The certainty equivalent CEi ∈ R for investor
i is defined by

CEi := Vi (Xi,0), i ∈ {1, . . . ,M + M}, (4.3)

where the value functions Vi are defined in (1.1). The aggregate expected social welfare
objective is given by

sup
ν3(t),ν̄3(t)

M+M∑

i=1

E[CEi ], (4.4)

subject to (ν3, ν̄3) satisfying requirements (2.3). The expectation in the objective (4.4) is
ex ante in the sense that it is taken over random daily investor variables (ã1, . . . , ãM ) and
(θc1,−, . . . ., θ

c
M+M,−). The following theorem shows that the competitive Radner equilibrium

(4.2) attains (4.4).

Theorem 4.1 In the setting of Theorem 3.2, let the random private targets (ã1, . . . , ãM ) be
square integrable and not perfectly correlated, and let M ≥ 2. The competitive Radner
equilibrium with (4.2) is the welfare-maximizing equilibrium in that the unique maximizers
of (4.4) are given by ν∗

3 and ν̄∗
3 in (4.2). The corresponding optimal holding strategies (3.8)

are given by

θ̂i,t =





γ (t)ãi − κ(t)

(
γ (t)ã%+MεBt

)

Mκ(t)+Mκ(t)
, i = 1, . . . ,M,

−κ(t)γ (t)ã%+Mκ(t)εBt
Mκ+Mκ(t)

, i = M + 1, . . . ,M + M,
(4.5)

and the corresponding equilibrium stock-price drift coefficients in (3.10) are given by

µ1(t) := − 2κ(t)κ(t)

Mκ(t)+ Mκ(t)
, µ2(t) := − 2κ(t)κ(t)Mε

Mκ(t)+ Mκ(t)
. (4.6)

The proof (see “Appendix A”) uses the non-trivial correlations between (ã1, . . . , ãM ) to
produce a strict inequality inCauchy-Schwarz’s inequality. This ensures that the second-order
condition for optimality corresponding to (4.4) holds.

24 At first glance, it might seem that price-taking would mean price perceptions for investor i with ν3(t) = 0
(for targeted investors) and ν̄3(t) = 0 (for hedgers). However, investor i’s holdings θi,t have both a direct effect
(ν3 and ν̄3) on perceived market-clearing prices in (2.6) and also an indirect effect via the optimal responses

θY
θi

j ,t of other investors j $= i to θi,t via the perceived market-clearing condition (2.5) and the endogenous

perceived state-process Y θi
t solving (2.5). The conditions in (4.1) ensure that investor holdings θi,t have no

perceived price impact net of both effects.
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A natural question concerns the impact of benchmarks like TWAP and Almgren-Chriss
targets on competitive financial markets. By inserting (4.2) into (3.5), the price coefficients
(3.4) become

g(t) = ϕ1 + 2
∫ 1

t

κ(u)κ(u)

κ(u)M + κ(u)M
γ (u)du,

ζ(t) = ϕ0 + 2M
∫ 1

t

κ(u)κ(u)

κ(u)M + κ(u)M
du.

(4.7)

From (4.7), when ϕ0 > 0 and ϕ1 > 0, then both functions g(t) and ζ(t) are positive (as per
Remark 3.1.2), and equilibrium prices Ŝt differ from Dt . In the special case of ϕ0 := ϕ1 := 0,
the formulas in (4.7) show that if either κ or κ is set to zero (but not both) over [0, 1], then g
and ζ become 0, and, thus, Ŝt becomes Dt . This is because liquidity supply becomes infinite
with Li,1 = 0 for some investors.

For u ∈ [0, 1), the integrand term κ(u)κ(u)
κ(u)M+κ(u)M

in (4.7) is increasing in κ(u) because

its derivative with respect to κ(u) is Mκ(u)2

(κ(u)M+κ(u)M)2
≥ 0. Therefore, given M,M ≥ 1, the

functions g(t) and ζ(t) in (4.7) are increasing in κ in the sense that κ(u) ≤ κ◦(u) for u ∈ [0, t]
produces corresponding ordered solutions g(t) ≤ g◦(t) and ζ(t) ≤ ζ ◦(t). Hence, when the
incremental order-execution costs and inventory and risk-management penalties for trading
deviations from the target trajectory γ (t)ãi are large, then predictable trends in intraday price
pressure g(t)ã% are large, and market illiquidity ζ(t) for hedging trading imbalances εBt is
high, and price-pressure variance ζ(t)2ε2t is high. This leads to the following comparison
result:

Corollary 4.2 In the competitive Radner equilibrium with ν∗
3 and ν̄∗

3 from (4.2), the function
ζ(t) in (4.7) is increasing in κ(t) and κ̄(t). Consequently, for a fixed function κ(t) and a
time point t◦ ∈ (0, 1), for two penalty-severity functions κ(t) and κ◦(t) ordered such that
κ(t) < κ◦(t) for t ∈ [0, t◦) and κ(t) = κ◦(t) for t ∈ [t◦, 1], the illiquidity ζ(t) and price
volatility in (3.15) are less in the market with κ(t) than in the market with κ◦(t). The same
is true for analogous κ̄(t) and κ̄◦(t) given a fixed κ(t).

Proof The first claim follows from ζ ’s representation in (4.7). The second claim follows from
the representation of Ŝt − Dt in (3.1). The third claim follows from symmetry. *+

In addition, in the competitive equilibrium, predictable trends in intraday price pressure
g(t)ã% are increasing in the target ratio γ (t), and price volatility is increasing in the hedging
scalar ε.

For markets to clear, the equilibrium holdings θ̂i,t of targeted investors and hedgers differ
from their targets. In the competitive equilibrium, these differences, from (4.5), are

θ̂i,t − γ (t)ãi = −γ (t)ã% + MεBt

M κ(t)
κ(t) + M

, i = 1, . . . ,M,

θ̂i,t − εBt = −γ (t)ã% + MεBt

M + M κ(t)
κ(t)

, i = M + 1, . . . ,M + M .

(4.8)

Thus, competitive rebalancers and liquidity providers split the aggregate imbalancesγ (t)ã%+
MεBt with the hedgers independently of their individual targets ãi . The sharing is pro rata
adjusted for their differential penalty severities. In this context, intraday liquidity providers
(i.e., targeted investorswith targets ãi = 0) absorb a share of the aggregate demand imbalance,
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but not the full imbalance given their inventory-holding penalties from (1.3). Our results are
consistent with evidence in van Kervel et al. [42] that dynamic trading by large investors
involves reciprocal liquidity provision (if investor targets are in opposite directions and net
out) or reduced trading (if their targets are in the same direction). The limits of the differences
in (4.8) as time t ↑ 1 depend on the limiting behavior of the relative penalty severities κ(t)

κ(t) .
Section 7 gives examples of κ(t) and κ(t) and illustrates different possible limits of (4.8).

In non-competitive equilibria, investors behave strategically over t ∈ (0, 1] in that they
perceive their holdings have an impact on prices.25 In particular, the θi,t -coefficients in the
perceived drift (2.7) for dSθi

t are non-zero. A natural non-competitive specification is that
these drift coefficientswould be negative so that increased positive holdings θi,t would depress
perceived price drifts. Once again, the individual non-competitive strategies aggregate such
that the resulting equilibrium prices only depend on the aggregate state variables ã% and
εBt . However, if investors are not price-takers and (4.2) does not hold, then the individual
rebalancer targets ãi can appear in the rebalancer deviation θ̂i,t − γ (t)ãi in addition to ã%

and εBt .
Empirical predictionsEquation (4.7) and Corollary 4.2 lead to a set of empirical predictions
about changing conditions across different days in a competitive market. Suppose that on
different days there are different numbers of investorsM (rebalancers and liquidity providers)
and M (hedgers) with different penalty severities κ and κ . Our model predicts the intraday
price-pressure variance ζ(t)2ε2t andmarket illiquidity ζ(t) should be higher on days onwhich
there are fewer rebalancers and liquidity providers M and larger penalty severities κ and κ .
These results are not normative critiques of TWAP trading but rather positive predictions
about the empirical effect of targeted trading on daily market dynamics.

5 Equilibria with stochastic targets

Because our traders have linear preferences, they behave myopically in the sense that the
solution to their individual optimization problems (1.1) is found by maximizing pointwise
at each time t ∈ [0, 1]. Therefore, Theorem 3.2(i) continues to hold for equilibrium investor
holdings θ̂i,t when the deterministic target ratio function γ (t) is replaced with an arbitrary
stochastic process γ = (γt )t∈[0,1] that is independent of the Brownian motions (D, B) and
the private targets (ã1, . . . , ãM ). A natural interpretation is that random intraday fluctuations
in implicit bid-ask order-execution costs lead to changes in the target ratio γt . Once again, the
rebalancer penalty process Li,t is a reduced-form for incremental order-execution, inventory,
and risk-management costs relative to the now stochastic target trajectory γt ãi . Provided γt
is observable for all investors at time t ∈ [0, 1], we can re-define the filtrations in (1.12) as

Fi,t :=
{

σ (Su, Du, Bu, γu, ãi , θci,−)u∈[0,t], i = 1, . . . ,M,

σ (Su, Du, Bu, γu, θ
c
i,−)u∈[0,t], i = M + 1, . . . ,M + M .

(5.1)

Lemma A.1 in “Appendix A” (trader j’s optimal response) continues to hold word-for-
word when γ (t) is replaced with γt and the martingale Nt in (2.4) is replaced by either of
the two martingales in (5.6) and (5.13) below. From the proof of Lemma A.1, the reason this

25 Even with non-price-taking behavior over t ∈ (0, 1], our model still requires price-taking at the market
open t = 0 such that (1.11) holds for the opening price S0 both on- and off-equilibrium. Allowing for non-
price-taking behavior at t = 0 would complicate the measurability condition in (1.11), and, thus, might require
investors to filter over time to estimate ã% rather than being able to infer it from S0. Modeling targeted trading
in this more complicated learning environment would be an interesting future extension.
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extension is possible is that traders with linear utilities solve for their optimal holdings via
pointwise optimization at each t ∈ [0, 1].

Theorem 3.2(ii) for equilibrium prices Ŝt needs to be adjusted depending on the speci-
fication of the stochastic dynamics of the target-ratio process γt . We consider two specific
examples of stochastic target ratios. Both examples have a zero initial value γ0 = 0, and both
tie down the terminal target ratio by requiring γ1 = 1 at the end of the day.

Example 5.1 (Brownian bridge) In this target specification, the deterministic target ratio γ (t)
is replaced with the stochastic target-ratio process γt defined as the Brownian bridge process
solving the stochastic differential equation

dγt :=
1 − γt

1 − t
dt + dZt , γ0 := 0, (5.2)

where Z = (Zt )t∈[0,1] is an independent standardBrownianmotion.At time s, the conditional
expected future target ratio at time t > s is

Es[γt ] = γs +
t − s
1 − s

(1 − γs), 0 ≤ s < t < 1. (5.3)

Moreover, the drift in (5.2) ensures that γt → 1 almost surely as t ↑ 1. To derive the
appropriate version of Theorem 3.2(ii), we redefine the candidate stock price (3.1) as

Ŝt := Dt +
(
h(t)+ σ (t)γt

)
ã% + ζ(t)εBt , t ∈ [0, 1], (5.4)

for three deterministic functions h(t), σ (t), and ζ(t) solving the system of linear ODEs:

σ ′(t) = σ (t)
1 − t

+ µ1(t), σ (1) = 0,

h′(t) = − σ (t)
1 − t

, h(1) = ϕ1,

ζ ′(t) = µ2(t), ζ(1) = ϕ0,

(5.5)

where the deterministic functions µ1 and µ2 are unchanged from (3.5). The linear ODE
system (5.5) is triangular in the following sense: First, the ODE for σ (t) in (5.5) is explicitly
solved in (5.9) below. Second, given σ (t), the remaining two ODEs in (5.5) for h(t) and
ζ(t) are solved by integrating, where their solutions are given in (5.10) below and (3.4).
Furthermore, the martingale Nt in (3.2) is redefined as follows:

dNt := dDt + ζ(t)εdBt + σ (t)ã%dZt , N0 := 0. (5.6)

Thus, a qualitatively new feature with a stochastic target ratio is that intraday price pressure
due to the target imbalance ã% is now random due to the target-ratio shocks dZt in (5.2).

Theorem 5.2 (Brownian bridge)Under the assumptions of Theorem 3.2, h(0) $= 0, and when
the target ratio γt is a Brownian bridge, there exists an equilibrium in which:

(i) The perceived price parameters ν0, . . . , ν4 and ν̄0, . . . , ν̄3 are as in Theorem 3.2.
(ii) Investor equilibrium holdings are given by

θ̂i,t =
{

α1(t)γt ã% + α2(t)εBt + α3(t)γt ãi , i ∈ {1, . . . ,M},
ᾱ1(t)γt ã% + ᾱ2(t)εBt , i ∈ {M + 1, . . . ,M + M}, (5.7)

where the deterministic functions α1,α2,α3, ᾱ1, and ᾱ2 are given by (3.8).
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(iii) The equilibrium stock price is defined by (5.4) with the martingale Nt given by (5.6)
for deterministic functions h, σ , and ζ that are the unique solutions of the linear ODE
system in (5.5), and the price drift is given by

µ̂t := µ1(t)γt ã% + µ2(t)εBt , (5.8)

where the deterministic functions µ1 and µ2 are given by (3.5). Furthermore, the linear
ODE for σ in (5.5) is uniquely solved by

σ (t) = − 1
1 − t

∫ 1

t
(1 − u)µ1(u)du, t ∈ [0, 1), (5.9)

which satisfies limt↑1 σ (t) = 0. The solution (5.9) ensures that σ (t)
1−t is integrable; hence,

h(t) in (5.5) is found by integration for t ∈ [0, 1]:

h(t) = ϕ1 +
∫ 1

t

σ (u)
(1 − u)

du. (5.10)

The solution for ζ(t) is identical to (3.4).

*+

The coefficient h(t) + σ (t)γt giving the price impact of the target imbalance ã% with a
Brownian bridge target ratio γt in (5.4) is related to the corresponding coefficient g(t) with
a deterministic target ratio γ (t) as follows: Consider a deterministic target ratio equal to the
ex ante expected Brownian bridge target ratio γ (t) := E[γt ] = t and let g(t) denote the
associated deterministic price impact in (3.4). Then, for t ∈ [0, 1]:

E[h(t)+ σ (t)γt ] = h(t)+ σ (t)γ (t)

= g(t),
(5.11)

where the last equality holds because at t = 1 we have g(1) = ϕ1 = h(1) and for t < 1 the
time-derivatives of both sides of (5.11) agree.26 In other words, the price impact h(t)+σ (t)γt
in (5.4) with a stochastic target ratio γt has the same ex ante expected price impact as in the
corresponding deterministic model with γ (t) = E[γt ] plus additional randomness.

An unrealistic feature of the Brownian bridge target ratio is that γt can be negative as well
as bigger than one with positive probability at times t ∈ (0, 1). Our next target-ratio process
does not have these problems. The following construction is based on gamma processes.27

Such pure jump processes have a long history of applications in option pricing theory (see,
e.g., Madan et al. [31]).

Example 5.3 (Gamma bridge) The following model is based on Frei andWestray [19]. In this
model variation, the deterministic target ratio γ (t) is replaced with a stochastic target-ratio
process γt that is a càdlàg gamma bridge process starting at γ0 = 0 and ending at γ1 = 1. In
between the gamma bridge increases via a series of positive jumps that are dense on (0, 1].
Corollary 1 in Émery and Yor [16] ensures that γt has predictable intensity

1−γt−
1−t and that the

26 For t ∈ (0, 1), Eq. (3.4) produces g′(t) = µ1(t)γ (t) = µ1(t)t whereas (5.9) and (5.10) produce σ ′(t) =
σ (t)
1−t + µ1(t) and h′(t) = − σ (t)

1−t . Combining these with the product rule produces the claim.
27 Recall that a Lévy process l = (lt )t∈[0,1] with l0 := 0 and gamma distributed increments lt − ls , 0 ≤ s <
t ≤ 1, is called a gamma process. In our case, the mean and variance are normalized to one. A gamma bridge
process is then defined by γt := lt

l1
for t ∈ [0, 1]. See Émery and Yor [16] as well as Frei and Westray [19]

for more details.
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quadratic variation process [γ ]t has predictable intensity (1−γt−)2
(1−t)(2−t) where γt− := lims↑t γs

for t ∈ (0, 1] is the left-continuous version of the càdlàg process γt . In other words, the
compensated processes

γt −
∫ t

0

1 − γs−
1 − s

ds, and [γ ]t −
∫ t

0

(1 − γs−)2

(1 − s)(2 − s)
ds, t ∈ [0, 1], (5.12)

are martingales.28

The equilibrium holdings θ̂i,t in the gamma bridge model are unchanged from (3.8) in
Theorem 3.2(i). To derive the appropriate version of Theorem 3.2(ii) for the equilibrium
stock price Ŝt , the candidate stock price (3.1) is again redefined by (5.4) for deterministic
functions (h, σ, ζ ), and the martingale Nt is redefined as

dNt := dDt + ζ(t)εdBt + σ (t)ã%

(
dγt − 1−γt−

1−t dt
)
, N0 := 0. (5.13)

Consider now the requirements in Definition 2.1 in this setting. First, the quadratic varia-
tion process [N ]t of Nt has dynamics given by

d[N ]t =
(
1+ ζ(t)2ε2

)
dt + σ (t)2ã2%d[γ ]t . (5.14)

Consequently, the second martingale in (5.12) produces dynamics for the predictable
quadratic variation process (i.e., [N ]t ’s compensator; see, e.g., p. 122 in Protter [38]) as

d〈N 〉t =
(
1+ ζ(t)2ε2 + σ (t)2ã2%

(1 − γt−)2

(1 − t)(2 − t)

)
dt . (5.15)

Second, while holdings θi,t are required to be adapted to the filtrationFi,t defined in (5.1), the
left-continuity requirement in Definition 2.1 (part of the càglàd requirement on admissible
θi,t ) prevents trader i ∈ {1, . . . ,M} from using holdings that depend on γt such as, e.g.,
ãiγt . This is because gamma bridges are not left-continuous. However, θi,t can depend on
the left-continuous version γt−.29

Theorem 5.4 (Gamma bridge) Under the assumptions of Theorem 3.2, h(0) $= 0, and when
the target ratio γt is a gamma bridge, there exists an equilibrium in which:

(i) The perceived price parameters ν0, . . . , ν4 and ν̄0, . . . , ν̄3 are as in Theorem 3.2.
(ii) Investor equilibrium holdings are given by

θ̂i,t =
{

α1(t)ã%γt− + α2(t)εBt + α3(t)ãiγt−, i ∈ {1, . . . ,M},
ᾱ1(t)ã%γt− + ᾱ2(t)εBt , i ∈ {M + 1, . . . ,M + M}, (5.16)

where the deterministic functions α1,α2,α3, ᾱ1, and ᾱ2 are given by (3.8).
(iii) The equilibrium stock price is defined by (5.4) with the martingale Nt defined in (5.13)

for deterministic functions h, σ , and ζ given as the unique solutions of the linear ODE
system in (5.5), and the price drift is given by

µ̂t := µ1(t)ã%γt− + µ2(t)εBt , (5.17)

where the deterministic functions µ1 and µ2 are again defined by (3.5).

28 For simplicity, the underlying gamma process is normalized to have unit mean and unit variance, which
among other properties gives us E[γt ] = t and E[γ 2

t ] = 1
2 t(1 + t). However, the following analysis can

easily be modified to include a parameter m ∈ (0,∞) by redefining the predictable intensity of the quadratic

variation process [γ ]t to be (1−γt−)2

(1−t)(1+m(1−t)) and leaving γ ’s predictable intensity as 1−γt−
1−t . This would give

us E[γ 2
t ] = t(1+mt)

1+m whereas E[γt ] = t is as before.
29 This admissibility restriction is essentially an assumption about how quickly investors can act on γt .
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*+
The equilibria with the Brownian bridge and gamma bridge target-ratio processes γt in

Theorem 5.2 and Theorem 5.4 both have the following comparative statics:

Corollary 5.5 In the setting of Theorems5.2and5.4, the dynamics of the predictable quadratic
variation process of the equilibrium price pressure Ŝt − Dt and the predictable quadratic
cross-variation processes between Ŝt − Dt and (γ , B) are given by

d〈Ŝ − D〉t = σ (t)2ã2%d〈γ 〉t + ζ(t)2ε2dt,

d〈Ŝ − D, γ 〉t = σ (t)ã%d〈γ 〉t ,
d〈Ŝ − D, B〉t = ζ(t)εdt .

(5.18)

In the Brownian bridge model (5.2)we have d〈γ 〉t = dt whereas in the gamma bridge model

the second martingale in (5.12) produces d〈γ 〉t = (1−γt−)2
(1−t)(2−t)dt.

Proof From Theorems 5.2 and 5.4 the equilibrium stock-price process is (5.4) for both the
Brownian and gamma bridge processes. The variations (5.18) follow from the representation
of Ŝt − Dt from (5.4). *+

The formulas in (5.18) show that comovement between price pressure and the underlying
sources of randomness are completely determined by the solutions of the ODEs in (5.5).
Consequently, variances and covariances for the price pressure Ŝt − Dt can be expressed
in terms of these functions. For example, in the gamma bridge model, the price-pressure
variance is

V[Ŝt − Dt |σ (ã%)] = E
[(

σ (t)(γt − t)ã% + ζ(t)εBt
)2|σ (ã%)

]

= σ (s)2E[(γt − t)2]ã2% + ζ(t)2ε2t

= σ (s)2
t(1 − t)

2
ã2% + ζ(t)2ε2t,

(5.19)

where the last equality uses E[γt ] = t and E[γ 2
t ] = 1

2 t(1+ t). Section 7 provides numerical
examples of the solutions to the ODEs in (5.5).
Empirical predictions In the competitive Radner equilibrium where ν∗

3 and ν̄∗
3 are given by

(4.2), the representation of ζ in (4.7) continues to hold whereas σ in (5.9) becomes

σ (t) = 1
1 − t

∫ 1

t

2(1 − u)κ(u)κ(u)

Mκ(u)+ Mκ(u)
du, t ∈ [0, 1). (5.20)

Consequently, in the competitive Radner equilibrium, the comparison result for price volatil-
ity given in Corollary 4.2 continue to hold (i.e., price volatility is increasing in κ).

6 Connection to VWAP benchmark trading

The stochastic target ratio γt in Section 5 is driven by randomly evolving market conditions
that affect intraday order-execution costs. This section shows how the stochastic target ratio
γt can be linked to VWAP trading. To do this, we augment our earlier model so that aggregate
market volume is now the sum of two components: First, as before, there is trading by the
rebalancers, liquidity providers, and hedgers. Second, there is now additional trading by a
new group of investors that we introduce into the model. These are a large number of other
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buyers and sellers—whowe call the crowd—with inelastic trading demands that are assumed
to naturally net to zero. For example, these could be retail investors and small asset managers
trading for naturally offsetting personal reasons. In our augmented VWAP model, these two
groups trade alongside each other. Since trading by the crowd is naturally offsetting, it has no
impact on aggregate trading-demand imbalances. However, it does contribute to the aggregate
market volume. We assume here that crowd volume affects (or is correlated with) order-
execution costs and, thus, affects the trading target trajectories γt ãi of the targeted investors
via γt . In contrast, trading by our targeted investors affects aggregate order imbalances and,
thus, market-clearing prices. However, we assume there is no feedback loop whereby their
trading affects order-execution costs and, thus, their (exogenous in ourmodel) intraday trading
target trajectories.30

To this end, let vol = (volt )t∈[0,1] be an exogenous stochastic process for the stock’s
cumulative crowd volume volt over the interval [0, t] for times t ∈ [0, 1]. The relative
cumulative volume process is then defined as the ratio

volt
vol1

, t ∈ [0, 1], (6.1)

which is zero initially, has non-decreasing paths, and has terminal value one. Because vol1 at
time t = 1 cannot be observed at times t < 1, the volume ratio (6.1) also cannot be observed
at times t < 1. Consequently, the ratio (6.1) cannot be used as a state-process.

The VWAP objective replacing (1.1) for targeted investors is

sup
θi∈Ai

E
[
Xi,1 −

∫ 1

0
κ(t)

( volt
vol1

ãi − θi,t

)2
dt

∣∣∣Fi,0

]
, i ∈ {1, . . . ,M}. (6.2)

The idea behind (6.2) is that intraday fluctuations in the relative volume ratio (6.1) affect the
ex post intraday trading target trajectory volt

vol1
ãi . However, because investor i’s position θi,t is

adapted to the filtrationFi,t and because investor i cannot use her holdings θi,t to manipulate
the intraday volume weights volt

vol1
, the optimization problem (6.2) can be replaced, given

linear utilities, with the equivalent problem:31

sup
θi∈Ai

E
[
Xi,1 −

∫ 1

0
κ(t)

(
E

[
volt
vol1

∣∣∣Fi,t

]
ãi − θi,t

)2
dt

∣∣∣Fi,0

]
. (6.3)

We model E
[
volt
vol1

∣∣∣Fi,t

]
directly as a gamma bridge γt . In that case, (6.3) becomes (1.1)

when Fi,t is defined by (5.1) and γ (t) is replaced by γt . Frei and Westray [19] model the
realized relative volume curve volt

vol1
used for VWAP benchmarking by the gamma bridge γt

from Example 5.3. However, as discussed on page 617 in Frei andWestray [19], this presents
a potential problem because the realized relative volume curve in (6.1) cannot be observed
prior to the end of the trading day. In contrast, the intraday expected relative volume curve
E

[
volt
vol1

|Fi,t

]
in (6.3) in our model is—by definition—observable at times t ∈ [0, 1]. Thus,

we model it as a gamma bridge.
Empirical implications: Prices in the gamma bridge model in Section 5 include a stochastic
response to random changes in the target ratio γt , which includes the effect of changing

30 In practice, VWAPbenchmarking for an investor often excludes the investor’s own trading from themeasure
of volume used contractually in VWAP benchmarking (see, e.g., Madhavan [32], Exhibit 1). For simplicity,
we keep ε constant for hedgers. Allowing for a stochastic εt is also possible.
31 The optimization problems in (6.2) and (6.3) are different and yield different objective values, but the two
problems are equivalent in that they share the same maximizer. This is because the objectives in (6.2) and
(6.3) differ only because of terms that do not involve θi,t .
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order-execution and inventory costs on the optimal target trajectory for targeted investors. Our
VWAP analysis links these fluctuations in the stochastic target ratio γt to intraday fluctuations
in the expected intraday volume ratio E

[
volt
vol1

∣∣Fi,t

]
. Thus, our VWAP model predicts that a

positive shock to the expected daily volume ratio at time t increases the magnitude |Ŝt − Dt |
of price pressure due to increased trading-demand imbalances due to an increase in the
magnitude of the aggregate intraday trading target |γt ã% |.

7 Numerics

This section presents numerics for the competitive Radner equilibrium where (4.1) holds.
Our analysis uses the two bridge models for the target ratio γt in Examples 5.1 and 5.3. The
objects of interest are: (i) properties of the equilibrium price process Ŝt in (5.4), and (ii) how
the rebalancers, liquidity providers, and hedgers optimally trade. The numerical properties
here illustrate the analytic derivations in Section 5.

Our analysis uses the terminal stock-price restriction (1.10) (i.e., ϕ0 := ϕ1 := 0 in (1.8)),
M := 10 targeted investors, and M := 10 hedgers. The private targets (ã1, . . . , ãM ) here are
independent and have ex ante moments

E[ãi ] = 0, E[ã2i ] = 1, i ∈ {1, . . . ,M}. (7.1)

We consider penalty-severity functions in (1.3) and (1.4) defined by

κ(t) := (1 − p)
(1 − t)p

, t ∈ [0, 1), p ∈ [0, 1),

κ(t) := (1 − p̄)
(1 − t) p̄

, t ∈ [0, 1), p̄ ∈ [0, 1),
(7.2)

which are parameterized by p and p̄. For comparison purposes, these functions both integrate
to one over t ∈ [0, 1]. A natural baseline is p := 0, where the penalty severity is constant
over the day. For p ∈ (0, 1), the penalty functions explode as t ↑ 1 at various rates but
still satisfy the integrability condition (3.3). When p is close to one (e.g., p := 0.99), the
intraday penalty severities are negligible (i.e., close to zero) until close to the end of the day.
In this case, our model mimics the situation where trader i ∈ {1, . . . ,M} faces no intraday
penalties but just a quasi-hard terminal constraint θi,1 = ãi . Figure 1 illustrates some of the
κ(t) functions used in our numerical analysis.

Our first topic is equilibrium pricing. From Theorems 3.2, 5.2, and 5.4, the price function
ζ(t) in (3.1) and (5.4) is identical for the deterministic γ (t)model and for both the Brownian
and gamma bridge γt models and is given in (4.7). The price-loading functions σ (t) and h(t)
do not appear in the deterministic γ (t) model but are the same for both the Brownian and
gamma bridge models and are given in (5.20) and (5.10). Figure 2 shows the price-loading
functions σ (t), h(t), and ζ(t) for different values of p and p̄. The signs of σ (t), h(t), and
ζ(t) are all positive (from (5.9), (5.10), and Remark 3.1.2). We note that the greater the
penalty severity κ(t) is, the more sensitive prices are to shocks in the amount εBt driving the
hedger trading demand, which the targeted investors must provide. The values ζ(t) and h(t)
converge to ϕ0 and ϕ1 as t ↑ 1, which in these numerics are, for simplicity, taken to be zero.
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Fig. 1 Examples of penalty
severity functions κ(t) in (7.2).
The lines are: p := 0 (——),
p := 0.1 (−−), p :=
0.5 (− · −), p := 0.99 (− · ·−)

Fig. 2 Equilibrium price functions σ (t), h(t) and ζ(t) in (5.20), (5.10), and (4.7) for the competitive equilib-
rium (4.2). The parameters are given by (7.1)–(7.2), ε := 1, and the discretization divides the day t ∈ [0, 1] into
1,000 trading rounds. The lines are p = p̄ = 0 (——), p = 0.5, p̄ = 0 (−−), p = 0, p̄ = 0.5 (− ·−), p =
p̄ = 0.5 (− · ·−)

Our second topic is the equilibrium stock holdings. For i ∈ {1, . . . ,M}, the optimal
VWAP strategies for i ∈ {1, . . . ,M} in (5.7) and (5.16) give expected holdings over the day

E[θ̂i,t |σ (ãi , ã%)] = α1(t)E[γt−]ã% + α2(t)εE[Bt ] + α3(t)E[γt−]ãi
= α1(t)t ã% + α3(t)t ãi .

(7.3)

Consequently, from (7.3), trader i ∈ {1, . . . ,M} expects ex ante to deviate from her target
trajectory ãiγt− by

E[θ̂i,t − ãiγt−|σ (ãi , ã%)] = α1(t)t ã% +
(
α3(t) − 1

)
t ãi

= α1(t)t ã%,
(7.4)
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Fig. 3 ã% -coefficients in the conditional expected deviations (7.4) and (7.5) for the competitive equilibrium
(4.2). The parameters are given by (7.1)–(7.2), ε := 1, and the discretization divides the day t ∈ [0, 1] into
1,000 trading rounds. The lines are: p = p̄ = 0 (——), p = 0.5, p̄ = 0 (−−), p = 0, p̄ = 0.5 (−·−), p =
p̄ = 0.5 (− · ·−)

where the last equality follows from inserting the competitive values (4.2) into the expression
for α3 given in (3.9), which gives α3(t) = 1 here. Figure 3 shows the coefficient on ã% in the
expected deviations between targeted investor i’s holdings up through time t ∈ [0, 1] relative
to her corresponding target. Similarly, for hedger i ∈ {M + 1, . . . ,M + M}, the optimal
strategies (5.7) and (5.16) give ex ante expected hedger target deviations

E[θ̂i,t − εBt |σ (ã%)] = ᾱ1(t)t ã% . (7.5)

Finally, we illustrate that when p $= p̄, the targeted investors’ and hedgers’ soft target
constraints can become hard constraints. In other words, if the targeted investor penalty
severity κ(t) explodes faster as t ↑ 1 than the hedger penalty severity κ(t), the targeted
investors hit their targets ãi with probability one at the end of trading. To see this, we use
(4.8) to compute the limit. Because γ1 = 1, the terminal deviation for targeted investors
i ∈ {1, . . . ,M} is

θ̂i,1 − ãi =






0, p̄ < p,

− ã%+MεB1
M+M

, p̄ = p,

− ã%+MεB1
M , p̄ > p.

(7.6)

For hedgers i ∈ {M + 1, . . . ,M + M}, the terminal deviation is

θ̂i,1 − εB1 =






− ã%+MεB1
M

, p̄ < p,

− ã%+MεB1
M+M

, p̄ = p,

0 p̄ > p.

(7.7)

8 Extension to inhomogeneous investors

We can allow for inhomogeneity within the realtime hedgers. To illustrate this, we split the
group of real-time hedgers into two homogenous subgroups with respectively M̄ and M◦

investors. Therefore, we replace (1.4) with hedger penalties

Li,t :=
{∫ t

0 κ(s)
(
θi,s − εBs

)2ds, i ∈ {M + 1, . . . ,M + M̄},
∫ t
0 κ◦(s)

(
θi,s − ε◦Bs

)2ds, i ∈ {M + M̄ + 1, . . . ,M + M̄ + M◦},
(8.1)
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for t ∈ [0, 1]. In the penalty processes in (8.1), the two subgroups’ penalty-severity functions
κ◦(t) and κ̄(t) can differ and their scalars ε◦ and ε can differ.

Up to minor modifications, the equilibrium structure in Theorem 3.2 continues to hold,
but for this model extension there are now three free perceived price-impact parameters
(ν3, ν̄3, ν

◦
3 ). The equilibrium stock-price drift in (3.2) becomes

µ̂t = − (M + M̄ + M◦)CC̄C◦(2κ + ν4)

2
(
(M + M̄ + M◦)2 − 1

)
(κ − ν3)(M◦CC̄ + M̄CC◦ + MC̄C◦)

γ ã%

− 2C(M̄ κ̄C◦ε + M◦κ◦C̄ε◦)
M◦CC̄ + M̄CC◦ + MC̄C◦ Bt ,

(8.2)

where

C(t) := 2(M + M̄ + M◦)κ(t) − (1+ M + M̄ + M◦)ν3(t),

C̄(t) := 2(M + M̄ + M◦)κ̄(t) − (1+ M + M̄ + M◦)ν̄3(t),

C◦(t) := 2(M + M̄ + M◦)κ◦(t) − (1+ M + M̄ + M◦)ν◦
3 (t),

ν4 := −4κ2 + 2(1+ M + M̄ + M◦)(−2+ M + M̄ + M◦)κν3

(M + M̄ + M◦)C
.

(8.3)

Likewise, the equilibrium investor holdings in (3.8) become

θ̂t = − (M + M̄ + M◦)C̄C◦(2κ + ν4)

2(1+ M + M̄ + M◦)(κ − ν3)(M◦CC̄ + M̄CC◦ + MC̄C◦)
γ ã%

− 2(−1+ M + M̄ + M◦)(M̄ κ̄C◦ε + M◦κ◦C̄ε◦)
M◦CC̄ + M̄CC◦ + MC̄C◦ Bt

+ (M + M̄ + M◦)(2κ + ν4)

2(1+ M + M̄ + M◦)(κ − ν3)
γ ãi ,

ˆ̄θt = − (M + M̄ + M◦)CC◦(2κ + ν4)

2(1+ M + M̄ + M◦)(κ − ν3)(M◦CC̄ + M̄CC◦ + MC̄C◦)
γ ã%

+ 2(−1+ M + M̄ + M◦)(κ̄(MC◦ + M◦C)ε − M◦κ◦Cε◦)
M◦CC̄ + M̄CC◦ + MC̄C◦ Bt ,

θ̂◦
t = − (M + M̄ + M◦)CC̄(2κ + ν4)

2(1+ M + M̄ + M◦)(κ − ν3)(M◦CC̄ + M̄CC◦ + MC̄C◦)
γ ã%

+ 2(−1+ M + M̄ + M◦)(κ◦(MC̄ + M̄C)ε◦ − M̄ κ̄Cε)

M◦CC̄ + M̄CC◦ + MC̄C◦ Bt .

(8.4)

We conjecture that the model structure scales linearly with as many free perceived hedger
price-impact coefficients ν̄3 as there are heterogenous hedger subgroups.

9 Discussion

Two features of the mathematical structure of our model are particularly important for
tractability. The first is that the aggregate target ã% is inferable at time t = 0 and so, as
a result, there is no need for investors to filter trading data over time to estimate the other
investors’ private targets. The second is the linear preference structure, which leads to the
optimal controls θ̂i,t at time t ∈ [0, 1] being solutions to pointwise optimization problems.
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There are good reasons to think the qualitative properties of our analysis are robust even
though the specific functional forms of prices and trading strategies depend on our model-
ing assumptions (e.g., Brownian motion dynamics). First, investor perceptions about how
prices respond to off-equilibrium orders are likely a key factor determining the equilibrium
form. Thus, price-sensitive investors should still trade off intraday target-tracking inventory
penalties and perceived price-impact costs, even if price impact is non-linear. Second, ratio-
nal forward-looking liquidity provision is still likely to lead to the absence of manipulative
predatory trading. Third, intraday liquidity is likely to be reduced by intraday trading target
penalties relative to just terminal end-of-day target penalties.

Lastly, we comment on numerical implementation. The model is characterized by low
dimensional state-processes that makes numerics fast to perform. Furthermore, the model’s
linear structure makes the numerics stable (coupled linear ODEs). We have experimented
extensively with the numerics and have not found any instability concerns.

10 Conclusion

This paper has solved for continuous-time SubgamePerfect Nash equilibriawith endogenous
liquidity provision and intraday trading targets. We show how TWAP, VWAP, and other
trading benchmarks induce intraday patterns in investor positions and in price dynamics.
There are also potential extensions of our model. First, it would be interesting to extend the
model to allow for more heterogeneity in the investor optimization problems. For example,
γ (t) and ε could be replaced with different ratios γi (t) for targeted investors and εi or a
stochastic process εt for hedgers. Second, perhaps the most pertinent extension would be
to allow for additional randomness such that the initial equilibrium stock price Ŝ0 cannot
fully reveal the aggregate target ã% . Such an extension would require filtering to learn about
trading-demand imbalances. Third, the Brownian motion driving hedger demands might be
private information rather than publicly observable.

Proofs

Lemma A.1 (Trader j ’s optimal response) Let ν0(t) $= 0, ν̄0(t) $= 0, and assume that (2.3)
holds. Fix an exogenous state-process with càglàd paths Y = (Yt )t∈[0,1] and fix a trader
index j ∈ {1, . . . ,M + M}. When the stock price S in the wealth (1.2) and filtration Fi,t in
(1.12) is S := SY with drift (2.2) and martingale (2.4), the optimizer for (1.1) over A j is

θYj,t :=






1
2
(
κ(t)−ν3(t)

)
(
ν0(t)Yt + ν1(t)γ (t)ã% + ν2(t)Bt +

(
ν4(t)+ 2κ(t)

)
γ (t)ã j

)
, j ∈ {1, . . . ,M},

1
2
(
κ(t)−ν̄3(t)

)
(
ν̄0(t)Yt + ν̄1(t)γ (t)ã% +

(
ν̄2(t)+ 2εκ(t)

)
Bt

)
, j ∈ {M + 1, . . . ,M + M},

(A.1)

provided that θYj,t satisfies the integrability condition (2.1).
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Proof of Lemma A.1 Because utilities are linear, we have the following representation for an
arbitrary control θ j ∈ A j for targeted investors j ∈ {1, . . . ,M}

E[X j,1 − L j,1|F j,0]

= X j,0 + E
[ ∫ 1

0

(
θ j,s

(
ν0(s)Ys + ν1(s)γ (s)ã% + ν2(s)Bs + ν3(s)θ j,s + ν4(s)γ (s)ã j

)

− κ(s)
(
θ j,s − γ (s)ã j

)2)ds
∣∣∣F j,0

]
.

(A.2)

For hedgers j ∈ {M + 1, . . . ,M + M}, we have a similar representation

E[X j,1 − L j,1|F j,0]

= X j,0 + E
[ ∫ 1

0

(
θ j,s

(
ν̄0(s)Ys + ν̄1(s)γ (s)ã% + ν̄2(s)Bs + ν̄3(s)θ j,s

)

− κ(s)
(
θ j,s − εBs

)2)ds
∣∣∣F j,0

]
.

(A.3)

The martingale property of
∫

θ j dN is used to eliminate E[
∫ 1
0 θ j,sdNs] in both (A.2) and

(A.3). The integrands in the ds-integrals are quadratic in θ j,s . Consequently, the supremum
in (1.1) is achieved by maximizing the integrands in (A.2) and (A.3) pointwise over θ j,s at
each state and at each time s ∈ [0, 1]. This gives the optimal holdings in (A.1).

The left-continuity of Y ’s paths allows investor j to infer Y from past and current obser-
vations of SY and (D, B). To see this, it suffices to show that observing

∫ t

0
ν0(s)Ysds for j ∈ {1, . . . ,M} and

∫ t

0
ν̄0(s)Ysds for j ∈ {M + 1, . . . ,M + M},

(A.4)

over time t ∈ [0, 1) is sufficient for investor j to infer Yt . The integrals in (A.4) are well-
defined because ν0(s) and ν̄0(s) are continuous on [0, 1) and Y has càglàd paths (hence, Y ’s
paths are locally bounded). The ability to infer Yt from (A.4) follows directly from computing
the time derivative from the left of (A.4). This left-derivative is ν0(t)Yt for j ∈ {1, . . . ,M}
and ν̄0(t)Yt for j ∈ {M + 1, . . . ,M + M} by the left-continuity requirement placed on Y ’s
paths. Consequently, Yt isFi,t measurable when S := SY in (1.12) where SY is defined using
(2.2). Therefore, Yt can be used as a state-variable for investor j in (A.1). *+

Comment: Because our traders are penalized for deviations of their holdings from intraday
targets, investor optimal stock holdings are given in terms of levels rather than trading rates.
This property allows our investors to absorb trading noise with only finite quadratic variation
such as the Brownian motion dynamics in, e.g., Kyle [30].

Proof of Lemma 2.2 We define the state-process

Y θi
t :=






2κ(ν̄3−κ)−(κ−ν̄3)
(
(M−1)ν1+ν4

)
+M ν̄1(ν3−κ)

(M−1)ν0(κ−ν̄3)+M ν̄0(κ−ν3)
γ ã% − (M−1)ν2(κ−ν̄3)+M(κ−ν3)(ν̄2+2κε)

(M−1)ν0(κ−ν̄3)+M ν̄0(κ−ν3)
Bt

− 2(κ−ν3)(κ−ν̄3)

(M−1)ν0(κ−ν̄3)+M ν̄0(κ−ν3)
θi,t + (κ−ν̄3)(2κ+ν4)

(M−1)ν0(κ−ν̄3)+M ν̄0(κ−ν3)
γ ãi , i ∈ {1, . . . ,M},

− 2κ(κ−ν̄3)+(κ−ν̄3)(Mν1+ν4)+(M−1)ν̄1(κ−ν3)

Mν0(κ−ν̄3)+(M−1)ν̄0(κ−ν3)
γ ã% + Mν2(ν̄3−κ)−(M−1)ν̄2(κ−ν3)−2κ(M−1)ε(κ−ν3)

Mν0(κ−ν̄3)+(M−1)ν̄0(κ−ν3)
Bt

− 2(κ−ν3)(κ−ν̄3)

Mν0(κ−ν̄3)+(M−1)ν̄0(κ−ν3)
θi,t , i ∈ {M + 1, . . . ,M + M},

(A.5)
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so that the corresponding drift process (2.2) perceived by investor j $= i becomes
{

ν0(t)Y
θi
t + ν1(t)γ (t)ã% + ν2(t)Bt + ν3(t)θ j,t + ν4(t)γ (t)ã j , j ∈ {1, . . . ,M},

ν̄0(t)Y
θi
t + ν̄1(t)γ (t)ã% + ν̄2(t)Bt + ν̄3(t)θ j,t , j ∈ {1+ M, . . . ,M + M}.

(A.6)

Thus, trader j’s optimal response holdings θY
θi

j,t to Y θi
t are given by (A.1) in Lemma A.1. By

summing these holdings, we see that (2.5) holds. *+

Proof of Theorem 3.2 We first insert Sθi from (2.6) into the objective (1.1) to get

E
[ ∫ 1

0

(
θi,tµ

θi
t − κ(t)

(
θi,t − γ (t)ãi

)2)dt
]
, i ∈ {1, . . . ,M},

E
[ ∫ 1

0

(
θi,tµ

θi
t − κ(t)

(
θi,t − εBt

)2)dt
]
, i ∈ {M + 1, . . . ,M + M},

(A.7)

where µ
θi
t is defined in (2.7). In (A.7), the expectation E[

∫ 1
0 θi,t dNt ] drops out because

θi ∈ Ai ensures that the stochastic integrals
∫

θi dN are martingales. The integrands in (A.7)
are quadratic functions of θi,t and the quadratic terms produce the second-order conditions

(κ − ν3)((M + 1)ν0(κ − ν̄3)+ M ν̄0(κ − ν3))

(M − 1)ν0(κ − ν̄3)+ M ν̄0(κ − ν3)
> 0,

(κ − ν̄3)(Mν0(κ − ν̄3)+ (M + 1)ν̄0(κ − ν3))

Mν0(κ − ν̄3)+ (M − 1)ν̄0(κ − ν3)
> 0.

(A.8)

Provided (A.8) holds, the pointwise maximizers of the integrands in (A.7) are given by

θ̂i,t :=






(
ãiγ (2κ + ν4)(Mν0(κ − ν̄3)+ M ν̄0(κ − ν3))+ ã%γ

(
2κν0(ν̄3 − κ) − κν0ν4

+ν0ν4ν̄3 + M(κ − ν3)(ν1ν̄0 − ν0ν̄1)
)
+ BtM(κ − ν3)(ν2ν̄0 − ν0(ν̄2 + 2κε))

)

/(
2(κ − ν3)((M + 1)ν0(κ − ν̄3)+ M ν̄0(κ − ν3))

)
, i ∈ {1, . . . ,M},

ã%γ
(
Mν0 ν̄1−ν̄0(2κ+Mν1+ν4)

)
+Bt M(ν0 ν̄2−ν2 ν̄0+2κν0ε)

2(Mν0(κ−ν̄3)+(M+1)ν̄0(κ−ν3))
, i ∈ {M + 1, . . . ,M + M}.

(A.9)

Summing (A.9) over i ∈ {1, . . . ,M +M} shows that the stock market clears in the sense
that (1.5) holds when ν̄0 is defined as in (3.6).

Expression (3.6) allows us to re-write the second-order conditions in (A.8) as

(κ − ν3)(M + M + 1)

M + M − 1
> 0,

(κ − ν̄3)(M + M + 1)

M + M − 1
> 0.

(A.10)

Because we have assumed (2.3), the second-order conditions (A.10) hold. Consequently,
the pointwise optimizers are given in (A.9).
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To ensure that the resulting stock-price drift processesµθ̂i
t are the same for all investors i ∈

{1, . . . ,M + M} and, in particular, ensuring that the individual private targets (ã1, . . . , ãM )

do not appear in µ
θ̂i
t , we define the deterministic functions in (3.7). By inserting (3.6) and

(3.7) into (A.9) and simplifying, gives

θ̂i,t =






2(M+M−1)
M

(
M(ã%γ κ−BtκMε)

M2(2κ−ν̄3)+MM(2(κ+κ)−ν3)−M(M+1)ν̄3+M(2κM−ν3(M+1))

+ γ κ(ãi M−ã%)

2κ(M+M)−ν3(M+M+1)

)
, i ∈ {1, . . . ,M},

2(M+M−1)(BtκMε−ã%γ κ)

M2(2κ−ν̄3)+MM(2(κ+κ)−ν3)−M(M+1)ν̄3+M(2κM−ν3(M+1))
, i ∈ {M + 1, . . . ,M + M}.

(A.11)

Because the remaining functions ν0, ν1, and ν2 do not appear in (A.11), these functions are
irrelevant in the sense that different ν0, ν1, and ν2 functions all produce the same equilibrium
prices and investor holdings provided ν0 $= 0. The functions α1,α2,α3, ᾱ1, ᾱ2 in (3.9) are
found by matching (ã%, Bt , ãi ) coefficients in (A.11), which also produces the expression
for θ̂i,t in (3.8).

At this point, the stock-price drift processes µθ̂i
t are all identical, and we define µ̂t as their

common value. The representation (3.10) of µ̂t follows from inserting (A.11) into µ
θ̂i
t and

matching (ã%, Bt ) coefficients. The resulting functions µ1(t) and µ2(t) are given in (3.5),
which, we show next, are integrable. The bounds (3.13) produce

|µ1| ≤ min
{2κ
M

,
2(2(M + M)κ − (1+ M + M)ν̄3)

M

}
,

|µ2| ≤ min
{
2κ,

2M(2(M + M)κ − (1+ M + M)ν3)

M

}
.

(A.12)

The integrability (3.3) assumed of κ and κ ensure integrability of the upper bounds in
(A.12). Therefore, the ODEs (3.4) can be solved by integrating. To see that the functions
α1,α2,α3, ᾱ1, ᾱ2 in (3.9) are uniformly bounded we again use (A.12):

|α1| ≤ M + M − 1
κ

|µ1| ≤ 2(M + M − 1)
M

,

|α2| ≤ 2M(M + M − 1)
M

,

|α3| ≤ 2(M + M − 1),

|ᾱ1| ≤ 2(M + M − 1)

M
,

|ᾱ2| ≤ M(M + M − 1)

Mκ
|µ2| ≤ 2M(M + M − 1)

M
.

Because α1,α2,α3, ᾱ1, ᾱ2 are bounded functions, the process θ̂i,t in (3.8) is admissible in
the sense of Definition 2.1, and its optimality follows.

The last step of the proof establishes the terminal price condition (1.8). Itô’s lemma
produces the dynamics of Ŝt in (3.1) to be

d Ŝt = g′(t)ã%dt + dDt + ζ ′(t)εBtdt + ζ(t)εdBt

= µ̂t dt + dDt + ζ(t)εdBt ,
(A.13)
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where the last equality uses (3.4). The terminal conditions in (3.4) produce the terminal price
restriction (1.8). *+
Proof of Theorem 4.1 The Cauchy-Schwarz inequality ensures that when M ≥ 2 and
(ã1, . . . , ãM ) are not perfectly correlated, we have

M
M∑

i=1

E[ã2i ] > E[ã2%]. (A.14)

We can rewrite (4.4) as

M+M∑

i=1

E[CEi ] =
∫ 1

0
F

(
ν3(t), ν̄3(t)

)
dt, (A.15)

where the function F : R2 0→ R is defined by

F
(
ν3(t), ν̄3(t)

)
:=

M∑

i=1

E
[
θ̂i,t µ̂t − κ(t)

(
γ (t)ãi − θ̂i,t

)2]

+
M+M∑

i=M+1

E
[
θ̂i,t µ̂t − κ(t)(θ̂i,t − εBt )

2]

= −
M∑

i=1

E
[
κ(t)

(
γ (t)ãi − θ̂i,t

)2] −
M+M∑

i=M+1

E
[
κ(t)(θ̂i,t − εBt )

2],

(A.16)

and where θ̂i,t is as in Theorem 3.2. The equality in (A.16) follows from
∑M+M̄

i=1 θ̂i,t = 0.
Therefore, our goal is to find the maximum point of F(ν3, ν̄3) under the restrictions ν3 < κ

and ν̄3 < κ . We observe that
∂

∂ν̄3
F(ν3, ν̄3)

= − 4M(M+M−1)(M+M+1)(E[ã2% ]γ 2κ2+M2tε2κ2)
(
M(1+M+M)ν̄3+M(1+M+M)ν3−2Mκ−2Mκ

)
(
M

(
2(M+M)κ−(1+M+M)ν3

)
+M

(
2(M+M)κ−(1+M+M)ν̄3

))3 .

(A.17)
Because the denominator in (A.17) is positive by (3.13), we have

∂F
∂ν̄3

(ν3, ν̄3) > 0, (A.18)

for (ν3, ν̄3) satisfying

ν3 <
2κ

1+ M + M
− M(M + M − 1)κ

M(1+ M + M)
and ν̄3 < κ. (A.19)

Therefore,

sup
ν̄3<κ

F(ν3, ν̄3) = F(ν3, κ) when ν3 <
2κ

1+ M + M
− M(M + M − 1)κ

M(1+ M + M)
. (A.20)

Long but elementary computations produce

∂

∂ν3
F(ν3, κ) > 0, for ν3 <

2κ

1+ M + M
− M(M + M − 1)κ

M(1+ M + M)
. (A.21)
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From (A.20) and (A.21), we conclude that the maximum point of F satisfies the inequality
ν3 ≥ 2κ

1+M+M
− M(M+M−1)κ

M(1+M+M)
, which is equivalent to

2Mκ + 2Mκ − M(1+ M + M)ν3

M(1+ M + M)
≤ κ. (A.22)

Under the restriction in (A.22), the derivative (A.17) implies that we have

sup
ν̄3<κ

F(ν3, ν̄3) = F(ν3,
2Mκ + 2Mκ − M(1+ M + M)ν3

M(1+ M + M)
). (A.23)

Taking the derivative with respect to ν3 of F in (A.16) produces

∂

∂ν3
F(ν3,

2Mκ+2Mκ−M(1+M+M)ν3
M(1+M+M)

)

= − 4(M
∑M

i=1 E[ã2i ]−E[ã2% ])(M+M−1)(1+M+M)γ 2κ2
(
(1+M+M)ν3−2κ

)

M
(
2(M+M)κ−(1+M+M)ν3

)3 .

(A.24)

Because of (A.14), we can conclude that F(ν3,
2Mκ+2Mκ−M(1+M+M)ν3

M(1+M+M)
) is maximized at

ν∗
3 = 2κ

1+M+M
, and the corresponding ν̄∗

3 is 2κ
1+M+M

. This maximizer is unique by the
previous arguments.

Finally, inserting (ν∗
3 , ν̄

∗
3 ) into F in (A.16) produces the total welfare

sup
ν3(t),ν̄3(t)

M+M∑

i=1

E[CEi ] = −
∫ 1

0

κ(t)κ(t)
(
γ (t)2E[ã2%] + ε2M

2
t
)

Mκ(t)+ Mκ(t)
dt, (A.25)

the optimal holding strategies in (4.5), and the common drift in (4.6). *+

Proof of Theorem 5.2 This proof is similar to the proof of Theorem 3.2, so here we only
outline the key difference. Itô’s product rule produces the dynamics of the right-hand-side of
(5.4) to be

h′(t)ã%dt + dDt + ζ ′(t)εBtdt + ζ(t)εdBt + ã%

(
σ (t)dγt + γtσ

′(t)dt
)

=
(
h′(t)ã% + ζ ′(t)εBt + ã%

(
σ (t)

1 − γt

1 − t
+ σ ′(t)γt

))
dt + dDt + ζ(t)εdBt + σ (t)ã%dZt

= µ̂t dt + dDt + ζ(t)εdBt + σ (t)ã%dZt ,

(A.26)

where the last equality uses the ODEs (5.5). The terminal conditions in (5.5) produce the
terminal price restriction (1.8).

By computing the derivative in formula (5.9), we see that the ODE for σ in (5.5) holds.
The zero terminal condition for σ follows from

|σ (t)| ≤ 1
1 − t

∫ 1

t
(1 − u)|µ1(u)|du ≤

∫ 1

t
|µ1(u)|du, t ∈ [0, 1),
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which converges to zero as t ↑ 1 because µ1(u) is integrable over u ∈ [0, 1]. To see that σ (t)
1−t

is integrable, the representation (5.9) produces
∫ 1

0
| σ (t)
1 − t

|dt ≤
∫ 1

0

∫ 1

t

1 − u
(1 − t)2

|µ1(u)|dudt

=
∫ 1

0
u|µ1(u)|du < ∞,

(A.27)

where the equality uses Tonelli’s theorem. *+
Proof of Theorem 5.4 This proof is similar to the proofs of Theorems 3.2 and 5.2, so here we
only outline the key difference. Itô’s product rule produces the dynamics of the right-hand-
side of (5.4) to be

ã%h′(t)dt + dDt + ζ ′(t)εBtdt + ζ(t)εdBt + ã%

(
σ (t)dγt + σ ′(t)γt−dt

)

=
(
h′(t)ã% + ζ ′(t)εBt + ã%

(
σ (t) 1−γt−

1−t + σ ′(t)γt−
))
dt

+ dDt + ζ(t)εdBt + σ (t)ã%

(
dγt − 1−γt−

1−t dt
)

= µ̂t dt + dDt + ζ(t)εdBt + σ (t)ã%

(
dγt − 1−γt−

1−t dt
)
,

(A.28)

where the last equality uses the ODEs (5.5). The terminal conditions in (5.5) produce the
terminal price restriction (1.8). *+
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