Remote Sensing of Environment 255 (2021) 112277

Contents lists available at ScienceDirect

A

Remote Sensing of Environment

journal homepage: www.elsevier.com/locate/rse

Check for

Using SMAP Level-4 soil moisture to constrain MOD16 evapotranspiration | %&s
over the contiguous USA

Colin Brust ™", John S. Kimball ¥, Marco P. Maneta ", Kelsey Jencso ¢, Mingzhu He ¢,
Rolf H. Reichle©

@ Numerical Terradynamic Simulation Group, W.A. Franke College of Forestry & Conservation, University of Montana, Missoula, MT 59812, USA
b Department of Geosciences, University of Montana, Missoula, MT 59812, USA

¢ Montana Climate Office, W.A. Franke College of Forestry & Conservation, University of Montana, Missoula, MT 59812, USA

4 Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, 10087, China

€ Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, 8800 Greenbelt Rd, Greenbelt, MD 20771, USA

ARTICLE INFO ABSTRACT

Keywords: Evapotranspiration (ET) is a key hydrologic variable linking the Earth’s water, carbon and energy cycles. At large
Evapotranspiration spatial scales, remote sensing-based (RS) models are often used to quantify ET. Despite the large number of RS ET
Sl\éAP s models available, few include soil moisture as a key environmental input, which can degrade model accuracy and
xoglle utility. Here, we use model assimilation enhanced soil moisture estimates from the NASA SMAP (Soil Moisture

Active Passive) mission as a water supply control in the MOD16 ET algorithm framework. SMAP-derived daily
surface (0-5 cm depth) and root zone (0-1 m depth) soil moisture are used with MODIS (Moderate Resolution
Imaging Spectroradiometer) vegetation observations, and 4 km gridded regional surface meteorology (Gridmet)
as primary inputs for estimating daily ET and underlying model soil and stomatal conductance terms. We cali-
brated the model environmental response parameters using tower eddy covariance ET observations representing
major North American biomes. The model ET results were validated using a holdout set of tower observations
spanning a large regional climate gradient. The updated ET estimates outperform the baseline MOD16 product
across all tower validation sites (RMSE = 0.758 vs 1.108 mm day'; R? = 0.68 vs 0.45, respectively). Smaller
relative improvements were obtained using a recalibrated model with 4 km Gridmet meteorology, but no soil
moisture control (RMSE = 0.813 mm day!; R? = 0.66), indicating that these changes are essential for the
improved model performance. The soil moisture-constrained model improvements and relative benefits from the
SMAP observations are greater in arid climates, consistent with stronger soil moisture control on ET in water-
limited regions. The use of SMAP soil moisture as an additional model constraint improves MOD16 regional
performance and provides a new framework for investigating both soil and atmosphere controls on ET.

Soil moisture

1. Introduction evaporation from the wet plant canopy. ET is an important driver of
global climate as it links the carbon, water and energy cycles via the
Terrestrial evapotranspiration (ET) is the sum of transpiration movement of water vapor and CO, through plant stomata (Jung et al.,

through plant stomata, evaporation from the soil surface, and 2011; Mu et al., 2007; Zhang et al., 2019a). Additionally, ET is the
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largest terrestrial water flux, returning 60-70% of the precipitation that
falls on the Earth’s land surface back to the atmosphere annually (Oki
and Kanae, 2006; Zhang et al., 2016b). Due to its large role in the Earth’s
water, carbon and energy fluxes, ET is an integral component of hy-
drologic and land surface models that inform policy decisions (IPCC,
2014; Koster et al., 2000; Maneta and Silverman, 2013). Finer scale ET
estimates are also important for evaluating water use and crop stress
over complex agricultural landscapes (Allen et al., 2007; He et al.,
2019a; Wurster et al., 2020). It is therefore essential that methods for
estimating ET are accurate and available with suitable resolution and
extent to capture characteristic ET heterogeneity.

At small spatial scales, the eddy covariance method can be used to
calculate ET as a function of surface-atmosphere latent energy fluxes
measured at flux towers (Baldocchi, 2003). However, flux towers only
represent a limited sampling footprint, ranging from a few dozen meters
(Arriga et al., 2017) to approximately 1 km in resolution (Barcza et al.,
2009). Additionally, the sparse global tower network is insufficient to
capture global climate and land cover diversity (Pastorello et al., 2017).
A common method for augmenting and extrapolating these sparse ob-
servations is to use remote sensing-based (RS) ET models. RS ET models
use satellite observations to provide temporally regular and spatially
continuous ET estimates spanning continental to global extents (Allen
et al., 2007; Fisher et al., 2008; Mu et al., 2011; Purdy et al., 2018;
Martens et al., 2017).

ET is a function of the amount of water in the soil, the atmospheric
demand for water, and the incoming solar radiation (Zhang et al., 2016a,
2016b). Many RS ET models use surface energy balance methods for
estimating ET over continental to global domains, employing satellite
observations of vegetation with spatially gridded surface meteorology as
model drivers (Mu et al., 2007; Mu et al., 2011; Purdy et al., 2018).
Although many existing RS ET methods implicitly account for the effect
of soil moisture on ET through proxy or correlated variables such as
atmospheric vapor pressure deficit (VPD) or soil temperature, few
methods actually use soil moisture as a model input (Allen et al., 2007;
Fisher et al., 2008; Mu et al., 2007; Mu et al., 2011). For example, in the
Moderate Resolution Imaging Spectroradiometer (MODIS) MOD16 al-
gorithm, soil evaporation and transpiration are constrained by daily
VPD, relative humidity (RH) and minimum air temperature (Tp,p; Mu
et al., 2007; Mu et al., 2011), based on the assumption of congruence
between near surface atmosphere and soil moisture conditions at coarser
spatial and temporal scales (Fisher et al., 2008). However, the rela-
tionship between VPD and soil moisture can become decoupled at
shorter (daily to weekly) time scales, leading to model error (Novick
etal., 2016; Purdy et al., 2018). Additionally, many RS ET models do not
account for the influence of soil moisture on transpiration, despite the
strong relationship between soil water and canopy stomatal conduc-
tance (Lu et al., 2011; Novak et al., 2005; Wu et al., 2011; Short Gianotti
et al., 2019). Instead, VPD and temperature are generally used to
constrain transpiration (Fisher et al., 2008; Mu et al., 2011). However,
the lack of soil moisture information neglects a fundamental water
balance control on ET, which can lead to significant model error (Michel
et al., 2016; Miralles et al., 2016; McCabe et al., 2016).

Here, we introduce a new RS ET model that uses surface and root
zone soil moisture information from the NASA Soil Moisture Active
Passive (SMAP) mission (Section 4.2.1; Reichle et al., 2019) as a control
on estimated soil evaporation and transpiration (Section 3.1). The model
is built using the MOD16 framework (Section 2.1; Mu et al., 2007; Mu
etal., 2011), which uses the Penman-Monteith method for estimating ET
and is one of the only global operational RS ET products. The objectives
of this study are to (i) investigate the influence of the introduced soil
moisture control on the model ET estimates; and (ii) determine where
and why the added soil moisture information is more influential. The
following sections describe the baseline MOD16 algorithm (Section 2);
the model enhancements and methods used for evaluating soil moisture
related impacts on ET, and the model calibration and validation (Section
3); a summary of the study area, and the materials and data used as
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model inputs (Section 4); followed by a presentation of the model results
(Section 5), significance (Section 6), and major conclusions (Section 7)
from this study.

2. Theoretical background
2.1. MOD16 algorithm

MOD16 uses coarse (approximately 55 km x 70 km) global surface
meteorology inputs from the Goddard Earth Observing System (GEOS)
Forward Processing for Instrument Teams (FP-IT) product (Rienecker
et al., 2008; Lucchesi, 2015) and MODIS Collection 6 surface reflectance
products within a modified Penman-Monteith algorithm to estimate
daily ET (Mu et al., 2011). The NASA MODIS MOD16 operational pro-
cessor aggregates the daily model outputs to a coarser 8-day temporal
average to produce the final ET global product at a 500 m spatial res-
olution. The MOD16 algorithm has nine parameters that influence ET
environmental response characteristics for different plant functional
type (PFT) classes defined from a model Biome Properties Look-up
Table (BPLUT; Table S1). The model BPLUT parameters are defined
for 11 unique PFT categories represented by the MODIS MOD12Q1
(Type 2) global land cover product. The model BPLUT is applied with
spatially varying land cover, vegetation cover, and daily meteorology to
predict spatial and temporal variability in ET over the global domain.
The core MOD16 algorithm calculates the latent energy (AE, W m2)
form of ET as:

_s*A+p-C,-VPD/r,

s+y-<l+%)

where s is the slope of the saturated water vapor pressure curve with
respect to temperature (Pa K’l); A is the available incoming energy
(Wm’z); p is the air density (kg m~3); Cp is the specific heat capacity of
air (J kg*1 K™1); VPD is the vapor pressure deficit (Pa); rs and r, are the
surface and aerodynamic resistances to ET, respectively (s m 1), and y is
the psychrometric constant (Pa K1). MOD16 further partitions ET into
its three major components: evaporation from the wet plant canopy
(AEwc; W m2), transpiration through plant stomata (AEtgans; W m?),
and soil evaporation (AEgyap; W m’z), such that:

AE (@)

AErorar = AEwc + AETRans + AEEgvap. (2

Sections 2.1.1 and 2.1.2 further describe AEtrans and AEgyap, which
were both modified in the updated algorithm (Section 3.1). Since AEyc is
unaffected by soil moisture, it is not modified in the updated algorithm
and the reader is referred to section 2.7 of Mu et al. (2011) for details.

2.1.1. Plant transpiration calculation
The AErgrans term in the MOD16 algorithm builds on Eq. (1) by
partitioning incoming solar radiation to the dry plant canopy:

(1 — Fwet)+F.+(s+A. + p+Cp+VPD/r,)

AErpans — 3
TRANS s+y-(l+rx/ra) ( )
0 0%
RH < 70%
— 4
Fivet = (%) 70% < RH < 100% @

where Ac is the available incoming energy at top of canopy (W m~2); F¢
is the fractional canopy cover of a pixel (dimensionless); Fwet is the
fraction of the canopy that is wet (%,; Fisher et al., 2008), and RH is the
relative air humidity (%). rs is a key driver of transpiration, as it is
partially controlled by the leaf stomatal conductance, which ultimately
determines canopy transpiration. ry is calculated as the inverse of
canopy-level conductance (Cg¢; s m )
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where gl sh is the leaf conductance to sensible heat per unit leaf area
index (LAL s m’l); Gs is the stomatal conductance per unit LAI (s m’l);
Gy is the leaf cuticular conductance (s m™1); and reor is a function that
corrects the conductance according to local air temperature T (K) and
pressure P, (Pa). To calculate Gg, the potential rate of transpiration per
unit LAI (Cr; s m ™) is scaled using two linear ramp functions, m(Tp;n)
and m(VPD), and the r¢,, term. The ramp functions produce a dimen-
sionless scalar value ranging between zero and unity for respective fully
constrained (value = 0) and unconstrained (value = 1) stomatal
conductance to water loss. This functional representation assumes that
plants both fully open (Tminopen, VPDopen) and close (Trmincloses VPDclose)
their stomata under optimal and adverse environmental conditions
(Jones et al., 2017; Mu et al., 2007). The product of the scalars
accordingly reduces stomatal conductance (Gs) from its prescribed
maximum rate (Cr) for different PFT classes.

2.1.2. Soil evaporation calculation
Soil evaporation is derived from the sum of saturated (AEsa7) and
non-saturated (A1E;sat) soil surfaces within a pixel:

Fwet« (s+Aso + p+Cp+(1 — Fc)+VPD /1)
S+}"rtor/rns

AEgr = (1)

(1 7FW€[)'(S'ASOIL +p-C,-(1 —FC)-VPD/rm)
S"r}”rtor/ra:

AEsar = 12)

where Agpy is the fraction of incoming solar radiation available at the
soil surface (W mfz;; Mu et al., 2011); rq is the aerodynamic resistance
at the soil surface (s m™'); and ry is the total aerodynamic resistance to
water vapor transport (s m™b. T'tor is assumed to change according to
PFT, and is bound by minimum and maximum total aerodynamic
resistance BPLUT parameters (rblyi; and bl s m™b):

Ytor = Trore * Veorr (13)
7Dl ax
(rblyas — blyin) * (VPDase = VPD) VDS VPDoper
Tiote = § Thlyar — VPD VPD VPD gpen <VPD <VPDjpse
close — open VPD 2 VPD(]OA-,_,

rblm[n
(14)

Total soil evaporation is calculated as the sum of evaporation from
the saturated and unsaturated soil components within a pixel:
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Table 1
Descriptions of ET models setups evaluated in this study.
Model Description
ETmopiec  Baseline MOD16 operational product forced with coarse (approximately

55 km x 70 km) global (G) surface meteorology inputs from the GEOS
FP-IT product.
ETnsr MOD16 algorithm forced with 4 km Gridmet meteorology (Section
4.2.3) with no soil moisture (NS) control, and recalibrated BPLUT
parameters that reflect the new regional (R) meteorology inputs.
Updated MOD16 algorithm forced with 4 km Gridmet meteorology and
NRv7.2 (Section 4.2.1) soil moisture (NR), and recalibrated BPLUT
parameters that reflect the new regional (R) meteorology and soil
moisture inputs.
ET14r As in ETngrg but using SMAP L4_SM (Section 4.2.1) as the model soil
moisture input (L4).

ETnrr

AEpvap = AEsar + AEusa7+f (SM) (15)
RE VPPIP
fF(sM) = <m> (16)

where f(SM) is an estimated soil moisture constraint on evaporation that
uses RH and VPD as proxies for soil moisture, and $ is the soil moisture
sensitivity to VPD. f(SM) is a unitless scalar, ranging between zero and
unity, defining how much water in unsaturated soil can be lost to
evaporation (Fisher et al., 2008).

3. Methods

Our model builds on the MOD16 algorithm outlined in Section 2.1 by
introducing two new functions that use SMAP soil moisture (Section
4.2.1) to constrain soil evaporation (Section 3.1.1) and transpiration
(Section 3.1.2). Unlike the MOD16 global product, this study is
restricted to the contiguous US (CONUS) domain (Section 4.1) and ex-
ploits finer regional meteorology inputs from Gridmet (Section 4.2.3).
The updated model was calibrated using ET observations from 69
CONUS flux tower sites (Section 4.3), whereas the original model was
calibrated using 46 global tower sites. Four different model versions
were compared to distinguish impacts from model recalibration, the
addition of a soil moisture control, and the use of SMAP observations on
model accuracy (Table 1).

3.1. Implementing a soil moisture control on model ET estimates

Here, a modified ET algorithm is implemented, augmenting the
baseline MOD16 framework. The enhancements are summarized below
and include the addition of surface and root zone soil moisture as
additional water supply controls on soil evaporation and transpiration
calculations, respectively. This new framework is designed to exploit
operational satellite soil moisture information from the NASA SMAP
mission.

3.1.1. Soil moisture control on soil evaporation

The f(SM) relationship in Eq. (16) assumes that VPD and RH are
effective proxies for soil moisture controls on ET (Fisher et al., 2008).
However, this assumption may be invalid at the MOD16 daily time scale
(Novick et al., 2016) and can contribute to model uncertainty. Here, we
replace f(SM) in Eq. (15) with a more direct soil moisture control out-
lined in Fisher et al. (2008):

SFSM — SFSM ,,,;,

REW = Spom,. — sFsu,, an

where REW is the relative extractable soil water; SFSM is the surface soil
moisture of a pixel; and SFSM,;; and SFSMyy,q, are the respective mini-
mum and maximum surface soil moisture values for the period of record.
REW is a relative soil moisture index, which assumes that the full range



C. Brust et al.

of soil moisture variability at a given location is represented within the
period of record defined from soil moisture observational inputs.

3.1.2. Soil moisture control on plant transpiration

Previous studies indicate an approximate relationship between
transpiration and soil moisture that asymptotes above a maximum
threshold where transpiration is insensitive to wetter soil conditions
(Gardner and Ehlig, 1963; Novak et al., 2005; Purdy et al., 2018; Short
Gianotti et al., 2019; Wu et al., 2011). The transpiration response to soil
moisture is represented by the following ramp function, which is similar
to the functional form of the model Gg response to VPD and Tpy, (Eq. 8):

1

SM, close — RZSM RZSM Z SM open
SM) =S a7, —sip SMopen > RZSM > SM cjo5, 18
m( ) SMclnse - SMup('rl PRZSM < SM . 1 ( )
0 >

where SMjose and SMpe, are the root zone soil moisture contents at
which plants completely close and open their stomata, respectively, and
RZSM is the root zone soil moisture scaled between zero and one as
described in Eq. (17). m(SM) is used with the VPD and Ty, scalars in Eq.
(8) to determine the bulk model Gg response. The slope and intercept of
this relationship varies according to plant type, soil properties, and the
rate of transpiration (Novak et al., 2005; Wu et al., 2011); therefore,
unique SMpose and SMgpen values were calibrated for different PFT
classes and represented within the BPLUT (Section 3.1.3; Table S2). The
above MOD16 modifications distinguish atmospheric moisture deficit
and soil water supply controls on transpiration and soil evaporation,
potentially improving model accuracy and clarifying underlying con-
trols on ET.

3.1.3. Model calibration and ET validation

To accommodate the added model soil moisture control and Gridmet
meteorology, we recalibrated the original MOD16 BPLUT parameters
(Table S1). However, Tpingpen and Tiinciose Were left unchanged, as the
model performance is insensitive to these parameters (Zhang et al.,
2019b). Following Zhang et al. (2019b), we used Differential Evolution
Markov Chain Monte Carlo simulations to minimize root mean squared
error (RMSE) differences between the model simulations and daily ET
observations from tower sites representing major PFT classes.

The calibration procedure was performed 10 times for each PFT, as
data were randomly split into 10 equally sized groups for k-fold cross
validation. In this process, nine groups were used to calibrate the model
parameters, while the remaining holdout group was used to calculate
error metrics using the new parameter values. This process was repeated
10 times so that all tower site records could be used for both calibration
and validation. The error metrics reported in Table 3 were calculated
using all tower data withheld from calibration from 2015 to 2017. This
process ensured that all models were compared against the same set of
observations, as the ET 4g data were unavailable until after the SMAP
launch in 2015. Tower ET observations from 2015 to 2017 were selected
from the Ameriflux network (https://ameriflux.lbl.gov) to represent all
major CONUS PFT classes, except for DNF, EBF, MF and SAV classes,
which did not have suitable tower observations meeting the defined data
quality threshold (Section 4.3).

To distinguish improvements in model accuracy contributed from
the addition of a new soil moisture control versus recalibration, separate
calibrations were performed for ETygr and ETygsg. The calibrated BPLUT
parameters (Tables S2, S3) show the mean values and standard de-
viations of the parameters that produced the lowest errors for ETyggr and
ETnsg, respectively. Parameters defined for ETygr were also used for
ETp4r due to the shorter (2015-2017) SMAP operational record.

To quantify model performance and investigate the role of soil
moisture on the ET estimates, all models introduced in Section 3 were
compared to daily tower ET observations not used in calibration for the
2015-2017 period using RMSE, bias (model minus observation) and the
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coefficient of determination (R%) as performance metrics. The relative
improvements from the novel components of the updated algorithm
were assessed for

(i) the model recalibration and regional Gridmet meteorology (by
comparing ETyop16g and ETysg; Section 5.1);
(ii) the added soil moisture control (by comparing ETysg and ETngg;
Section 5.1); and
(iii) the assimilation of SMAP observations (by comparing ETygrgr and
ETy4r; Section 5.2).

3.2. Determining regional influence of soil moisture on model ET estimates

We compared differences in estimated annual average ET from the
different model versions over the CONUS domain to determine where
the added soil moisture control is more influential on the model ET
calculations. Mean annual differences between ET}4r, ETnsg, and ETngr
were used to evaluate the respective impacts of the added soil moisture
control and SMAP observations on the model ET estimates. The above
comparisons were conducted for the period overlapping with SMAP
operations (2015-2017).

The aggregated annual ET results from the models were evaluated
against alternative annual ET estimates from the spatially continuous
FLUXCOM monthly record (Section 4.4). Here, ETngr was used as a
proxy for ETi4r because it spanned the entire FLUXCOM record
(2003—2013). Variations in model ET differences and relative perfor-
mance against the FLUXCOM ET benchmark were evaluated across the
CONUS domain and regional gradient in climate aridity, Al, defined as
the ratio of mean annual potential ET to precipitation (United Nations
Educational, Scientific and Cultural Organization (UNESCO), 1979).

The partitioning of ET into its primary components (transpiration,
soil evaporation and evaporation from the wet canopy) is an important
and developing area of study (Fisher et al., 2017). Here, we used the
model outputs to map regional differences in the relative contributions
of each component to mean annual ET over the CONUS domain. Dif-
ferences between the ET4g and ETysg outputs were used to clarify the
spatial influence of SMAP defined soil moisture controls on model ET
partitioning. The relative contributions of transpiration, soil evapora-
tion and evaporation from the wet canopy on the aggregate ET calcu-
lations were represented by a linear mapping of the relative contribution
(%) of each component to total ET. Additionally, we ran the ETy 4g model
at three flux towers with and without the environmental constraint
scalars in Eq. (8) to assess how transpiration is affected by VPD, tem-
perature, and soil moisture across an Al gradient.

4. Study area and materials
4.1. Study area

This study encompasses all CONUS vegetated land areas from 2003
to 2017. The distribution of the dominant PFT classes over the domain is
shown in Fig. 1. The CONUS domain contains all 12 PFT classes depicted
in the MODIS MCD12Q1 global land cover classification (Friedl et al.,
2002), including croplands (broadleaf (BRO) and cereal (CER)), ever-
green needleleaf forest (ENF), evergreen broadleaf forest (EBF), decid-
uous needleleaf forest (DNF), deciduous broadleaf forest (DBF), mixed
forest (MF), closed shrubland (CSH), open shrubland (OSH), woody
savanna (WSA), savanna (SAV), and grassland (GRA). However, the
EBF, DNF, and CSH classes are sparse compared to other PFT categories,
with each class representing <1% of the CONUS domain. Additionally,
there were no tower observations representing DNF or SAV that met our
tower quality (QA/QC) threshold. Therefore, BPLUT parameter values
for the DNF and SAV PFT classes were defined from respective ENF and
WSA parameters following Mu et al. (2011).
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Fig. 1. CONUS land cover derived from the MOD12Q1 Type 2 and Type 5 land cover products for the 2003-2017 period. Blue triangles show the location of
AmeriFlux towers used for calibration and validation of new ET models. The labelled towers contain data after March 31st, 2015 that were used for model validation.
The number of towers in each PFT class are shown in the legend (in parenthesis). (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)
4.2. Model inputs

All input datasets used for the model ET calculations are summarized
in Table 2. The ET model inputs come from three sources: MODIS surface
reflectance products, SMAP soil moisture products, and Gridmet mete-
orology. MODIS products define land vegetation and surface reflectance
characteristics, while SMAP and Gridmet are used to define soil moisture
and meteorological constraints on ET, respectively. Input datasets with a
temporal resolution greater than one day were linearly interpolated to a
daily time step. Sub-daily inputs were aggregated to a daily time step by
taking the mean of all values within a day. We resampled all model
geospatial inputs to a 500 m resolution using bilinear interpolation to
match the MODIS MOD16 operational product (Mu et al., 2011; Zhao
et al., 2005). MODIS inputs affected by clouds or atmospheric interfer-
ence were identified using the respective product quality (QA/QC) flags.

Table 2
All inputs used to model daily ET from the MOD16 algorithm framework used in
this study.

Product Description/Purpose Spatial Temporal
Resolution Resolution
SMAP Daily surface and root zone soil 9km x 9km  3-h
L4_.SM moisture inputs from version 4 of

the SMAP L4_SM operational
product, 2015-2017. Used to drive
ETy4g model.
SMAP Daily surface and root zone soil
NRv7.2 moisture inputs from SMAP L4_SM
Nature Run version 7.2 (NRv7.2),
2003-2017. Used to drive ETnrr
model.
MODIS annual land cover product
used to define pixel-level BPLUT
values.
MODIS FPAR/LAI product used to 500 m x 4-day
partition pixel-level ET between 500 m
transpiration and evaporation and
scale leaf-level transpiration to the
canopy.
MODIS surface albedo productused ~ 500 m x Daily
to determine net solar radiation 500 m
available for ET.
Daily meteorological inputs to the
ET model, including maximum and
minimum temperature, VPD, RH
and incoming solar radiation.

9km x 9km  3-h

MCD12Q1 500 m x Annual

500 m

MCD15A2

MCD43A3

Gridmet 4km x 4km  Daily

Affected pixels were gap-filled using temporal nearest-neighbor selec-
tion of adjacent good pixel values (Zhao et al., 2005). We developed and
ran the model on the Google Earth Engine (GEE) platform (Gorelick
et al., 2017) and summarized model results using the R programming
language.

4.2.1. SMAP L4 SM soil moisture

We used version 4 of the NASA SMAP mission operational Level-4
Soil Moisture product (L4_SM; Reichle et al., 2018) as model surface
and root zone soil moisture inputs. The L4_SM product is derived from
the global assimilation of SMAP L-band (1.4GHz) daily microwave
brightness temperature (Tb) observations into the NASA Catchment land
surface model (CLSM; Koster et al., 2000). The L4_SM model uses an
ensemble Kalman filter to assimilate SMAP brightness temperatures and
other observations into the CLSM for estimating surface (top 5 cm) and
root zone (0-1 m depth) soil moisture (Reichle et al., 2017a). Unlike
lower order satellite retrievals, the L4 SM product is spatially and
temporally continuous over the global domain and includes model
informed calculations of root zone soil moisture conditions that are
consistent with the assimilated SMAP brightness temperature
observations.

The SMAP L4_SM operational product is available starting March
31st, 2015, which limits how far back we can derive the ET4g record.
This relatively short record can misrepresent the longer-term soil
moisture climatology required by the ET model (e.g. Egs. 17, 18). The
operational record also imposes a temporal discontinuity between
model drivers and tower ET observations used for model calibration and
validation; whereby, the bulk of available tower observations occur
prior to 2015 (e.g. FLUXNET2015; Pastorello et al., 2017), with suffi-
cient measurements available for this study through 2017, which leaves
us with an approximately three-year study period (2015-2017).

To address the above limitations, we extended the model ET simu-
lations over a longer record (2003-2015) using the SMAP Nature Run
version 7.2 (NRv7.2) soil moisture product (Reichle et al., 2019).
NRv7.2 is derived from the same CLSM version as the L4_SM product but
is not informed by SMAP observations. In a ground validation study of
18 sites spanning various climate and PFT conditions, NRv7.2 estimated
surface (root zone) soil moisture with an unbiased RMSE of 0.043
m3m~2 (0.030 m3m’3), and the assimilation of SMAP Tb observations
improved the unbiased RMSE to 0.039 m3m—3 (0.026 m3m’3) for L4_SM
(Reichle et al., 2019). This accuracy is sufficient for representing soil
moisture related controls within our ET model framework. Both L4_SM
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and NRv7.2 produce global estimates of surface and root zone soil
moisture at a 3-h time step on the 9 km resolution global EASE-grid
(version 2; Brodzik et al., 2014). We used the L4 SM (and NRv7.2)
root zone soil moisture estimates to constrain transpiration and the
corresponding surface soil moisture estimates to constrain soil evapo-
ration in the model ET calculations.

4.2.2. MODIS products (collection 6)

The MODIS MCD15A3H product (Myneni et al., 2002) provides
composited global estimates of LAI and FPAR every four days at a 500 m
resolution. The LAI/FPAR product is used in MOD16 to partition
incoming solar radiation between the soil surface and plant canopy.
FPAR serves as a proxy for fractional vegetation cover (F¢) within a pixel
(Eq. 3), while LAI is used to upscale leaf stomatal conductance to
canopy-level conductance (Eq. 5). The MODIS MCD43A3 Albedo prod-
uct (Schaaf and Wang, 2015) provides global daily 500 m surface albedo
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estimates, which are used to derive daily net radiation from incoming
shortwave radiation, consistent with the baseline MOD16 logic.

The MODIS MCD12Q1 land cover product (Friedl et al., 2002) gives
the dominant PFT within each 500 m pixel and is used to assign BPLUT
parameters to each pixel. The original MOD16 logic uses the MODIS
MCD12Q1 Type 2 land cover classification, which does not distinguish
BRO and CER crop types. However, BRO and CER account for approxi-
mately 4.6% and 14.1% of the CONUS domain, respectively. Here, we
use a combination of the Type 2 and Type 5 land cover schemes to better
distinguish ET conditions between the two crop types. For a given pixel,
if the Type 2 PFT is classified as cropland and the Type 5 value repre-
sents either BRO or CER, we assign the pixel to the appropriate Type 5
category.

4.2.3. Gridmet meteorology
The MODIS MOD16 operational product uses GEOS FP-IT input

ETmob1ec

RMSE (mm/day): 1.108
Bias (mm/day): -0.29

R Squared: 0.445

.

* BRO
* CER
e CSH
e DBF
e ENF
* GRA
RMSE (mm/day): 0.849 e OSH
Bias (mm/day): -0.283 e WSA

R Squared: 0.645

0
Flux Tower ET (mm/day)

Fig. 2. Model ET results vs flux tower ET observations for the 2015-2017 record. The solid line represents 1:1 correspondence and the dashed line is the best-fit

linear regression line for each ET model.
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Table 3

Results of model performance using holdout ET validation data from 31 flux towers for the 2015-2017 record. Bias is the mean daily difference between model and
tower ET observations (model — observation; mm day’l).

PFT ETL4r ETnrr ETnsr ETmob16c

Bias R? RMSE Bias R? RMSE Bias R? RMSE Bias R? RMSE
BRO —0.668 0.703 1.117 —0.804 0.624 1.297 —0.183 0.546 1.127 ~1.103 0.714 1.567
CER —0.047 0.72 0.771 —-0.136 0.644 0.887 -0.328 0.615 0.965 —0.401 0.472 1.17
CSH —0.654 0.716 1.134 —0.766 0.733 1.201 -0.833 0.936 1.23 -1.14 0.787 1.644
DBF ~0.09 0.632 0.836 —0.086 0.646 0.823 -0.233 0.681 0.809 0.824 0.679 1.251
ENF 0.058 0.583 0.592 —0.099 0.504 0.627 0.185 0.435 0.652 —0.045 0.296 0.863
GRA —0.009 0.693 0.747 —0.068 0.604 0.833 —0.635 0.783 0.893 —0.643 0.59 1.069
OSH 0.334 0.513 0.521 0.087 0.626 0.365 ~0.203 0.291 0.54 —0.369 0.22 0.635
WSA 0.191 0.607 0.5 0.165 0.545 0.522 —0.104 0.201 0.668 -0.11 0.212 0.759
Average —0.041 0.683 0.758 —0.137 0.64 0.818 —0.283 0.645 0.849 -0.29 0.445 1.108

R2 is the coefficient of determination describing correspondence between the selected model and associated flux tower measurements. RMSE is the root mean squared
error difference between model estimates and tower observations (mm day ). Bold values denote the best performing model for each metric and PFT. The ‘Average’

row is the value of each metric calculated across all flux tower observations from 2015 to 2017.

meteorology for the ET calculations. Here, we use an alternative Grid-
met daily surface meteorology record (Abatzoglou, 2013) as inputs for
the model ET calculations. Although Gridmet is limited to the CONUS, it
has a smaller pixel size than the global GEOS FP-IT product (4 km x 4
km vs 55 km x 70 km), which may enhance the spatial representation of
ET and underlying environmental drivers (He et al., 2019b).

4.3. AmeriFlux ET

We used in situ daily ET observations from the AmeriFlux tower
network (Baldocchi et al., 2001) for BPLUT calibration and model ET
validation. We followed the gap filling and QA/QC procedure described
by Mu et al. (2011) to remove lower quality data and to upscale the 30-
min tower observations to a daily time step. Additionally, many flux
tower observations fail to close the energy balance (Foken et al., 2006;
Purdy et al., 2018), which can lead to unrealistic ET estimates. To
address this issue, we filtered out any 30-min data where the energy
imbalance exceeded 300 W m’z, following Zhang et al. (2019b). The
QA/QC procedure left 69 (of 107 initial sites) representing 10 PFT
classes (Table S4). The energy balance closures for the 69 remaining
sites ranged from 77 to 92%, suitable for model calibration and vali-
dation (Foken et al., 2006; Michel et al., 2016; Zhang et al., 2019b). The
regional distribution of tower sites used in this study is presented in
Fig. 1, along with a detailed site summary in Table S4. Only 31 tower
sites had data available after March 31st, 2015 (beginning of SMAP
operational record) that met the above QA/QC procedure. These 31
towers were used for ET validation so that all new models could be
compared against a consistent tower record. To compare model esti-
mates to tower observations, mean model ET estimates from a 1 km
diameter circle centered at each tower location were compared to the
corresponding tower ET observations.

4.4. FLUXCOM

The AmeriFlux observations used for the model ET validation depict
dominant biomes within the CONUS domain but are spatially and
temporally sparse. To augment the model evaluation, we used the
spatially continuous FLUXCOM RS + METEO record (Jung et al., 2019;
Tramontana et al., 2016) as an additional validation source. FLUXCOM
provides gridded monthly latent heat flux estimates at 0.5° (~55 km)
resolution for our entire study period (Jung et al., 2019, Tramontana
et al., 2016). The FLUXCOM data are produced through machine
learning upscaling of in situ tower observations from the global FLUX-
NET synthesis record using MODIS remote sensing and modeled surface
meteorological data. FLUXCOM provides latent heat flux estimates
suitable for ET model benchmark assessments based on reported high
accuracy relative to flux tower observations and good correspondence
with various RS ET models (Jung et al., 2019, Tramontana et al., 2016).

Following Jung et al. (2019), we converted FLUXCOM latent heat flux
estimates to ET using a constant latent heat of vaporization (2.45 MJ
mm™!). We upscaled our 500 m daily ET model results to the coarser
FLUXCOM resolution by taking the spatial mean of aggregated monthly
ET estimates within each FLUXCOM grid cell. Because FLUXCOM uses
flux tower observations as a model input, it is not completely indepen-
dent from the models evaluated here. However, it still provides a
meaningful benchmark spanning the entire CONUS domain and
implicitly accounts for PFTs missing from the model tower validation.

5. Results
5.1. Soil moisture influence on model ET estimates

Across all CONUS flux towers, the addition of a soil moisture control
improved the accuracy of the model ET estimates. Both ETngr and ET4r
showed the best performance against the tower ET observations, with
respective mean RMSE differences of 0.818 and 0.758 mm d~!, and
accompanying R? agreement of 64.0% and 68.3% (Fig. 2, Table 3). In
contrast, the model ET results derived without a direct soil moisture
control had generally lower performance and accuracy, including ETysgr
(RMSE = 0.849 mm d~!; R% = 64.5%) and ETymop16g (RMSE = 1.108 mm
d~1; R? = 44.5%). The relative RMSE improvements between ET4g and
ETnsg were smaller than the improvements between ETpsg and
ETmop16c (11% vs 31%), indicating that recalibration and high resolu-
tion (4 km) meteorology are key reasons for improved accuracy and that
a soil moisture control further improves model estimates.

Similar results are seen across the eight PFT classes represented from
the tower validation sites (Table 3). For all PFTs other than DBF, either
ETnrr Or ETp4r showed the lowest RMSE values. ANOVA tests
comparing all models across all PFTs show that differences between the
soil moisture-constrained models and ETysp are statistically significant,
and that with the exception of DBF, CER and WSA PFTs, differences
between ETnrr and ETy4gr are also statistically significant (Fig. S1).
Across the eight PFTs, ETngg and ETp4g also showed consistently lower
bias and higher R? correspondence than ETyggr or ETyop16g (Table 3).
Time series ET plots at eight flux tower locations representing seven
diverse CONUS PFT classes show that all models track seasonal and
annual ET variability across a broad climate and land cover gradient
(Fig. 3). In general, ETngrg, ET14r, and ETnsgr better capture the tower
observed seasonal variation in ET than the ETyop16g baseline. These
results are also consistent with the majority of PFT classes examined
(Table 3). For all PFTs except for DBF, ETyop16g underestimates the
tower ET observations. However, this relationship varies among
different tower sites from the same PFT class. For example, ETyopi16G
generally underestimates ET across all ENF and WSA tower sites, but
overestimates ET at the US-Wrc (ENF) and US-Ton (WSA) sites (Fig. 3). A
similar pattern emerges across the CONUS domain, where ETyopisg
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Fig. 3. Time series progression of model (colored lines) and tower (circles) observed ET from 2015 to 2017 for eight tower sites representing major CONUS PFT
classes. The aridity index (AI; precipitation / potential ET; UNESCO, 1979) at the sites ranges from arid (0.11; US-Whs) to humid (1.68; US-Wrc). Sites are arranged

from most arid to least arid.

predicts higher ET than the soil moisture constrained models for BRO,
CRO, DBF, DNF, ENF, MF, SAV and WSA, but lower ET for other PFTs
(Fig. 4A). Across the CONUS, median ETNgrg, ET4r, and ETygg values fall
closer to median flux tower observations, suggesting better ET perfor-
mance in the updated models relative to the MOD16 baseline (Fig. 4A,
B).

The ETy4g results show generally higher and lower ET rates respec-
tively east and west of the 100th meridian (Fig. 5). This same general
pattern is seen in all four models (not shown), although ETyop16G Sys-
tematically underestimates ET in the western CONUS compared to the
updated models. Because the western CONUS is dominated by GRA and
OSH (Fig. 1), these results paired with the tower validation assessment
(Table 3 and Fig. 3) indicate that ETyvop16c tends to underestimate ET
for both of these PFTs and over the western CONUS. Differences between
the ETnsg and ET 4R estimates are also more pronounced in the western

CONUS (Fig. 6A), particularly for CSH, GRA, and OSH areas (Fig. 1). In
this region, ETnsg predicts generally less ET than ETp4g or the tower
observations (Table 3, Fig. 6A).

5.2. Regional influence of soil moisture on model ET estimates

Regional differences between ETngr and ETp4g reveal the relative
impact of the SMAP L-band brightness temperature observations on the
L4_SM soil moisture inputs and resulting model ET simulations. The
relative value of SMAP observations is greater in the CONUS western
dryland regions (Fig. 6B), coinciding with GRA and other PFT classes
characterized by low to moderate vegetation cover, where the SMAP soil
moisture performance is higher (Reichle et al., 2017a; Reichle et al.,
2017b). However, the impact of the SMAP observations on ET, indicated
by the ETnrgr and ETy4r difference, is smaller than the utility gained from
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Fig. 4. A) Box plot distributions of modeled ET across all CONUS PFT regions for the 2015-2017 period. Data were plotted by randomly sampling 5000 pixels from
each PFT region and aggregating the results for each model. B) Box plot distributions of modeled ET across the entire CONUS domain for the 2015-2017 period. In
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adding a soil moisture control to the model as indicated from the larger
and more extensive ETy4g and ETygg differences (Fig. 6).

When compared to the FLUXCOM estimates, ETyopi16G, ETnrr, and
ETysgr all underestimate ET across the CONUS domain, with respective
mean annual biases of —145, —168, and — 189 mm yr *. Model per-
formance relative to FLUXCOM varies greatly to the west and east of the
100th meridian (Fig. S2). In the west, ETyopi6g shows an RMSE dif-
ference of 211 mm yr_1 relative to FLUXCOM, while ETngg and ETynsg
show smaller respective RMSE differences of 130 and 152 mm yr '. In
the east, ETmop16g is the best performing model in relation to FLUX-
COM, with an RMSE difference of 228 mm yr’l, while ETysg and ETngrr
show larger respective RMSE differences of 244 and 258 mm yr .
Across the CONUS, ETngg R? correspondence relative to FLUXCOM is
slightly higher than ETngg and notably higher than ETyop16g, particu-
larly in the west (East: ETygg = 0.22, ETysg = 0.19, ETmop16c = 0.20;

West: ETngr = 0.40, ETnsg = 0.40, ETyopieg = 0.29).

The model ET performance over the CONUS climate aridity (AI)
gradient indicates that ETygr outperforms both ETnsg and ETyop16c in
more arid regions relative to FLUXCOM (Fig. 7). In the most arid regions,
ETnrr has both lower RMSE and lower R? correspondence than the other
models (Fig. 7B, C). This relationship shifts after the transition from arid
to semi-arid (AI ~0.4) climates, where ETyiop16G has a lower RMSE and
lower R? relative to FLUXCOM, suggesting that the added soil moisture
control has the greatest value for improving the model ET performance
in arid and semi-arid regions (AI <0.4) that represent approximately
43% of the CONUS domain. Much of this area falls within the western
portion of the domain. The results of the flux tower and FLUXCOM
comparisons indicate that the added soil moisture control, represented
by ETnrr and ET 4R, produces more realistic model ET estimates in the
arid western CONUS region than alternative model simulations derived
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Fig. 5. Spatial pattern of ETy4r across the CONUS domain for the 2015-2017 period, superimposed on a lat/lon grid. White areas represent open water, barren land
or other areas external to the modeling domain that were excluded from the ET simulations.

using VPD as the sole moisture control on ET.

Both ETy4g and ETysg show similar patterns in ET partitioning (soil
evaporation, transpiration, wet canopy evaporation) across the domain
(Fig. 8). While the models show lower (higher) transpiration contribu-
tions in the western (eastern) CONUS, ET 4g has notably higher soil
evaporation in the west. Across the entire domain, transpiration con-
tributes 44% of ET for ETy4g, and 50% of ET for ETngg. The difference
between the two models is largely driven by partitioning differences east
and west of the 100th meridian. In the east, transpiration comprises 50%
(52%) of ET14r (ETnsgr), but only 34% (46%) in the west. These results
highlight the effect of the added soil moisture control on model ET
partitioning. In the more arid regions (i.e. western CONUS), the added
soil moisture control leads to greater reduction in transpiration due to
the addition of m(SM) in Eq. (18). This effect is illustrated by the dif-
ference in ETp4g results derived with and without the environmental
constraint scalars (Fig. 9). At the more arid US-Me2 and US-Ton sites, the
added soil moisture control reduces transpiration from optimal levels
and consequently increases soil evaporation as a percent of ET (Fig. 9).
This is not the case at the less arid US-UMB site, where ET is not water
limited.

6. Discussion
6.1. Soil moisture influence on model ET estimates

Model calibration and the higher-resolution Gridmet meteorology
inputs led to the largest increase in ET accuracy, indicated by larger
improvements in ETygg accuracy over the ETyop16g baseline compared
to improvements in ETygg and ET14g over ETysgr (Table 3, Fig. 2). Zhang
et al. (2019b) also reported that much of the error in MOD16 could be
reduced by a more robust model calibration. They found that across all
PFTs, the recalibrated MOD16 RMSE decreased by 28.5%. Similarly, we
found a 23.3% RMSE reduction in ETygg compared to the ETyopiec
baseline by recalibrating the model for the CONUS domain and using
Gridmet meteorology. The ETy4g and ETngg results showed even greater
respective RMSE reductions of 31.6% and 26.2% over the ETyopisg
baseline, indicating that the addition of surface and root zone soil
moisture controls led to further improvements in model ET accuracy.

The RMSE reductions in ETygr and ETp4r over ETygr reflects the
addition of explicit soil moisture related controls on model ET. The
SMjose and SMpe, parameters in the revised BPLUT represent the unique
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role of soil moisture, in addition to VPD, in regulating stomatal
conductance (Novick et al., 2016; Novak et al., 2005; Purdy et al., 2018).
The calibrated SMjose and SMpe, values fall within the ranges seen in
various RS-based productivity models and field studies, suggesting that
the parameterization process converged on realistic values for these
parameters (Table S2; Wu et al., 2011; He et al., 2016; Jones et al., 2017;
Novak et al., 2005). Although some of the SM,e, parameter values have
high standard deviations (i.e. uncertainty), ANOVA test results show
that ETygr and ETnsr estimates are statistically different, suggesting
that the model is sensitive to this parameterization and that it drives
improvements in ET. Additionally, other MOD16 sensitivity studies have
found Cp, to be among the most sensitive BPLUT parameters (Zhang
et al.,, 2019b; He et al., 2019b). Here, calibrated C;, values are higher
than in the original MOD16 BPLUT, which reflects the added m(SM)
control on stomatal conductance described in Section 3.1.2 (Mu et al.,
2011).

The higher ET rates modeled by ETygrgr and ET 4p were more
consistent with the tower observations and previous studies, indicating
that MOD16 generally underestimates ET in arid and sparsely vegetated
areas (Khan et al., 2018; Michel et al., 2016; Moreira et al., 2019; Ruhoff
et al., 2013; Zhang et al., 2020). This bias is most notable in western
CONUS grasslands, where ETnggr and ETp4g predict ~100-300 mm yr*1
more ET than the ETyop16g baseline (Table 3, Fig. 4). Similarly, Khan
et al. (2018) found that MOD16 had an average bias of —104 mm yr*1
across grassland sites in eastern Asia. Across the CONUS domain and
2003-2017 study period, ETyopi6g displayed a — 148 mm yr—' bias
against all GRA tower observations, whereas ETygrg had a positive and
much smaller bias of 0.529 mm yr’l. The recalibrated ETysg and
ETmop1ec results both showed markedly lower ET rates in the western
CONUS than ETngrg, ET14r, and the ET benchmarks (both tower obser-
vations and FLUXCOM). These results suggest that the baseline MOD16
algorithm is not properly structured to capture the magnitude of ET in
arid regions (Figs. 6, 7, S1).

6.2. Regional influence of soil moisture on model ET estimates

Differences in model ET estimates in arid regions follow differences
in model partitioning between transpiration and soil evaporation
(Fig. 8). In arid regions, canopy gas exchange, including both CO, and
water vapor, is strongly limited by plant-available soil moisture (Smith
et al., 2019), which restricts both vegetation growth and ET. In the
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Fig. 6. Percent change in mean annual ET from ET;4r compared to ETysg (A) and ETyggr (B) for the 2015-2017 period; the difference maps are superimposed on a
lat/lon grid and show the respective impacts of the added soil moisture control and SMAP observations on the model ET estimates. Blue (red) shades depict areas
where ETy 4y predicts higher (lower) ET than the other models. Dark gray areas represent open water, barren land, and other areas excluded from the simulations and
white reflect no change between model estimates. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article.)

updated model, transpiration is partially controlled by root zone soil
moisture. Because the western CONUS is more arid than the east, the
relatively low soil moisture conditions in the west impose further re-
strictions on ETy4g (ETNgR) transpiration relative to ETysg and ETyiop16G
(Fig. 8). As a result, the soil moisture-constrained models have a smaller
component influence from transpiration than the models that are solely
constrained by VPD and temperature. The estimated ratio of transpira-
tion to ET from this study is also within the range of variability reported
from previous studies (Stoy et al., 2019; Nelson et al., 2020) and follows
similar spatial patterns of lower (higher) component transpiration in-
fluence in the western (eastern) CONUS (Zhang et al., 2019a). At the
global scale, the baseline MOD16 method shows the transpiration to ET
proportion to be approximately 24%, which is at the lower end of the
fraction reported from other RS ET models (Miralles et al., 2016). While
only provided for the CONUS domain, the transpiration to ET fractions
from ETp4r (ETngr) are more consistent with other reported model es-
timates (Miralles et al., 2016; Stoy et al., 2019).
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The higher accuracy of the soil moisture-constrained models in arid
regions may partially reflect greater SMAP soil moisture accuracy in
areas with lower vegetation density. The L-band derived SMAP products
are most sensitive to soil moisture where the overlying vegetation water
content is less than ~5 kg m~2 (Entekhabi et al., 2010). The western
CONUS is dominated by GRA, OSH and CSH, which tend to have less
vegetation cover and associated greater L-band soil moisture sensitivity.
In contrast, the eastern CONUS represents a more humid climate with
greater vegetation density (e.g. forests), where the SMAP observations
are expected to have less soil moisture sensitivity. The variable SMAP
sensitivity pattern helps to explain why the largest SMAP impact on ET,
indicated by the difference between ETngrr and ETp4g, occurs in the
western CONUS (Fig. 6B). Here, the darker shades indicate where the
model L4_SM soil moisture inputs propagate to larger differences in
estimated annual ET relative to having no model soil moisture control
(ETnsr), or with a soil moisture control not directly informed by SMAP
observations (ETNgrR)-
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Fig. 7. Modeled ET performance against FLUXCOM ET estimates across the CONUS domain for the 2003-2013 period of record relative to climate aridity (AL X-
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the smoothing function.

Similar to the findings presented here, Purdy et al. (2018) found that
the addition of SMAP Level 3 surface soil moisture (L3_SM) retrievals
into the PT-JPL ET model were important in arid regions, but less
relevant in humid climate regions. Here, there is little to no soil moisture
influence on plant transpiration at humid sites, whereas transpiration at
arid sites is heavily constrained by soil moisture (Fig. 9). In our study,
the model improvements in arid regions are caused by increased ET
relative to the baseline MOD16 product, which largely reflects an in-
crease in soil evaporation. Partitioning of the underlying controls on
estimated canopy stomatal conductance between temperature, VPD, and
root zone soil moisture may reduce the model sensitivity to dynamic
day-to-day fluctuations in VPD and temperature (Fig. 9); whereby, plant
access to a more stable soil moisture resource helps to maintain ET
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during periodic drought. Likewise, adding a surface soil moisture con-
trol to the model benefits from greater soil moisture memory in sus-
taining surface evaporation during drying cycles relative to the MOD16
baseline algorithm, which relies solely on an atmospheric moisture
deficit derived control. Despite model improvements in arid regions,
there is an abrupt increase in RMSE and an abrupt drop in R? for ETnrr
in the most arid parts of the CONUS relative to FLUXCOM (Fig. 7B, C). In
these arid regions, the coarse (9 km) resolution and small apparent wet
bias in the L4_SM soil moisture record may contribute to the ET\grg error
(Reichle et al., 2017a).

An opposing negative bias between ETngrr and ETysg is predomi-
nantly found in humid climate regions of the eastern CONUS that tend to
be more energy than water limited (Nemani et al., 2003). In these areas,
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Fig. 8. ET component influence of plant transpiration (T, blue), soil evaporation (E, green), and canopy intercepted evaporation (I, red) for ET 4g (top) and ETnsg
(bottom) from 2015 to 2017. Bright green, blue and red represent areas where ET is dominated by E, T, and I, respectively. Maps are depicted on a lat/lon grid. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

there is generally sufficient soil water supply throughout the year for
optimal transpiration, so that VPD and temperature are the dominant
controls (Purdy et al., 2018; US-UMB in Fig. 9). As a result, the addition
of a root zone soil moisture control has minimal effect, as seen by the
similar ETygr and ETysg performance (Fig. 7A). In humid climates,
ETpmop1ec has a slightly lower RMSE relative to FLUXCOM than both
ETngr and ETnsg (Fig. 7B). This is partially due to differences in FPAR/
LAI gap filling methods between ETyop16G and ETyrr (ETnsgr). In these
regions, ET occurs at almost optimal rates, with less influence from
environmental constraints (temperature, VPD, soil moisture) and more
influence from the FPAR/LAI inputs on model performance. These re-
gions also tend to have greater FPAR/LAI dropout and associated ET
uncertainty due to clouds (Zhang et al., 2019a). FLUXCOM also tends to
show slightly higher ET than other reported estimates in humid climate
areas (Jung et al., 2019; Ma et al., 2020). This relative bias may
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contribute to the observed FLUXCOM and ETnrr (ETnsr) differences.
Additionally, the differences may reflect better ETygg representation of
soil moisture as a control on ET. For example, ETygr estimates in
southern Florida are lower relative to the other models (Figs. 5, 6A, S1),
which reflects the coarse sandy soil texture and associated stronger
model soil moisture control on ET in this region.

Spatially, the soil moisture-constrained models performed better in
drier climate regions (AI<0.4) where ecosystems are more water
limited. However, the importance of the soil moisture control also
changes with time (Novick et al., 2016). For example, the ETygr and
ETyp4g performance was most favorable between June and October at the
arid US-Whs and US-Wkg towers (Fig. 3); whereas, both models over-
estimated ET during other months relative to the tower observations.
The seasonally varying bias suggests the need for further model im-
provements in representing vegetation phenology, plant sensitivity to
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Fig. 9. Seasonal variations of estimated environmental restrictions on the model (ET;4g) transpiration calculations for three flux tower sites representing major
CONUS PFT classes. The relative influence from daily Tp,;,, VPD, and root zone soil moisture (SM) by the respective environmental constraint (EC) scalars in Egs. (9,
10, 18). The Y1 axis values represent EC and range between 0 (no constraint) and 1 (full constraint). The stacked colors represent the relative influence from each
environmental factor on the model transpiration. The dotted line shows the maximum potential ET under minimal environmental constraints, while the solid line
represents the estimated actual ET (Y2 axis). Plots were created by running the model with (solid line) and without (dotted line) all three EC scalars. The selected
DBF, ENF and WSA sites are located in humid (AI = 0.73) and semi-arid (AI = 0.4, AI = 0.31) climate zones.

environmental stressors, and the seasonally varying importance of soil
moisture and other controls. Improving understanding of the factors
affecting ET seasonality should be a priority of future studies. As the
effects of climate change progress, the traditional understanding of ET as
being driven by VPD and soil moisture is expected to shift (Novick et al.,
2016). For example, early spring greening driven by a warming climate
may enhance ET, leading to summer soil moisture deficits (Lian et al.,
2020). Failure to account for the influence of soil moisture on ET in such
cases where soil water becomes insufficient to meet atmospheric de-
mand could lead to notable model errors. Additionally, the projected
changes in drought patterns will likely further complicate these re-
lationships (Mo and Lettenmaier, 2015; Otkin et al., 2018). Better
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understanding and representation of the abiotic and biotic impacts on
ET is essential to improve RS ET models and properly quantify terrestrial
water fluxes in the face of climate change.

6.3. Model uncertainties

Despite the improved model ET performance indicated from this
study, the results still show significant remaining uncertainty. This un-
certainty comes from three main sources, including: 1) the use of
discrete model BPLUT parameterizations; 2) uncertainty in model in-
puts; and 3) the inability of the model to capture all physical processes
affecting ET.
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1. Discrete parameterizations. The underlying assumption of the
MOD16 BPLUT based parameterizations is that the vegetation
response to the various environmental factors affecting ET is largely
consistent within individual biomes represented by a 12 PFT class
global land cover map. However, variations in soil conditions,
vegetation structure and age class, and other factors can lead to
significant ET heterogeneity within a given biome. This variable
response can be seen in the standard deviations of the model pa-
rameters (Tables S2, S3). All parameters show variability around the
mean, reflecting inherent uncertainty in parameter values that can
contribute to model ET error. Additionally, as plants near stress,
complex and non-linear interactions of soil moisture and VPD can
drive stomatal conductance (Novick et al., 2016), further contrib-
uting to uncertainty when using the simple linear efficiency func-
tions and open/close parameters outlined in Eq. 8. This is evident in
Table S2, where variability in the SMype, and SMjose parameters are
large for CSH, OSH and WSA, reflecting the uncertainty in the
parameter values within the relatively coarse PFT classes. The po-
tential use of more spatially variable parameterizations incorpo-
rating data-driven machine learning or hybrid modeling approaches
may lead to further model improvements over BPLUT based methods
(Madani et al., 2017; Jung et al., 2019; Reichstein et al., 2019;
Tramontana et al., 2016) and should be pursued as a priority
research topic.

2. Model input uncertainty. All inputs to the MOD16 algorithm have
uncertainty, which can contribute to model ET error. For example,
the SMAP L4_SM product has a targeted mean accuracy of 0.04 m®
m~? for surface and root zone soil moisture (Reichle et al., 2019).
Additional uncertainty is contributed from the MODIS LAI/FPAR and
land cover products used as model inputs due to algorithm as-
sumptions, atmospheric contamination, sensor footprint and cali-
bration uncertainty, and other factors (Miura et al., 2000; Xu et al.,
2018). Additionally, the models presented here rely on modeled
Gridmet meteorology. While Gridmet provides approximately 10-
fold improved spatial resolution over that of the global GEOS FP-IT
meteorology used in the baseline MOD16 product, the 4 km Grid-
met resolution may still not adequately resolve microclimate spatial
heterogeneity (Walton and Hall, 2018; Behnke et al., 2016; Zhao
et al., 2005), which may contribute to model ET uncertainty. Addi-
tionally, soil moisture can vary significantly within the 9 km SMAP
scale. Although the REW conversion in Eq. 17 compresses relative
variability by effectively normalizing soil moisture across a pixel,
formal downscaling is necessary to capture the heterogeneity at the
500 m scale with more fidelity. Future studies should explore
implementing downscaled soil moisture into ET modeling frame-
works to further improve ET estimates (Chaney et al., 2016; Col-
liander et al., 2017; Fang et al., 2020).

3. Missing processes. Because ET is a complex process, simplifying as-
sumptions must be made to facilitate regional to global scale model
predictions. For example, wind speed, soil type, and precipitation
can significantly influence ET, but are missing from our model
(Purdy et al., 2018; McVicar et al., 2012; He et al., 2019b). Rooting
depth is also a key variable in estimating ET, as it determines where
in the soil profile a plant has access to water (Guswa, 2010). This may
be a cause of uncertainty in our modeling framework, as we assume
that root zone (0-1 m) soil moisture drives transpiration even though
rooting depths can exceed 3 m (Yang et al., 2016). Finally, model
parameters representing physical processes such as the aerodynamic
resistance to soil evaporation (rbly;, and rblyg,) are difficult to
measure in situ, contributing to greater uncertainty in parameter
boundaries (Mu et al., 2011).

7. Conclusion

This study improves estimates of ET in the CONUS domain by reca-
librating the model, introducing high-resolution Gridmet meteorology,
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and adding a SMAP informed soil moisture control to the MOD16 al-
gorithm. We adapted the MOD16 framework to include a root zone soil
moisture control on plant transpiration and a surface soil moisture
control on soil evaporation. The model was calibrated at 69 AmeriFlux
tower sites representing 10 diverse PFTs across the entire CONUS
domain. The model was validated using a holdout set of flux tower data
and the FLUXCOM product to assess our objectives. We found that (i) the
added soil moisture controls, Gridmet meteorology and regional cali-
bration improved model performance over the MOD16 global baseline
relative to ET observations from regional flux towers; (ii) these results
are more pronounced in dry land areas of the western CONUS and when
ecosystems are water limited. The soil moisture constrained model
shows the greatest improvements in arid and semi-arid regions
(AI<0.4), which represent approximately 40% of the global land area
(Smith et al., 2019). The resulting model provides new capacity for
monitoring the effects of drought and climate change on the water cycle,
while providing a new framework for investigating both soil and at-
mosphere controls on ET.
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