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A B S T R A C T   

Evapotranspiration (ET) is a key hydrologic variable linking the Earth’s water, carbon and energy cycles. At large 
spatial scales, remote sensing-based (RS) models are often used to quantify ET. Despite the large number of RS ET 
models available, few include soil moisture as a key environmental input, which can degrade model accuracy and 
utility. Here, we use model assimilation enhanced soil moisture estimates from the NASA SMAP (Soil Moisture 
Active Passive) mission as a water supply control in the MOD16 ET algorithm framework. SMAP-derived daily 
surface (0-5 cm depth) and root zone (0-1 m depth) soil moisture are used with MODIS (Moderate Resolution 
Imaging Spectroradiometer) vegetation observations, and 4 km gridded regional surface meteorology (Gridmet) 
as primary inputs for estimating daily ET and underlying model soil and stomatal conductance terms. We cali-
brated the model environmental response parameters using tower eddy covariance ET observations representing 
major North American biomes. The model ET results were validated using a holdout set of tower observations 
spanning a large regional climate gradient. The updated ET estimates outperform the baseline MOD16 product 
across all tower validation sites (RMSE = 0.758 vs 1.108 mm day−1; R2 = 0.68 vs 0.45, respectively). Smaller 
relative improvements were obtained using a recalibrated model with 4 km Gridmet meteorology, but no soil 
moisture control (RMSE = 0.813 mm day−1; R2 = 0.66), indicating that these changes are essential for the 
improved model performance. The soil moisture-constrained model improvements and relative benefits from the 
SMAP observations are greater in arid climates, consistent with stronger soil moisture control on ET in water- 
limited regions. The use of SMAP soil moisture as an additional model constraint improves MOD16 regional 
performance and provides a new framework for investigating both soil and atmosphere controls on ET.   

1. Introduction 

Terrestrial evapotranspiration (ET) is the sum of transpiration 
through plant stomata, evaporation from the soil surface, and 

evaporation from the wet plant canopy. ET is an important driver of 
global climate as it links the carbon, water and energy cycles via the 
movement of water vapor and CO2 through plant stomata (Jung et al., 
2011; Mu et al., 2007; Zhang et al., 2019a). Additionally, ET is the 
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largest terrestrial water flux, returning 60–70% of the precipitation that 
falls on the Earth’s land surface back to the atmosphere annually (Oki 
and Kanae, 2006; Zhang et al., 2016b). Due to its large role in the Earth’s 
water, carbon and energy fluxes, ET is an integral component of hy-
drologic and land surface models that inform policy decisions (IPCC, 
2014; Koster et al., 2000; Maneta and Silverman, 2013). Finer scale ET 
estimates are also important for evaluating water use and crop stress 
over complex agricultural landscapes (Allen et al., 2007; He et al., 
2019a; Wurster et al., 2020). It is therefore essential that methods for 
estimating ET are accurate and available with suitable resolution and 
extent to capture characteristic ET heterogeneity. 

At small spatial scales, the eddy covariance method can be used to 
calculate ET as a function of surface-atmosphere latent energy fluxes 
measured at flux towers (Baldocchi, 2003). However, flux towers only 
represent a limited sampling footprint, ranging from a few dozen meters 
(Arriga et al., 2017) to approximately 1 km in resolution (Barcza et al., 
2009). Additionally, the sparse global tower network is insufficient to 
capture global climate and land cover diversity (Pastorello et al., 2017). 
A common method for augmenting and extrapolating these sparse ob-
servations is to use remote sensing-based (RS) ET models. RS ET models 
use satellite observations to provide temporally regular and spatially 
continuous ET estimates spanning continental to global extents (Allen 
et al., 2007; Fisher et al., 2008; Mu et al., 2011; Purdy et al., 2018; 
Martens et al., 2017). 

ET is a function of the amount of water in the soil, the atmospheric 
demand for water, and the incoming solar radiation (Zhang et al., 2016a, 
2016b). Many RS ET models use surface energy balance methods for 
estimating ET over continental to global domains, employing satellite 
observations of vegetation with spatially gridded surface meteorology as 
model drivers (Mu et al., 2007; Mu et al., 2011; Purdy et al., 2018). 
Although many existing RS ET methods implicitly account for the effect 
of soil moisture on ET through proxy or correlated variables such as 
atmospheric vapor pressure deficit (VPD) or soil temperature, few 
methods actually use soil moisture as a model input (Allen et al., 2007; 
Fisher et al., 2008; Mu et al., 2007; Mu et al., 2011). For example, in the 
Moderate Resolution Imaging Spectroradiometer (MODIS) MOD16 al-
gorithm, soil evaporation and transpiration are constrained by daily 
VPD, relative humidity (RH) and minimum air temperature (Tmin; Mu 
et al., 2007; Mu et al., 2011), based on the assumption of congruence 
between near surface atmosphere and soil moisture conditions at coarser 
spatial and temporal scales (Fisher et al., 2008). However, the rela-
tionship between VPD and soil moisture can become decoupled at 
shorter (daily to weekly) time scales, leading to model error (Novick 
et al., 2016; Purdy et al., 2018). Additionally, many RS ET models do not 
account for the influence of soil moisture on transpiration, despite the 
strong relationship between soil water and canopy stomatal conduc-
tance (Lu et al., 2011; Novák et al., 2005; Wu et al., 2011; Short Gianotti 
et al., 2019). Instead, VPD and temperature are generally used to 
constrain transpiration (Fisher et al., 2008; Mu et al., 2011). However, 
the lack of soil moisture information neglects a fundamental water 
balance control on ET, which can lead to significant model error (Michel 
et al., 2016; Miralles et al., 2016; McCabe et al., 2016). 

Here, we introduce a new RS ET model that uses surface and root 
zone soil moisture information from the NASA Soil Moisture Active 
Passive (SMAP) mission (Section 4.2.1; Reichle et al., 2019) as a control 
on estimated soil evaporation and transpiration (Section 3.1). The model 
is built using the MOD16 framework (Section 2.1; Mu et al., 2007; Mu 
et al., 2011), which uses the Penman-Monteith method for estimating ET 
and is one of the only global operational RS ET products. The objectives 
of this study are to (i) investigate the influence of the introduced soil 
moisture control on the model ET estimates; and (ii) determine where 
and why the added soil moisture information is more influential. The 
following sections describe the baseline MOD16 algorithm (Section 2); 
the model enhancements and methods used for evaluating soil moisture 
related impacts on ET, and the model calibration and validation (Section 
3); a summary of the study area, and the materials and data used as 

model inputs (Section 4); followed by a presentation of the model results 
(Section 5), significance (Section 6), and major conclusions (Section 7) 
from this study. 

2. Theoretical background 

2.1. MOD16 algorithm 

MOD16 uses coarse (approximately 55 km × 70 km) global surface 
meteorology inputs from the Goddard Earth Observing System (GEOS) 
Forward Processing for Instrument Teams (FP-IT) product (Rienecker 
et al., 2008; Lucchesi, 2015) and MODIS Collection 6 surface reflectance 
products within a modified Penman-Monteith algorithm to estimate 
daily ET (Mu et al., 2011). The NASA MODIS MOD16 operational pro-
cessor aggregates the daily model outputs to a coarser 8-day temporal 
average to produce the final ET global product at a 500 m spatial res-
olution. The MOD16 algorithm has nine parameters that influence ET 
environmental response characteristics for different plant functional 
type (PFT) classes defined from a model Biome Properties Look-up 
Table (BPLUT; Table S1). The model BPLUT parameters are defined 
for 11 unique PFT categories represented by the MODIS MOD12Q1 
(Type 2) global land cover product. The model BPLUT is applied with 
spatially varying land cover, vegetation cover, and daily meteorology to 
predict spatial and temporal variability in ET over the global domain. 
The core MOD16 algorithm calculates the latent energy (λE, W m−2) 
form of ET as: 

λE =
s∙A + ρ∙Cp∙VPD

/

ra

s + γ∙
(

1 + rs

ra

) (1)  

where s is the slope of the saturated water vapor pressure curve with 
respect to temperature (Pa K−1); A is the available incoming energy 
(Wm−2); ρ is the air density (kg m−3); Cp is the specific heat capacity of 
air (J kg−1 K−1); VPD is the vapor pressure deficit (Pa); rs and ra are the 
surface and aerodynamic resistances to ET, respectively (s m−1), and γ is 
the psychrometric constant (Pa K−1). MOD16 further partitions ET into 
its three major components: evaporation from the wet plant canopy 
(λEWC; W m−2), transpiration through plant stomata (λETRANS; W m−2), 
and soil evaporation (λEEVAP; W m−2), such that: 
λETOTAL = λEWC + λETRANS + λEEVAP. (2) 

Sections 2.1.1 and 2.1.2 further describe λETRANS and λEEVAP, which 
were both modified in the updated algorithm (Section 3.1). Since λEWC is 
unaffected by soil moisture, it is not modified in the updated algorithm 
and the reader is referred to section 2.7 of Mu et al. (2011) for details. 

2.1.1. Plant transpiration calculation 
The λETRANS term in the MOD16 algorithm builds on Eq. (1) by 

partitioning incoming solar radiation to the dry plant canopy: 

λETRANS =
(1 − Fwet)∙Fc∙(s∙Ac + ρ∙Cp∙VPD/ra)

s + γ∙(1 + rs/ra)
(3)  

Fwet =

⎧

⎪

⎨

⎪

⎩

0

(

RH

100

)4
RH < 70%

70% ≤ RH ≤ 100%
(4)  

where AC is the available incoming energy at top of canopy (W m−2); FC 
is the fractional canopy cover of a pixel (dimensionless); Fwet is the 
fraction of the canopy that is wet (%; Fisher et al., 2008), and RH is the 
relative air humidity (%). rs is a key driver of transpiration, as it is 
partially controlled by the leaf stomatal conductance, which ultimately 
determines canopy transpiration. rs is calculated as the inverse of 
canopy-level conductance (CC; s m−1): 
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r−1

s = Cc =
glsh∙(Gs + GCU)

Gs + glsh + GCU

∙LAI∙(1−Fwet) (5)  

GCU = 0.00001∙rcorr (6)  

rcorr =
1

101300

Pa
∙
(

T
293.15

)1.75
(7)  

Gs = CL∙m(Tmin)∙m(VPD)∙rcorr (8)  

m(Tmin) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1

Tmin − Tminclose

Tminopen − Tminclose

0

Tmin ≥ Tminopen

Tminclose < Tmin < Tminopen

Tmin ≤ Tminclose

(9)  

m(VPD) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1

VPDclose − VPD

VPDclose − VPDopen

0

VPD ≤ VPDopen

VPDopen < VPD < VPDclose

VPD ≥ VPDclose

(10)  

where gl_sh is the leaf conductance to sensible heat per unit leaf area 
index (LAI; s m−1); GS is the stomatal conductance per unit LAI (s m−1); 
GCU is the leaf cuticular conductance (s m−1); and rcorr is a function that 
corrects the conductance according to local air temperature T (K) and 
pressure Pa (Pa). To calculate GS, the potential rate of transpiration per 
unit LAI (CL; s m−1) is scaled using two linear ramp functions, m(Tmin) 
and m(VPD), and the rcorr term. The ramp functions produce a dimen-
sionless scalar value ranging between zero and unity for respective fully 
constrained (value = 0) and unconstrained (value = 1) stomatal 
conductance to water loss. This functional representation assumes that 
plants both fully open (Tminopen, VPDopen) and close (Tminclose, VPDclose) 
their stomata under optimal and adverse environmental conditions 
(Jones et al., 2017; Mu et al., 2007). The product of the scalars 
accordingly reduces stomatal conductance (Gs) from its prescribed 
maximum rate (CL) for different PFT classes. 

2.1.2. Soil evaporation calculation 
Soil evaporation is derived from the sum of saturated (λESAT) and 

non-saturated (λEnSAT) soil surfaces within a pixel: 

λESAT =
Fwet∙

(

s∙ASOIL + ρ∙Cp∙(1 − FC)∙VPD
/

ras

)

s + γ∙rtot/ras

(11)  

λEnSAT =
(1 − Fwet)∙

(

s∙ASOIL + ρ∙Cp∙(1 − FC)∙VPD
/

ras

)

s + γ∙rtot/ras

(12)  

where ASOIL is the fraction of incoming solar radiation available at the 
soil surface (W m−2;; Mu et al., 2011); ras is the aerodynamic resistance 
at the soil surface (s m−1); and rtot is the total aerodynamic resistance to 
water vapor transport (s m−1). rtot is assumed to change according to 
PFT, and is bound by minimum and maximum total aerodynamic 
resistance BPLUT parameters (rblmin and rblmax; s m−1): 
rtot = rtotc∙rcorr (13)   

rtotc =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

rblmax

rblmax−
(rblmax−rblmin)∙(VPDclose−VPD)

VPDclose−VPDopen

rblmin

VPD≤VPDopen

VPDopen <VPD<VPDclose

VPD≥VPDclose

(14) 
Total soil evaporation is calculated as the sum of evaporation from 

the saturated and unsaturated soil components within a pixel: 

λEEVAP = λESAT + λEnSAT∙f (SM) (15)  

f (SM) =

(

RH

100

)VPD/β

(16)  

where f(SM) is an estimated soil moisture constraint on evaporation that 
uses RH and VPD as proxies for soil moisture, and β is the soil moisture 
sensitivity to VPD. f(SM) is a unitless scalar, ranging between zero and 
unity, defining how much water in unsaturated soil can be lost to 
evaporation (Fisher et al., 2008). 

3. Methods 

Our model builds on the MOD16 algorithm outlined in Section 2.1 by 
introducing two new functions that use SMAP soil moisture (Section 
4.2.1) to constrain soil evaporation (Section 3.1.1) and transpiration 
(Section 3.1.2). Unlike the MOD16 global product, this study is 
restricted to the contiguous US (CONUS) domain (Section 4.1) and ex-
ploits finer regional meteorology inputs from Gridmet (Section 4.2.3). 
The updated model was calibrated using ET observations from 69 
CONUS flux tower sites (Section 4.3), whereas the original model was 
calibrated using 46 global tower sites. Four different model versions 
were compared to distinguish impacts from model recalibration, the 
addition of a soil moisture control, and the use of SMAP observations on 
model accuracy (Table 1). 

3.1. Implementing a soil moisture control on model ET estimates 

Here, a modified ET algorithm is implemented, augmenting the 
baseline MOD16 framework. The enhancements are summarized below 
and include the addition of surface and root zone soil moisture as 
additional water supply controls on soil evaporation and transpiration 
calculations, respectively. This new framework is designed to exploit 
operational satellite soil moisture information from the NASA SMAP 
mission. 

3.1.1. Soil moisture control on soil evaporation 
The f(SM) relationship in Eq. (16) assumes that VPD and RH are 

effective proxies for soil moisture controls on ET (Fisher et al., 2008). 
However, this assumption may be invalid at the MOD16 daily time scale 
(Novick et al., 2016) and can contribute to model uncertainty. Here, we 
replace f(SM) in Eq. (15) with a more direct soil moisture control out-
lined in Fisher et al. (2008): 

REW =
SFSM − SFSMmin

SFSMmax − SFSMmin

(17)  

where REW is the relative extractable soil water; SFSM is the surface soil 
moisture of a pixel; and SFSMmin and SFSMmax are the respective mini-
mum and maximum surface soil moisture values for the period of record. 
REW is a relative soil moisture index, which assumes that the full range 

Table 1 
Descriptions of ET models setups evaluated in this study.  

Model Description 
ETMOD16G Baseline MOD16 operational product forced with coarse (approximately 

55 km × 70 km) global (G) surface meteorology inputs from the GEOS 
FP-IT product. 

ETNSR MOD16 algorithm forced with 4 km Gridmet meteorology (Section 
4.2.3) with no soil moisture (NS) control, and recalibrated BPLUT 
parameters that reflect the new regional (R) meteorology inputs. 

ETNRR Updated MOD16 algorithm forced with 4 km Gridmet meteorology and 
NRv7.2 (Section 4.2.1) soil moisture (NR), and recalibrated BPLUT 
parameters that reflect the new regional (R) meteorology and soil 
moisture inputs. 

ETL4R As in ETNRR but using SMAP L4_SM (Section 4.2.1) as the model soil 
moisture input (L4).  
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of soil moisture variability at a given location is represented within the 
period of record defined from soil moisture observational inputs. 

3.1.2. Soil moisture control on plant transpiration 
Previous studies indicate an approximate relationship between 

transpiration and soil moisture that asymptotes above a maximum 
threshold where transpiration is insensitive to wetter soil conditions 
(Gardner and Ehlig, 1963; Novák et al., 2005; Purdy et al., 2018; Short 
Gianotti et al., 2019; Wu et al., 2011). The transpiration response to soil 
moisture is represented by the following ramp function, which is similar 
to the functional form of the model GS response to VPD and Tmin (Eq. 8): 

m(SM) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1

SMclose − RZSM

SMclose − SMopen

0

RZSM ≥ SMopen

SMopen > RZSM > SMclose

RZSM ≤ SMclose

(18)  

where SMclose and SMopen are the root zone soil moisture contents at 
which plants completely close and open their stomata, respectively, and 
RZSM is the root zone soil moisture scaled between zero and one as 
described in Eq. (17). m(SM) is used with the VPD and Tmin scalars in Eq. 
(8) to determine the bulk model GS response. The slope and intercept of 
this relationship varies according to plant type, soil properties, and the 
rate of transpiration (Novák et al., 2005; Wu et al., 2011); therefore, 
unique SMclose and SMopen values were calibrated for different PFT 
classes and represented within the BPLUT (Section 3.1.3; Table S2). The 
above MOD16 modifications distinguish atmospheric moisture deficit 
and soil water supply controls on transpiration and soil evaporation, 
potentially improving model accuracy and clarifying underlying con-
trols on ET. 

3.1.3. Model calibration and ET validation 
To accommodate the added model soil moisture control and Gridmet 

meteorology, we recalibrated the original MOD16 BPLUT parameters 
(Table S1). However, Tminopen and Tminclose were left unchanged, as the 
model performance is insensitive to these parameters (Zhang et al., 
2019b). Following Zhang et al. (2019b), we used Differential Evolution 
Markov Chain Monte Carlo simulations to minimize root mean squared 
error (RMSE) differences between the model simulations and daily ET 
observations from tower sites representing major PFT classes. 

The calibration procedure was performed 10 times for each PFT, as 
data were randomly split into 10 equally sized groups for k-fold cross 
validation. In this process, nine groups were used to calibrate the model 
parameters, while the remaining holdout group was used to calculate 
error metrics using the new parameter values. This process was repeated 
10 times so that all tower site records could be used for both calibration 
and validation. The error metrics reported in Table 3 were calculated 
using all tower data withheld from calibration from 2015 to 2017. This 
process ensured that all models were compared against the same set of 
observations, as the ETL4R data were unavailable until after the SMAP 
launch in 2015. Tower ET observations from 2015 to 2017 were selected 
from the Ameriflux network (https://ameriflux.lbl.gov) to represent all 
major CONUS PFT classes, except for DNF, EBF, MF and SAV classes, 
which did not have suitable tower observations meeting the defined data 
quality threshold (Section 4.3). 

To distinguish improvements in model accuracy contributed from 
the addition of a new soil moisture control versus recalibration, separate 
calibrations were performed for ETNRR and ETNSR. The calibrated BPLUT 
parameters (Tables S2, S3) show the mean values and standard de-
viations of the parameters that produced the lowest errors for ETNRR and 
ETNSR, respectively. Parameters defined for ETNRR were also used for 
ETL4R due to the shorter (2015–2017) SMAP operational record. 

To quantify model performance and investigate the role of soil 
moisture on the ET estimates, all models introduced in Section 3 were 
compared to daily tower ET observations not used in calibration for the 
2015–2017 period using RMSE, bias (model minus observation) and the 

coefficient of determination (R2) as performance metrics. The relative 
improvements from the novel components of the updated algorithm 
were assessed for  

(i) the model recalibration and regional Gridmet meteorology (by 
comparing ETMOD16G and ETNSR; Section 5.1);  

(ii) the added soil moisture control (by comparing ETNSR and ETNRR; 
Section 5.1); and  

(iii) the assimilation of SMAP observations (by comparing ETNRR and 
ETL4R; Section 5.2). 

3.2. Determining regional influence of soil moisture on model ET estimates 

We compared differences in estimated annual average ET from the 
different model versions over the CONUS domain to determine where 
the added soil moisture control is more influential on the model ET 
calculations. Mean annual differences between ETL4R, ETNSR, and ETNRR 
were used to evaluate the respective impacts of the added soil moisture 
control and SMAP observations on the model ET estimates. The above 
comparisons were conducted for the period overlapping with SMAP 
operations (2015–2017). 

The aggregated annual ET results from the models were evaluated 
against alternative annual ET estimates from the spatially continuous 
FLUXCOM monthly record (Section 4.4). Here, ETNRR was used as a 
proxy for ETL4R because it spanned the entire FLUXCOM record 
(2003−2013). Variations in model ET differences and relative perfor-
mance against the FLUXCOM ET benchmark were evaluated across the 
CONUS domain and regional gradient in climate aridity, AI, defined as 
the ratio of mean annual potential ET to precipitation (United Nations 
Educational, Scientific and Cultural Organization (UNESCO), 1979). 

The partitioning of ET into its primary components (transpiration, 
soil evaporation and evaporation from the wet canopy) is an important 
and developing area of study (Fisher et al., 2017). Here, we used the 
model outputs to map regional differences in the relative contributions 
of each component to mean annual ET over the CONUS domain. Dif-
ferences between the ETL4R and ETNSR outputs were used to clarify the 
spatial influence of SMAP defined soil moisture controls on model ET 
partitioning. The relative contributions of transpiration, soil evapora-
tion and evaporation from the wet canopy on the aggregate ET calcu-
lations were represented by a linear mapping of the relative contribution 
(%) of each component to total ET. Additionally, we ran the ETL4R model 
at three flux towers with and without the environmental constraint 
scalars in Eq. (8) to assess how transpiration is affected by VPD, tem-
perature, and soil moisture across an AI gradient. 

4. Study area and materials 

4.1. Study area 

This study encompasses all CONUS vegetated land areas from 2003 
to 2017. The distribution of the dominant PFT classes over the domain is 
shown in Fig. 1. The CONUS domain contains all 12 PFT classes depicted 
in the MODIS MCD12Q1 global land cover classification (Friedl et al., 
2002), including croplands (broadleaf (BRO) and cereal (CER)), ever-
green needleleaf forest (ENF), evergreen broadleaf forest (EBF), decid-
uous needleleaf forest (DNF), deciduous broadleaf forest (DBF), mixed 
forest (MF), closed shrubland (CSH), open shrubland (OSH), woody 
savanna (WSA), savanna (SAV), and grassland (GRA). However, the 
EBF, DNF, and CSH classes are sparse compared to other PFT categories, 
with each class representing <1% of the CONUS domain. Additionally, 
there were no tower observations representing DNF or SAV that met our 
tower quality (QA/QC) threshold. Therefore, BPLUT parameter values 
for the DNF and SAV PFT classes were defined from respective ENF and 
WSA parameters following Mu et al. (2011). 
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4.2. Model inputs 

All input datasets used for the model ET calculations are summarized 
in Table 2. The ET model inputs come from three sources: MODIS surface 
reflectance products, SMAP soil moisture products, and Gridmet mete-
orology. MODIS products define land vegetation and surface reflectance 
characteristics, while SMAP and Gridmet are used to define soil moisture 
and meteorological constraints on ET, respectively. Input datasets with a 
temporal resolution greater than one day were linearly interpolated to a 
daily time step. Sub-daily inputs were aggregated to a daily time step by 
taking the mean of all values within a day. We resampled all model 
geospatial inputs to a 500 m resolution using bilinear interpolation to 
match the MODIS MOD16 operational product (Mu et al., 2011; Zhao 
et al., 2005). MODIS inputs affected by clouds or atmospheric interfer-
ence were identified using the respective product quality (QA/QC) flags. 

Affected pixels were gap-filled using temporal nearest-neighbor selec-
tion of adjacent good pixel values (Zhao et al., 2005). We developed and 
ran the model on the Google Earth Engine (GEE) platform (Gorelick 
et al., 2017) and summarized model results using the R programming 
language. 

4.2.1. SMAP L4_SM soil moisture 
We used version 4 of the NASA SMAP mission operational Level-4 

Soil Moisture product (L4_SM; Reichle et al., 2018) as model surface 
and root zone soil moisture inputs. The L4_SM product is derived from 
the global assimilation of SMAP L-band (1.4GHz) daily microwave 
brightness temperature (Tb) observations into the NASA Catchment land 
surface model (CLSM; Koster et al., 2000). The L4_SM model uses an 
ensemble Kalman filter to assimilate SMAP brightness temperatures and 
other observations into the CLSM for estimating surface (top 5 cm) and 
root zone (0-1 m depth) soil moisture (Reichle et al., 2017a). Unlike 
lower order satellite retrievals, the L4_SM product is spatially and 
temporally continuous over the global domain and includes model 
informed calculations of root zone soil moisture conditions that are 
consistent with the assimilated SMAP brightness temperature 
observations. 

The SMAP L4_SM operational product is available starting March 
31st, 2015, which limits how far back we can derive the ETL4R record. 
This relatively short record can misrepresent the longer-term soil 
moisture climatology required by the ET model (e.g. Eqs. 17, 18). The 
operational record also imposes a temporal discontinuity between 
model drivers and tower ET observations used for model calibration and 
validation; whereby, the bulk of available tower observations occur 
prior to 2015 (e.g. FLUXNET2015; Pastorello et al., 2017), with suffi-
cient measurements available for this study through 2017, which leaves 
us with an approximately three-year study period (2015–2017). 

To address the above limitations, we extended the model ET simu-
lations over a longer record (2003–2015) using the SMAP Nature Run 
version 7.2 (NRv7.2) soil moisture product (Reichle et al., 2019). 
NRv7.2 is derived from the same CLSM version as the L4_SM product but 
is not informed by SMAP observations. In a ground validation study of 
18 sites spanning various climate and PFT conditions, NRv7.2 estimated 
surface (root zone) soil moisture with an unbiased RMSE of 0.043 
m3m−3 (0.030 m3m−3), and the assimilation of SMAP Tb observations 
improved the unbiased RMSE to 0.039 m3m−3 (0.026 m3m−3) for L4_SM 
(Reichle et al., 2019). This accuracy is sufficient for representing soil 
moisture related controls within our ET model framework. Both L4_SM 

Table 2 
All inputs used to model daily ET from the MOD16 algorithm framework used in 
this study.  

Product Description/Purpose Spatial 
Resolution 

Temporal 
Resolution 

SMAP 
L4_SM 

Daily surface and root zone soil 
moisture inputs from version 4 of 
the SMAP L4_SM operational 
product, 2015–2017. Used to drive 
ETL4R model. 

9 km × 9 km 3-h 

SMAP 
NRv7.2 

Daily surface and root zone soil 
moisture inputs from SMAP L4_SM 
Nature Run version 7.2 (NRv7.2), 
2003–2017. Used to drive ETNRR 
model. 

9 km × 9 km 3-h 

MCD12Q1 MODIS annual land cover product 
used to define pixel-level BPLUT 
values. 

500 m ×
500 m 

Annual 

MCD15A2 MODIS FPAR/LAI product used to 
partition pixel-level ET between 
transpiration and evaporation and 
scale leaf-level transpiration to the 
canopy. 

500 m ×
500 m 

4-day 

MCD43A3 MODIS surface albedo product used 
to determine net solar radiation 
available for ET. 

500 m ×
500 m 

Daily 

Gridmet Daily meteorological inputs to the 
ET model, including maximum and 
minimum temperature, VPD, RH 
and incoming solar radiation. 

4 km × 4 km Daily  

Fig. 1. CONUS land cover derived from the MOD12Q1 Type 2 and Type 5 land cover products for the 2003–2017 period. Blue triangles show the location of 
AmeriFlux towers used for calibration and validation of new ET models. The labelled towers contain data after March 31st, 2015 that were used for model validation. 
The number of towers in each PFT class are shown in the legend (in parenthesis). (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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and NRv7.2 produce global estimates of surface and root zone soil 
moisture at a 3-h time step on the 9 km resolution global EASE-grid 
(version 2; Brodzik et al., 2014). We used the L4_SM (and NRv7.2) 
root zone soil moisture estimates to constrain transpiration and the 
corresponding surface soil moisture estimates to constrain soil evapo-
ration in the model ET calculations. 

4.2.2. MODIS products (collection 6) 
The MODIS MCD15A3H product (Myneni et al., 2002) provides 

composited global estimates of LAI and FPAR every four days at a 500 m 
resolution. The LAI/FPAR product is used in MOD16 to partition 
incoming solar radiation between the soil surface and plant canopy. 
FPAR serves as a proxy for fractional vegetation cover (FC) within a pixel 
(Eq. 3), while LAI is used to upscale leaf stomatal conductance to 
canopy-level conductance (Eq. 5). The MODIS MCD43A3 Albedo prod-
uct (Schaaf and Wang, 2015) provides global daily 500 m surface albedo 

estimates, which are used to derive daily net radiation from incoming 
shortwave radiation, consistent with the baseline MOD16 logic. 

The MODIS MCD12Q1 land cover product (Friedl et al., 2002) gives 
the dominant PFT within each 500 m pixel and is used to assign BPLUT 
parameters to each pixel. The original MOD16 logic uses the MODIS 
MCD12Q1 Type 2 land cover classification, which does not distinguish 
BRO and CER crop types. However, BRO and CER account for approxi-
mately 4.6% and 14.1% of the CONUS domain, respectively. Here, we 
use a combination of the Type 2 and Type 5 land cover schemes to better 
distinguish ET conditions between the two crop types. For a given pixel, 
if the Type 2 PFT is classified as cropland and the Type 5 value repre-
sents either BRO or CER, we assign the pixel to the appropriate Type 5 
category. 

4.2.3. Gridmet meteorology 
The MODIS MOD16 operational product uses GEOS FP-IT input 

Fig. 2. Model ET results vs flux tower ET observations for the 2015–2017 record. The solid line represents 1:1 correspondence and the dashed line is the best-fit 
linear regression line for each ET model. 
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meteorology for the ET calculations. Here, we use an alternative Grid-
met daily surface meteorology record (Abatzoglou, 2013) as inputs for 
the model ET calculations. Although Gridmet is limited to the CONUS, it 
has a smaller pixel size than the global GEOS FP-IT product (4 km × 4 
km vs 55 km × 70 km), which may enhance the spatial representation of 
ET and underlying environmental drivers (He et al., 2019b). 

4.3. AmeriFlux ET 

We used in situ daily ET observations from the AmeriFlux tower 
network (Baldocchi et al., 2001) for BPLUT calibration and model ET 
validation. We followed the gap filling and QA/QC procedure described 
by Mu et al. (2011) to remove lower quality data and to upscale the 30- 
min tower observations to a daily time step. Additionally, many flux 
tower observations fail to close the energy balance (Foken et al., 2006; 
Purdy et al., 2018), which can lead to unrealistic ET estimates. To 
address this issue, we filtered out any 30-min data where the energy 
imbalance exceeded 300 W m−2, following Zhang et al. (2019b). The 
QA/QC procedure left 69 (of 107 initial sites) representing 10 PFT 
classes (Table S4). The energy balance closures for the 69 remaining 
sites ranged from 77 to 92%, suitable for model calibration and vali-
dation (Foken et al., 2006; Michel et al., 2016; Zhang et al., 2019b). The 
regional distribution of tower sites used in this study is presented in 
Fig. 1, along with a detailed site summary in Table S4. Only 31 tower 
sites had data available after March 31st, 2015 (beginning of SMAP 
operational record) that met the above QA/QC procedure. These 31 
towers were used for ET validation so that all new models could be 
compared against a consistent tower record. To compare model esti-
mates to tower observations, mean model ET estimates from a 1 km 
diameter circle centered at each tower location were compared to the 
corresponding tower ET observations. 

4.4. FLUXCOM 

The AmeriFlux observations used for the model ET validation depict 
dominant biomes within the CONUS domain but are spatially and 
temporally sparse. To augment the model evaluation, we used the 
spatially continuous FLUXCOM RS + METEO record (Jung et al., 2019; 
Tramontana et al., 2016) as an additional validation source. FLUXCOM 
provides gridded monthly latent heat flux estimates at 0.5◦ (~55 km) 
resolution for our entire study period (Jung et al., 2019, Tramontana 
et al., 2016). The FLUXCOM data are produced through machine 
learning upscaling of in situ tower observations from the global FLUX-
NET synthesis record using MODIS remote sensing and modeled surface 
meteorological data. FLUXCOM provides latent heat flux estimates 
suitable for ET model benchmark assessments based on reported high 
accuracy relative to flux tower observations and good correspondence 
with various RS ET models (Jung et al., 2019, Tramontana et al., 2016). 

Following Jung et al. (2019), we converted FLUXCOM latent heat flux 
estimates to ET using a constant latent heat of vaporization (2.45 MJ 
mm−1). We upscaled our 500 m daily ET model results to the coarser 
FLUXCOM resolution by taking the spatial mean of aggregated monthly 
ET estimates within each FLUXCOM grid cell. Because FLUXCOM uses 
flux tower observations as a model input, it is not completely indepen-
dent from the models evaluated here. However, it still provides a 
meaningful benchmark spanning the entire CONUS domain and 
implicitly accounts for PFTs missing from the model tower validation. 

5. Results 

5.1. Soil moisture influence on model ET estimates 

Across all CONUS flux towers, the addition of a soil moisture control 
improved the accuracy of the model ET estimates. Both ETNRR and ETL4R 
showed the best performance against the tower ET observations, with 
respective mean RMSE differences of 0.818 and 0.758 mm d−1, and 
accompanying R2 agreement of 64.0% and 68.3% (Fig. 2, Table 3). In 
contrast, the model ET results derived without a direct soil moisture 
control had generally lower performance and accuracy, including ETNSR 
(RMSE = 0.849 mm d−1; R2 = 64.5%) and ETMOD16G (RMSE = 1.108 mm 
d−1; R2 = 44.5%). The relative RMSE improvements between ETL4R and 
ETNSR were smaller than the improvements between ETL4R and 
ETMOD16G (11% vs 31%), indicating that recalibration and high resolu-
tion (4 km) meteorology are key reasons for improved accuracy and that 
a soil moisture control further improves model estimates. 

Similar results are seen across the eight PFT classes represented from 
the tower validation sites (Table 3). For all PFTs other than DBF, either 
ETNRR or ETL4R showed the lowest RMSE values. ANOVA tests 
comparing all models across all PFTs show that differences between the 
soil moisture-constrained models and ETNSR are statistically significant, 
and that with the exception of DBF, CER and WSA PFTs, differences 
between ETNRR and ETL4R are also statistically significant (Fig. S1). 
Across the eight PFTs, ETNRR and ETL4R also showed consistently lower 
bias and higher R2 correspondence than ETNSR or ETMOD16G (Table 3). 
Time series ET plots at eight flux tower locations representing seven 
diverse CONUS PFT classes show that all models track seasonal and 
annual ET variability across a broad climate and land cover gradient 
(Fig. 3). In general, ETNRR, ETL4R, and ETNSR better capture the tower 
observed seasonal variation in ET than the ETMOD16G baseline. These 
results are also consistent with the majority of PFT classes examined 
(Table 3). For all PFTs except for DBF, ETMOD16G underestimates the 
tower ET observations. However, this relationship varies among 
different tower sites from the same PFT class. For example, ETMOD16G 
generally underestimates ET across all ENF and WSA tower sites, but 
overestimates ET at the US-Wrc (ENF) and US-Ton (WSA) sites (Fig. 3). A 
similar pattern emerges across the CONUS domain, where ETMOD16G 

Table 3 
Results of model performance using holdout ET validation data from 31 flux towers for the 2015–2017 record. Bias is the mean daily difference between model and 
tower ET observations (model – observation; mm day−1).  

PFT ETL4R ETNRR ETNSR ETMOD16G 

Bias R2 RMSE Bias R2 RMSE Bias R2 RMSE Bias R2 RMSE 
BRO −0.668 0.703 1.117 −0.804 0.624 1.297 ¡0.183 0.546 1.127 −1.103 0.714 1.567 
CER ¡0.047 0.72 0.771 −0.136 0.644 0.887 −0.328 0.615 0.965 −0.401 0.472 1.17 
CSH ¡0.654 0.716 1.134 −0.766 0.733 1.201 −0.833 0.936 1.23 −1.14 0.787 1.644 
DBF −0.09 0.632 0.836 ¡0.086 0.646 0.823 −0.233 0.681 0.809 0.824 0.679 1.251 
ENF 0.058 0.583 0.592 −0.099 0.504 0.627 0.185 0.435 0.652 ¡0.045 0.296 0.863 
GRA ¡0.009 0.693 0.747 −0.068 0.604 0.833 −0.635 0.783 0.893 −0.643 0.59 1.069 
OSH 0.334 0.513 0.521 0.087 0.626 0.365 −0.203 0.291 0.54 −0.369 0.22 0.635 
WSA 0.191 0.607 0.5 0.165 0.545 0.522 ¡0.104 0.201 0.668 −0.11 0.212 0.759 
Average ¡0.041 0.683 0.758 −0.137 0.64 0.818 −0.283 0.645 0.849 −0.29 0.445 1.108 

R2 is the coefficient of determination describing correspondence between the selected model and associated flux tower measurements. RMSE is the root mean squared 
error difference between model estimates and tower observations (mm day−1). Bold values denote the best performing model for each metric and PFT. The ‘Average’ 

row is the value of each metric calculated across all flux tower observations from 2015 to 2017. 
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predicts higher ET than the soil moisture constrained models for BRO, 
CRO, DBF, DNF, ENF, MF, SAV and WSA, but lower ET for other PFTs 
(Fig. 4A). Across the CONUS, median ETNRR, ETL4R, and ETNSR values fall 
closer to median flux tower observations, suggesting better ET perfor-
mance in the updated models relative to the MOD16 baseline (Fig. 4A, 
B). 

The ETL4R results show generally higher and lower ET rates respec-
tively east and west of the 100th meridian (Fig. 5). This same general 
pattern is seen in all four models (not shown), although ETMOD16G sys-
tematically underestimates ET in the western CONUS compared to the 
updated models. Because the western CONUS is dominated by GRA and 
OSH (Fig. 1), these results paired with the tower validation assessment 
(Table 3 and Fig. 3) indicate that ETMOD16G tends to underestimate ET 
for both of these PFTs and over the western CONUS. Differences between 
the ETNSR and ETL4R estimates are also more pronounced in the western 

CONUS (Fig. 6A), particularly for CSH, GRA, and OSH areas (Fig. 1). In 
this region, ETNSR predicts generally less ET than ETL4R or the tower 
observations (Table 3, Fig. 6A). 

5.2. Regional influence of soil moisture on model ET estimates 

Regional differences between ETNRR and ETL4R reveal the relative 
impact of the SMAP L-band brightness temperature observations on the 
L4_SM soil moisture inputs and resulting model ET simulations. The 
relative value of SMAP observations is greater in the CONUS western 
dryland regions (Fig. 6B), coinciding with GRA and other PFT classes 
characterized by low to moderate vegetation cover, where the SMAP soil 
moisture performance is higher (Reichle et al., 2017a; Reichle et al., 
2017b). However, the impact of the SMAP observations on ET, indicated 
by the ETNRR and ETL4R difference, is smaller than the utility gained from 

Fig. 3. Time series progression of model (colored lines) and tower (circles) observed ET from 2015 to 2017 for eight tower sites representing major CONUS PFT 
classes. The aridity index (AI; precipitation / potential ET; UNESCO, 1979) at the sites ranges from arid (0.11; US-Whs) to humid (1.68; US-Wrc). Sites are arranged 
from most arid to least arid. 
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adding a soil moisture control to the model as indicated from the larger 
and more extensive ETL4R and ETNSR differences (Fig. 6). 

When compared to the FLUXCOM estimates, ETMOD16G, ETNRR, and 
ETNSR all underestimate ET across the CONUS domain, with respective 
mean annual biases of −145, −168, and − 189 mm yr−1. Model per-
formance relative to FLUXCOM varies greatly to the west and east of the 
100th meridian (Fig. S2). In the west, ETMOD16G shows an RMSE dif-
ference of 211 mm yr−1 relative to FLUXCOM, while ETNRR and ETNSR 
show smaller respective RMSE differences of 130 and 152 mm yr−1. In 
the east, ETMOD16G is the best performing model in relation to FLUX-
COM, with an RMSE difference of 228 mm yr−1, while ETNSR and ETNRR 
show larger respective RMSE differences of 244 and 258 mm yr−1. 
Across the CONUS, ETNRR R2 correspondence relative to FLUXCOM is 
slightly higher than ETNSR and notably higher than ETMOD16G, particu-
larly in the west (East: ETNRR = 0.22, ETNSR = 0.19, ETMOD16G = 0.20; 

West: ETNRR = 0.40, ETNSR = 0.40, ETMOD16G = 0.29). 
The model ET performance over the CONUS climate aridity (AI) 

gradient indicates that ETNRR outperforms both ETNSR and ETMOD16G in 
more arid regions relative to FLUXCOM (Fig. 7). In the most arid regions, 
ETNRR has both lower RMSE and lower R2 correspondence than the other 
models (Fig. 7B, C). This relationship shifts after the transition from arid 
to semi-arid (AI ~0.4) climates, where ETMOD16G has a lower RMSE and 
lower R2 relative to FLUXCOM, suggesting that the added soil moisture 
control has the greatest value for improving the model ET performance 
in arid and semi-arid regions (AI ≤0.4) that represent approximately 
43% of the CONUS domain. Much of this area falls within the western 
portion of the domain. The results of the flux tower and FLUXCOM 
comparisons indicate that the added soil moisture control, represented 
by ETNRR and ETL4R, produces more realistic model ET estimates in the 
arid western CONUS region than alternative model simulations derived 

Fig. 4. A) Box plot distributions of modeled ET across all CONUS PFT regions for the 2015–2017 period. Data were plotted by randomly sampling 5000 pixels from 
each PFT region and aggregating the results for each model. B) Box plot distributions of modeled ET across the entire CONUS domain for the 2015–2017 period. In 
both plots, associated flux tower observations (ETFLUX) for the same period of record are plotted in red, while the number of towers in each population are shown in 
parentheses. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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using VPD as the sole moisture control on ET. 
Both ETL4R and ETNSR show similar patterns in ET partitioning (soil 

evaporation, transpiration, wet canopy evaporation) across the domain 
(Fig. 8). While the models show lower (higher) transpiration contribu-
tions in the western (eastern) CONUS, ETL4R has notably higher soil 
evaporation in the west. Across the entire domain, transpiration con-
tributes 44% of ET for ETL4R, and 50% of ET for ETNSR. The difference 
between the two models is largely driven by partitioning differences east 
and west of the 100th meridian. In the east, transpiration comprises 50% 
(52%) of ETL4R (ETNSR), but only 34% (46%) in the west. These results 
highlight the effect of the added soil moisture control on model ET 
partitioning. In the more arid regions (i.e. western CONUS), the added 
soil moisture control leads to greater reduction in transpiration due to 
the addition of m(SM) in Eq. (18). This effect is illustrated by the dif-
ference in ETL4R results derived with and without the environmental 
constraint scalars (Fig. 9). At the more arid US-Me2 and US-Ton sites, the 
added soil moisture control reduces transpiration from optimal levels 
and consequently increases soil evaporation as a percent of ET (Fig. 9). 
This is not the case at the less arid US-UMB site, where ET is not water 
limited. 

6. Discussion 

6.1. Soil moisture influence on model ET estimates 

Model calibration and the higher-resolution Gridmet meteorology 
inputs led to the largest increase in ET accuracy, indicated by larger 
improvements in ETNSR accuracy over the ETMOD16G baseline compared 
to improvements in ETNRR and ETL4R over ETNSR (Table 3, Fig. 2). Zhang 
et al. (2019b) also reported that much of the error in MOD16 could be 
reduced by a more robust model calibration. They found that across all 
PFTs, the recalibrated MOD16 RMSE decreased by 28.5%. Similarly, we 
found a 23.3% RMSE reduction in ETNSR compared to the ETMOD16G 
baseline by recalibrating the model for the CONUS domain and using 
Gridmet meteorology. The ETL4R and ETNRR results showed even greater 
respective RMSE reductions of 31.6% and 26.2% over the ETMOD16G 
baseline, indicating that the addition of surface and root zone soil 
moisture controls led to further improvements in model ET accuracy. 

The RMSE reductions in ETNRR and ETL4R over ETNSR reflects the 
addition of explicit soil moisture related controls on model ET. The 
SMclose and SMopen parameters in the revised BPLUT represent the unique 

role of soil moisture, in addition to VPD, in regulating stomatal 
conductance (Novick et al., 2016; Novák et al., 2005; Purdy et al., 2018). 
The calibrated SMclose and SMopen values fall within the ranges seen in 
various RS-based productivity models and field studies, suggesting that 
the parameterization process converged on realistic values for these 
parameters (Table S2; Wu et al., 2011; He et al., 2016; Jones et al., 2017; 
Novák et al., 2005). Although some of the SMopen parameter values have 
high standard deviations (i.e. uncertainty), ANOVA test results show 
that ETNRR and ETNSR estimates are statistically different, suggesting 
that the model is sensitive to this parameterization and that it drives 
improvements in ET. Additionally, other MOD16 sensitivity studies have 
found CL to be among the most sensitive BPLUT parameters (Zhang 
et al., 2019b; He et al., 2019b). Here, calibrated CL values are higher 
than in the original MOD16 BPLUT, which reflects the added m(SM) 
control on stomatal conductance described in Section 3.1.2 (Mu et al., 
2011). 

The higher ET rates modeled by ETNRR and ETL4R were more 
consistent with the tower observations and previous studies, indicating 
that MOD16 generally underestimates ET in arid and sparsely vegetated 
areas (Khan et al., 2018; Michel et al., 2016; Moreira et al., 2019; Ruhoff 
et al., 2013; Zhang et al., 2020). This bias is most notable in western 
CONUS grasslands, where ETNRR and ETL4R predict ~100–300 mm yr−1 

more ET than the ETMOD16G baseline (Table 3, Fig. 4). Similarly, Khan 
et al. (2018) found that MOD16 had an average bias of −104 mm yr−1 

across grassland sites in eastern Asia. Across the CONUS domain and 
2003–2017 study period, ETMOD16G displayed a − 148 mm yr−1 bias 
against all GRA tower observations, whereas ETNRR had a positive and 
much smaller bias of 0.529 mm yr−1. The recalibrated ETNSR and 
ETMOD16G results both showed markedly lower ET rates in the western 
CONUS than ETNRR, ETL4R, and the ET benchmarks (both tower obser-
vations and FLUXCOM). These results suggest that the baseline MOD16 
algorithm is not properly structured to capture the magnitude of ET in 
arid regions (Figs. 6, 7, S1). 

6.2. Regional influence of soil moisture on model ET estimates 

Differences in model ET estimates in arid regions follow differences 
in model partitioning between transpiration and soil evaporation 
(Fig. 8). In arid regions, canopy gas exchange, including both CO2 and 
water vapor, is strongly limited by plant-available soil moisture (Smith 
et al., 2019), which restricts both vegetation growth and ET. In the 

Fig. 5. Spatial pattern of ETL4R across the CONUS domain for the 2015–2017 period, superimposed on a lat/lon grid. White areas represent open water, barren land 
or other areas external to the modeling domain that were excluded from the ET simulations. 
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updated model, transpiration is partially controlled by root zone soil 
moisture. Because the western CONUS is more arid than the east, the 
relatively low soil moisture conditions in the west impose further re-
strictions on ETL4R (ETNRR) transpiration relative to ETNSR and ETMOD16G 
(Fig. 8). As a result, the soil moisture-constrained models have a smaller 
component influence from transpiration than the models that are solely 
constrained by VPD and temperature. The estimated ratio of transpira-
tion to ET from this study is also within the range of variability reported 
from previous studies (Stoy et al., 2019; Nelson et al., 2020) and follows 
similar spatial patterns of lower (higher) component transpiration in-
fluence in the western (eastern) CONUS (Zhang et al., 2019a). At the 
global scale, the baseline MOD16 method shows the transpiration to ET 
proportion to be approximately 24%, which is at the lower end of the 
fraction reported from other RS ET models (Miralles et al., 2016). While 
only provided for the CONUS domain, the transpiration to ET fractions 
from ETL4R (ETNRR) are more consistent with other reported model es-
timates (Miralles et al., 2016; Stoy et al., 2019). 

The higher accuracy of the soil moisture-constrained models in arid 
regions may partially reflect greater SMAP soil moisture accuracy in 
areas with lower vegetation density. The L-band derived SMAP products 
are most sensitive to soil moisture where the overlying vegetation water 
content is less than ~5 kg m−2 (Entekhabi et al., 2010). The western 
CONUS is dominated by GRA, OSH and CSH, which tend to have less 
vegetation cover and associated greater L-band soil moisture sensitivity. 
In contrast, the eastern CONUS represents a more humid climate with 
greater vegetation density (e.g. forests), where the SMAP observations 
are expected to have less soil moisture sensitivity. The variable SMAP 
sensitivity pattern helps to explain why the largest SMAP impact on ET, 
indicated by the difference between ETNRR and ETL4R, occurs in the 
western CONUS (Fig. 6B). Here, the darker shades indicate where the 
model L4_SM soil moisture inputs propagate to larger differences in 
estimated annual ET relative to having no model soil moisture control 
(ETNSR), or with a soil moisture control not directly informed by SMAP 
observations (ETNRR). 

Fig. 6. Percent change in mean annual ET from ETL4R compared to ETNSR (A) and ETNRR (B) for the 2015–2017 period; the difference maps are superimposed on a 
lat/lon grid and show the respective impacts of the added soil moisture control and SMAP observations on the model ET estimates. Blue (red) shades depict areas 
where ETL4R predicts higher (lower) ET than the other models. Dark gray areas represent open water, barren land, and other areas excluded from the simulations and 
white reflect no change between model estimates. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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Similar to the findings presented here, Purdy et al. (2018) found that 
the addition of SMAP Level 3 surface soil moisture (L3_SM) retrievals 
into the PT-JPL ET model were important in arid regions, but less 
relevant in humid climate regions. Here, there is little to no soil moisture 
influence on plant transpiration at humid sites, whereas transpiration at 
arid sites is heavily constrained by soil moisture (Fig. 9). In our study, 
the model improvements in arid regions are caused by increased ET 
relative to the baseline MOD16 product, which largely reflects an in-
crease in soil evaporation. Partitioning of the underlying controls on 
estimated canopy stomatal conductance between temperature, VPD, and 
root zone soil moisture may reduce the model sensitivity to dynamic 
day-to-day fluctuations in VPD and temperature (Fig. 9); whereby, plant 
access to a more stable soil moisture resource helps to maintain ET 

during periodic drought. Likewise, adding a surface soil moisture con-
trol to the model benefits from greater soil moisture memory in sus-
taining surface evaporation during drying cycles relative to the MOD16 
baseline algorithm, which relies solely on an atmospheric moisture 
deficit derived control. Despite model improvements in arid regions, 
there is an abrupt increase in RMSE and an abrupt drop in R2 for ETNRR 
in the most arid parts of the CONUS relative to FLUXCOM (Fig. 7B, C). In 
these arid regions, the coarse (9 km) resolution and small apparent wet 
bias in the L4_SM soil moisture record may contribute to the ETNRR error 
(Reichle et al., 2017a). 

An opposing negative bias between ETNRR and ETNSR is predomi-
nantly found in humid climate regions of the eastern CONUS that tend to 
be more energy than water limited (Nemani et al., 2003). In these areas, 

Fig. 7. Modeled ET performance against FLUXCOM ET estimates across the CONUS domain for the 2003–2013 period of record relative to climate aridity (AI; X- 
axis). The Y1 axis and gray bars show the distribution of CONUS land area falling within each AI category. The Y2 axis denotes estimated mean annual ET (A), RMSE 
(mm/year; B) and R2 (C) calculated against FLUXCOM. AI values denote hyperarid (AI<0.03), arid (0.03 ≤ AI<0.2), semi-arid (0.2 ≤ AI<0.5), dry sub-humid (0.5 ≤
AI<0.65), and humid (AI>0.65) conditions. Plotted lines are LOESS smoothed using an α parameter of 0.75, with shaded regions representing the standard error of 
the smoothing function. 
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there is generally sufficient soil water supply throughout the year for 
optimal transpiration, so that VPD and temperature are the dominant 
controls (Purdy et al., 2018; US-UMB in Fig. 9). As a result, the addition 
of a root zone soil moisture control has minimal effect, as seen by the 
similar ETNRR and ETNSR performance (Fig. 7A). In humid climates, 
ETMOD16G has a slightly lower RMSE relative to FLUXCOM than both 
ETNRR and ETNSR (Fig. 7B). This is partially due to differences in FPAR/ 
LAI gap filling methods between ETMOD16G and ETNRR (ETNSR). In these 
regions, ET occurs at almost optimal rates, with less influence from 
environmental constraints (temperature, VPD, soil moisture) and more 
influence from the FPAR/LAI inputs on model performance. These re-
gions also tend to have greater FPAR/LAI dropout and associated ET 
uncertainty due to clouds (Zhang et al., 2019a). FLUXCOM also tends to 
show slightly higher ET than other reported estimates in humid climate 
areas (Jung et al., 2019; Ma et al., 2020). This relative bias may 

contribute to the observed FLUXCOM and ETNRR (ETNSR) differences. 
Additionally, the differences may reflect better ETNRR representation of 
soil moisture as a control on ET. For example, ETNRR estimates in 
southern Florida are lower relative to the other models (Figs. 5, 6A, S1), 
which reflects the coarse sandy soil texture and associated stronger 
model soil moisture control on ET in this region. 

Spatially, the soil moisture-constrained models performed better in 
drier climate regions (AI<0.4) where ecosystems are more water 
limited. However, the importance of the soil moisture control also 
changes with time (Novick et al., 2016). For example, the ETNRR and 
ETL4R performance was most favorable between June and October at the 
arid US-Whs and US-Wkg towers (Fig. 3); whereas, both models over-
estimated ET during other months relative to the tower observations. 
The seasonally varying bias suggests the need for further model im-
provements in representing vegetation phenology, plant sensitivity to 

Fig. 8. ET component influence of plant transpiration (T, blue), soil evaporation (E, green), and canopy intercepted evaporation (I, red) for ETL4R (top) and ETNSR 
(bottom) from 2015 to 2017. Bright green, blue and red represent areas where ET is dominated by E, T, and I, respectively. Maps are depicted on a lat/lon grid. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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environmental stressors, and the seasonally varying importance of soil 
moisture and other controls. Improving understanding of the factors 
affecting ET seasonality should be a priority of future studies. As the 
effects of climate change progress, the traditional understanding of ET as 
being driven by VPD and soil moisture is expected to shift (Novick et al., 
2016). For example, early spring greening driven by a warming climate 
may enhance ET, leading to summer soil moisture deficits (Lian et al., 
2020). Failure to account for the influence of soil moisture on ET in such 
cases where soil water becomes insufficient to meet atmospheric de-
mand could lead to notable model errors. Additionally, the projected 
changes in drought patterns will likely further complicate these re-
lationships (Mo and Lettenmaier, 2015; Otkin et al., 2018). Better 

understanding and representation of the abiotic and biotic impacts on 
ET is essential to improve RS ET models and properly quantify terrestrial 
water fluxes in the face of climate change. 

6.3. Model uncertainties 

Despite the improved model ET performance indicated from this 
study, the results still show significant remaining uncertainty. This un-
certainty comes from three main sources, including: 1) the use of 
discrete model BPLUT parameterizations; 2) uncertainty in model in-
puts; and 3) the inability of the model to capture all physical processes 
affecting ET. 

Fig. 9. Seasonal variations of estimated environmental restrictions on the model (ETL4R) transpiration calculations for three flux tower sites representing major 
CONUS PFT classes. The relative influence from daily Tmin, VPD, and root zone soil moisture (SM) by the respective environmental constraint (EC) scalars in Eqs. (9, 
10, 18). The Y1 axis values represent EC and range between 0 (no constraint) and 1 (full constraint). The stacked colors represent the relative influence from each 
environmental factor on the model transpiration. The dotted line shows the maximum potential ET under minimal environmental constraints, while the solid line 
represents the estimated actual ET (Y2 axis). Plots were created by running the model with (solid line) and without (dotted line) all three EC scalars. The selected 
DBF, ENF and WSA sites are located in humid (AI = 0.73) and semi-arid (AI = 0.4, AI = 0.31) climate zones. 
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1. Discrete parameterizations. The underlying assumption of the 
MOD16 BPLUT based parameterizations is that the vegetation 
response to the various environmental factors affecting ET is largely 
consistent within individual biomes represented by a 12 PFT class 
global land cover map. However, variations in soil conditions, 
vegetation structure and age class, and other factors can lead to 
significant ET heterogeneity within a given biome. This variable 
response can be seen in the standard deviations of the model pa-
rameters (Tables S2, S3). All parameters show variability around the 
mean, reflecting inherent uncertainty in parameter values that can 
contribute to model ET error. Additionally, as plants near stress, 
complex and non-linear interactions of soil moisture and VPD can 
drive stomatal conductance (Novick et al., 2016), further contrib-
uting to uncertainty when using the simple linear efficiency func-
tions and open/close parameters outlined in Eq. 8. This is evident in 
Table S2, where variability in the SMopen and SMclose parameters are 
large for CSH, OSH and WSA, reflecting the uncertainty in the 
parameter values within the relatively coarse PFT classes. The po-
tential use of more spatially variable parameterizations incorpo-
rating data-driven machine learning or hybrid modeling approaches 
may lead to further model improvements over BPLUT based methods 
(Madani et al., 2017; Jung et al., 2019; Reichstein et al., 2019; 
Tramontana et al., 2016) and should be pursued as a priority 
research topic.  

2. Model input uncertainty. All inputs to the MOD16 algorithm have 
uncertainty, which can contribute to model ET error. For example, 
the SMAP L4_SM product has a targeted mean accuracy of 0.04 m3 

m−3 for surface and root zone soil moisture (Reichle et al., 2019). 
Additional uncertainty is contributed from the MODIS LAI/FPAR and 
land cover products used as model inputs due to algorithm as-
sumptions, atmospheric contamination, sensor footprint and cali-
bration uncertainty, and other factors (Miura et al., 2000; Xu et al., 
2018). Additionally, the models presented here rely on modeled 
Gridmet meteorology. While Gridmet provides approximately 10- 
fold improved spatial resolution over that of the global GEOS FP-IT 
meteorology used in the baseline MOD16 product, the 4 km Grid-
met resolution may still not adequately resolve microclimate spatial 
heterogeneity (Walton and Hall, 2018; Behnke et al., 2016; Zhao 
et al., 2005), which may contribute to model ET uncertainty. Addi-
tionally, soil moisture can vary significantly within the 9 km SMAP 
scale. Although the REW conversion in Eq. 17 compresses relative 
variability by effectively normalizing soil moisture across a pixel, 
formal downscaling is necessary to capture the heterogeneity at the 
500 m scale with more fidelity. Future studies should explore 
implementing downscaled soil moisture into ET modeling frame-
works to further improve ET estimates (Chaney et al., 2016; Col-
liander et al., 2017; Fang et al., 2020). 

3. Missing processes. Because ET is a complex process, simplifying as-
sumptions must be made to facilitate regional to global scale model 
predictions. For example, wind speed, soil type, and precipitation 
can significantly influence ET, but are missing from our model 
(Purdy et al., 2018; McVicar et al., 2012; He et al., 2019b). Rooting 
depth is also a key variable in estimating ET, as it determines where 
in the soil profile a plant has access to water (Guswa, 2010). This may 
be a cause of uncertainty in our modeling framework, as we assume 
that root zone (0–1 m) soil moisture drives transpiration even though 
rooting depths can exceed 3 m (Yang et al., 2016). Finally, model 
parameters representing physical processes such as the aerodynamic 
resistance to soil evaporation (rblmin and rblmax) are difficult to 
measure in situ, contributing to greater uncertainty in parameter 
boundaries (Mu et al., 2011). 

7. Conclusion 

This study improves estimates of ET in the CONUS domain by reca-
librating the model, introducing high-resolution Gridmet meteorology, 

and adding a SMAP informed soil moisture control to the MOD16 al-
gorithm. We adapted the MOD16 framework to include a root zone soil 
moisture control on plant transpiration and a surface soil moisture 
control on soil evaporation. The model was calibrated at 69 AmeriFlux 
tower sites representing 10 diverse PFTs across the entire CONUS 
domain. The model was validated using a holdout set of flux tower data 
and the FLUXCOM product to assess our objectives. We found that (i) the 
added soil moisture controls, Gridmet meteorology and regional cali-
bration improved model performance over the MOD16 global baseline 
relative to ET observations from regional flux towers; (ii) these results 
are more pronounced in dry land areas of the western CONUS and when 
ecosystems are water limited. The soil moisture constrained model 
shows the greatest improvements in arid and semi-arid regions 
(AI≤0.4), which represent approximately 40% of the global land area 
(Smith et al., 2019). The resulting model provides new capacity for 
monitoring the effects of drought and climate change on the water cycle, 
while providing a new framework for investigating both soil and at-
mosphere controls on ET. 

CRediT authorship contribution statement 

Colin Brust: Conceptualization, Methodology, Software, Writing - 
original draft, Writing - review & editing. 

John S. Kimball: Conceptualization, Methodology, Funding acquisi-
tion, Writing - review & editing. 

Marco P. Maneta: Methodology, Funding acquisition, Writing - re-
view & editing. 

Kelsey Jencso: Conceptualization, Methodology, Writing - review & 
editing. 

Mingzhu He: Software, Writing - review & editing. 
Rolf H. Reichle: Writing - review & editing. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

This study was conducted at the University of Montana with funding 
provided by NASA (NNH17ZHA002C, NNX14AI50G, 
80NSSC18M0025M) and the USDA NIFA (National Institute of Food and 
Agriculture) program (658 2016-67026-25067). R. Reichle was sup-
ported by the SMAP Science Team. This work used eddy covariance data 
acquired and shared by the FLUXNET community, including the 
AmeriFlux network. FLUXCOM data are available through the Max 
Planck Institute for Biogeochemistry at http://fluxcom.org. Thanks to 
Dr. Tim McVicar and three other anonymous reviewers whose comments 
and feedback greatly improved this manuscript. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.rse.2020.112277. 

References 
Abatzoglou, John T., 2013. Development of gridded surface meteorological data for 

ecological applications and modelling. Int. J. Climatol. 33 (1), 121–131. https://doi. 
org/10.1002/joc.3413. 

Allen, R.G., Tasumi, M., Morse, A., Trezza, R., Wright, J.L., Bastiaanssen, W., 
Kramber, W., Lorite, I.J., Robinson, C.W., 2007. Satellite-based energy balance for 
mapping evapotranspiration with internalized calibration (METRIC)— applications. 
J. Irrig. Drain. Eng. 133 (4), 395–406. https://doi.org/10.1061/(ASCE)0733-9437 
(2007)133. 

Arriga, Nicola, Rannik, Üllar, Aubinet, Marc, Carrara, Arnaud, Vesala, Timo, 
Papale, Dario, 2017. Experimental validation of footprint models for Eddy 

C. Brust et al.                                                                                                                                                                                                                                    

http://fluxcom.org
https://doi.org/10.1016/j.rse.2020.112277
https://doi.org/10.1016/j.rse.2020.112277
https://doi.org/10.1002/joc.3413
https://doi.org/10.1002/joc.3413
https://doi.org/10.1061/(ASCE)0733-9437(2007)133
https://doi.org/10.1061/(ASCE)0733-9437(2007)133


Remote Sensing of Environment 255 (2021) 112277

16

covariance CO2 flux measurements above grassland by means of natural and 
artificial tracers. Agric. For. Meteorol. 242 (May), 75–84. https://doi.org/10.1016/j. 
agrformet.2017.04.006. 

Baldocchi, Dennis D., 2003. Assessing the Eddy covariance technique for evaluating 
carbon dioxide exchange rates of ecosystems: past, present and future. Glob. Chang. 
Biol. 9 (October 2002), 479–492. https://doi.org/10.1016/0376-6357(93)90090-E. 

Baldocchi, Dennis, Falge, Eva, Lianhong, Gu, Olson, Richard, Hollinger, David, 
Running, Steve, Anthoni, Peter, et al., 2001. FLUXNET: a new tool to study the 
temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and 
energy flux densities. Bull. Am. Meteorol. Soc. 82 (11), 2415–2434. https://doi.org/ 
10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2. 

Barcza, Z., Kern, A., Haszpra, L., Kljun, N., 2009. Spatial representativeness of tall tower 
Eddy covariance measurements using remote sensing and footprint analysis. Agric. 
For. Meteorol. 149 (5), 795–807. https://doi.org/10.1016/j.agrformet.2008.10.021. 

Behnke, R., Vavrus, S., Allstadt, A., Albright, T., Thogmartin, W.E., Radeloff, V.C., 2016. 
Evaluation of downscaled, gridded climate data for the conterminous United States. 
Ecol. Appl. 26 (5), 1338–1351. https://doi.org/10.1002/15-1061. 

Brodzik, Mary J., Billingsley, Brendan, Haran, Terry, Raup, Bruce, Savoie, Matthew H., 
2014. Correction: EASE-Grid 2.0: Incremental but significant improvements for 
earth-gridded data sets (ISPRS International Journal of Geo-Information (2012) 1 
(32–45)). ISPRS Int. J. Geo Inf. 3 (3), 1154–1156. https://doi.org/10.3390/ 
ijgi3031154. 

Chaney, N.W., Metcalfe, P., Wood, E.F., 2016. HydroBlocks: a field-scale resolving land 
surface model for application over continental extents. Hydrol. Process. 30 (20), 
3543–3559. https://doi.org/10.1002/hyp.10891. 

Colliander, Andreas, Fisher, Joshua B., Halverson, Gregory, Merlin, Olivier, 
Misra, Sidhartha, Bindlish, Rajat, Jacks, Thomas J., et al., 2017. Spatial downscaling 
of SMAP soil moisture using MODIS Land surface temperature and NDVI during 
SMAPVEX15. IEEE Geosci. Remote Sens. Lett. 14 (11), 2107–2111. https://doi.org/ 
10.1109/LGRS.2017.2753203. 

Entekhabi, Dara, Njoku, Eni G., Neill, Peggy E.O., Kellogg, Kent H., Crow, Wade T., 
Edelstein, Wendy N., Entin, Jared K., et al., 2010. The soil moisture active passive 
(SMAP) mission. Proc. IEEE 98 (5). 

Fang, Li, Zhan, Xiwu, Yin, Jifu, Liu, Jicheng, Schull, Mitchell, Walker, Jeffrey P., 
Wen, Jun, et al., 2020. An intercomparison study of algorithms for downscaling 
SMAP radiometer soil moisture retrievals. J. Hydrometeorol. 21, 1761–1775. 
https://doi.org/10.1175/JHM-D-19-0034.1. 

Fisher, Joshua B., Tu, Kevin P., Baldocchi, Dennis D., 2008. Global estimates of the land- 
atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 
FLUXNET sites. Remote Sens. Environ. 112, 901–919. https://doi.org/10.1016/j. 
rse.2007.06.025. 

Fisher, Joshua B., Melton, Forrest, Middleton, Elizabeth, Hain, Christopher, 
Anderson, Martha, Allen, Richard, McCabe, Matthew F., et al., 2017. The future of 
evapotranspiration: global requirements for ecosystem functioning, carbon and 
climate feedbacks, agricultural management, and water resources. Water Resour. 
Res. 53 (4), 2618–2626. https://doi.org/10.1002/2016WR020175. 

Foken, T., Wimmer, F., Mauder, M., Thomas, C., Liebethal, C., 2006. Some aspects of the 
energy balance closure problem. Atmos. Chem. Phys. 6 (12), 4395–4402. https:// 
doi.org/10.5194/acp-6-4395-2006. 

Friedl, M.A., McIver, D.K., Hodges, J.C.F., Zhang, X.Y., Muchoney, D., Strahler, A.H., 
Woodcock, C.E., et al., 2002. Global land cover mapping from MODIS: algorithms 
and early results. Remote Sens. Environ. 83 (1–2), 287–302. https://doi.org/ 
10.1016/S0034-4257(02)00078-0. 

Gardner, W.R., Ehlig, C.F., 1963. The influence of soil water on transpiration by plants. 
J. Geophys. Res. 68 (20), 5719–5724. https://doi.org/10.1029/jz068i020p05719. 

Gorelick, Noel, Hancher, Matt, Dixon, Mike, Ilyushchenko, Simon, Thau, David, 
Moore, Rebecca, 2017. Google earth engine: planetary-scale geospatial analysis for 
everyone. Remote Sens. Environ. 202, 18–27. https://doi.org/10.1016/j. 
rse.2017.06.031. 

Guswa, A.J., 2010. Effect of plant uptake strategy on the water-optimal root depth. Water 
Resour. Res. 46 (9), 1–5. https://doi.org/10.1029/2010WR009122. 

He, Mingzhu, Kimball, John S., Running, Steven, Ballantyne, Ashley, Guan, Kaiyu, 
Huemmrich, Fred, 2016. Satellite detection of soil moisture related water stress 
impacts on ecosystem productivity using the MODIS-based photochemical 
reflectance index. Remote Sens. Environ. 186, 173–183. https://doi.org/10.1016/j. 
rse.2016.08.019. 

He, Mingzhu, Kimball, John S., Yi, Yonghong, Running, Steve, Guan, Kaiyu, 
Jencso, Kelsey, Maxwell, Bruce, Maneta, Marco, 2019a. Impacts of the 2017 flash 
drought in the US Northern Plains informed by satellite-based evapotranspiration 
and solar-induced fluorescene. Environ. Res. Lett. https://doi.org/10.1088/1748- 
9326/ab22c3. 

He, Mingzhu, Kimball, John S., Yi, Yonghong, Running, Steven W., Guan, Kaiyu, 
Moreno, Alvaro, Wu, Xiaocui, Maneta, Marco, 2019b. Satellite data-driven modeling 
of field scale evapotranspiration in croplands using the MOD16 algorithm 
framework. Remote Sens. Environ. 230 (December 2018), 111201. https://doi.org/ 
10.1016/j.rse.2019.05.020. 

IPCC, 2014. Climate Change 2014: Synthesis Report; Contribution of Working Groups I, 
II, and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate 
Change. IPCC, Geneva, Switzerland. https://doi.org/10.1046/j.1365- 
2559.2002.1340a.x.  

Jones, Lucas A., Kimball, John S., Reichle, Rolf H., Madani, Nima, Glassy, Joe, 
Ardizzone, Joe V., Colliander, Andreas, et al., 2017. The SMAP level 4 carbon 
product for monitoring ecosystem land-atmosphere CO2 exchange. IEEE Trans. 
Geosci. Remote Sens. 55 (11), 6517–6532. https://doi.org/10.1109/ 
TGRS.2017.2729343. 

Jung, Martin, Reichstein, Markus, Margolis, Hank A., Cescatti, Alessandro, 
Richardson, Andrew D., Arain, M. Altaf, Arneth, Almut, et al., 2011. Global patterns 
of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived 
from Eddy covariance, satellite, and meteorological observations. J. Geophys. Res. 
Biogeosci. 116 (3), 1–16. https://doi.org/10.1029/2010JG001566. 

Jung, Martin, Koirala, Sujan, Weber, Ulrich, Ichii, Kazuhito, Gans, Fabian, Camps- 
Valls, Gustau, Papale, Dario, Schwalm, Christopher, Tramontana, Gianluca, 
Reichstein, Markus, 2019. The FLUXCOM ensemble of global land-atmosphere 
energy fluxes. Sci. Data 6 (1), 74. https://doi.org/10.1038/s41597-019-0076-8. 

Khan, Muhammad Sarfraz, Liaqat, Umar Waqas, Baik, Jongjin, Choi, Minha, 2018. Stand- 
alone uncertainty characterization of GLEAM, GLDAS and MOD16 
evapotranspiration products using an extended triple collocation approach. Agric. 
For. Meteorol. 252 (October 2017), 256–268. https://doi.org/10.1016/j. 
agrformet.2018.01.022. 

Koster, Randal D., Suarez, Max J., Ducharne, Agnès, Stieglitz, Marc, Kumar, Praveen, 
2000. A catchment-based approach to modeling land surface processes in a general 
circulation model: 1. Model structure. J. Geophys. Res.-Atmos. 105 (D20), 
24809–24822. https://doi.org/10.1029/2000jd900328. 

Lian, Xu, Piao, Shilong, Li, Laurent Z.X., Li, Yue, Huntingford, Chris, Ciais, Philippe, 
Cescatti, Alessandro, et al., 2020. Summer soil drying exacerbated by earlier spring 
greening of northern vegetation. Sci. Adv. 6 (1), 1–12. https://doi.org/10.1126/ 
sciadv.aax0255. 

Lu, Nan, Chen, Shiping, Wilske, Burkhard, Sun, Ge, Chen, Jiquan, 2011. 
Evapotranspiration and soil water relationships in a range of disturbed and 
undisturbed ecosystems in the semi-arid Inner Mongolia, China. J. Plant Ecol. 4 
(1–2), 49–60. https://doi.org/10.1093/jpe/rtq035. 

Lucchesi, R., 2015. “File Specification for GEOS-5 FP-IT (Forward Processing for 
Instrument Teams).” Greenbelt, MD. https://gmao.gsfc.nasa.gov/pubs/docs/Lucche 
si865.pdf. 

Ma, N., Szilagyi, Jozsef, Jozsa, Janos, 2020. Benchmarking large-scale 
evapotranspiration estimates: a perspective from a calibration-free complementary 
relationship approach and FLUXCOM. J. Hydrol. 590 https://doi.org/10.1016/j. 
jhydrol.2020.125221. 

Madani, N., Kimball, J.S., Running, S.W., 2017. Improving global gross primary 
productivity estimates by computing optimum light use efficiencies using flux tower 
data. J. Geophys. Res. Biogeosci. 122 (11), 2939–2951. https://doi.org/10.1002/ 
2017JG004142. 

Maneta, M.P., Silverman, N.L., 2013. A spatially distributed model to simulate water, 
energy, and vegetation dynamics using information from regional climate models. 
Earth Interact. 17 (11) https://doi.org/10.1175/2012EI000472.1. 

Martens, B., Miralles, Diego G., Lievens, Hans, van der Schalie, Robin, de Jeu, Richard A. 
M., Fernandez-Prieto, Diego, Beck, Hylke E., et al., 2017. GLEAM v3: Satellite-based 
land evaporation and root-zone soil moisture. Geosci. Model Dev. 10, 1903–1925. 
https://doi.org/10.5194/gmd-10-1903-2017. 

McCabe, M.F., Ershadi, A., Jimenez, C., Miralles, D.G., Michel, D., Wood, E.F., 2016. The 
GEWEX LandFlux project: evaluation of model evaporation using tower-based and 
globally gridded forcing data. Geosci. Model Dev. 9 (1), 283–305. https://doi.org/ 
10.5194/gmd-9-283-2016. 

McVicar, Tim R., Roderick, Michael L., Donohue, Randall J., Li, Ling Tao, Van 
Niel, Thomas G., Thomas, Axel, Grieser, Jürgen, et al., 2012. Global review and 
synthesis of trends in observed terrestrial near-surface wind speeds: implications for 
evaporation. J. Hydrol. 416–417, 182–205. https://doi.org/10.1016/j. 
jhydrol.2011.10.024. 
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