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Accurate monitoring of crop condition is critical to detect anomalies that may threaten the

economic viability of agriculture and to understand how crops respond to climatic

variability. Retrievals of soil moisture and vegetation information from satellite-based

remote-sensing products offer an opportunity for continuous and affordable crop

condition monitoring. This study compared weekly anomalies in accumulated gross

primary production (GPP) from the SMAP Level-4 Carbon (L4C) product to anomalies

calculated from a state-scale weekly crop condition index (CCI) and also to crop yield

anomalies calculated from county-level yield data reported at the end of the season. We

focused on barley, spring wheat, corn, and soybeans cultivated in the continental

United States from 2000 to 2018. We found that consistencies between SMAP L4C

GPP anomalies and both crop condition and yield anomalies increased as crops

developed from the emergence stage (r: 0.4–0.7) and matured (r: 0.6–0.9) and that

the agreement was better in drier regions (r: 0.4–0.9) than in wetter regions (r: −0.8–0.4).

The L4C provides weekly GPP estimates at a 1-km scale, permitting the evaluation and

tracking of anomalies in crop status at higher spatial detail thanmetrics based on the state-

level CCI or county-level crop yields. We demonstrate that the L4C GPP product can be

used operationally to monitor crop condition with the potential to become an important tool

to inform decision-making and research.
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1. INTRODUCTION

Accurate crop condition assessments provide valuable information to farmers and policy-makers
regarding the security and economic viability of agriculture. Farmers consider crop condition when
determining where to best allocate costly inputs or to identify land management practices that
maximize yields and profits. Policy-makers consider crop condition when determining where to
allocate limited resources or to identify when and where safety nets are most needed during times of
crisis. Crop condition assessments are considered along with demand expectations to forecast crop
prices, which directly affect farm income and agricultural market volatility (Lehecka, 2014). Crop
condition is often a reflection of the prevailing climatic conditions. However, changes in crop
condition due to climatic variability vary by crop type, farming practices, and over time with crop
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phenology (Zipper et al., 2016; Peña-Gallardo et al., 2019;
Wurster et al., 2020). For example, cereal crops tend to be
more resilient to drought than legumes (Daryanto et al., 2017).
The condition of irrigated crops may decline due to pluvial events

while the status of rain-fed crops may improve (Doughty et al.,
2018). Cereal crops under higher temperatures may improve at
the beginning of the growing season but may degrade near the
end of the season (Klink et al., 2014). Therefore, accurately
describing crop conditions at spatial and temporal scales
meaningful to decision-makers is important for early detection
of potential issues but also poses a technical challenge.

Several climate indices have been developed and used to
determine the impact of climatic variability on agriculture.
The Palmer Drought Severity Index (PDSI) is based on
temperature, precipitation, runoff, soil moisture, and

atmospheric water demand Palmer (1965). The Standardized
Precipitation Index (SPI) is based on precipitation alone
(McKee et al., 1993). The Standardized Precipitation
Evapotranspiration Index (SPEI) uses a similar statistical
framework as the SPI but considers precipitation minus
potential evapotranspiration (Vicente-Serrano et al., 2010).
The Evaporative Demand Drought Index uses potential
evapotranspiration alone to describe anomalies in atmospheric
water demand (Hobbins et al., 2016). Climate indices have been
used in several different studies to infer the relationship between
meteorological anomalies to crop production or yield over the

growing season and at different time-scales (Meyer et al., 1991;
Zipper et al., 2016; Peña-Gallardo et al., 2019; Wurster et al.,
2020). These studies provide insight into the timing, severity, and
duration of climatic anomalies that, to differing extents, drive
anomalies in crop production or yield, but with several
limitations. Focusing on the crop production or yield response
to climatic variability does not capture within-season changes in
crop condition, as crop production and yield data are only
available at the end of each season. Further, currently available
climate indices either do not consider soil moisture (e.g., SPI,
SPEI, and EDDI) or rely on water-balance models based on

meteorological conditions to estimate soil moisture indirectly
(e.g., PDSI). Soil moisture is arguably one of the most critical
drivers of crop condition because agricultural drought is initiated
by soil moisture deficits (Mishra and Singh, 2010).

For over 40 years, vegetation indices derived from global
satellite remote sensing observations have provided some
insights into crop condition over the course of the growing
season. The Normalized Difference Vegetation Index, or
NDVI (Rouse et al., 1974; Tucker, 1979), is commonly used to
study the impacts of climatic anomalies on crop condition by
relating changes in NDVI values to SPI (Ji and Peters, 2003) or

SPEI (Xu et al., 2018). Satellite-based remote sensing techniques
have also utilized information from both optical and thermal
spectral wavelengths to infer soil moisture conditions over
cultivated areas (Nemani et al., 1993; Mallick et al., 2009;
Amani et al., 2016). More recently, satellite observations of
solar-induced canopy fluorescence (SIF) have been found to be
effective proxies for cropland productivity, albeit at relatively
coarse (≥ 0.5 degree) spatial resolution (Guanter et al., 2014;
Guan et al., 2017). In particular, the application of satellite remote

sensing for agricultural monitoring is constrained by trade-offs
between optimizing finer spatial resolution for delineating
heterogeneous croplands and frequent temporal sampling for
monitoring dynamic crop stage development. Satellite images of

the land surface may be obscured by cloud cover or distorted by
aerosols in the atmosphere. While vegetation indices like NDVI
have been found to be strongly correlated with measured soil
moisture conditions over homogeneous vegetation covers (Gu
et al., 2008), the soil moisture measurements available for
comparison were widely distributed spatially and did not fully
capture soil heterogeneity or the myriad of different soil types.
NDVI is also influenced by the soil background (Fensholt et al.,
2006), which can be particularly problematic for croplands in the
early season where bare soil is visible.

Remote sensing developments have also resulted in models

describing the gross primary production (GPP) of crops. GPP is a
key metric for agricultural production because it is proportional
to the crop biomass accumulated through fixation of atmospheric
carbon over the growing season (Beer et al., 2010). Satellite-based
observations of GPP, in conjunction with a growing distribution
of a global system of eddy covariance flux towers, have resulted in
a variety of methods for estimating GPP (Running et al., 2004;
Rahman et al., 2005; Jones et al., 2017). One common method is
the light-use efficiency model (Monteith, 1972; Hilker et al.,
2008), which defines GPP as the product of the available
photosynthetically active radiation (PAR), the fraction of PAR

absorbed by vegetation (fPAR), and the efficiency (ϵ) at which the
vegetation utilizes the absorbed solar energy to produce organic
matter from net photosynthesis (gCMJ− 1). e is limited by
environmental constraints including unfavorable temperature,
atmospheric vapor pressure deficit, and plant-available soil
moisture (Hilker et al., 2008). ϵ has been calibrated for
different plant functional types (PFTs) on the basis that the
various plant community types populating a given biome have
evolved a similar collective canopy response to climatic variability
(Gower et al., 1999).

In these remote-sensing-based and model-based approaches

to estimate carbon exchange between land and atmosphere,
available soil moisture has been identified as a critical variable
(Pastor and Post, 1986; Seneviratne et al., 2010; He et al., 2014).
Remote sensing methods for monitoring soil moisture are not
new (e.g., Njoku and Entekhabi (1996)). However, data on soil
moisture conditions at regional or global scales, with adequate
frequency for monitoring GPP, have historically been unavailable
(Hilker et al., 2008). The NASA Soil Moisture Active Passive
(SMAP) mission was launched in January, 2015, and aimed to
resolve the soil moisture constraint on land-atmosphere carbon
(CO2) exchange, including GPP (Jones et al., 2017). The SMAP

sensor employs a low frequency (L-band) microwave radiometer
providing global 1–3 day repeat sampling of L-band (1.4 GHz)
brightness temperatures (Tb) with enhanced sensitivity to soil
moisture within the surface (0–5 cm depth) soil layer (Entekhabi
et al., 2010). The SMAP mission includes operational production
of model enhanced Level-4 soil moisture (L4SM) and carbon
(L4C) products that benefit from the land model assimilation of
SMAP Tb retrievals and other observations to produce
continuous global daily estimates of surface and root zone
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(0–1 m depth) soil moisture and soil temperature (Reichle et al.,
2016); the L4SM results are used with satellite (MODIS)
vegetation observations and other ancillary inputs to derive
L4C daily carbon fluxes, including GPP (Jones et al., 2017).

The SMAP L4C GPP product provides a potential opportunity
to monitor cropland productivity globally and with daily
temporal fidelity. The L4C GPP estimates include the
influence of atmosphere and soil-moisture related restrictions
on productivity and PFT-specific calibrations for broadleaf and
cereal crop types. However, the L4C utility in cultivated areas and
sensitivity to different crop phenological stages have not been
established and are needed to clarify its potential to inform
agriculture-related decision-making by stakeholders outside of
the scientific community (Sanders and Masri, 2016).

Crop condition and crop progress reports, in contrast to

remote-sensing-based GPP estimates, are widely available for
many important crops in the US. Farmers and other
agricultural experts conduct voluntary field assessments of
crop condition in relation to expected yield and assessments of
crop progress at key phenology stages. The assessments are
reported to the US Department of Agriculture and made
available by the National Agricultural Statistics Service
(NASS). Reports on crop condition and crop progress are
conducted weekly and made available at the start of the
following week. These crop condition rankings were recently
transformed by Begueria and Maneta (2020) into a continuous

crop condition index (CCI) that describes weekly crop condition
at the state level. The CCI has demonstrated the ability to predict
crop yields weeks before the actual yields are realized (Begueria
and Maneta, 2020). While the CCI offers a continuous metric
describing crop condition at high temporal scales (weekly), the
relatively coarse state-wide assessment may not capture the
heterogeneity of crop conditions, particularly in larger states
where management systems, climate or weather conditions
over cultivated areas, and associated crop yields may vary
considerably.

In this study, we combined the information in the satellite

remote-sensing-based SMAP L4C GPP product with the CCI to
evaluate whether the accumulated GPP anomalies provide a
meaningful metric of crop conditions for the major cereal and
broadleaf crop types within the continental US. We also
compared the L4C accumulated GPP anomalies to anomalies
in reported crop yield. Our objectives were to (1) determine the
correlations between GPP anomalies estimated by the L4C and
weekly crop condition anomalies at the state level, (2) determine
the correlations between GPP anomalies and annual crop yield
anomalies at the county level, and (3) inspect the variables driving
the L4C GPP model and compare them to the actual biophysical

drivers of crop GPP. This analysis provides a comparison of GPP
anomalies estimated by a remotely sensed, soil moisture-driven
carbon flux model to independent state-level assessments of
weekly crop condition and reported county-level crop yield
surveys.

We hypothesized that annual variability in GPP at a particular
time (week) during the growing season has a strong association
with the observed crop conditions at that time. We also posited
that GPP anomalies are increasingly indicative of end-of-season

crop yields as the growing season progresses. At the state level, we
compared anomalies in GPP to anomalies in CCI in each week
over the growing season from 2000 to 2018. At the county level,
we compared county-averaged GPP anomalies in each week to

annual crop yield anomalies during the same period. We assumed
that the negative (positive) anomalies in weekly crop condition
and yield would correspond to negative (positive) anomalies in
GPP of similar relative magnitude.

2. METHODS

2.1. Data
2.1.1. Crop Information
Both crop condition surveys and crop yield surveys were obtained

from the USDA National Agricultural Statistics Service (NASS).
The crop condition surveys are conducted weekly during the
growing season via visual assessments by agricultural experts and
are reported at the state level. The surveys report the percentage
of planted area categorized as follows: “Very Poor” (near to
complete crop failure), “Poor” (heavy losses), “Fair” (less than
normal yield), “Good” (normal yield), and “Excellent” (above
normal yield) (USDA, 2020). To overcome the statistical
limitations of the ordinal crop condition survey data, Begueria
and Maneta (2020) transformed the categorical crop condition
metrics into a continuous crop condition index (CCI). The CCI

isolated the random variability in crop condition reports from
spatial, long-term, and intraseasonal tendencies inherent to the
subjective visual assessments. The isolated random effect was
assumed to provide an unbiased metric of crop condition, where
positive values indicated above-normal crop condition and
negative values indicated below-normal crop condition. At the
county-level, annual crop yield data was retrieved from the NASS.
Phenology data for each crop type was retrieved from the NASS
and used to identify the beginning, intermediate, and end stages
of the growing season. Phenology data was available at the state-
level. A complete list of the different phenological stages for each

crop, including definitions, is available from the NASS “Crop
Progress/Crop Weather Terms and Definitions”. The key stages
used here were “emerged”, “silking”, and “mature” for corn;
“emerged”, “blooming”, “dropping leaves”, and “harvested” for
soybeans; and “emerged”, “headed”, “coloring”, and “harvested
for both barley and spring wheat. Phenology was reported by
NASS as the percent of planted area where a crop has developed
to a particular phenological stage. We considered that a given
crop had progressed to a particular stage on the week in which
50% of the total planted area within a given state was reported as
completed. The 50% threshold was chosen because it was

apparent that percentages of planted area were already
proceeding to the next stage by the week in which a given
stage was reported as 100% complete. In some cases, large
gaps in the reported percentages were observed moving from
one week to the next during a given year (e.g., 30% at one week,
60% at the next week). Further, phenology was not reported for all
stages in some states for all years within the period of record. To
simplify the timing of each phenology stage for a particular crop
in a particular state, the median week across the period of record
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at which the stage was observed to be closest to 50% completed in
each particular state was used.

2.1.2. Soil Moisture Active/Passive Level-4 Carbon
GPP throughout the growing season is obtained from the NASA
Soil Moisture Active/Passive (SMAP) Level-4 Carbon (L4C)
product (Jones et al., 2017). The L4C product is derived from
a satellite data-driven Terrestrial Carbon Flux (TCF) model using
MODIS land cover and 8-day canopy fractional photosynthetic
active radiation (fPAR), SMAP L4SM daily soil moisture and soil
temperature, and daily surface meteorology from the Goddard
Earth Observing System 5 Forward Process (GEOS-5 FP) system
as primary drivers. The SMAP L4C product provides a complete
daily carbon budget, including GPP, heterotrophic respiration,
net ecosystem CO2 exchange, and the surface soil organic carbon

stock. The L4C processing involves a daily time step at 1-km
spatial resolution consistent with the MODIS land cover and
vegetation inputs. The L4C outputs are posted to a 9-km
resolution global grid format, consistent with the SMAP L4SM
product, while preserving subgrid spatial averages for up to eight
plant function type (PFT) classes within each 9-km grid cell
preserved from the finer (1 km) resolution processing. These 1-
km subgrid averages were used in this analysis. PFT is defined
from the Moderate Resolution Imaging Spectroradiometer
(MODIS) MOD12Q1 (Type 5) land-cover classification, which
distinguishes up to 8 global PFT classes including cereal and

broadleaf crop types (Friedl et al., 2010). In L4C, daily GPP is
limited by unfavorable environmental conditions, including low
root-zone soil moisture levels, low minimum surface
temperature, excessive atmospheric vapor pressure deficit
(VPD), and frozen soil conditions. The model framework is
detailed in the article by Jones et al., 2017 and summarized
below (Eqs 1–3). The L4C response to these limiting
environmental conditions is calibrated separately for each PFT
based on a global network of eddy covariance CO2 flux tower
observations.

In this study, two variants of the L4C product were used to

obtain GPP: the SMAP L4C operational product (L4C-Ops,
version 4) and the L4C Nature Run (L4C-NR, version 7.2).
L4C-NR is essentially an offline, model-only version of L4C-
Ops. Whereas L4C-Ops uses SMAP L4SM soil temperature and
soil moisture estimates informed by the SMAP L-band Tb
observations (Reichle et al., 2016; Jones et al., 2017), L4C-NR
uses only modeled soil temperature and soil moisture data. By
using modeled rather than SMAP-informed soil conditions, L4C-
NR is able to run for time periods prior to the launch of SMAP,
extending the period of record for terrestrial carbon flux
estimates. This also requires the use of different meteorological

driver data. L4C-Ops uses the GEOS-5 FP inputs, whereas L4C-
NR uses reanalysis data: the Modern Era Retrospective Reanalysis
(MERRA-2; (Gelaro et al., 2017)); both are products of the Global
Modeling and Assimilation Office (GMAO) at the NASA
Goddard Space Flight Center. MERRA-2 is also used for
calibrating L4C, since the flux tower period of record largely
predates the launch of SMAP. These two driver datasets have
similar dynamics but different climatologies. Besides these
different driver datasets, L4C-Ops and L4C-NR use the exact

same model logic and parameters. While soil moisture model
estimates used by the L4C-NR have been shown to have slightly
lower performance than L4SM estimates incorporating SMAP
radiometer observations, the difference is not statistically

significant (Reichle et al., 2017). Both products provide GPP
estimates for up to 8 different PFTs, including cereal (e.g., barley
and spring wheat) and broadleaf (e.g., corn and soybeans) crops
and reported in units of gCm−2 d−1.

The L4C-Ops record begins on March 31, 2015, which
provides just 3 years of data for the study period (2000–2018).
The relatively short L4C-Ops record represents a challenge for
statistical analysis of crop condition and crop yield anomalies.
Including L4C-NR in this study provides a much longer period of
record. The L4C-NR data are available from 2000 through 2017
and, as a supplement to L4C-Ops, extend the record to a period

more suitable for this analysis. Because of the different driver
datasets, however, there is a bias difference between the L4C-Ops
and L4C-NR datasets when their overlapping periods of record
(2015–2017) are compared, which could potentially degrade the
quality of L4C-Ops GPP anomalies derived relative to the L4C-
NR record. For example, the histograms in Figure 1A illustrate
that L4C-NR tended to estimate lower GPP for cereal crops in
Colorado than L4C-Ops for the same PFT. To remove this bias,
we implemented an affine statistical transformation (see
Gudmundsson et al., (2012); Section 2) on the overlapping
records, with L4C-Ops being the dependent variable and L4C

NR being the independent variable. L4C-Ops estimates and the
corresponding L4C-NR estimates were first sorted from smallest
to largest, and the regression was then applied to the sorted
values. The regression process is shown in Figure 1B. Figure 1C
shows that the distribution of the GPP estimates per the corrected
L4C-NR was more aligned with the L4C-Ops for cereal crops in
Colorado. The regression coefficients produced by the
transformation were applied to L4C-NR for the period prior
to the L4C-Ops record (prior to March 31, 2015) providing a
continuous dataset spanning the 2000-to-2018 study period.
Hereafter, the combined L4C-Ops and corrected L4C-NR

datasets are referred to as L4C.

2.2. Calculations of Anomalies
L4C GPP cells classified as the cereal PFT were used for
comparison of GPP to spring wheat and barley yield and CCI,
and L4C GPP cells classified as the broadleaf PFT were used for
comparison of GPP to corn and soybean yield and CCI. We
assumed that accumulating the total GPP carbon stock (i.e., gC)
over the growing season would better capture changes in crop
status with respect to environmental stresses/benefits than the
daily GPP carbon flux (gCm−2d−1) at a discrete point in time.

Therefore, the L4C daily values within each 1-km pixel were
multiplied by the corresponding spatial coverage (1000m2) and
temporal coverage (1 d) to obtain a total carbon stock (gC). Daily
carbon stocks were aggregated to a weekly sum for each cell to
produce a weekly carbon stock. Zonal statistics were then
performed, within each county for comparison to county-level
yield and within each state for comparison to state-level CCI to
produce a weekly total GPP value for each week within the
growing season. For a given state, the weekly GPP values
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within that state were accumulated beginning in the median week
at which the emerged stage was reported as 50% in the given state
and ending in the median week at which the mature/harvested
was reported as 50% complete. The process for accumulating
county-level GPP was the same; only the phenology weeks were
based on the corresponding state’s phenological data. Figure 2A

illustrates how the total daily GPP of the broadleaf PFT in Iowa
was accumulated over the 2017 corn growing season and
averaged by week. Crop yields, and thus GPP, have been
increasing over time due to improvements in farming
practices and technology (Pingali, 2012) and the influence of
rising atmospheric CO2 levels (Campbell et al., 2017).
Accordingly, positive cropland productivity trends are

depicted in both NASS reported crop yields and the L4C GPP
record over the study period. To mitigate the influence of the
upward trends on the correlation analysis, GPP and CCI were
both detrended using linear regression, by week, across the
available years (Eq. 4). Figure 2B provides an example of the
positive trend over the period of record in accumulated corn GPP

in Iowa at week 26. Figure 2C shows the corresponding
detrended GPP values. We represent anomalies as z-scores of
the detrended GPP, according to Eq. 5. Figure 2D provides an
example of corn GPP anomalies in Iowa in week 26 represented
as z-scores. The CCI data was treated the same as GPP, where
anomalies were represented as the z-scores of weekly detrended
CCI values in each state.

FIGURE 1 | Example of the affine statistical transformation used to minimize the bias between L4C Nature Run compared to L4C Ops. (A) Nature Run and L4C

Ops GPP values for cereal crops in Colorado. (B) Correlations between the Nature Run and L4C Ops before and after the correction. (C) L4C Ops and corrected L4C

Nature Run values.

FIGURE 2 | An example of our treatment of the data, in this case corn in Iowa. (A) The daily accumulation of total broadleaf GPP over the course of the 2017

season, where the total GPP is the sum of all broadleaf pixels in Iowa over each day. GPP is then accumulated starting when corn has been reported as fully emerged and

ending when corn has been reported as mature. (A) also shows the weekly average total GPP used in this analysis. (B) A time-series of the total broadleaf GPP at week

26 over the period of record. Notice the positive trend. (C) The same time series but with the trend removed using linear regression. (D) A time series of z-scores of

the detrended GPP.
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The state-level CCI and NASS county-level crop yield
anomalies were calculated following the same methodology.
Anomalies derived from the L4C GPP record were compared
to the CCI and crop yield anomalies in states/counties having at

least 15 years of CCI/yield data between 2000 and 2019 using
Pearson’s r correlation coefficients. An α level of 0.1 was defined
to determine significant correlations, which corresponds to a
minimum significant r-value of |0.44| with a minimum sample
size of 15 years and a minimum r-value of |0.4| with a maximum
sample size of 19 years. The analysis was conducted on each
individual week of the growing season across the period of record,
although our analysis emphasizes the key phenological stages of
the different crop types examined.

2.3. Climate, Irrigation, and Model Drivers
To observe how the presence of irrigation impacts the
correlations between L4C GPP anomalies and county-level
yields, we used irrigated production and total crop
production information obtained from the NASS to
determine the ratio of irrigated production for each of the
four crop types for all counties with available data. We then
observed how the correlations change with respect to the areal
proportion of agricultural land in irrigated production. Aridity
has also been shown to mitigate or enhance the impacts of
climatic anomalies such as drought to yield (e.g., (Rhee et al.,
2010; Vicente-Serrano et al., 2012), which may impact the

observed correlations. Therefore, we used a climate aridity
index, calculated as the ratio of annual precipitation to
potential evapotranspiration (P/PET) for cultivated areas
within each state, to evaluate the influence of climate aridity
on the productivity relationships. Here, the aridity index was
derived for the study period using 4 km resolution precipitation
and potential evapotranspiration data from Gridmet
(Abatzoglou, 2013).

We were also interested in determining what climatic variables
were the most influential drivers of the L4C GPP anomalies
(i.e., 1–3) and how their influence varied spatially. The variation

in the climatic drivers and their influence on the L4C GPP
estimates were also used to illuminate potential factors
explaining the sign and strength of the GPP correlations with
the CCI and crop yield anomalies. A multivariate correlation
analysis using linear regression was applied to determine the
sensitivity of the L4C GPP anomalies to variations in underlying
model drivers (Jones et al., 2017), including root-zone soil
moisture (RZSM), minimum temperature (Tmin), canopy-
absorbed photo-synthetically active radiation (APAR), and
vapor pressure deficit (VPD) anomalies. The L4C product
includes a diagnostic daily metric (Emult) that defines the total

estimated light-use efficiency (and GPP) reduction due to
unfavorable environmental conditions. We examined the
average growing season Emult pattern as an additional indicator
of climate related constraints on cropland productivity over the
CONUS domain. Here, Emult captures the combined effect of
unfavorable daily temperature, VPD, and RZSM conditions on
GPP, whereas the above correlation analysis represents the
relative influence of APAR and each climate variable on the
L4C productivity estimates. The analysis was conducted at the

9-km resolution for all PFT classes across the entire CONUS, with
a particular focus on cultivated areas.

3. RESULTS

3.1. Spatiotemporal Patterns
The spatiotemporal patterns in the correlations between
standardized GPP anomalies and standardized crop yield
anomalies at the county-level are shown in Figure 3 for corn
and soybeans (broadleaf crops) and in Figure 4 for barley and
spring wheat (cereal crops). Spatial patterns in the correlations
between standardized GPP anomalies and standardized CCI
anomalies at the state-level are shown for all crops in
Figure 5. Generally, correlations between GPP anomalies and

both yield anomalies and CCI anomalies increased over the
progression of phenological stages, with the lowest and highest
correlations generally occurring at the emerged stage and the
mature stage, respectively. The GPP correlations tended to be
stronger in relation to crop yield than with CCI. For the broadleaf
crops, soybean CCI and yield tended to have higher correlations
with GPP than corn. For the cereal crops, barley and spring wheat
produced similar results over both space and time. Presented
below is a more in-depth presentation of these results by
crop type.

3.1.1. Corn
The emerged stage for corn ranged from week 16 to week 24, or at
around late April to mid-June. Patterns were apparent in the
spatial distribution of the correlation coefficients of GPP
anomalies and both yield anomalies and CCI anomalies, where
more positive correlations were observed around the 100th
meridian and lower or more negative correlations were
observed to the east (Figures 3A,5A). The correlations with
state-level CCI at the emerged stage were significant and
positive in Texas, Kansas, and Minnesota, but negative and
significant in North Carolina. The correlations with county-

level yield were significant and positively correlated in 11% of
the counties with available yield and phenology data during the
emerged stage, with r-values ranging from 0.4–0.7. The highest
correlations between GPP and yield were observed in south-east
North Dakota, south-east Minnesota, and eastern Texas.
Significant and negative correlations with yield were observed
in counties around the Missouri, Mississippi, and Ohio Rivers.
While we discuss how correlations change in respect to aridity
and irrigation in further detail in Section 3.2, it is helpful to note
here that irrigated production is dominant around the Missouri,
Mississippi, and Ohio Rivers. P/PET values at around the 100th

meridian ranged between 0.5 and 0.7, with P/PET values
decreasing to the west and increasing to the east. In some
cases, GPP anomalies were more strongly correlated with
county-level yield than with state-level CCI. For example, the
correlations between GPP and yield anomalies were relatively
higher in counties in eastern Texas (r: 0.7–0.9), but lower between
the Texas state-wide GPP and CCI (r: 0.5). The correlation with
corn CCI and GPP anomalies in North Dakota was not significant
at the emerged stage, while correlations with yield were significant
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in most counties in eastern North Dakota (r: 0.5–0.6), but not
significant in western North Dakota.

The silking stage ranged from week 24 to week 30, or around
late July to early August. The correlations between GPP and both
CCI and yield anomalies increased going from the emerged stage
to the silking stages in most areas (Figures 3A,5A). The
correlations with county-level yield were significant and

positively correlated in 30% of the counties with available
yield and phenology data by the silking stage, with r-values
ranging from 0.4 to 0.8. As with the emerged stage, spatial
patterns were apparent, where more positive correlations were
observed around and west of the 100th meridian and lower
correlations were observed further east of the 100th meridian.
As with the emerged stage, GPP correlations with yield tended to

FIGURE 3 | The correlations between GPP anomalies and county-level yield anomalies for the two broadleaf crops corn (A) and soybeans (B) at critical

development stages over the growing season. Darker purples indicate more negative correlations, and darker greens indicate more positive correlations. Counties

outlined in black indicate that the correlations were significant. Gray indicates areas where yield data was not available.
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be higher in many counties compared to the spatially coarser CCI
correlations in the respective states. For example, correlations
between GPP and corn yield in most counties in North Dakota
were significant, while the correlations between GPP and corn
CCI were not. GPP correlations with yield tended to be more
spatially homogeneous at the silking stage than at the emerged
stage, particularly in North Dakota, South Dakota, Minnesota,

Texas, and Kansas.
The timing of the crop maturity stage for corn occurred on

weeks ranging from 30 to 38, or from around late July to late
September. The GPP correlations with both CCI and yield
anomalies continued to strengthen as the crop phenology
progressed from the silking stage to the mature stage, again in
areas around and west of the 100th meridian, although to a lesser
extent than the stronger correlation increases observed between
the emergent and silking stages (Figures 3A,5A). Significant

correlations between GPP and corn yield were observed in
65% of counties, with r-values ranging from 0.4 to 0.9 by the
mature stage. While correlations east of the 100th meridian
generally increased, the correlations were often not significant.
The exceptions east of the 100th meridian, where correlations
with yield were significant and positive, were located in counties
in Iowa and Indiana. At the mature stage, the county-level GPP

correlations with yield were more aligned with the state-level CCI
correlation pattern when compared to the emerged and silking
stages.

3.1.2. Soybeans
The emerged stage for soybeans occurred at weeks ranging from
week 22 to 25, or around late June to early July. Correlations
between emerged stage GPP anomalies and end of season
soybean yield anomalies tended to be higher than with corn,

FIGURE 4 | Same as Figure 3, but for the cereal crops barley (A) and spring wheat (B).
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particularly for counties within and around North Dakota,
Minnesota, and Michigan and Iowa (r: 0.4–0.8) where
correlations were significant and positive (Figure 3B). At the
emerged stage, 13% of counties had positive and significant
correlations between GPP and yield. The spatial distribution of
GPP correlations with yield also tended to be more homogeneous
for soybeans than with corn. However, there were similar
correlation spatial patterns for corn and soybean yield
anomalies during the emerged stage, where significant and
negative r-values were observed in counties near the Missouri,
Mississippi, and Ohio Rivers where irrigated production is

dominant and the climate is more humid, and significant and
positive correlations were observed around the 100th meridian.
Figure 5B shows that correlations between GPP anomalies and

CCI anomalies at the emerged stage were largely not significant,
with the exception of Mississippi where a significant negative
correlation was observed (r: −0.6). These results indicate that GPP
anomalies derived from the L4C record often provide better
insight into crop status in terms of expected yield anomalies
than the state-level CCI in many counties, primarily located in
North Dakota, Minnesota, and Kansas.

The blooming stage for soybeans occurred at weeks ranging
from 28 to 32, or around mid-July to early August. As with corn’s
second phenological stage, the correlations between GPP
anomalies at the blooming stage and both CCI anomalies and

yield anomalies increased, and more counties with significant
correlations (33%) were observed (Figures 3B,5B). Generally,
higher and significant correlations with yield (r: 0.6–0.9) were

FIGURE 5 | The correlations between GPP anomalies and state-level CCI anomalies for corn (A), soybeans (B), barley (C), and spring wheat (D) at critical

development stages over the growing season. Darker purples indicate more negative correlations, and darker greens indicate more positive correlations. The black

markers show where correlations were significant. Gray indicates areas where yield data was not available.
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observed in most counties within CONUS during the blooming
stage, with the exceptions again in counties close to the
Mississippi and Ohio Rivers where correlations were often not
significant. Significant correlations with CCI during the blooming

stage were observed in South Dakota, Nebraska, and Kansas (r:
0.5–0.6).

The dropping leaves stage for soybeans ranged from week 36
to week 42, or around early September to mid-October.
Correlations between GPP anomalies and yield anomalies
continued to strengthen as the crop phenology progressed
from this stage, with positive and significant r-values being
observed in 60% of counties and with r-values ranging from 0.7
to 0.9 in many counties (Figure 3B). Nonsignificant
correlations tended to occur in counties situated directly
west of the Mississippi River, where production is

dominantly irrigated. The GPP correlation pattern was
similar for both CCI and yield. Figure 5B shows that the
correlations between GPP anomalies and CCI anomalies at
the dropping leaves stage were significant in most states, and
the highest correlations were observed in Nebraska (r: 0.8),
Kansas (r: 0.8), and South Dakota (r: 0.7). Soybean harvests
generally occurred around 2 weeks after the dropping leaves
stage and produced similar results.

3.1.3. Barley and Spring Wheat
The emerged stage for both barley and spring wheat occurred

between week 18 and week 22, or around early May to early June.
Figure 4A shows that significant and positive correlations
between GPP anomalies and barley yield were observed in
counties situated around eastern Washington and western
North Dakota (r: 0.5) and around western North Dakota and
western South Dakota for spring wheat (r: 0.5–0.7). Significant
and positive correlations between GPP and CCI at the emerged
stage were observed inMontana (r: 0.4) and North Dakota (r: 0.4)
for barley and in Montana (r: 0.4) and South Dakota (r: 0.6) for
spring wheat (Figure 5C).

The heading stage predominantly occurred from week 25 to

week 28 for barley and spring wheat, or around mid-June to late
July. Correlations between GPP anomalies and yield anomalies
for both barley (Figure 4A) and spring wheat (Figure 4B)
increased between the emerged and heading stages, with
significant and positive correlations (r: 0.6–0.9) occurring in
counties around eastern Washington, eastern Montana, and
western North Dakota, in addition to western South Dakota in
the case of spring wheat. Similar to corn and soybeans, GPP
correlations with yield for spring wheat and barley were often not
significant further to the east, where correlations transitioned
from significant to nonsignificant approximately at the center of

North Dakota and South Dakota, which generally corresponds to
the CONUS aridity gradient. Correlations between GPP
anomalies and CCI anomalies were also higher at the heading
stage than at the emerged stage for both cereal crops (Figures
5C,D), with all states except Minnesota having significant
r-values for both barley and spring wheat (r: 0.4–0.6 and r:
0.6–0.9 for barley and spring wheat, respectively).

The coloring stage most often occurs during week 32 for both
barley and spring wheat, or around early August. The GPP

correlations with both crop yield (Figures 4A,B) and CCI
(Figures 5C,D) anomalies became stronger as both cereal
crops progressed to the coloring stage. Consistent with the
earlier crop development stages, the highest correlations were
observed in eastern Washington, eastern Montana, and western
North Dakota, in addition to South Dakota in the case of spring
wheat, with significant r-values ranging from 0.6 to 0.9 in many
counties. Again, the GPP correlations with yield were weaker in
the more humid eastern North Dakota and South Dakota regions.

Correlations between GPP anomalies at the coloring stage and
CCI for both barley and spring wheat were significant (r: 0.6–0.7)
in all states with the exception of Minnesota.

3.2. Climate and Irrigation
As described above, distinct spatial transitions in the correlations
between L4C GPP and the CCI and yield anomalies were
observed approximately west and east of the 100th meridian
for all major crop types examined; the spatial pattern in these
relationships generally follows the regional climate gradient
between the more arid western and humid eastern portions of

the CONUS domain (Figure 6). Areas where GPP tended to be a
better indicator of crop status generally were in more arid regions
where the average P/PET is less than 0.5. Figure 7 shows how the
GPP correlations with CCI were generally weaker in areas with
lower climate aridity, considering all states and crops, at the
beginning, middle, and end of the growing season. While weaker
correlations become more apparent as the season progresses, the
relationship is significant across the entire growing season.
Similar trends showing decreasing GPP correlations with crop
yield in areas with less aridity were also found. However,
considering irrigation along with climate aridity helped to

explain some of the spatial differences in GPP correlations
with crop yield.

Figure 8 shows how the GPP correlations with crop yield
changed with respect to P/PET individually by crop type for all
counties during the middle of the growing season; the figure also
shows the percent of irrigated production for counties with
available irrigation data. For reference, Figure 9 shows a map
of the percent of irrigated production by county for the selected
crop types examined. GPP tended to have the highest correlations

FIGURE 6 | The Precipitation to Potential Evapotranspiration ratio (P/

PET) for CONUS. Red colors indicate relatively more arid areas; yellow colors

indicate relatively more humid areas. P/PET values at the 100th meridian

ranged between 0.5 and 0.7, with values decreasing to the west and

increasing to the east.
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with crop yield in counties with more arid climates where little or
no irrigated production was present. The higher correlations
observed in counties with higher irrigated production tended

to be in more arid climates. Specifically for barley and spring
wheat, irrigated production more often occurred in the most arid
regions of the study area where agriculture would likely not be
sustainable without irrigation. These arid areas include southern
Idaho, Utah, and southern Arizona. The GPP correlation pattern
was also more variable in these arid and heavily irrigated counties.
However, the GPP correlations with barley and spring wheat
yields were sharply weaker in less arid counties with no irrigation.

3.3. Environmental Drivers Affecting
Level-4 Carbon Productivity
We analyzed the spatial and temporal sensitivity of the L4C GPP
record to APAR and the driving climatic variables. Figure 10

shows the spatial correlation pattern between anomalies in GPP
and each driving variable calculated mid-season, including VPD,
RZSM, Tmin, and APAR in counties where yield data was

available. Figure 10 also shows the mean growing season Emult

term derived over the period of record. VPD was strongly and
inversely correlated with the standardized GPP anomaly over

much of the domain, with the exception of areas east of the 100th
meridian. The area where VPD had little influence on L4C GPP
tended to expand as the season progressed. These areas where
VPD had little to no influence generally corresponded with
cultivated areas in the more humid climate regions where GPP
showed lower correspondence with the CCI or crop yields.
Correlations between GPP and RZSM were near zero during
the emerged stage and increased slightly as the growing season
progressed. RZSM had less influence on L4C GPP overall relative
to the other climate drivers, although the correlation with soil
moisture was stronger in the more arid regions. APAR was

strongly and directly proportional to GPP across all weeks
within the growing season. Tmin had correlations with GPP
approaching unity in the same areas where the correlations
between GPP and VPD, CCI, and crop yields were all
relatively lower. The combined effect of the environmental
restrictions on GPP (excluding APAR) as represented by the

FIGURE 7 |Changes in how the correlations betweenGPP anomalies and state-level CCI anomalies vary with respect to the P/PET ratio at specific times during the

growing season, where (A) shows week 26, (B) is week 30, and (C) is week 33. Each point represents the correlation of a particular crop grown in a particular state.
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L4C Emult term (e.g., Eq. 2) was stronger in the more arid central
and western portions of the CONUS domain, where GPP was

approximately half (0.5) of the potential rate estimated for
optimal conditions. A general longitudinal gradient toward
weaker environmental restrictions and associated higher Emult

levels occurs moving from the more arid western and central
regions toward the more humid climate regions east of the 100th

meridian, with the highest Emult levels (> 0.8) occurring in the
eastern CONUS. In these eastern regions, the L4C record
indicates relatively little environmental restriction on

FIGURE 8 | Changes in how the correlations between GPP anomalies and county-level crop yield anomalies vary with respect to the P/PET ratio and percent

irrigated production for corn (A), soybeans (B), barley (C), and spring wheat (D) at around mid-season. Darker blues indicate greater percent irrigated production. The

black crosses indicate that irrigation data was not available and so the percent irrigated production was not known. The dashed lines show the fitted linear regression

with the corresponding r-value and p-value provided in the lower corner of each subplot.

FIGURE 9 | Percent of irrigated crop production at the county scale. Data: NASS.
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productivity so that GPP is near the potential rate and variability
in productivity is largely controlled by APAR.

4. DISCUSSION

There was a marked improvement in the ability of the L4C-
derived GPP to infer crop status as the season progressed. In
terms of the two crop metrics used in this study, CCI and crop

yield, Begueria and Maneta (2020) noted that CCI became more
indicative of crop yield as the season progressed. The L4C results
show a similar strengthening of the relationship between GPP
and crop yield as the season progresses, where the accumulated
carbon uptake in the first weeks following the emerged phase
provides a small sample of crop response to the overall variability
in environmental conditions accumulated over the course of the
season. However, there is a limitation inherent to the L4C model
that may also explain why lower correlations were observed at the
beginning of the season, which is related to estimation of APAR
when the canopy has yet to reach full coverage. Standing litter and

soil background reflectance can introduce relatively higher error
in the APAR calculations over sparse canopies (Smith et al.,
2019). APAR is the primary driver of L4C GPP estimates, so that

uncertainty in modeled APAR could potentially translate to
greater uncertainty in GPP estimates when crops have just
emerged.

Our study showed a clear difference in the ability of L4C GPP
to capture crop status (both CCI and yield) in more arid regions
vs. more humid climate regions. Inspection of the mean growing-
season Emult term shows that, according to the L4C framework,
GPP is operating under near-optimal conditions (i.e., high Emult)
in more humid areas. L4C GPP estimates in areas with high Emult

will therefore be more constrained by APAR than the
environmental constraints captured in the Emult term. For

example, the L4C accounts for dry soil restrictions on GPP,
but not the potential negative impacts contributed from wet
soil events which occur more commonly in humid climate
areas Li et al. (2019). The impact of wet soil events is
highlighted by a major El Niño event that occurred in
2015–2016 which coincided with delayed planting due to
intensive rainfall-driven flooding early in the season resulting
in diminished yields in that year (Sadeghi et al., 2019). Negative
impacts from this event would only partially be reflected in a
reduction in fPAR indicated from the MODIS observational
inputs to the L4C model and its associated effect on the GPP

calculations; thus, the negative impact on yield would likely be

FIGURE 10 | The correlation coefficients betweenGPP anomalies and the anomalies in (A) APAR, (B) Tmin, (C)RZSM, and (D) VPD for weeks 31-33 in the growing

season (mid-way). Areas outlined in red show where correlations were not significant. (E) The mean growing season Emult term over the period of record.

Frontiers in Big Data | www.frontiersin.org January 2021 | Volume 3 | Article 59772013

Wurster et al. Crop Status Monitoring Using L4C



underestimated from L4C relative to the CCI and reported crop
yields. The impact of the El Niño event on GPP-yield correlations
was observed by excluding 2016 from the analysis, which
increased correlations from between 0.1 and 0.16 in several

counties particularly around Louisiana and Alabama, although
correlations in other counties were largely unchanged. However,
differences in the response of vegetation to VPD and RZSM in
drier and wetter climates may influence the accuracy of L4C GPP.
In wetter climates, VPD has been found to be more important
than RZSM for plant transpiration, while RZSM becomes a more
dominant influence in drier climates (Novick et al., 2016).
Figure 9 shows that, in the more humid areas where lower or
negative GPP correlations were more widespread, VPD had the
least influence on GPP estimates among the model drivers. While
the influence of VPD on GPP is relatively stronger in arid regions,

GPP is also influenced by RZSM, which may better reflect actual
conditions. For example, Purdy et al. (2018) and Brust et al.
(2019) found that the addition of SMAP RZSM into an ET model
resulted in greater model ET improvements in drier areas than in
wetter areas. The absolute estimated error (gC) for GPP is
proportional to the size of the GPP flux, so that more
productive regions show larger estimated RMSE (gC) than less
productive drylands. However, the relative percent error (RMSE/
GPP) is similar, indicating generally consistent model
performance. While the addition of the RZSM control
improves model performance in drylands, it has less impact in

humid climates where VPD has stronger influence. In energy
limited and/or wet climates, VPD may be directly proportional to
GPP and only become inversely proportional to GPP for part of
the year (e.g., summer drydown). Humid climates may also show
less GPP correspondence due to less seasonal variation in
productivity, since correlations are generally larger with
greater seasonal amplitude in productivity. Differences in the
impact of environmental controls on GPP with respect to the
aridity index are not fully captured in the linear ramp functions
shown in Eq. 3. For example, increased VPD or decreased RZSM
may increase GPP in humid areas, while the L4C would indicate

decreased GPP. This disagreement between actual and modeled
GPP may partially explain the significant and negative
correlations observed in humid areas. Additionally, increased
contamination from cloud cover in humid areas introduces
uncertainty in the MODIS fPAR estimates which then
propagates into the GPP estimates in areas where APAR is the
primary driver.

Aside from the model capability in different climates, crops
grown in water-limited areas may have greater variability in
response to meteorological anomalies than crops in energy-
limited areas. For example, crop yields have higher

correlations with PDSI, SPI, and SPEI in more arid regions
(Rhee et al., 2010; Vicente-Serrano et al., 2012) and NDVI for
cropland has higher correlations with SPEI in drier climates (Xu
et al., 2018). The impact of VPD on GPP varies between wetter
and drier climates for the same crop under similar soil moisture
conditions, where crops in humid areas experience less reduction
in GPP with higher VPD due to higher water use efficiency
compared to that in more arid environments (Zhang et al., 2019).
However, the sensitivity of crop production to climatic variability

in more arid areas may be buffered by irrigation, which may
partially explain why the L4C GPP anomalies were less consistent
with county-level yield in arid regions dominated by irrigated
production. An explicit representation of irrigation is lacking in

the SMAP L4C and L4SMmodel framework so that the influence
of irrigation on L4C GPP may only come through the MODIS
fPAR observational inputs used to compute APAR. Situations
where fPAR inputs and resulting APAR estimates better capture
GPP may extend to other nonenvironmental stressors not
captured by the Emult term such as nutrient deficiency or
pests. As such, the L4C GPP better represents crop status in
areas where environmental conditions are important limiting
factors of the condition and yield of crops.

Quantifying the magnitude of decoupling between crop status
and climatic conditions was difficult because irrigation data was

absent in many counties. Further, there were many counties with
similar climate and irrigation levels, but with different
correlations between GPP and crop yield. In fact, GPP was
highly correlated with crop yield in several (more arid)
counties where production was almost completely irrigated.
These discrepancies may reflect regional differences in
irrigation method (e.g., sprinkler, flood, drip) and daily or
seasonal water application regimes. Another source of error
may be related to the relatively coarse (9-km) resolution of the
RZSM estimates used as L4C inputs, which may not adequately
represent soil moisture variability in heterogeneous croplands.

A major limitation in our analysis was that we did not account
for cropping area of the specific study crops when calculating
GPP anomalies. When comparing GPP anomalies to the state-
level CCI anomalies, we used all available pixels corresponding
with the associated cereal or broadleaf PFT instead of limiting
GPP to the reported planted area of each specific crop. In other
words, the broadleaf GPP estimated within a particular state was
likely not produced solely from corn cultivation but was still
included in the analysis. The situation was similar for yield, where
GPP anomalies for cereal and broadleaf crop PFTs were not
specifically attributed to a particular crop type within each

county. While the NASS cropland data layer (CDL) provides
tabulated annual estimates of planted acres by crop type, the CDL
did not extend over the entire study period. The ability to include
accurate cropping area into similar studies will therefore improve
with a longer CDL record.

5. SUMMARY AND IMPLICATIONS

This study showed that the L4C GPP product provides a
meaningful crop metric at relatively high spatial (county) and
temporal (weekly) resolutions over cultivated lands across much
of the CONUS domain. However, the application of the L4C GPP
as a crop metric was better in arid regions with little irrigation,
particularly after mid-season. In some areas, the correlations
between GPP and county-level yield were significant as soon
as the crop had emerged, indicating the potential of the L4C to
provide a prediction of yield anomalies at the start of the season.
The potential of the L4C to predict yield anomalies increases as
the season progresses, as correlations were significant weeks or
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months prior to harvest. However, climate, land management
practices, and phenological stage require careful consideration
before making inferences regarding crop status using L4C.

6. EQUATIONS

GPP � APAR · ϵmax · Emult (1)

where GPP is the gross primary production, canopy-APAR is the
product of photosynthetically active radiation (PAR) and the

fraction of PAR available to vegetation, ϵmax is the maximum light
use efficiency (LUE) parameter defined for each plant function
type (PFT) growing under optimal environmental conditions,
and Emult is the estimated proportion of ϵmax occurring under the
observed (suboptimal) environmental conditions.

Emult � fEC(VPD)fEC(TMIN)fEC(RZSM)fEC(FT) (2)

where Emult is the estimated proportion of εmax occurring under
the observed (suboptimal) environmental conditions and is the
product of dimensionless scalar multipliers representing the

response of the different PFTs to vapor pressure deficit (VPD),
minimum daily temperature (TMIN), and root zone soil moisture
(RZSM). The freeze-thaw term (FT) is a binary term that
represents frozen ground (0) or nonfrozen ground (1). The
equation for calculating the fEC terms for each environmental
constraint is given in Eq. 3.

fEC(x) �
⎧⎪⎨
⎪⎩

1 if x ≥ xmax

0 if x ≤ xmax

(x − xmin)/(xmax − xmin) otherwise
(3)

where x is the observed VPD, TMIN, or RZSM, and xmin and xmax

are parameters defined for the individual PFTs.

GPPdk,i,j � GPPk,i,j − fk,j(i) (4)

where GPPd is the detrended gross primary production at week k
and year i in state j, GPP is the observed mean cumulative GPP at
week k and year i in state j, and fk is a linear function of year i for
GPP at week k in state j.

Zk,i,j �
GPPdk,i,j − μk,j

σk,j
(5)

where Zk,i,j is the z-score of GPP at week k and year i in state j,
GPPk,i,j is the mean cumulative GPP for week k and year i in state
j, μk,j is the mean detrended GPP for week k in state j over the

period of record (near 0), and σk,j is the standard deviation in
GPPd for week k in state j over the period of record.
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