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Abstract Satellite remote sensing observations show an increased greenness trend over land in recent

decades. While greenness observations can indicate increased productivity, estimation of total annual

productivity is highly dependent on vegetation response to climate and environmental conditions. Models

have been struggling to determine how much carbon is taken up by plants as a result of increased

atmospheric CO2 fertilization. Current remote sensing light use efficiency (LUE) models contain

considerable uncertainty due to the lack of spatial and temporal variability in maximum LUE parameter and

climate sensitivity defined for global plant functional types (PFTs). We used the optimum LUE (LUEopt)

previously derived from the global FLUXNET network to improve estimation of global gross primary

productivity (GPP) for the period 1982–2016. Our results indicate increasing GPP in northern latitudes

owing to reduced cold temperature constraints on plant growth, thereby suggesting increasing

negative carbon‐climate feedback in high latitudes. In the tropics, by contrast, our results indicate an

emerging positive climate feedback, mainly due to increasing atmospheric vapor pressure deficit (VPD).

Further pervasive VPD increase is likely to continue to reduce global GPP and amplify carbon emissions.

Plain Language Summary In light use efficiency (LUE) models, plant production is linearly

related to canopy absorbed photosynthetically active radiation (APAR), based on the assumption that

plants absorb and convert solar radiant energy into vegetation biomass with a given efficiency rate. Here, we

used an enhanced LUE model driven with remote sensing observations to estimate plant productivity for

1982–2016. We found that over the study period, plant photosynthetic activity has increased over northern

latitudes, which may partially offset the CO2 emissions from fossil fuel consumption. However, our

results show that productivity in the tropical zones is declining rapidly due to increased water stress. With

increased warming, water limitations are expected to increasingly limit global plant productivity.

1. Introduction

Life on Earth is supported by plant photosynthesis through gross primary productivity (GPP), which repre-

sents the largest annual carbon flux linked directly linked to environmental conditions and atmospheric CO2

concentrations (Beer et al., 2010). Human reliance on plant photosynthesis includes GPP allocation to food,

fiber, and fuel production, as well as ecosystem services provided by offsetting atmospheric CO2 emissions

from fossil fuel consumption (Norby et al., 2010; Quéré et al., 2018; Schimel et al., 2015). For the past three

decades, global satellite remote sensing has provided direct observations of the amount of photosynthetic

leaf area (Myneni et al., 2002). These observations serve as primary inputs for satellite‐driven diagnostic

models of GPP such as light use efficiency (LUE) models (Running et al., 2004). Satellite observations from

the Advanced Very High Resolution Radiometer (AVHRR) and the MODerate resolution Image

Spectrometer (MODIS) sensors provide consistent global measurements of changes in photosynthetic leaf
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area starting in June 1981 (Zhu et al., 2013). During this period, the global mean atmospheric CO2 concen-

tration has increased by 20%, from 340 ppm in 1981 to 407 ppm in 2016 (Etheridge et al., 1996; Keeling

et al., 2005). This increase has coincided with widespread increase in leaf area (Zhu et al., 2016) and changes

in vegetation phenology, including earlier spring green‐up (Cleland et al., 2007; Cong et al., 2013; Zhu

et al., 2016). Conversely, anomalous changes in global productivity associated with climate extremes driven

by the El Niño–Southern Oscillation (ENSO) have also been observed and modeled (Liu et al., 2017; Nemani

et al., 2003; Zhao & Running, 2010; Zhu et al., 2018). In addition to ENSO, other factors coinciding with

water scarcity, high temperatures, and large fires (Reichstein et al., 2013) have significantly impacted the

global carbon cycle over the past few decades. Some of these satellite‐observed events, including

large‐scale wind throw, biotic events, pest outbreaks, and deforestation, have significantly impacted global

vegetation cover (Reichstein et al., 2013; Zscheischler et al., 2013, 2014). Extreme events associated with cold

temperature events and heavy rain are also known to impact the global carbon cycle (Zscheischler

et al., 2014). However, the current generation of remote sensing driven LUE models has several key limita-

tions that make it difficult to properly estimate long‐term GPP trends.

The biome property lookup table approach is a well‐known shortcoming of LUEmodels (Madani et al., 2014;

Turner et al., 2002; Wang et al., 2010; Way et al., 2005). In this approach, photosynthetic rate is constrained

by biome‐specific, predefined thresholds to represent optimum climatic conditions for plant productivity. In

addition, the maximum LUE rate, which defines potential GPP, is typically assumed to be temporally con-

stant (e.g., Kimball et al., 2017; Running et al., 2004). Improving these basic GPP model limitations will

reduce uncertainty in global GPP estimates and advance the understanding of the terrestrial biosphere

response to environmental change and climate extremes.

The variability in CO2 sources and sinks in natural environments including ocean and land ecosystems is

driven by the variability in atmospheric CO2 accumulation rate (Keenan et al., 2016). However, estimation

of the carbon sources and sinks in land ecosystems remains challenging, where the range of variability in

estimated annual GPP and its interannual variability and trend is large among Earth system, LUE, and

machine learning‐based models (Anav et al., 2015). Even though all of the global models reviewed by

Anav et al. (2015) show positive annual GPP trends over the last few decades, there are large discrepancies

in the estimatedmagnitude of GPP trends and interannual variability. Previous studies noted that global eco-

system net primary productivity models that use a satellite data‐driven LUE modeling approach show an

increasing trend for the period 1982–1999 (Nemani et al., 2003), but this productivity trend diverged after

2000 due to climatic changes, including severe droughts (Zhao & Running, 2010).

Here, we provide a quantitative and mechanistic multidecadal assessment of global GPP trends and anoma-

lies using an enhanced remote sensing LUE model. Our primary goal is to identify the most important

factors driving long‐term GPP change across key bioclimatic regions. We model global monthly GPP using

the third‐generation Global Inventory Modeling and Mapping Studies (GIMMS3g) fraction of photosynthe-

tically active radiation (FPAR) record for the period 1982–2016 (Zhu et al., 2013) as a primary model input.

By building upon our previous experience (Madani et al., 2014; Madani, Kimball, Jones, et al., 2017; Madani,

Kimball, & Running, 2017), our enhanced LUE model provides temporally and spatially explicit dynamic

optimum LUE (LUEopt) information that supports improved estimates of long‐term (1982–2016) GPP trends

across the globe.

2. Methods

2.1. Geospatial Data

We acquired the global semimonthly GIMMS3g FPAR data (Zhu et al., 2013) for the 35‐year (1982–2016)

study period. GIMMS3g FPAR is created based on the relationship between the new improved GIMMS3g

normalized difference vegetation index (NDVI) and best quality MODIS leaf area index (LAI) and FPAR pro-

ducts for the overlapping period 2000–2009 using a neural network algorithm (Zhu et al., 2013). We obtained

meteorological and other geospatial information, including monthly minimum air temperature, dew point

temperature, incoming shortwave solar radiation, and surface‐to‐root‐zone soil moisture (SM) from the

Modern‐Era Retrospective analysis for Research and Applications, Version 2 (MERRA‐2; Gelaro et al., 2017).

We aggregated FPAR semimonthly data to monthly scales by averaging the FPAR values over each month

and resampled the MERRA‐2 ½° latitude by 5/8° longitude spatial resolution meteorological data using
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nearest neighboring approach to match the FPAR 0.08° spatial resolution for modeling GPP at monthly time

scale for the entire GIMMS3g record. Adopting the finer FPAR resolution for the GPP model simulations,

rather than the coarser resolution of the meteorological data, allowed us to better capture the effect of land

cover and land use change on GPP (Robinson et al., 2018).

2.2. Spatially Explicit LUEopt Data

Global, spatially distributed LUEopt values were derived from the flux tower‐based estimates of LUEopt

(Madani, Kimball, & Running, 2017). The tower eddy covariance CO2 flux measurement sites presented

in Madani, Kimball, and Running (2017) represent a broad range of global biomes (Table S1 in the support-

ing information) with at least 2 years of daily ecosystem CO2 exchange measurement records at each site. In

this approach, the upper 98–99.5% bin of FLUXNET tower daily gap‐filled GPP values for each tower site is

selected to represent the maximum daily GPP (GPPmax). It is assumed that in the upper bin of GPP, plant

productivity is not restricted by climate constraint factors (Kergoat et al., 2008; Madani et al., 2014). The

FPAR data collocated with FLUXNET tower site locations are temporally matched with the tower GPP

records, and PAR is resampled to FPAR resolution using nearest neighboring approach. For each tower site,

LUE is defined as follows:

LUE ¼
GPPmax

APAR
(1)

In Equation 1, APAR is the absorbed photosynthetically active radiation (PAR), which is derived from the

product of FPAR defined from the GIMMS3g record and the daily PAR, estimated as half of the global

incoming shortwave solar radiation derived from the MERRA‐2 global reanalysis (Gelaro et al., 2017). For

each of the tower sites the averaged daily LUE observations from Equation 1 are used to represent the

LUEopt value of that specific site.

We extrapolated the tower‐based LUEopt values to the global domain based on a generalized additive model

(GAM) framework (Hastie & Tibshirani, 1990). The model used several explanatory variables for LUEopt

including average annual long‐term temperature fromMERRA‐2 to determine climate sensitivity, the satel-

lite observed solar‐induced chlorophyll fluorescence (SIF) from the Global Ozone Monitoring Experiment‐2

(GOME‐2) (Köhler et al., 2015) to represent biome heterogeneity in productivity within the land cover clas-

sifications defined by MODIS MOD12‐type‐2 (Friedl et al., 2010) classes, maximum and minimum annual

FPAR to represent annual changes in land cover as well as the potential effect of the atmospheric CO2 con-

centration growth rate on plant leaf area (Zhu et al., 2016). We used the GAM model to provide annual

LUEopt information distributed over the global vegetated land areas from 1982–2016 at 8‐km spatial resolu-

tion. (Refer to Table S2 for the parametric and smoothed coefficient functions of selected environmental pre-

dictors used to extrapolate tower estimated LUEopt). Our model was trained on measurements from a subset

of global tower sites from the La Thuile FLUXNET synthesis data set (Baldocchi, 2008) and was tested using

independent tower sites from the 2015 FLUXNET record (Pastorello et al., 2020; Refer to Figure S1 for loca-

tion of tower sites). The trained model was then used along with dynamic annual FPAR observations to gen-

erate corresponding spatially explicit LUEopt data from 1982–2016.

2.3. Modeling Global GPP

The LUE model used here is similar to the National Aeronautics and Space Administration (NASA) Soil

Moisture Active Passive (SMAP) mission's level 4 carbon model algorithm (L4C) (Jones et al., 2017), which

uses SM as a water supply constraint factor, enabling improved GPP accuracy in water limited regions (Jones

et al., 2017; Kimball et al., 2012; Stocker et al., 2019). Our model also accounts for changes in atmospheric

vapor pressure deficit (VPD), which we modeled following Murray (1967):

VPD ¼ 611 × e
17:502 × Ta
Ta þ 240:97

− 611 × e
17:502 × Td
Td þ 240:97 (1)

where Ta is the average daily temperature in degrees Celsius and Td is the dew point obtained from

MERRA2.

Our LUE model provides enhanced GPP estimates (hereinafter termed GPPEnh) as follows:
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GPPEnh ¼ FPAR × PAR × LUEopt × f VPD × fSM × f Tmin (2)

where fVPD, fSM, and fTmin represent dimensionless environmental constraint functions ranging from 0

(fully constrained) to 1 (no effect) that describe reductions from optimal GPP due to water and tempera-

ture stress:

f T ¼

0; Tmin ≤ TMmin

Tmin − TMmin

TMmax − TMmin

; TMmin < Tmin < TMmax

1; Tmin ≥ TMmax :

8

>

>

>

<

>

>

>

:

(3)

f VPD ¼

0; VPD ≥ VPDMax

1 −
VPD − VPDMin

VPDMax − VPDMin

1; VPD ≤ VPDMin:

; VPDMin < VPD < VPDMax

8

>

>

>

<

>

>

>

:

(4)

TheMin andMax subscripts in Equations 4 and 5 represent the minimum andmaximum defined thresholds

for minimum daily air temperature (Tmin) and VPD functions derived from the bioclimatic factors control-

ling productivity at global scales (Madani, Kimball, & Running, 2017), in addition to ecosystems phenologi-

cal patterns indicated from flux tower observations. In this regard, we used global tower sites to acquire

minimum and maximum thresholds for the Tmin and VPD bio‐climatic variables. Tmin in the LUE model

defines the length of plant activity. We defined TMmin and TMmax as 10 and 20 quantiles of the daily GPP cli-

matology and recorded SIF value of the corresponding time for a given tower location. We used a similar

technique to establish the VPD thresholds with the exception of using the upper 90 daily GPP quantiles to

assess the negative impact of high VPD on stomatal conductance. We then used the observed SIF seasonality

to generate spatial maps of environmental constraint factors and used the constraint factors only for regions

where seasonality in productivity, confirmed by SIF observations, was shown to be controlled by the specific

constraint factor (Madani, Kimball, & Running, 2017).

Daily SM for the global simulations was normalized as a daily proportion of the maximum and minimum

reported local SM values from the long‐term (1982–2016) record for each pixel. The resulting normalized

SM values were aggregated to monthly time steps and used in the following nonlinear constraint function

built upon a nonlinear relationship between SM and LUE (Stocker et al., 2018) to estimate GPP in

Equation 2:

fSM ¼ 1 − SM − 1ð Þ2 (5)

2.4. Validation and Analysis

We validated GPPEnh against flux tower GPP observations for the 2007 to 2014 period obtained from the 2015

FLUXNET record, where the tower validation sites were independent from the sites used for model training

(Figure S1). The tower sites used for model training and validation were selected on the basis of being repre-

sentative of the major global biomes and having at least 2 years of CO2 flux measurements. To assess differ-

ent factors contributing to changes in GPP, we executed the GPPEnh model on a monthly basis with static

APAR (APAR climatology) and variable climatic factors ( fVPD × fSM × fTmin) and once again with static

climatic factors (climatology of fVPD × fSM × fTmin) and dynamic APAR data. We extended our analysis

by detrending GPP and underlying factors controlling productivity, including annual FPAR, SM, PAR,

Tmin, and VPD, and performed annual andmultidecadal assessment of GPP anomalies at regional and global

scales. We calculated the anomalies in time series data by removing the linear trend. In this regard,

residuals et, or the differences between the data values (y) and the corresponding linearly fitted values over

time xt , are defined as follows:

et ¼ yt − β0 − β1 x1; t − β2 x2; t − …:βk xk; t (6)

For comparison, we used the GIMMS FPAR data and MERRA‐2 meteorology to model GPP using fixed

LUEmax values used by the MODIS MOD17 operational (Collection 6) GPP product (Zhao &

10.1029/2020AV000180AGU Advances

MADANI ET AL. 4 of 14



Running, 2010). We also compared our GPPEnh key findings with the TRENDY ensemble mean GPP, atmo-

spheric CO2 inversion model results, and SIF observations.

We used the ensemble mean GPP of 10 dynamic global vegetation models (DGVMs; Table S3) from the

TRENDY‐v7 project (Quéré et al., 2018; Sitch et al., 2015) for comparison with our GPP model results.

The selected models with spatial resolutions of 0.5° to 2° for the period 1982–2016 use climate, land use,

and CO2 forcing effects on ecosystem productivity. We also acquired net biome productivity (NBP) data from

CO2 inversionmodel results with 1° monthly spatiotemporal resolution from six inversionmodels, including

CT2017, CTE2018, CarboScope s76_v4.2, CarboScope s85_v4.2, JAMSTEC, and CAMS (see Table S4 for

references and details) to compare with our LUE model findings. In addition to modeled ecosystem produc-

tivity data, we used SIF from the scanning imaging absorption spectrometer for atmospheric chartography

(SCIAMACHY) for 2003–2011 (Joiner et al., 2012) and GOME‐2 (Köhler et al., 2015) for 2007–2016 as remote

sensing indicators of ecosystem productivity. To mitigate artifacts in the GOME‐2 SIF retrievals after

mid‐2012 due to sensor degradation (Zhang et al., 2018), we corrected the drift in time series data by match-

ing the mean of observations after mid‐2012 to the mean values from 2007 to mid‐2012. We generated the

anomalies in annual GPPEnh, NBP, TRENDY GPP, and SIF by calculating the departure from long‐term

average and normalized the values using:

zi ¼ 2 ×
xi −min xð Þ

max xð Þ −min xð Þ
− 1 (7)

where x = (x1,…xn) and zi denotes i
th normalized data. We compared these data over tropical and northern

high latitudes, the two highly important regions for carbon cycle dynamics.

3. Results

The newGPPEnhmodel explains 80% of the variation in annual GPP across flux tower sites, with an RMSE of

331 g C m−2 year−1. The variance explained declines to 75%, and RMSE increases to 506 g C m−2 year−1 for

the model with constant LUEmax (and otherwise the same meteorology and FPAR data; Figure S2; Refer to

Figure S3 for comparison between GPPEnh with the conventional LUE model over independent test sites).

The improvement in the GPP estimate was a result of the environmental explanatory variables that

explained ~56% of the spatial variation (p < 0.0001) among tower observed LUEopt values. However, the

fixed LUEmax parameters defined for each land cover type could only explain ~36% of the variance in tower

observed LUEopt.

The 35‐year linear trends in GPP demonstrate that, in ~50% of the vegetated land areas, GPP is increasing by

up to 20 g C m−2 year−1, whereas the GPP of tropical regions is declining at the same rate. Black dots repre-

sent pixels with statistically significant trends (p < 0.05).

Our estimated global average GPP over the last three decades is 130 ± 1.6 Pg year−1. The lowest GPP is esti-

mated for 1983 (126 Pg year−1), and the highest GPP is for 2011 (133 Pg year−1). Over the study period,

annual GPP trends indicate that GPP in Amazonia and the Southeast Asian tropics decreased at rates of

up to 20 g C m−2 year−1 (at grid scale), while GPP in the northern latitudes increased at the same rate

(Figure 1). To further assess the regional GPP trends, we performed a multidecadal GPP assessment for

selected latitudinal zones.

In the northern high latitudes (>45°N) GPP began to increase by 0.07 Pg year−1 from 1982 onward, which

represents about 0.4% increase in GPP per year relative to the 35‐year mean (17.9 Pg C). In contrast, equa-

torial GPP (10°S to 10°N) has steadily declined since the 1980s, leading to a reduction of 0.5–1 Pg over

35 years compared to the long‐term average (Figure 2).

We further analyzed the main factors affecting global annual GPP anomalies. VPD contributes the highest

variability to GPP in tropical regions. In arid environments, water restrictions defined by SM and VPD are

the primary limiting factors. In the northern latitudes, where the growing season is short, seasonal cold tem-

peratures primarily limit productivity (Figure 3).

In the Amazon forest, western and central United States, southern Australia, and Africa, GPP limitation is

more related to water constraints (VPD and SM) through the negative impact of high VPD and the positive
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impact of SM availability. In tropical rainforest, GPP is controlled by the amount of incoming radiation and

the negative impact of high VPD (Figure 3).

We analyzed the relationships between GPP anomalies at decadal time scales and underlying environmental

factors affecting plant activity by detrending the long‐term annual data. During the 1980s, global GPP was

most strongly correlated with PAR and FPAR, indicating that the water and temperature constraints had

a relatively smaller influence on interannual variability in GPP (Figure 4). Since in the LUE model the cold

temperature constraint factor controls the length of the growing season, it exerts the strongest control in sea-

sonally cold environments such as temperate forests and northern high‐latitude ecosystems. On the other

hand, the sensitivity of productivity to SM, which has a stronger influence on the productivity in arid envir-

onments, has not significantly changed in 2000s compared to previous decades. However, with increasing

temperature, the cold temperature constraint effect declines, while correlations with VPD, which limits

the productivity during the growing season, increased after the 1980s, indicating that global GPP is shifting

from being temperature limited to VPD limited (Figures 4 and S4).

Because GPP reductions occur primarily in tropical zones (Figure 2), we performed an anomaly analysis for

GPP in the tropics. Horizon plots (Figure 5) show how annual GPP in each tropical region has changed rela-

tive to the average of annual GPP for 1982–2016. GPP significantly declined after the early 2000s in the

Amazon and, to a lesser degree, in Africa, whereas GPP in the Asian rainforests began to decline almost a

decade earlier than on other continents. GPP in the Amazon has been declining since the 2005 drought,

so its mean annual GPP was ~0.13 Pg C lower during the 2000s (compared to the 35‐year average) and

has continued to drop by up to −1.2 Pg C year−1 after the 2010 drought. The annual average GPP of the

African tropics was 8.14 Pg C for the study period; it began to slightly decline after 2000 by about

0.06 Pg C and increased by about 0.03 Pg C after 2010. In the Asian tropics after the 1990s, average GPP indi-

cates a decline of 0.3–2% per decade (0.03–0.17 Pg C).

To unravel the underlying mechanism driving tropical GPP change, we performed a VPD anomaly analysis

that directly influenced our modeled GPP results for the tropics. Figure 5b demonstrates that VPD in the

Amazon began to increase in the early 2000s. In the African tropics, VPD increased from the mid‐1990s to

mid‐2000s, resulting in decreased GPP compared to the 1982–2016 average. In the Asian tropics, where

interannual VPD variability is much lower than in Africa and the Amazon, PAR is a larger limiting factor

than VPD (Figure 3).

The correlations between interannual GPP variability and environmental factors that constrain our LUE

model in the tropics indicate that, in the Amazon, GPP variability is significantly (p < 0.05) correlated with

variability in VPD (R2 = 0.43) and PAR (R2 = 0.47) but has no significant correlation with FPAR variability

over the 35‐year record. However, FPAR showed a low but statistically significant correlation (p< 0.05) with

GPP after 2005 in the Amazon (R2 = 0.16). Over the 35‐year period, the African tropics showed a significant

correlation with VPD (R2= 0.21) but not with PAR and FPAR. GPP in the Asian tropics showed a significant

Figure 1. Trends in global gross primary productivity (GPP) for 1982–2016.
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correlation with VPD (R2 = 0.49), a very high correlation with PAR (R2 = 0.8) and a nonsignificant

correlation with FPAR.

We further compared anomalies as a departure from long‐termmean values of GPP from the TRENDYmod-

els, inversion model CO2 fluxes, and SIF from the GOME‐2 and SCIAMACHY (Figure 6) for tropical and

northern northern middle and high latitudes. Our results indicate that, unlike the TRENDY GPP, the

GPPEnh model shows a recent variable response of northern ecosystem productivity to climatic changes.

GOME‐2 SIF also shows a variable annual signal despite focusing on a shorter period compared to

GPPEnh, TRENDY, and net biome production (NBP) data from the inversion models. The NBP data show

increasing net CO2 uptake after 2000, even though there is more interannual variation compared to the

TRENDY data.

Figure 2. (a) Zonal plot showing global GPP anomalies (departure from mean) binned by latitude and decade. Solid lines

and shaded envelopes around each line denote the mean and standard deviation. While GPP steadily increased across

the decades in midlatitudes and northern high latitudes, equatorial GPP steadily decreased. (b) Bar plots showing

anomalies in annual GPP in Tg C averaged per decade. (c) PFT classification modified from MODIS‐MOD12

Type 5 (Friedl et al., 2010) for Evergreen Broadleaf Forests (EBF), Deciduous Broadleaf Forests (DBF), shrub lands

(SHR), grasslands (GRA), and croplands (CRO).
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Figure 3. Climatic factors affecting GPP. Dominant environmental constraint factors influencing changes in GPP for the

period 1982–2016 derived from the Pearson correlations of minimum daily temperature (Tmin), vapor pressure deficit

(VPD), soil moisture (SM), and photosynthetically active radiation (PAR) to this study's long‐term estimated annual GPP.

Productivity is primarily related to soil moisture availability and VPD in arid regions and tropics, whereas low

temperatures primarily limit productivity in the high northern latitudes. In far northern latitudes and rainforests,

ecosystem GPP is positively correlated with the amount of PAR. Nonsignificant correlations are masked out.

Figure 4. The correlation between interannual GPP anomalies with FPAR, PAR, SM, Tmin, and VPD. The plot shows the

spatial average of such time series correlations in R
2
between anomalies in annual GPP (Pg C year

−1
) with average

detrended FPAR, PAR, SM, Tmin, and VPD values for the corresponding decade. Interannual GPP before 2000 was highly

correlated with FPAR and PAR variations, but global GPP was significantly controlled by higher atmospheric VPD after

2000.
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4. Discussion

Our results indicated increasing trends in annual GPP in middle to high latitudes. The GPP increase shown

in the northern tundra and boreal ecosystems (>45°N) supports previous evidence of greening trends

observed from long‐term satellite records (Myers‐Smith et al., 2015; Zhu et al., 2016). Our results also pro-

vided evidence of a link to warming and longer growing seasons consistent with recent climate change

(Mao et al., 2016; Zhu et al., 2016).

Figure 6. Regional anomalies in long‐term ecosystem productivity metrics and estimates. Ecosystem productivity

metrics include GOME‐2 (2007–2016, Joiner et al., 2012) and SCIAMACHY (2003–2011, Köhler et al., 2015) SIF; GPP

models included the enhanced GPP (GPPEnh; this study) and TRENDY GPP (ensemble mean of 10 ecosystem

models; Quéré et al., 2018; Sitch et al., 2015), compared with net biome productivity (NBP; ensemble mean from six

inversion models, see Table S4 for references) for (a) northern latitudes (> 45
o
N) and (b) tropical zones

(10°S to 10°N). Anomalies as departures from the mean are calculated at regional scales for each year and

normalized for visualization and comparisons.

Figure 5. Horizon plot of anomalies in GPP and VPD time series for tropical forests in the Amazon, Africa, and Asia. The

plot shows anomalies as departure from (a) average annual GPP (Pg C year
−1

) and (b) percent change in annual

VPD. In the Amazon, GPP anomalies were positive through 2004 and then began to decline thereafter, whereas the GPP

of the African forests showed a slight decline in the 2003–2007 period. The Asian tropics showed a declining trend

after 1992. Plots divide the data on the y axis based on different bands shown in the legend and assign a different color to

each band. Negative values are mirrored and values farther from 0 have more intense colors. Bands with higher

values are drawn above the bands with lower values.
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The rapidly changing arctic and boreal ecosystems are crucial components of the Earth system that store

more than 30% of terrestrial carbon stocks (Apps et al., 1993; Pan et al., 2011). While boreal ecosystems have

remained a persistent terrestrial carbon sink (Ciais et al., 2010), recent models and observations predict that

increasing air temperatures will reduce the carbon uptake capacity of these biomes over the next century

(Liu et al., 2019; Natali et al., 2019). Longer growing seasons and earlier observed photosynthesis from cli-

mate warming (Assmann et al., 2019; Box et al., 2019; Parazoo et al., 2018) lead to increased rate and dura-

tion of evapotranspiration which can deplete SM and plant available water in the late growing season

(Buermann et al., 2013, 2018; Lian et al., 2019; Parida & Buermann, 2014; Yi et al., 2014; Zhang et al., 2020).

Prevalence of warming and browning in the Arctic (Bhatt et al., 2013; Phoenix & Bjerke, 2016; Treharne

et al., 2019) also increases the risk of fire occurrences (Hu et al., 2010). All of these factors can affect

satellite‐observed FPAR and SIF, while our model results also confirm recent high interannual variability

in productivity in the northern high latitudes consistent with variability in temperature and water

constraints.

Although the GPP increase in the northern high latitudes indicates a persistent, increasing negative

carbon‐climate feedback, our results suggest an emerging positive feedback to climate in the tropics. The

negative GPP trend in the tropics suggests that the increased atmospheric water demand is not balanced

by increased available water supply. The changes in rainfall patterns and recent increase in forest mortality

in the Amazon forest (Brienen et al., 2015; Phillips et al., 2009; Wigneron et al., 2020) are clear examples of

the severe impact of episodic drought and changes in patterns of water supply on these critical ecosystems.

These changes in water supply and precipitation forcing in the Amazon influence VPD through

land‐atmosphere feedback and the trends in PAR.

In contrast to the declining trends seen in GPPEnh in the tropical zones, the TRENDY models show an

increase in GPP. LUE models have the advantage over prognostic vegetation models of a direct FPAR obser-

vational constraint and can thus potentially reflect anthropogenic effects such as deforestation and human

pressure on the tropical hydroclimate system (Khanna et al., 2017) and indirectly impact ecosystem produc-

tivity. Like other LUE models, our model is directly constrained by remote sensing observed vegetation

indices that have been at the center of debates, especially over dense tropical forests (Bi et al., 2015; Huete

et al., 2006; Morton et al., 2014; Saleska et al., 2016). However, our model revealed that there is no significant

correlation between interannual variability of GPP in tropical South America with FPAR variability. Instead,

we report a strong sensitivity of tropical GPP to VPD variability, which has also been shown for spaceborne

SIF (Lee et al., 2013). We analyzed monthly VPD and GPP climatology observed at a CO2 flux tower site in

the Amazon and found a reduction in GPP when VPD increased beyond 800 Pa (Figure S5). Our results are

consistent with other reports of increasing VPD at a global scale after the mid‐1990s (Yuan et al., 2019) and

highlight the potential constraining impact of increasing water limitations on global ecosystem productivity.

This is especially true in the tropics, where changes in water constraints can lead to variable responses in net

carbon exchange (Liu et al., 2017). However, this VPD impact on productivity seems to be less emphasized in

Earth system models (Smith et al., 2016), which show increasing vegetation activity in the tropical zones

after 2000 (Figure 7).

In tropical zones, where TRENDYmodels show increased GPP after 1997, GPPEnh estimates show divergent

results, including a reduction in annual GPP after 2004. NBP obtained from inverse models generally indi-

cates enhanced carbon uptake in the tropical zones after 2004 with some variation. It should be noted that

inversion models have difficulty modeling the distribution of carbon sources and sinks in the tropics given

the intensity of tropical convection, which can affect the spatial distribution of CO2 concentration (Malhi &

Phillips, 2004). In addition, the divergence in productivity estimates between DGVMs and LUE models can

be related to DGVM oversensitivity to trends in atmospheric CO2 fertilization (Smith et al., 2016) including

lack of nutrient limitations, as these models tend to have higher sensitivity to CO2 increase in tropical eco-

systems than temperate and boreal ecosystems (Hickler et al., 2008; Schimel et al., 2015). However, it has

been argued that most LUE models underestimate the CO2 fertilization effect, as they do not explicitly

account for atmospheric CO2 concentrations (De Kauwe et al., 2016). LUE models are parametrized using

carbon flux towers that have been operational since the late 1990s (Baldocchi et al., 2001). The dynamic

effect of CO2 fertilization on traditional LUE models is only reflected in FPAR observations that show

long‐term sensitivity to CO2 trends (Chen et al., 2019; Zhu et al., 2016). Even though we used dynamic

10.1029/2020AV000180AGU Advances

MADANI ET AL. 10 of 14



maximum and minimum annual FPAR for LUEopt extrapolation to represent changes in the atmospheric

CO2 growth rate and the effects of land use change on photosynthetic efficiency, it is likely that the

long‐term trend in our LUE based GPP is underestimated.

As we addressed, our study was limited by the LUEopt estimated for the majority of the flux towers that were

operational mostly during the 2000s. However, water and temperature constraints also play a significant role

in controlling the growing season length and vegetation phenology. Our results indicate that when climate

remained static, the APAR‐only model, driven implicitly by leaf area and CO2 fertilization, increased global

GPP for the period 1982–2016 at a rate of 0.1 Pg C year−1 (Figure S6). The addition of climate constraints

reduces the global APAR‐driven GPP trend by 10% to 0.09 Pg C year−1. However, it is important to note that

the long‐term trends here are affected by nonstationarity in time series. For example, large ENSO events

affect these trends, but our results indicate that climate warming and drying in the tropics are gradually

reducing the GPP growth rate at global scale. This estimated annual GPP trend is significantly lower than

the TRENDY estimated GPP trend of 0.57 Pg C year−1, which optimistically follows the atmospheric CO2

growth rate pattern (Figure S7).

Our GPP approach of using spatially and temporally variable LUEopt shows significant improvements over

using fixed predefined LUEmax values per biome type (Figures S2 and S3). The LUEoptmodel is based on the

concept that ecosystem processes differ based on plant community compositing and that consideration of the

geographic location and key life history traits of plants better accounts for the range of plant functional rela-

tionships with climate (Madani et al., 2014). Improving the LUE concept should also lead to better under-

standing of the response of plant productivity to climate change, despite the limitations associated with

our LUE model approach as a whole.

Here, we focused only on the uncertainties related to extrapolated LUE (Figure S8) that were caused by ran-

dom errors. At the global scale, these errors correspond to less than 10% of the LUE values for PFTs

(Figure S9) and 6 Pg C standard deviation in annual GPP estimates. The resulting standard deviation

around GPP estimates (Figure S10) does not affect our key findings. Nonetheless, uncertainties are involved

in each of the LUE model inputs (Zhao et al., 2005) including the MERRA‐2 surface meteorological data.

Like all reanalysis data, MERRA‐2 estimates may be impacted adversely by discontinuities in the assimi-

lated satellite observing system record that impact the modeled water and energy fluxes (Gelaro et al., 2017;

Robertson et al., 2016). Moreover, the use of gauge‐based precipitation forcing in MERRA‐2 can likewise

result in discontinuities, especially in poorly observed regions such as the Amazon (Reichle et al., 2017;

their Figure 8).

Even though CO2 fertilization and nutrient effects are indirectly considered in the remote sensing‐derived

FPAR observations and the spatially explicit estimation of LUEopt model, future work should more directly

account for these effects. Further improvement in the LUEmodels by including higher spatiotemporal reso-

lution meteorological information capturing local variations in SM (due to topography) and incoming short-

wave radiation (due to clouds, diffuse and direct fraction), better representation of disturbance events such

wildfires, and full representation of plant water availability, such as the inclusion of surface‐to‐groundwater

information and the assimilation of satellite data (Madani et al., 2020; Smith et al., 2019), may further

improve the model correspondence with productivity benchmark observations derived from the satellite

SIF and global carbon flux tower record. These improvements will enable more accurate assessments and

attribution of long‐term climate and CO2 effects and improved benchmarking of DGVMs, giving us better

insight into future productivity changes.
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