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Abstract

Depending on a parameter h ∈ (0, 1], let {Xh(t), t ∈ Mh} be a class of centered Gaussian fields
ndexed by compact manifolds Mh with positive reach. For locally stationary Gaussian fields Xh , we
tudy the asymptotic excursion probabilities of Xh on Mh . Two cases are considered: (i) h is fixed
nd (ii) h → 0. These results are also extended to obtain the limit behaviors of the extremes of locally

stationary χ -fields on manifolds.
c⃝ 2020 Elsevier B.V. All rights reserved.
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1. Introduction

We study the following two related problems in this paper.
i) Let {X (t), t ∈ M} be a centered Gaussian field indexed on a compact submanifold M
f Rn . For X (t) satisfying a local stationarity condition (see Definition 2.1), we derive the
symptotic form of the excursion probability

P
(

sup
t∈M

X (t) > u
)
, as u → ∞. (1.1)

ii) Let {Xh(t), t ∈ Mh}h∈(0,1] be a class of centered Gaussian fields, where Mh is a compact
ubmanifold of Rn for each h ∈ (0, 1]. Suppose that we have the structure Mh = Mh,1 ×Mh,2
uch that t = (tT

(1), tT
(2))

T
∈ Mh means t (1) ∈ Mh,1 and t (2) ∈ Mh,2, where we allow

h,2 to be a null set. The Gaussian fields Xh(t) we consider have a rescaled form Xh(t) =
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X h(t (1)/h, t (2)), t ∈ Mh for some X h satisfying the local stationarity condition. We derive the
ollowing limit result

lim
h→0

P

(
ah

(
sup

t∈Mh

Xh(t) − bh

)
≤ z

)
= e−e−z

, (1.2)

or some ah, bh ∈ R+ and any fixed z ∈ R.
While there is a large amount of literature on excursion probabilities of Gaussian processes

r fields (see, e.g., Adler and Taylor [1], and Azaı̈s and Wschebor [3]), most of the existing
ork only considers index sets M (or Mh) of dimension n (the same as the ambient Euclidean

pace), while we focus on Gaussian fields indexed by manifolds that can be low-dimensional.
For problem (i), some relevant results can be found in Mikhaleva and Piterbarg [30],

iterbarg and Stamatovich [35], and Cheng [12]. Compared with these works, the framework
f our result is more general in the following aspects: First of all, Cheng [12] studies the
xcursion probabilities of locally isotropic Gaussian random fields on manifolds, where local
sotropy means the variance between two local points only depends on their (geodesic) distance,
hile we consider locally stationary Gaussian fields, for which not only the distance between

he points but also their locations are involved in the variance. Furthermore, in Mikhaleva
nd Piterbarg [30] and Piterbarg and Stamatovich [35], the Gaussian fields are assumed to be
ndexed by Rn , while we only require the index sets to be the manifolds. As pointed out in
heng [12], it is not clear whether one can always find a Gaussian field indexed by Rn whose

estriction on M is X (t). Also see Cheng and Xiao [13] for some further arguments on this
oint. In addition, all the above works assume that the manifolds are smooth (C∞), while we
onsider a much larger class of manifolds (only satisfying a positive reach condition). In fact,
he properties of positive reach play a critical role in the geometric construction in our proofs.

For problem (ii), the study in Qiao and Polonik [37] corresponds to a special case of (1.2)
hen Mh ≡ M for some manifold M independent of h, and Mh,2 = ∅. They use some ideas

rom Mikhaleva and Piterbarg [30] and also assume that Xh is indexed by a neighborhood
f higher dimensions around M, while we only need Xh to be indexed by the manifolds

h , by making use of the result developed for problem (i). This weaker requirement for the
aussian fields finds broader applications when the Gaussian fields are observable or can be

pproximated only on low-dimensional manifolds. See (1.7) for example. At a more technical
evel, we use Voronoi diagrams to construct partitions to the index sets, as one of the major
uilding blocks in the proof to utilize the classical double-sum method (Pickands [32]). See
ections 4.1 and 4.3 . This strategy is different from what is used in Qiao and Polonik [37],
here they adopt Delaunay triangulations for the partitions. When extended from Rn to low-
imensional submanifolds, the construction of Delaunay triangulations becomes nontrivial and
eeds a particular algorithm. See Chapter 7 of Boissonnat, Chazal and Yvinec [9]. By contrast,
he construction of Voronoi diagrams on manifolds is straightforward. We expect that the
pproach based on Voronoi diagrams can be generalized to study the extreme value distributions
f Gaussian fields indexed by more sophisticated sets such as stratified spaces (i.e. sets with
anifolds of different dimensions glued together). Furthermore, by using the assumed structure

f Mh , only rescaling the parameter t (1) allows us to apply (1.2) to get asymptotic extreme
alue distributions of χ -fields on manifolds, which in fact is one of the motivations of this
ork, as described below.
Let {X(s), s ∈ M} be a p-dimensional Gaussian vector field, where X = (X1, . . . , X p)T has

ero mean and identity variance–covariance matrix. Note that we have suppressed the possible
167
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ependence of X and M on h. Define

χ (s) = [X2
1(s) + · · · + X2

p(s)]1/2, s ∈ M, (1.3)

hich is called a χ -field, where we allow the components X i (si ) and X j (s j ) to be dependent,
f si ̸= s j . Let Sp−1

= {x ∈ Rp
: ∥x∥ = 1} be the (p − 1)-dimensional unit sphere. Using the

roperty of Euclidean norm, we have

sup
s∈M

χ (s) = sup
s∈M,v∈Sp−1

Yh(s, v), (1.4)

here v = (v1, . . . , vp) ∈ Rp and

Y (s, v) = X1(s)v1 + · · · + X p(s)vp, s × v ∈ M × Sp−1.

Note that Y (s, v) is a zero-mean and unit-variance Gaussian field on M × Sp−1. Using the
relation in (1.4) and by applying the results in (1.1) and (1.2), we can study the asymptotic
excursion probabilities of sups∈M χ (s), and obtain a result in the form of

lim
h→0

P
(

ah

(
sup
s∈M

χ (s/h) − bh

)
≤ z

)
= e−e−z

. (1.5)

The result in (1.5) (see Corollary 3.1) has the following two interesting applications. We
onsider a vector-valued signal plus noise model

f̂ h(s) = f (s) + X(s/h), s ∈ M, (1.6)

here f (s) is a p-dimensional signal, X(s) is the noise modeled by the Gaussian vector field
onsidered above. We assume that only f̂ h(s) is directly observable. Given α ∈ (0, 1), let zα
e such that exp(− exp(−zα)) = 1 − α.

(a) Suppose that M is known, and the inference for the signal f (s) is of interest. We have
he following asymptotic (1 − α) confidence tube for f (s):

Gh(s) :=
{

g ∈ Rp
: ah

(
∥ f̂ h(s) − g∥ − bh

)
≤ zα

}
, s ∈ M. (1.7)

n other words, P( f (s) ∈ Gh(s), ∀s ∈ M) → 1 − α, as h → 0.
(b) Suppose that the manifold M is unknown but implicitly defined by M = {s ∈ A :

f (s) = g0}, where A ⊂ Rn is a known neighborhood of M (say, a unit cube), and g0 is a
nown p-dimensional vector so that M is the intersection of multiple level sets. Suppose that

f̂ h(s) is observable on A, and the inference for the manifold M is of interest. We have the
ollowing asymptotic (1 − α) confidence region for M:

Fh :=
{

s ∈ A : ah
(
∥ f̂ h(s) − g0∥ − bh

)
≤ zα

}
. (1.8)

hat is, P(M ⊂ Fh) → 1 − α, as h → 0. See Remark 3.3(b) for more details.
In statistics the suprema of empirical processes can be approximated by the suprema of

aussian processes or fields under regularity assumptions (see Chernozhukov et al. [14]).
pplying results in (a) and (b) to the approximating Gaussian fields, one can study the

tatistical inference for a large class of objects including functions and geometric features
low-dimensional manifolds). In a form similar to (1.7), confidence bands for density functions
re given in Bickel and Rosenblatt [7] and Rosenblatt [39]. Similar work for regression
unctions can be found in Konakov and Piterbarg [22]. We note that in these examples the
tudy of the suprema of the approximating Gaussian processes or fields focuses on M being
ompact intervals or hypercubes. We expect that our result (1.7) is useful in studying functions

supported on more general (low-dimensional) manifolds, especially in the context of manifold
168
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earning, which usually assumes that data lie on low-dimensional manifolds embedded in
igh-dimensional space. The result (1.8) is useful to infer the location of the manifolds. In

fact, the results proved in this work provide the probabilistic foundation to our companion
work Qiao [36], where the confidence regions for density ridges are obtained. Ridges are low-
dimensional geometric features (manifolds) that generalize the concepts of local modes, and
have been applied to model filamentary structures such as the Cosmic Web and road systems.
See Qiao and Polonik [38] for a similar application for the construction of confidence regions
for level sets.

The study of the asymptotic extreme value behaviors of χ -processes and fields has drawn
quite some interest recently. To our best knowledge, the study in the existing literature has
only focused on χ -processes and fields indexed by intervals or hypercubes, but not low-
dimensional manifolds. See, for example, Albin et al. [2], Bai [4], Hashorva and Ji [20], Ji
et al. [21], Konstantinides et al. [23], Lindgren [26], Ling and Tan [27], Liu and Ji [28,29],
Piterbarg [33,34], Tan and Hashorva [41,42], Tan and Wu [43]. Also it is worth mentioning
that it is often assumed that X1, . . . , Xr are independent copies of a Gaussian process or field
X in the literature, while the cross-dependence among X1, . . . , Xr is allowed under certain
onstraints in this work. The cross-dependence structures of multivariate random fields have
een important objects to study in multivariate geostatistics (see Genton and Kleiber [18]).
lso see Zhou and Xiao [44] for the study of the excursion probability of a bivariate Gaussian

andom field over Rn with cross-dependence.
The paper is organized as follows: In Section 2 we introduce the concepts that we use

in this paper to characterize the manifolds (positive reach) and the Gaussian fields (local
stationarity). Then the result for (1.1) (called the unscaled case) is formulated in Theorem 2.1,
As an application, a similar result for the χ -fields in presented in Corollary 2.2. In Section 3
we give the result (1.2) (called the rescaled case) in Theorem 3.1 and its χ -fields extension
in Corollary 3.1. All the proofs are presented in Section 4, and the Appendix contains some
miscellaneous results used in the paper, as well as a collection of concepts and facts related to
manifolds and geometric integration theory.

2. Extremes of unscaled Gaussian and χ fields on manifolds

We consider a centered Gaussian field X (t), t ∈ M, where M is an r -dimensional
submanifold of Rn (1 ≤ r ≤ n). Let rX (t1, t2) = Cov(X (t1), X (t2)) for any t1, t2 ∈ M. We
first review some existing concepts in the literature that we need to characterize the covariance

X of the Gaussian field X and the manifold M.
For a positive integer k ≤ n, let E = {e1, . . . , ek} be a collection of positive integers such

that n = e1 + · · · + ek , and let ααα = {α1, . . . , αk} be a collection of positive numbers. Then the
pair (E,ααα) is called a structure. Let ∥ · ∥ denote the Euclidean norm. Denote E(0) = 0 and
E(i) = e1 + · · · + ei , i = 1, . . . , k. For any t = (t1, . . . , tn)T

∈ Rn , its structure module is
denoted by |t|E,α =

∑k
i=1 ∥t (i)∥

αi , where t (i) = (tE(i−1)+1, . . . , tE(i))T . This notation has been
used, e.g., in Chapter 2 of Piterbarg [34].

Suppose that αi ≤ 2, i = 1, . . . , k, and consider a Gaussian field W (t), t ∈ Rn , with
continuous trajectories such that EW (t) = −|t|E,ααα and Cov(W (t),W (s)) = |t|E,ααα + |s|E,ααα −

|t − s|E,ααα . It is known that such a field exists (see page 98, Piterbarg [34]). For any measurable
subset T ⊂ Rn define

HE,ααα(T ) = E exp
(

sup W (t)
)
. (2.1)
t∈T
169
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For any T > 0, denote [0, T ]n
= {t ∈ Rn

: ti ∈ [0, T ]}. The generalized Pickands’ constant
is defined as

HE,ααα = lim
T →∞

HE,ααα([0, T ]n)
T n

,

which is a positive finite number. When k = 1, E = {1} and ααα = α ∈ (0, 2], we
denote HE,ααα = Hα . We use the following local stationarity concept (see Definition 7.1 in
Piterbarg [34]).

Definition 2.1 (Local-(E,ααα, Dt )-Stationarity). Let {Z (t), t ∈ M} be a Gaussian random field
with covariance function rZ , indexed on a submanifold M of Rn . Z is said to be locally-
(E,ααα, Dt )-stationary on M, if for every t ∈ M there exists an n × n nonsingular matrix Dt
such that

rZ (t1, t2) = 1 − |Dt (t1 − t2)|E,ααα(1 + o(1)), (2.2)

as max{∥t − t1∥, ∥t − t2∥} → 0 for t1, t2 ∈ M, where the o(1)-term is uniform in t ∈ M.

Positive reach: We use the concept of reach to characterize the manifold M. For a set A ⊂ Rn

and a point x ∈ Rn , let d(x, A) = inf{∥x − y∥ : y ∈ A} be the distance from x to A. The
normal projection onto A is defined as πA(x) = { y ∈ A : ∥x − y∥ = d(x, A)}. For δ > 0, let
B(x, δ) = { y ∈ Rn

: ∥x − y∥ ≤ δ} be the closed ball centered at x with radius δ, and B◦(x, δ)
be its interior. The reach of A, denoted by ∆(A), is defined as the largest δ > 0 such that
for each point x ∈ ∪ y∈AB( y, δ), πA(x) consists of a single point. See Federer [17]. The reach
of a manifold is also called condition number (see Niyogi et al. [31]). A closed submanifold
of Rn has positive reach if and only if it is C1,1 (see Scholtes, [40]). Here a C1,1 manifold
y definition is a C1 manifold equipped with a class of atlases whose transition maps have
ipschitz continuous first derivatives. The concept of positive reach is also closely related to
r-convexity” and “rolling conditions” (Cuevas et al. [15]).

Suppose that the structure (E,ααα) is given. Let R = {r1, . . . , rk} be a collection of positive
ntegers such that ri ≤ ei , i = 1, . . . , k, for which we denote R ≤ E . Let r = r1 +· · ·+rk . We
mpose the following assumptions on the manifold M and the Gaussian field X (t), t ∈ M:

A1) For R ≤ E , we assume that M = M1 × · · · × Mk , where for i = 1, . . . , k, Mi is an
ri -dimensional compact submanifold of Rei with positive reach.

A2) Let Dt = diag(D1,t , . . . , Dk,t ) be a block diagonal matrix, where the dimension of Di,t
is ei × ei , and the matrix-valued function Di,t is continuous in t ∈ M, for i = 1, . . . , k.
For 0 < α1, . . . , αk ≤ 2, we assume that the Gaussian field X (t) on M has zero mean
and is locally-(E,ααα, Dt )-stationary.

emark 2.1. With the condition in (A1), we have the following expression for |Dt (t1 − t2)|E,ααα
n (2.2).

|Dt (t1 − t2)|E,ααα =

k∑
j=1

∥D j,t (t1,( j) − t2,( j))∥αi ,

here we denote t i = (t i,(1), . . . , t i,(k))T , i = 1, 2. Note that the local stationarity condition for
he Gaussian field is given using the structure (E,ααα) for Rn . The structural assumptions on M
nd Dt in (A1) and (A2) are used to guarantee that a similar structure (R,ααα) can be found

hen the local stationarity of the Gaussian field is expressed on a low-dimensional manifold,

170



W. Qiao Stochastic Processes and their Applications 133 (2021) 166–192

w
t

r

c

W
c

hich locally resembles Rr . Note that, however, in the special case of k = 1 we do not have
hese structural constraints for M and Dt any more.

Some notation: Let 1 ≤ m ≤ n. For an n × m matrix G, let ∥G∥
2
m be the sum of squares of all

minor determinants of order m. For m ≥ 0, let Hm be the m-dimensional normalized Hausdorff
measure (see Definition A.1 in the appendix). It coincides with the m-dimensional Lebesgue
measure for Lebesgue measurable sets when m is a positive integer. For a C1 manifold M , at
each u ∈ M , let Tu M denote the tangent space of M at u. Let φ and Φ denote the standard
normal density and cumulative distribution function, respectively, and let Φ̄(u) = 1−Φ(u) and
Ψ (u) = u−1φ(u). Recall that t = (tT

(1), . . . , tT
(k))

T . The following is a result for the asymptotic
behavior of the excursion probability of X on the manifold M.

Theorem 2.1. For a Gaussian field X (t), t ∈ M satisfying assumptions (A1) and (A2), if
X (t, s) < 1 for all t, s from M, t ̸= s, then

P
(

sup
t∈M

X (t) > u
)

= HR,α

∫
M

k∏
j=1

∥D j,t Pj,t( j)∥r j dHr (t)
k∏

i=1

u2ri /αiΨ (u)(1 + o(1)), (2.3)

as u → ∞, where Pj,t( j) is an e j × r j matrix whose columns are orthonormal and span the
tangent space Tt( j)M j .

Remark 2.2.

a. The factorization lemma (Lemma 6.4, Piterbarg [34]) implies that HR,α =
∏k

i=1 Hri ,αi ,
where in the notation we do not distinguish between ri (or αi ) and {ri } (or {αi }).

b. An equivalent expression of the integrand in (2.3) is given by (see (4.2) in the proof)
k∏

j=1

∥D j,t Pj,t( j)∥r j = ∥Dt Pt∥r =

√
det(PT

t DT
t Dt Pt ), (2.4)

where Pt = diag(P1,t(1) , . . . , Pk,t(k) ), whose columns form a basis of the tangent space
TtM. The quantity in (2.4) is invariant if we choose a different basis of TtM for the
projection matrix Pt . See (4.3) in the proof. Here PT

t DT
t Dt Pt is a Gramian matrix of the

column vectors of Dt Pt , and ∥Dt Pt∥r is the r -dimensional volume of the parallelotope
formed by these vectors. Heuristically, ∥Dt Pt∥r reflects the local variability of the
Gaussian field X (t) when projected to the tangent space TtM, and is independent of
the choice of the local coordinate system represented by Pt .

c. When E = R, (2.3) becomes

P
(

sup
t∈M

X (t) > u
)

= HE,α

∫
M

| det(Dt )|dHn(t)
k∏

i=1

u2ei /αiΨ (u)(1 + o(1)), (2.5)

as u → ∞, which is consistent with Theorem 7.1 in Piterbarg [34].

When Dt ≡ cI for some constant c ̸= 0 and k = 1 such that α = α, the local stationarity
ondition of X (t) used in Theorem 2.1 becomes the following local isotropy condition.

rX (t1, t2) = 1 − |c|α∥t1 − t2∥
α(1 + o(1)), as ∥t1 − t2∥ → 0. (2.6)

e give the explicit form of the asymptotic excursion probability for this case in the following
orollary, as an immediate result of Theorem 2.1.
171
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orollary 2.1. When the assumptions in Theorem 2.1 hold with Dt ≡ cI for some constant
̸= 0 and k = 1 such that α = α, we have

P
(

sup
t∈M

X (t) > u
)

= HR,α|c|rHr (M)u2r/αΨ (u)(1 + o(1)), as u → ∞. (2.7)

emark 2.3. The case of M = Sr when n = r + 1 is of special interest in some applications.
et dSr (t1, t2) = arccos(tT

1 t2) be the spherical distance between t1, t2 ∈ Sr . It is easy to see
hat the local isotropy condition (2.6) for M = Sr can be equivalently written as

rX (t1, t2) = 1 − |c|α[dSr (t1, t2)]α(1 + o(1)), as ∥t1 − t2∥ → 0.

orrespondingly (2.7) becomes

P
(

sup
t∈Sr

X (t) > u
)

= HR,α|c|rHr (Sr )u2r/αΨ (u)(1 + o(1)), as u → ∞. (2.8)

t is known that Hr (Sr ) =
2π

r+1
2

Γ ( r+1
2 )

, where Γ is the gamma function. This result is consistent
ith Theorem 2.4 in Cheng and Xiao (2016).

We will apply Theorem 2.1 to study the excursion probabilities of χ -fields indexed by
manifolds. Let {X(s), s ∈ L} be a centered p-dimensional (p ≥ 2) Gaussian vector field, where
X = (X1, . . . , X p)T with Var(X i ) = 1, i = 1, . . . , p, and L is an m-dimensional submanifold
of Rn (1 ≤ m ≤ n). We consider the asymptotics of

P
(

sup
s∈L

∥X(s)∥ > u
)
, as u → ∞. (2.9)

Let v = (v1, . . . , vp)T
∈ Rp, t = (sT , vT )T

∈ Rn+p, and

Y (t) = Y (s, v) = X1(s)v1 + · · · + X p(s)vp. (2.10)

Due to the relation in (1.4), it is clear that (2.9) is equivalent to

P

(
sup

t∈L×Sp−1
Y (t) > u

)
, as u → ∞. (2.11)

To study (2.9) through (2.11), we directly impose an assumption on the covariance function
Y of Y , which we find convenient because it allows us to encode the possible cross-dependence

structure among X1, . . . , Xr into rY . See example (ii) below. For i = 1, 2, denote t i =

(sT
i , v

T
i )T , where vT

i = (vi,1, . . . , vi,p). Let rY (t1, t2) = Cov(Y (t1), Y (t2)). Then notice that

rY (t1, t2) =

p∑
i=1

p∑
j=1

Cov(X i (s1), X j (s2))v1,iv2, j

=vT
1 v2 −

p∑
i=1

p∑
j=1

[δi j − Cov(X i (s1), X j (s2))]v1,iv2, j

=1 −
1
2
∥v1 − v2∥

2
−

p∑
i=1

p∑
j=1

[δi j − Cov(X i (s1), X j (s2))]v1,iv2, j , (2.12)

here δi j = 1(i = j) is the Kronecker delta. The structure in (2.12) suggests the following
ssumption on r (t , t ).
Y 1 2
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(
l

A3) We assume that Y (t) given in (2.10) is a local-(E,ααα, Dt )-stationary Gaussian field on
L × Sp−1 with Dt = diag(Bt ,

1
√

2
I p), where Bt is a nonsingular n × n matrix for all

t ∈ L × Sp−1, E = {n, p} and ααα = {α, 2}, for some 0 < α ≤ 2. We assume that the
matrix-valued function Bt is continuous in t ∈ L × Sp−1.

emark 2.4. Note that assumption (A3) implies that for s ∈ L and 1 ≤ i, j ≤ p,

Cov(X i (s), X j (s)) =

{
0 i ̸= j
1 i = j.

n other words, we are considering a Gaussian vector field X(s) whose variance–covariance
atrix at any point s ∈ L has been standardized. However, cross-dependence between X i (si )

nd X j (s j ) is still possible under assumption (A3) for si , s j ∈ L, si ̸= s j and i ̸= j .

Corollary 2.2. Let {X(s), s ∈ L} be a Gaussian p-dimensional (p ≥ 2) vector field with zero
mean on a compact m-dimensional submanifold L ⊂ Rn of positive reach, such that {Y (t),
t ∈ L×Sp−1

} in (2.10) satisfies assumption (A3). If rY (t1, t2) < 1 for all t1, t2 from L×Sp−1,
t1 ̸= t2, then

P
(

sup
s∈L

∥X(s)∥ > u
)

=
Hm,α

(2π )(p−1)/2

∫
L×Sp−1

∥Bt Ps∥mdHm+p−1(t)u2m/α+p−1Ψ (u)(1+o(1)),

(2.13)

s u → ∞, where Ps is an n ×m matrix whose columns are orthonormal and span the tangent
pace TsL.

emark 2.5.

a. This corollary is a direct consequence of Theorem 2.1 using R = (m, p − 1). To see this,
notice that HR,ααα = Hm,αHp−1,2 = Hm,α(

√
π)−(p−1), because of the factorization lemma

(see Remark 2.2) and the well known fact H2 = (π )−1/2 (see page 31, Piterbarg [34]).
Also notice that ∥

1
√

2
I p Pu∥p−1 = 2−(p−1)/2, where Pu is a p×(p−1) orthonormal matrix

whose columns span the tangent space TuSp−1.
b. Even though the result in this corollary is stated for p ≥ 2, it can be easily extended to

the case p = 1. When p = 1, we write X(s) = X (s) ∈ R and Sp−1
= {±1}. Then using

the same proof of this corollary, one can show that under the assumptions given in this
corollary (in a broader sense such that Bt = Bs only depends on s ∈ L, because Sp−1

now is a discrete set), we have that as u → ∞,

P
(

sup
s∈L

|X (s)| > u
)

= 2Hm,α

∫
L

∥Bs Ps∥mdHm(s)u2m/αΨ (u)(1 + o(1)), (2.14)

where the factor 2 on the right-hand side is the cardinality (i.e., the 0-dimensional
Hausdorff measure) of the set S0.

xamples. Below we give two examples of Gaussian vector fields X that satisfy assumption
A3).

i) Let X1(s), . . . , X p(s) be i.i.d. copies of {X (s), s ∈ L}, which is assumed to be
ocally-(n, α, Bs)-stationary, where 0 < α ≤ 2, that is,

r (s , s ) = 1 − ∥B (s − s )∥α(1 + o(1)),
X 1 2 s 1 2
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s max{∥s − s1∥, ∥s − s2∥} → 0. In this case, (A3) is satisfied because

rY (t1, t2) =rX (s1, s2)vT
1 v2

=1 − [∥Bs(s1 − s2)∥α +
1
2
∥v1 − v2∥

2](1 + o(1)),

s max{∥t − t1∥, ∥t − t2∥} → 0. In other words, Y (t) is locally-(E,ααα, Dt )-stationary, where
Dt = diag(Bs,

1
√

2
I p), E = {n, p} and ααα = {α, 2}.

ii) Consider X i (s) as a locally-(n, 2, (Ai,i
s )1/2) stationary field, where Ai,i

s are positive definite
× n matrices, for i = 1, . . . , p. Also for 1 ≤ i ̸= j ≤ p, suppose Cov(X i (s1), X j (s2)) =

s1 − s2)T Ai, j
s (s1 − s2)(1 + o(1)), as max{∥s − s1∥, ∥s − s2∥} → 0, where Ai, j

s are n × n
ymmetric matrices. So overall for 1 ≤ i ̸= j ≤ p we may write

Cov(X i (s1), X j (s2)) = δi j − (s1 − s2)T Ai, j
s (s1 − s2)(1 + o(1)),

s max{∥s − s1∥, ∥s − s2∥} → 0. Using (2.12), we have

rY (t1, t2) = 1 −
1
2
∥v1 − v2∥

2
− (s1 − s2)T

⎧⎨⎩
p∑

i=1

p∑
j=1

[viv j Ai, j
s ]

⎫⎬⎭ (s1 − s2)(1 + o(1)).

Let At =
∑p

i=1
∑p

j=1[viv j Ai, j
s ]. If At is positive definite, then (A3) is satisfied with

Bt = (At )1/2, E = n + p and ααα = 2. The matrix At is positive definite under many possible
onditions. For example, if for each i , λmin(Ai,i

t ) >
∑

j ̸=i |λmin(Ai, j
t )|, where λmin is the smallest

igenvalue of a matrix, then At is positive definite because for any u ∈ Rn with ∥u∥ > 0 and
ny v ∈ Sr−1,

uT Atu ≥

p∑
i=1

p∑
j=1

λmin(Ai, j
t )viv j∥u∥

2
= vTΛminv∥u∥

2 > 0,

here Λmin is a matrix consisting of λmin(Ai, j
t ), which is positive definite.

. Extremes of rescaled Gaussian and χ fields on manifolds

In this section, we consider a class of centered Gaussian fields {Xh(t), t ∈ Mh}h∈(0,h0] for
ome 0 < h0 < 1, where Mh = Mh,1 × Mh,2 are r -dimensional compact submanifolds of
n . We will develop the result in (1.2), where the index t is (partially) rescaled by multiplying

h−1. For simplicity of exposition, in the structure (E,ααα), we take k = 1 or k = 2. The case
= 1 also corresponds to Mh,2 = ∅ for the case k = 2. The results in this section can be

eneralized using the same structure (E,ααα) as in Section 2.
When k = 2, we denote K = {1, 2} and have ααα = {α1, α2}, E = {e1, e2} and R = {r1, r2},

here 1 ≤ r1 ≤ e1, 1 ≤ r2 ≤ e2, r = r1 + r2, and n = e1 + e2. For t = (tT
(1), tT

(2))
T

∈
e1 × Re2 = Rn , let ξh : Rn

→ Rn be a function such that ξh(t) = (h tT
(1), tT

(2))
T . For any

s ∈ Mh = Mh,1 × Mh,2, let Ds,h = diag(D(1)
s,h, D(2)

s,h) be an n × n block diagonal matrix.
When k = 1, we denote K = {1} and have ααα = α = α1, r2 = 0, E = n = e1 and

R = r = r1, where 1 ≤ r ≤ n. For t = t (1) ∈ Rn , let ξh : Rn
→ Rn be a function such that

h(t) = h t . For s ∈ Mh = Mh,1, let Ds,h = D(1)
s,h be an n × n matrix.

We first give the following assumptions before formulating the main result of this section.
et ξ−1

h be the inverse function of ξh . Denote Mh = ξ−1
h (Mh) = {t : ξh(t) ∈ Mh}. Let

X h(t) = Xh(ξh(t)), t ∈ Mh . Let r̄h(t1, t2) be the covariance between X h(t1) and X h(t2), for
t , t ∈ M .
1 2 h
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B1) For i ∈ K , assume that Mh,i is an ri -dimensional compact submanifold of Rei , with
inf0<h≤h0 ∆(Mh,i ) > 0, and

0 < inf
0<h≤h0

Hri (Mh,i ) ≤ sup
0<h≤h0

Hri (Mh,i ) < ∞, i ∈ K .

B2) X h(t) is locally-(E,ααα, Dξh (t),h)-stationary in the following uniform sense: for t, t1, t2 ∈

Mh , as max{∥t − t1∥, ∥t − t2∥} → 0,

r̄h(t1, t2) = 1 − |Dξh (t),h(t1 − t2)|E,ααα(1 + o(1)), (3.1)

where the o(1)-term is uniform in t ∈ Mh and 0 < h ≤ h0. Here for i ∈ K , the dimension
of D(i)

s,h is ei × ei , and the matrix-valued function D(i)
s,h of s has continuous components

on Mh . Also

0 < inf
0<h≤h0,s∈Mh

λmin([D(i)
s,h]T D(i)

s,h) ≤ sup
0<h≤h0,s∈Mh

λmax([D(i)
s,h]T D(i)

s,h) < ∞, i ∈ K ,

(3.2)

where λmin and λmax are the smallest and largest eigenvalues of symmetric matrices,
respectively.

B3) Suppose that, for any x > 0, there exists η > 0 such that Q(x) < η < 1, where

Q(x) = sup
0<h≤h0

{|r̄h(t, s)| : t, s ∈ Mh, ∥t (1) − s(1)∥ ≥ x}. (3.3)

B4) There exist x0 > 0 and a function v(·) such that for x > x0, we have

Q(x)
⏐⏐⏐(log x)2(r1/α1+r2/α2)

⏐⏐⏐ ≤ v(x), (3.4)

where v is monotonically decreasing, such that, for any q > 0, v(xq ) = O(v(x)) = o(1)
and v(x)xq

→ ∞ as x → ∞.

emark 3.1. Assumptions (B1)–(B3) extends their counterparts used in Theorem 2.1 to some
orms that are uniform for the classes of Gaussian fields and manifolds. Assumption (B4) is
nalogous to the classical Berman condition used for proving extreme value distributions (see
erman [5]). An example of v(x) in assumption (B4) is given by v(x) = (log x)−β , for some
> 0.

heorem 3.1. Suppose assumptions (B1)–(B4) hold. Let

βh =

(
2r1 log

1
h

) 1
2

+

(
2r1 log

1
h

)−
1
2

×

[ ( r1

α1
+

r2

α2
−

1
2

)
log log

1
h

+ log
{

(2r1)
r1
α1

+
r2
α2

−
1
2

√
2π

HR,ααα Ih(Mh)
} ]

, (3.5)

where Ih(Mh) =
∫
Mh

∥Dt,h Pt∥r dHr (t) with Pt an n × r matrix with orthonormal columns
spanning TtMh . Then

lim
h→0

P

{√
2r1 log 1

h

(
sup

t∈M
Xh(t) − βh

)
≤ z

}
= e−e−z

. (3.6)

h

175



W. Qiao Stochastic Processes and their Applications 133 (2021) 166–192

R

f
G
c
R

U

C
(

emark 3.2.

a. If there exists γ > 0 such that Ih(Mh) → γ as h → 0, then obviously γ can replace
Ih(Mh) in the theorem. Also if Mh ≡ M and Dt,h ≡ Dt (i.e. they are independent of
h), then Ih(Mh) =

∫
M ∥Dt Pt∥r dHr (t).

b. The case k = 1 corresponds to the scenario studied in Qiao and Polonik (2018). Compared
with their result, here we only need Xh to be indexed by the manifold Mh , instead of its
neighborhood.

c. When Dt,h ≡ cI , for all t ∈ Mh for some constant c ̸= 0 (also see Corollary 2.1), we
have Ih(Mh) = |c|rHr (Mh).

Next we consider the asymptotic extreme value distribution of rescaled χ -fields on mani-
olds. For some 0 < h0 < 1, let {Xh(s), s ∈ Lh}h∈(0,h0] be a class of centered p-dimensional
aussian random vector fields, where Xh = (Xh,1, . . . , Xh,p)T and Lh are m-dimensional

ompact submanifolds of Rn (1 ≤ m ≤ n). Let v = (v1, . . . , vp)T
∈ Rp and t = (sT , vT )T

∈
n+p. Let

Xh(t) = Xh(s, v) = Xh,1(s)v1 + · · · + Xh,p(s)vp, t ∈ Mh := Lh × Sp−1 (3.7)

sing the property of Euclidean norm, we have

sup
s∈Lh

∥Xh(s)∥ = sup
t∈Mh

Xh(t). (3.8)

orollary 3.1. Suppose p ≥ 2 and {Xh(t), t ∈ Lh×Sp−1
}h∈(0,h0] in (3.7) satisfies assumptions

B1)–(B4) with E = {n, p}, R = {m, p − 1}, ααα = {α, 2}, and Dt,h = diag(Bt,h,
1

√
2

I p) where
Bt,h is a nonsingular n × n matrix. Let

βh =

(
2m log

1
h

) 1
2
+

(
2m log

1
h

)−
1
2
[(m
α

+
p − 2

2

)
log log

1
h

+log
{

(2m)
m
α

+
p−2

2

(
√

2π )p
Hm,α Ih(Mh)

}]
,

(3.9)

where Ih(Mh) =
∫
Lh×Sp−1 ∥Bt,h Ps∥mdHm+p−1(t) with Ps an n × m matrix with orthonormal

columns spanning TsLh . Then

lim
h→0

P

{(
2m log 1

h

) 1
2

(
sup
s∈Lh

∥Xh(s)∥ − βh

)
≤ z

}
= e−e−z

. (3.10)

Remark 3.3.

a. The result in this corollary immediately follows from Theorem 3.1. See Remark 2.5(a)
for some relevant calculation. Also, similar to Remark 2.5(b), the result in this corollary
can be extended to the case p = 1 such that Sp−1

= {±1}, for which (3.10) holds with

βh =

(
2m log

1
h

) 1
2
+

(
2m log

1
h

)−
1
2
[(m
α

−
1
2

)
log log

1
h

+log
{

(2m)
m
α −

1
2

√
2π

Hm,α Ih(Mh)
}]
,

where Ih(Mh) = 2
∫
Lh

∥Bs,h Ps∥mdHm(s).
b. In the introduction section, we briefly indicate two examples (a) and (b) as applications

of this corollary using the signal plus noise model in (1.6), by taking Lh ≡ M in this
corollary. The application of this corollary to example (a) is straightforward. For example
176
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(b), we consider M as (the intersection of) level sets with the form M = {s ∈ A : f (s) =

g0}, where A ⊂ Rn is a neighborhood of M and f and g0 are p-dimensional vectors.
We take 1 ≤ p < n. The positive reach condition of M required by this corollary is met
when f satisfies the conditions given in Lemma 4.11 and Theorem 4.12 of Federer (1959),
e.g., when the component functions of the Jacobian matrix of f are Lipschitz continuous
and g0 corresponds to regular (i.e., non-critical) values of f , meaning that the Jacobian
matrix of f at every point of M has full rank. Also note that under this condition, M is an
m-dimensional manifold by the constant-rank level set theorem (Theorem 5.12, Lee [24]),
where m = n − p. If all the assumptions in this corollary are satisfied, then the validity of
Fh in (1.8) as an asymptotic (1 −α) confidence region for M is simply the consequence
of the equivalence of the following two events.

M ⊂ Fh ⇐⇒ ah

(
sup
s∈M

∥ f̂ h(s) − g0∥ − bh

)
≤ zα,

where we can take ah = (2m log 1
h )

1
2 and bh = βh as in this corollary.

4. Proofs

4.1. Geometric construction for the proof of Theorem 2.1

The proof of Theorem 2.1 relies on some geometric construction on manifolds with positive
each, which we present first. Let M be an r -dimensional submanifold of Rn . Suppose it has
ositive reach, i.e., ∆(M) > 0. For ε, η > 0, a set of points Q on M is called an (ε, η)-sample,
f

(i) ε-covering: for any x ∈ M , there exists y ∈ Q such that ∥x − y∥ ≤ ε;
(ii) η-packing: for any x, y ∈ Q, ∥x − y∥ > η.

or simplicity, we always use η = ε, and such an (ε, ε)-sample is called an ε-net. It is known
hat an ε-net always exists for any positive real number ε when M is bounded (see Lemma
.2, Boissonnat, Chazal and Yvinec [9]). Let Nε be the cardinality of this ε-net. Let

Pε = max{n : there exists an ε-packing of M of size n},

Cε = min{n : there exists an ε-covering over M of size n},

hich are called the ε-packing and ε-covering numbers, respectively. It is known that (see
emma 5.2 in Niyogi et al. [31])

P2ε ≤ Cε ≤ Nε ≤ Pε.

Also it is given on page 431 of Niyogi et al. [31] that when ε < ∆(M)/2

Pε ≤
Hr (M)

[cosr (θ )]εr Br
,

where Br is the volume of the unit r -ball, and θ = arcsin(ε/2). This implies that Nε = O(ε−r ),
s ε → 0, when Hr (M) is bounded.

Let {x1, . . . , xNε } ⊂ M be an ε-net. With this ε-net, we can construct a Voronoi diagram
estricted on M consisting of Nε Voronoi cells V1, . . . , VNε , where Vi = {x ∈ M : ∥x − xi∥ ≤

∥x − x ∥, for all j ̸= i}. The Voronoi diagram gives a partition of M , that is M = ∪
Nε V .
j i=1 i
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ue to the definition of the ε-net, we have that

(B(xi , ε/2) ∩ M) ⊂ Vi ⊂ (B(xi , ε) ∩ M), i = 1, . . . , Nε.

n other words, the shape of all the Voronoi cells is always not very thin.

.2. Proof of Theorem 2.1

We first give a lemma used in the proof of Theorem 2.1. Recall that a bounded subset of
n is called Jordan measurable if its boundary has Lebesgue measure zero.

emma 4.1. Suppose that the conditions in Theorem 2.1 hold. For a subset V ⊂ M, suppose
hat there exist an open set G ⊂ Rr and a diffeomorphism ψ : G → V , where the component
unctions of the Jacobian matrix Jψ of ψ are uniformly continuous. For any subset U ⊂ V ,
f Ω := ψ−1(U ) is a compact Jordan set of positive r-dimensional Lebesgue measure, then as
→ ∞,

P
(

sup
t∈U

X (t) > u
)

= HR,ααα

∫
U

k∏
j=1

∥D j,t Pj,t∥r j dHr (t)
k∏

i=1

u2ri /αiΨ (u)(1 + o(1)). (4.1)

roof. Let X̃ = X ◦ ψ , which is a Gaussian field indexed by V ⊂ Rr . Consider t̃, t̃1, t̃2 ∈

⊂ V such that max{∥̃t − t̃1∥, ∥̃t − t̃2∥} → 0. Since ψ is a diffeomorphism, we also have
ax{∥ψ (̃t) − ψ (̃t1)∥, ∥ψ (̃t) − ψ (̃t2)∥} → 0. Using assumption (A1), we have

Cov(X̃ (̃t1), X̃ (̃t2)) =Cov(X (ψ (̃t1)), X (ψ (̃t2)))
=1 − |Dψ (̃t )(ψ (̃t1) − ψ (̃t2))|E,ααα(1 + o(1))

=1 − |Dψ (̃t ) Jψ (̃t )(̃t1 − t̃2)|E,ααα(1 + o(1)),

here in the last step we have used a Taylor expansion. Note that the above o(1)-term is uniform
n t̃ ∈ Ω due to the definition of the local-(E,ααα, Dt )-stationarity given in Definition 2.1, and
he uniform continuity of Jψ assumed in this lemma. Since the columns of the Jacobian matrix
Jψ span the tangent space Tψ (̃t )M, and the matrix Dψ (̃t ) is assumed to be nonsingular, the

atrix Dψ (̃t ) Jψ (̃t ) is of full rank, and therefore

A(̃t ) := [Jψ (̃t )]T [Dψ (̃t )]T Dψ (̃t ) Jψ (̃t )

s positive definite. Also note that A(̃t ) is a block diagonal matrix, where the diagonal blocks
ave dimension ri × ri , i = 1, . . . , k. Let A(̃t )1/2 be the principal square root matrix of A(̃t ).
e have that

Cov(X̃ (̃t1), X̃ (̃t2)) = 1 − |A(̃t )1/2(̃t1 − t̃2)|R,ααα(1 + o(1)).

sing Theorem 7.1 in Piterbarg [34], we obtain that as u → ∞,

P
(

sup
t̃∈Ω

X̃ (̃t ) > u
)

= HR,ααα

∫
Ω

det[A(̃t )1/2]dHr (̃t )
k∏

i=1

u2ri /αiΨ (u)(1 + o(1)).

y using the change of variables formula (see Corollary A.1 in the appendix) and noticing that
up̃t ∈Ω X̃ (̃t ) = supt∈U X (t), we have

P
(

sup X (t) > u
)

= HR,ααα

∫
det[A(ψ−1(t))1/2]
det[B(ψ−1(t))1/2]

dHr (t)
k∏

u2ri /αiΨ (u)(1 + o(1)),

t∈U U i=1
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here B(ψ−1(t)) = [Jψ (ψ−1(t))]T Jψ (ψ−1(t)). Let {p1(t), . . . , pr (t)} be an orthonormal basis
of the tangent space TtM and write Pt = [p1(t), . . . , pr (t)]. There exists an r × r nonsingular

atrix Q t such that Jψ (ψ−1(t)) = Pt Q t . Hence

det[A(ψ−1(t))1/2]
det[B(ψ−1(t))1/2]

=
det[Q t ] det[(PT

t DT
t Dt Pt )1/2]

det[Q t ]
= det[(PT

t DT
t Dt Pt )1/2].

Notice that Pt = diag(P1,t(1) , . . . , Pk,t(k) ), where Pj,t( j) is an e j × r j matrix whose columns
re orthonormal and span Tt( j)M j , j = 1, . . . , k. Then by the Cauchy–Binet formula (see

Broida and Williamson [11], page 214), we have

∥Dt Pt∥r = det[PT
t DT

t Dt Pt ]1/2
=

k∏
j=1

det[(PT
j,t( j)

DT
j,t D j,t Pj,t( j) )

1/2] =

k∏
j=1

∥D j,t Pj,t( j)∥r j .

(4.2)

Therefore we get (4.1). We can also show that the quantity in (4.2) is invariant if we choose a
different orthonormal basis of TtM, say { p̃1(t), . . . , p̃r (t)}. Let P̃t = [ p̃1(t), . . . , p̃r (t)]. Then
here exists an r × r orthogonal matrix Wt such that P̃t = Pt Wt . We have

det[P̃T
t DT

t Dt P̃t ]1/2
= det[Wt W T

t ]1/2 det[PT
t DT

t Dt Pt ]1/2
= det[PT

t DT
t Dt Pt ]1/2. □

(4.3)

roof of Theorem 2.1. For any t ∈ M, denote Ct = B◦(t,∆(M)/2) ∩ M and let
≡ τt : Ct → TtM be the projection map to the tangent space TtM, that is, τ is a restriction

f the normal projection πTtM to the set Ct . Let Dt be the image of Ct under τ , which is an
pen set in TtM. It is known that τ is a diffeomorphism between Ct and Dt (see Lemma 5.4,

Niyogi et al. [31]). It follows from the proof of Theorem B in Leobacher and Steinicke [25]
that the Jacobian of τ−1, denoted by Jτ−1 , is locally Lipschitz continuous in the following
uniform sense: for any t̃ ∈ Dt , let a > 0 be such that B◦ (̃t, a) ∩ TtM ⊂ Dt ; for any δ ∈ TtM
such that ∥δ∥ < 1

2 a, there exists a constant L > 0 only depending on ∆(M) such that

∥Jτ−1 (̃t + δ) − Jτ−1 (̃t)∥op ≤ L∥δ∥, (4.4)

where ∥ · ∥op is the operator norm of matrices. Therefore Jτ−1 is uniformly continuous when
restricted to τ−1(B(t, ϵ) ∩ M) for any 0 < ϵ < ∆(M)/2. Suppose that {e1, . . . , er } is an
rthonormal basis of TtM. Let ι : TtM → Rr be a map such that ι( y) = (y1, . . . , yr ) ∈ Rr

or y = y1e1 + · · · yr er ∈ TtM. Then ψ := τ−1
◦ ι−1 is the diffeomorphism we need to apply

emma 4.1.
We choose ϵ < ∆(M)/10. Using the method in Section 4.1, we find an ϵ-net {t1, . . . , t Nϵ }

or M, and construct a partition of M with Voronoi cells V1, . . . , VNϵ , where Nϵ = O(ϵ−r ).
ince Vi ⊂ (B(t i , ϵ) ∩ M), τ ≡ τti is a diffeomorphism on Vi , i = 1, . . . , Nϵ .

Using Lemma 4.1, we have that

P

(
sup
t∈Vi

X (t) > u

)
= HR,ααα

∫
Vi

k∏
j=1

∥D j,t Pj,t∥r j dHr (t)
k∏

j=1

u2r j /α jΨ (u)(1 + o(1)),

s u → ∞, and hence
Nϵ∑

P

(
sup
t∈V

X (t) > u

)
= HR,ααα

∫
M

k∏
∥D j,t Pj,t∥r j dHr (t)

k∏
u2r j /α j Ψ (u)(1 + o(1)). (4.5)
i=1 i j=1 j=1
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We will apply the double-sum method (see Piterbarg [34]). Using the Bonferroni inequality,
e have

Nϵ∑
i=1

P

(
sup
t∈Vi

X (t) > u

)
−

∑
i ̸= j

P

(
sup
t∈Vi

X (t) > u, sup
t∈V j

X (t) > u

)

≤ P
(

sup
t∈M

X (t) > u
)

≤

Nϵ∑
i=1

P

(
sup
t∈Vi

X (t) > u

)
.

(4.6)

For any two subsets A1,A2 ⊂ Rn , define

dmax(A1,A2) = sup{∥t1 − t2∥ : t1 ∈ A1, t2 ∈ A2},

dmin(A1,A2) = inf{∥t1 − t2∥ : t1 ∈ A1, t2 ∈ A2}. (4.7)

e divide the set of indices S = {(i, j) : 1 ≤ i ̸= j ≤ Nϵ} into S1 and S2, where
S1 = {(i, j) ∈ S : dmax(Vi , V j ) ≤ 5ϵ} and S2 = {(i, j) ∈ S : dmax(Vi , V j )} > 5ϵ}. If (i, j) ∈ S1,
hen there exists t̄ ∈ M such that (Vi ∪ V j ) ⊂ (B( t̄, 5ϵ)∩M) ⊂ (B◦( t̄,∆(M)/2)∩M), due to
he choice ϵ < ∆(M)/10. With the diffeomorphism ψ defined at the beginning of the proof,
e apply Lemma 4.1, and have that as u → ∞,

P

(
sup
t∈Vi

X (t) > u, sup
t∈V j

X (t) > u

)

=P

(
sup
t∈Vi

X (t) > u

)
+ P

(
sup
t∈V j

X (t) > u

)
− P

(
sup

t∈Vi ∪V j

X (t) > u

)

=o(1)HR,ααα

∫
Vi ∪V j

k∏
j=1

∥D j,t Pj,t∥r j dHr (t)
k∏

j=1

u2r j /α jΨ (u).

Therefore as u → ∞,∑
(i, j)∈S1

P

(
sup
t∈Vi

X (t) > u, sup
t∈V j

X (t) > u

)
= o

(
k∏

i=1

u2ri /αiΨ (u)

)
. (4.8)

Next we proceed to consider (i, j) ∈ S2. Let Y (t, s) = X (t) + X (s). Note that

P

(
sup
t∈Vi

X (t) > u, sup
t∈V j

X (t) > u

)
≤ P

(
sup

t∈Vi ,s∈V j

Y (t, s) > 2u

)
. (4.9)

n order to further bound the probability on the right-hand side, we will use the Borell
nequality [10] (see Theorem D.1 in Piterbarg [34]). Notice that dmin(Vi , V j ) ≥ dmax(Vi , V j ) −

ϵ, and hence

min
(i, j)∈S2

dmin(Vi , V j ) ≥ ϵ.

The assumption in the theorem guarantees that ρ := sup∥t−s∥≥ϵ rX (t, s) < 1. This then yields
hat

max
(i, j)∈S

sup Var (Y (t, s)) ≤ 2 + 2ρ

2 (t,s)∈Vi ×V j
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nd

sup
(i, j)∈S2

sup
(t,s)∈Vi ×V j

E (Y (t, s)) = 0.

ow it remains to show that P
(

supt∈Vi ,s∈V j
Y (t, s) > b

)
≤ 1/2 for some constant b for all

i, j) ∈ S2 in order to apply the Borell inequality to Y (t, s). Such b exists because

P

(
sup

t∈Vi ,s∈V j

Y (t, s) > u

)
≤ P

(
sup

t∈M,s∈M
Y (t, s) > u

)
≤ P

(
sup
t∈M

X (t) > u/2
)

≤HR,ααα

∫
M

k∏
j=1

∥D j,t Pj,t∥r j dHr (t)
k∏

j=1

(u
2

)2r j /α j
Ψ
(u

2

)
(1 + o(1)),

hich tends to zero as u → ∞. The application of the Borell inequality now gives that

P

(
sup

t∈Vi ,s∈V j

Y (t, s) > 2u

)
≤ 2Φ̄

(
u − b/2

√
(1 + ρ)/2

)
. (4.10)

lso note that the cardinality |S2| ≤ N 2
ϵ ≤ Cϵ−2r , for some constant C > 0. Using the

ell-known fact that Φ̄(u)/Ψ (u) → 1 as u → ∞, we have∑
(i, j)∈S2

P

(
sup
t∈Vi

X (t) > u, sup
t∈V j

X (t) > u

)
≤2|S2|Φ̄

(
u − b/2

√
(1 + ρ)/2

)

=2|S2|

(
u − b/2

√
(1 + ρ)/2

)−1
φ

(
u − b/2

√
(1 + ρ)/2

)
(1 + o(1))

=o

⎛⎝ k∏
i=1

u2ri /αi Ψ (u)

⎞⎠ , (4.11)

s u → ∞, where the last step follows from
√

(1 + ρ)/2 < 1. Combining (4.5), (4.6), (4.8)
nd (4.11), we have the desired result. □

4.3. Geometric construction for the proof of Theorem 3.1

We first give some geometric construction used in the proof of Theorem 3.1. We focus on
he case k = 2 below. For k = 1, only the geometric construction on Mh,1 is needed.

i) Voronoi diagram on Mh : Let ℓ1 = infh∈(0,h0] ∆(Mh,1)/2. It is known from Section 4.1 that
here exists an (hℓ1)-net {s1, . . . , smh } on Mh , where mh = O((hℓ1)−r1 ) is the cardinality of the
et. With this (hℓ1)-net and using the technique described in Section 4.1, we construct a Voronoi
iagram restricted on Mh,1. The collections of the cells are denoted by {Jk,h : k = 1, . . . ,mh},
hich forms a partition of Mh,1. Similarly for Mh,2, with ℓ2 = infh∈(0,h0] ∆(Mh,2)/2, there

xists an ℓ2-net {u1, . . . , unh } on Mh,2, where nh = O(ℓ−r2
2 ). The cells of the corresponding

oronoi diagram on Mh,2 are denoted by U1,h, . . . ,Unh ,h .

ii) Separation of Voronoi cells: The construction of the Voronoi diagram restricted on Mh,1

uarantees that each cell Jk,h ⊃ (Mh,1 ∩ B(sk, (hℓ1)/2)). In other words, Jk,h is not too thin.
or 0 < δ < ℓ1/2, let ∂Jh = ∪

mh
k=1(∂ Jk,h) be the union of all the boundaries of the cells. Let

Bhδ
= {x ∈ M : d(x, ∂J ) ≤ hδ},
h h
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hich is the (hδ)-enlarged neighborhood of ∂Jh . We obtain J δk,h = Jk,h\Bhδ and J−δ
k,h =

Jk,h\J δk,h for 1 ≤ k ≤ mh . The geometric construction ensures that if k ̸= k ′, J δk,h and J δk′,h are
separated by Bhδ , which is partitioned as {J−δ

k,h , k = 1, . . . ,mh}. Furthermore it is clear from
the definition of Bhδ that with dmin defined in (4.7) we have

dmin(J δk,h, J δk′,h) ≥ 2hδ, for k ̸= k ′. (4.12)

(iii) Discretization: We construct a dense grid on Mh as follows. Let Πk, j = (Πsk ,Πu j )
be the projection map from Jk,h × U j,h to the tangent space TskMh,1 × Tu jMh,2. Let the
image of Jk,h × U j,h be J̃k,h × Ũ j,h . The choice of ℓ1 and ℓ2 guarantees that Πk, j is a
diffeomorphism. Let {M i

sk
: i = 1, . . . , r1} be orthonormal vectors spanning the tangent space

TskMh,1. For any given γ, θ > 0, consider the (discrete) set Ξ̃hγ θ−2/α1 ( J̃k,h) = {t ∈ J̃k,h :

t = sk + (hγ θ−2/α1 )
∑r1

i=1 ei M i
sk
, ei ∈ Z} and let Ξhγ θ−2/α1 (Jk,h) = Π −1

sk
(Ξ̃hγ θ−2/α1 ( J̃k,h)),

hich is a subset of Jk,h . Similarly, let {M i
u j

: i = 1, . . . , r2} be orthonormal vectors spanning
he tangent space Tu jMh,2 and we discretize Ũ j,h with Ξ̃γ θ−2/α2 (Ũ j,h) = {v ∈ Ũ j,h : v =

u j + γ θ−2/α2
∑r2

i=1 ei M i
u j
, ei ∈ Z} and denote Ξγ θ−2/α2 (U j,h) = Π −1

u j
(Ξ̃γ θ−2/α2 (Ũ j,h)).

We denote the union of all the grid points by

Γh,γ,θ = ∪
mh
k=1 ∪

nh
j=1 [Ξhγ θ−2/α1 (Jk,h) × Ξγ θ−2/α2 (U j,h)] (4.13)

= [∪mh
k=1Ξhγ θ−2/α1 (Jk,h)] × [∪nh

j=1Ξγ θ−2/α2 (U j,h)]. (4.14)

For any discrete set A, let |A| be the cardinality of A. Denote N (1)
h = | ∪

mh
k=1 Ξhγ θ−2/α1 (Jk,h)|.

hen obviously as h, γ → 0 and θ → ∞,

N (1)
h = | ∪

mh
k=1 Ξ̃hγ θ−2/α1 ( J̃k,h)| = O

(∑mh
k=1 Hr1 ( J̃k,h)

(hγ θ−2/α1 )r1

)
= O

(
Hr1 (Mh,1)

(hγ θ−2/α1 )r1

)
= O(θ2r1/α1 h−r1γ−r1 ).

imilarly, the cardinality of ∪
nh
j=1Ξγ θ−2/α2 (U j,h) is given by

N (2)
h := | ∪

nh
j=1 Ξγ θ−2/α2 (U j,h)| = O(θ2r2/α2γ−r2 ). (4.15)

It is easy to see that (J δ
h × Mh,2) ∩ Γh,γ,θ = [∪mh

k=1Ξhγ θ−2/α1 (J δk,h)] × [∪nh
j=1Ξγ θ−2/α2 (U j,h)],

nd for δ > 0 fixed and small,

N (1)
h,δ := | ∪

mh
k=1 Ξhγ θ−2/α1 (J δk,h)| = O(N (1)

h ) = O(θ2r1/α1 h−r1γ−r1 ). (4.16)

.4. Proof of Theorem 3.1

We focus on the case k = 2 in the proof. The proof for k = 1 (corresponding to M2,h = ∅

hen k = 2) is omitted since it is similar and simpler. For a random process or field X (t),
t ∈ S ⊂ Rn and θ ∈ R, we denote

PX (θ,S) = P(sup
t∈S

X (t) ≤ θ ),

QX (θ,S) = 1 − PX (θ,S).

ith βh in (3.9), let

θh,z = βh +
1√ z. (4.17)
2r1 log(1/h)
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ith this notation, we can rewrite (3.10) as

lim
h→0

PXh (θh,z,Mh) = e−e−z
.

To prove Theorem 3.1, we need to establish a sequence of approximations using the above
eometric construction, detailed in Lemmas 4.2–4.7 as follows.

Recall that Ih(A) =
∫
A ∥Dt,h Pt∥r1dHr (t) for any Borel subset A ⊂ Mh . In the following

emmas we consider θ as a large number with θ = θh,z as a special case in mind.

emma 4.2. For any ϵ > 0, there exist θ0 > 0 such that for all θ ≥ θ0, 0 < h ≤ h0, and
Jk ∈ {Jk,h, J δk,h, J−δ

k,h } with 1 ≤ k ≤ mh , we have for some ϵk,h with |ϵk,h | ≤ ϵ,

QXh (θ, Jk × Mh,2)
θ2(r1/α1+r2/α2)Ψ (θ )

= (1 + ϵk,h)h−r1 HR,ααα Ih(Jk × Mh,2). (4.18)

roof. For Jk ∈ {Jk,h, J δk,h, J−δ
k,h }, denote J k = {t (1)/h : t (1) ∈ Jk} such that J k ×Mh,2 ⊂ Mh .

hen notice that J k has a positive diameter and r1-dimensional Hausdorff measure. Recall that
ξh(t) = (h tT

(1), tT
(2))

T for t = (tT
(1), tT

(2))
T

∈ J k ×Mh,2 and the Gaussian field X h(t) = Xh(ξh(t))
s locally-(E,ααα, Dξh (t),h)-stationary on J k × Mh,2. Let I h(A) =

∫
A ∥Dξh (t),h Pt∥r1dHr (t) for

any Borel subset A ⊂ Mh . Then using Theorem 2.1, we obtain that

QXh
(θ, J k × Mh,2)

θ2(r1/α1+r2/α2)Ψ (θ )
= HR,ααα I h(J k × Mh,2)(1 + o(1)),

where the o(1)-term is uniform in 1 ≤ k ≤ mh and 0 < h ≤ h0, because of the uniformity in
ssumptions (B1)–(B3), as well as the fact the Jacobian matrix of the diffeomorphism τ we
stablish in the proof of Theorem 2.1 is locally Lipschitz continuous with the Lipschitz constant
nly depending on the reach of the manifold as shown in (4.4). Noticing that I h(J k ×Mh,2) =

h−r1 Ih(Jk × Mh,2), we then get the desired result. □

emma 4.3. For any ϵ > 0, there exist γ0 > 0, θ0 > 0 such that for all γ ≤ γ0, θ ≥ θ0,
< h ≤ h0, and Jk ∈ {Jk,h, J δk,h, J−δ

k,h } with 1 ≤ k ≤ mh , we have for some ϵk,h with |ϵk,h | ≤ ϵ,

QXh (θ, (Jk × Mh,2) ∩ Γh,γ,θ )
θ2(r1/α1+r2/α2)Ψ (θ )

= (1 + ϵk,h)h−r1 H̃R,ααα(γ )Ih(Jk × Mh,2), (4.19)

here H̃R,ααα(γ ) only depends on γ such that H̃R,ααα(γ ) → HR,ααα as γ → 0.

roof. The proof is similar to that of Lemma 4.2. The main difference is that, instead of
pplying Theorem 2.1, we use Lemma A.3 in the appendix. Note that in order to apply
emma A.3, one needs to find a diffeomorphism ψk, j between Jk × U j,h and its preimage

n Rr , for each k = 1, . . . ,mh and j = 1, . . . , nh . This diffeomorphism is constructed in
he same way as shown at the beginning of the proof of Theorem 2.1. By using Lemma A.3
nd following the proofs of Theorem 2.1 and Lemma 4.3 we obtain the result stated in this
emma. □

emma 4.4. For θ = θh,z given in (4.17) with any fixed z, we have that as h → 0,

h−r1θ2(r1/α1+r2/α2)Ψ (θ ) =
e−z

HR,ααα Ih(Mh)
(1 + o(1)) = O(1). (4.20)
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roof. Observe that the first equality in (4.20) follows from a direct calculation using (4.17).
ext we show (4.20) is bounded. Recall that ∥Dt,h Pt∥r = [det(PT

t DT
t,h Dt,h Pt )]1/2 (see (4.2)),

here the columns of Pt are orthonormal and span the tangent space TtMh . Notice that for
ny a ∈ Sr−1 we have Pt a ∈ Sn−1. Therefore

λmax(PT
t DT

t,h Dt,h Pt ) = sup
a∈Sr−1

aT (PT
t DT

t,h Dt,h Pt )a ≤ sup
b∈Sn−1

bT (DT
t,h Dt,h)b

= λmax(DT
t,h Dt,h).

imilarly,

λmin(PT
t DT

t,h Dt,h Pt ) = inf
a∈Sr−1

aT (PT
t DT

t,h Dt,h Pt )a ≥ inf
b∈Sn−1

bT (DT
t,h Dt,h)b

= λmin(DT
t,h Dt,h).

t then follows from (4.2) that

[λmin(DT
t,h Dt,h)]r/2

≤ ∥Dt,h Pt∥r ≤ [λmax(DT
t,h Dt,h)]r/2. (4.21)

The left-hand side in (4.20) is bounded because with assumption (B2) we have

0 < inf
0<h≤h0,t∈Mh

[λmin(DT
t,h Dt,h)]r/2 inf

0<h≤h0
Hr (Mh)

≤ inf
0<h≤h0

Ih(Mh) ≤ sup
0<h≤h0

Ih(Mh)

≤ sup
0<h≤h0,t∈Mh

[λmax(DT
t,h Dt,h)]r/2 sup

0<h≤h0

Hr (Mh) < ∞. □

Denote J δ
h =

⋃
k≤mh

J δk,h . Recall that Mh = Mh,1 × Mh,2. Approximating Mh by
δ

h × Mh,2 leads to the approximation of QXh (θ,Mh) by QXh (θ,J δ
h × Mh,2). The volume

f
⋃

k≤mh
J−δ

k,h , i.e., the difference between the volumes of M and J δ
h , is of the order

O(δ) uniformly in h. As the next lemma shows, the order of the difference QXh (θ,Mh) −

Xh (θ,J δ
h × Mh,2) turns out to be of the same order.

emma 4.5. With θ = θh,z given in (4.17), there exists a positive constant C < ∞ such that
or all δ and h small enough,

0 < PXh (θ,J δ
h × Mh,2) − PXh (θ,Mh) ≤ Cδ, (4.22)

nd

0 <
mh∑
k=1

QXh (θ, Jk,h × Mh,2) −

mh∑
k=1

QXh (θ, J δk,h × Mh,2) ≤ Cδ. (4.23)

roof. Using (3.2) and (4.21), we have that

sup
0<h≤h0,t∈Mh

∥Dt,h Pt∥r ≤ sup
0<h≤h0,t∈Mh

[λmax(DT
t,h Dt,h)]r/2

=: C1 < ∞. (4.24)

Also note that there exists a positive constant C2 < ∞ such that max1≤k≤mh Hr (J−δ
k,h ×

h) ≤ C2δhr1 for all h ∈ (0, h0]. Our construction of the partition of the Mh guarantees that
here exists a positive constant C3 < ∞ such that mh ≤ C3h−r1 . Therefore

mh∑
Ih(J−δ

k,h ×Mh,2) ≤ mh sup ∥Dt,h Pt∥r max
1≤k≤mh

Hr (J−δ
k,h ×Mh) ≤ C1C2C3δ. (4.25)
k=1 0<h≤h0,t∈Mh
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U

T

sing Lemma 4.2, for any ϵ > 0, we have for h small enough that

0 ≤ QXh (θh,z,Mh) − QXh (θh,z,J δ
h × Mh,2)

≤

mh∑
k=1

QXh (θh,z, J−δ
k,h × Mh,2)

≤ (1 + ϵ)h−r1 HR,αααθ
2(r1/α1+r2/α2)
h,z Ψ (θ )

mh∑
k=1

Ih(J−δ
k,h × Mh,2).

hen (4.23) follows from Lemma 4.4 and (4.25). Also (4.22) holds because

0 < PXh (θ,J δ
h × Mh,2) − PXh (θ,Mh) ≤

mh∑
k=1

QXh (θh,z, J−δ
k,h × Mh,2). □

With Γh,γ,θ given in (4.13), (J δ
h × Mh,2) ∩ Γh,γ,θ represents a set of grid points over

J δ
h × Mh,2. Next we show that the excursion probabilities over these two sets are close, by

choosing both h and γ sufficiently small.

Lemma 4.6. With θ = θh,z given in (4.17), we have that

PXh (θ,J δ
h × Mh,2) = PXh (θ, (J δ

h × Mh,2) ∩ Γh,γ,θ ) + o(1) (4.26)

and
mh∑
k=1

QXh (θ, J δk,h × Mh,2) =

mh∑
k=1

QXh (θ, (J δk,h × Mh,2) ∩ Γh,γ,θ ) + o(1), (4.27)

as γ, h → 0.

Proof. Lemmas 4.2 and 4.3 imply that for any ϵ > 0, there exist γ0 > 0 and θ0 > 0 such that
for all 0 < h ≤ h0, γ ≤ γ0 and θ ≥ θ0,

0 ≤ QXh (θ, J δk,h × Mh,2) − QXh (θ, (J δk,h × Mh,2) ∩ Γh,γ,θ )

≤ ϵh−r1 θ2(r1/α1+r2/α2)Ψ (θ )HR,ααα Ih(J δk,h × Mh,2).

As a result,

0 ≤ QXh (θ,J δ
h × Mh,2) − QXh (θ, (J δ

h × Mh,2) ∩ Γh,γ,θ )

≤

mh∑
k=1

[
QXh (θ, J δk,h × Mh,2) − QXh (θ, (J δk,h × Mh,2) ∩ Γh,γ,θ )

]
≤ ϵh−r1 θ2(r1/α1+r2/α2)Ψ (θ )HR,ααα Ih

(
J δ

h × Mh,2
)

≤ ϵh−r1 θ2(r1/α1+r2/α2)Ψ (θ )HR,ααα Ih(Mh).

Then (4.26) and (4.27) immediately follow from (4.20). □

Recall that (J δ
h × Mh,2) ∩ Γh,γ,θ gives a set of dense grid points in J δ

h × Mh,2. For any
1 ≤ k ≤ mh , denote the set T h,γ,θ

k = (J δk,h ×Mh,2)∩Γh,γ,θ . Define a probability measure P̃ such
that under P̃ the vectors (Xh(t) : t ∈ T h,γ,θ

k ) and (Xh(t ′) : t ′
∈ T h,γ,θ

k′ ) are independent for
k ̸= k ′. In other words, P̃Xh (θ, (J δ

h ×Mh,2) ∩Γh,γ,θ ) =
∏

k≤mh
PXh (θ, (J δk,h ×Mh,2) ∩Γh,γ,θ ).

As the next lemma shows, the probability PXh (θ, (J δ
h × Mh,2) ∩ Γh,γ,θ ) can be approximated

by using the probability measure P̃, when h, γ and δ are small.
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emma 4.7. For δ > 0 fixed and small enough, there exists γ = γ (h) → 0 as h → 0, such
hat with θ = θh,z given in (4.17), we have

PXh (θ, (J δ
h × Mh,2) ∩ Γh,γ,θ ) =

∏
k≤mh

PXh (θ, (J δk,h × Mh,2) ∩ Γh,γ,θ ) + o(1). (4.28)

roof. Denote t = (tT
(1), tT

(2))
T and t ′

= (t ′ T
(1), t ′ T

(2))
T , where t (1), t ′

(1) ∈ Re1 and t (2), t ′

(2) ∈ Re2 .
or t ∈ T h,γ,θ

k and t ′
∈ T h,γ,θ

k′ with k ̸= k ′, we have t (1) ∈ J δk,h and t ′

(1) ∈ J δk′,h , and hence for
ll 0 < h ≤ h0, by (4.12) we have

∥ξ−1
h (t) − ξ−1

h (t ′)∥ ≥ ∥(t (1) − t ′

(1))/h∥ ≥ (2hδ)/h = 2δ > 0.

et rh(t1, t2) be the covariance between Xh(t1) and Xh(t2), for t1, t2 ∈ Mh . By the definition
f r̄h we can write rh(t1, t2) = r̄h(ξ−1

h (t1), ξ−1
h (t2)). Then assumption (B3) implies that there

xists η = η(δ) > 0, such that

sup
0<h≤h0

sup
k ̸=k′

sup
t∈T h,γ,θ

k

sup
t ′∈T h,γ,θ

k′

|rh(t, t ′)| < η < 1. (4.29)

y Lemma 4.1 of Berman [6] (aslo see Lemma A4 of Bickel and Rosenblatt [7]), we have⏐⏐PXh (θ, (J δ
h × Mh,2) ∩ Γh,γ,θ ) − P̃Xh (θ, (J δ

h × Mh,2) ∩ Γh,γ,θ )
⏐⏐

≤8
∑

1≤k ̸=k′≤mh

∑
t∈T h,γ,θ

k

∑
t ′∈T h,γ,θ

k′

∫
|rh (t,t ′)|

0

1
2π (1 − λ2)1/2 exp

(
−

θ2

1 + λ

)
dλ

≤

∑
1≤k ̸=k′≤mh

∑
t∈T h,γ,θ

k

∑
t ′∈T h,γ,θ

k′

ζh(t, t ′), (4.30)

here

ζh(t, t ′) =
4|rh(t, t ′)|
π (1 − η2)1/2 exp

(
−

θ2

1 + |rh(t, t ′)|

)
.

e take γ = [v(h−1)](1/(3r1+3r2)). Let ω be such that 0 < ω < 2
(1+η) − 1, and define

G(1)
h,γ,θ = {(t, t ′) ∈ T h,γ,θ

k × T h,γ,θ
k′ : ∥t (1) − t ′(1)∥ < h(N (1)

h,δ)
ω/r1γ θ−2/α1 , 1 ≤ k ̸= k′

≤ mh},

G(2)
h,γ,θ = {(t, t ′) ∈ T h,γ,θ

k × T h,γ,θ
k′ : ∥t (1) − t ′(1)∥ ≥ h(N (1)

h,δ)
ω/r1γ θ−2/α1 , 1 ≤ k ̸= k′

≤ mh},

where N (1)
h,δ is given in (4.16). Then the triple sum on the right-hand side of (4.30) can be

written as∑
(t,t ′)∈G(1)

h,γ,θ

ζh(t, t ′) +

∑
(t,t ′)∈G(2)

h,γ,θ

ζh(t, t ′). (4.31)

Note that the cardinality of G(1)
h,γ,θ is of the order O((N (1)

h,δ)
ω+1(N (2)

h )2), where N (2)
h is given in

(4.15). Hence for the first sum in (4.31) we have∑
(t,t ′)∈G(1)

h,γ,θ

ζh(t, t ′) =O
(

(N (1)
h,δ)

ω+1(N (2)
h )2 exp

{
−

θ2

1 + η

})

=O
((

θ2r1/α1

r r

)1+ω
θ4r2/α2

2r
exp

{
−

θ2 })

h 1γ 1 γ 2 1 + η
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=O
((

(log 1
h )r1/α1+2r2/[α2(1+ω)]

hr1γ r1+2r2/(1+ω)

)1+ω

exp
{
−

2r1 log 1
h

1 + η

})
=O

(
h

2r1
1+η

−r1(1+ω)
(

log 1
h

) (1+ω)r1
α1

+
2r2
α2
(
v( 1

h )
)−

(1+ω)r1+2r2
3r1+3r2

)
=o(1) as h → 0. (4.32)

Now we consider the second sum in (4.31). Because (1 + |rh(t, t ′)|)−1
≥ 1 − |rh(t, t ′)|, we

ave

ζh(t, t ′) ≤
4|rh(t, t ′)|
π (1 − η2)1/2 exp

(
−(1 − |rh(t, t ′)|)θ2).

ince θ2
= O(log 1

h ), with Q given in (3.3) and by using (3.4) we have that for h small
nough,

sup
(t,t ′)∈G(2)

h,γ,θ

|rh(t, t ′)|θ2
≤ Q((N (1)

h,δ)
ω/r1γ θ−2/α1 )θ2

≤
v((N (1)

h,δ)
ω/r1γ θ−2/α1 )θ2

(log((N (1)
h,δ)ω/r1γ θ−2/α1 ))2(r1/α1+r2/α2)

→ 0.

lso notice that exp(−θ2) = O(h2r1 ), and hence exp
(
−(1 − |rh(t, t ′)|)θ2

)
= O(h2r1 ) uniformly

n (t, t ′) ∈ G(2)
h,γ,θ . Consequently, when h is sufficiently small, there exists a constant C > 0

uch that

sup
(t,t ′)∈G(2)

h,γ,θ

ζh(t, t ′) ≤ Ch2r1
v((N (1)

h,δ)
ω/r1γ θ−2/α1 )

[log((N (1)
h,δ)ω/r1γ θ−2/α1 )]2r1/α1+2r2/α2

. (4.33)

herefore it follows from (4.15) and (4.16) that∑
(t,t ′)∈G(2)

h,γ,θ

ζh(t, t ′)

=O

(
h2r1 (N (1)

h,δ)
2(N (2)

h )2 v((N (1)
h,δ)

ω/r1γ θ−2/α1 )

[log((N (1)
h,δ)ω/r1γ θ−2/α1 )]2r1/α1+2r2/α2

)

=O

⎛⎜⎜⎜⎝ (log 1
h )2r1/α1+2r2/α2v((N (1)

h,δ)
ω/r1γ θ−2/α1 )[

log
(

h−ω

(
(log 1

h )1/α1v( 1
h )−1/(3r1+3r2)

)ω−1
)]2r1/α1+2r2/α2(

v( 1
h )
)2/3

⎞⎟⎟⎟⎠
=o(1) as h → 0. (4.34)

ombining (4.30), (4.32) and (4.34), we obtain (4.28). □

roof of Theorem 3.1. We choose the same γ = γ (h) as in Lemma 4.7, and use θ = θh,z
iven in (4.17). For any arbitrarily small (fixed) δ > 0, by using (4.22), (4.26), and (4.28), we
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ave that as h → 0,

PXh (θ,Mh) =

∏
k≤mh

PXh (θ, (J δk,h × Mh,2) ∩ Γh,γ,θ ) + o(1) + O(δ)

= exp
{∑

k≤mh

log
(

1 − QXh (θ, (J δk,h × Mh,2) ∩ Γh,γ,θ )
)}

+ o(1) + O(δ)

= exp
{
−(1 + o(1))

∑
k≤mh

QXh (θ, (J δk,h × Mh,2) ∩ Γh,γ,θ )
}

+ o(1) + O(δ).

hen by using (4.27), (4.23), and (4.18), we get

PXh (θ,Mh) = exp
{
−(1+o(1))h−r1 θ2(r1/α1+r2/α2)Ψ (θ )HR,ααα Ih(Mh)+O(δ)

}
+o(1)+O(δ).

he proof is completed by noticing (4.20). □
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ppendix

In this appendix, we collect some miscellaneous results that are straightforward extensions
rom some existing results in the literature, and have been used in our proofs, as well as some
asic facts about manifolds and geometric integration theory.

.1. Miscellaneous results

For an integer ℓ > 0 and γ > 0, let C(ℓ, γ ) = {tγ : t ∈ [0, ℓ]n
∩ Zn

}. Given a structure
E,ααα), let HE,ααα(ℓ, γ ) = HE,ααα(C(ℓ, γ )), where HE,ααα is defined in (2.1) for subsets of Rn , and

HE,ααα(γ ) = lim
ℓ→∞

HE,ααα(ℓ, γ )
ℓn

.

The existence of this limit follows from Pickands [32]. Using the factorization lemma (Lemma
6.4 of Piterbarg [34]) and Theorem B3 of Bickel and Rosenblatt [8], we have

Lemma A.1. HE,ααα = limγ→0
HE,ααα (γ )
γ n .

Let ΓE,ααα(γ, u) = {(x1, . . . , xk) ∈ Rn
: xi = γ u−2/αi ℓi , ℓi ∈ Zei , i = 1, . . . , k}. The

following result extends Lemma 4.2 in Qiao and Polonik [37] from assuming a simple structure
with E = {n} and a scalar 0 < ααα = α ≤ 2 to a more general structure. The proof uses similar
ideas and therefore is omitted. Also see Lemma 3 of Bickel and Rosenblatt [8], and Lemma
7.1 of Piterbarg [34].
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emma A.2. Given a structure (E,ααα), let X (t), t ∈ Rn , be a centered homogeneous Gaussian
eld with covariance function r (t) = E(X (t+s)X (s)) = 1−|t|E,ααα(1+(1)), as t → 0. Then there
xists δ0 > 0 such that for any compact Jordan measurable set A of positive n-dimensional

Lebesgue measure with diameter not exceeding δ0, the following asymptotic behavior occurs:

P

(
sup

t∈Aγ,u
X (t) > u

)
=

HE,ααα(γ )
γ n

Hn(A)
k∏

i=1

u2ei /αiΨ (u)(1 + o(1)),

s u → ∞, where Aγ,u = A ∩ ΓE,ααα(γ, u).

The next theorem is similar to Theorem 7.1 of Piterbarg [34], except that the supremum is
ver a dense grid. The proof is similar, where one needs to replace the role of Lemma 7.1 of
iterbarg [34] by our Lemma A.2.

heorem A.1. Let X (t), t ∈ A ⊂ Rn be a locally-(E,ααα, Dt )-stationary Gaussian field with
ero mean, where A is a compact Jordan set of positive n-dimensional Lebesgue measure.
ssume also that the matrix-valued function Dt is continuous in t and non-singular everywhere
n A. Then if rX (t, s) < 1 for all t, s from A, t ̸= s, the following asymptotic behavior occurs:

P

(
sup

t∈Aγ,u
X (t) > u

)
=

HE,ααα(γ )
γ n

∫
A
| det Dt |d t

k∏
i=1

u2ei /αiΨ (u)(1 + o(1)),

s u → ∞, where Aγ,u = A ∩ ΓE,ααα(γ, u).

The following lemma is analogous to Lemma 4.1 with the index set being a grid. The proof
s also similar to that of Lemma 4.1, except that in the proof we use Theorem A.1 to replace
he role of Theorem 7.1 of Piterbarg [34].

emma A.3. Suppose that the conditions in Theorem 2.1 hold. For a subset V ⊂ M, suppose
hat there exist an open set G ⊂ Rr and a diffeomorphism ψ : G → V , where the component
unctions of the Jacobian matrix Jψ of ψ are uniformly continuous. For any subset U ⊂ V ,
f Ω := ψ−1(U ) is a compact Jordan set of positive r-dimensional Lebesgue measure, then as
→ ∞,

P

(
sup

t∈Mγ,u

X (t) > u

)
=

HR,ααα(γ )
γ r

∫
U

k∏
j=1

∥D j,t Pj,t∥r j dHr (t)
k∏

i=1

u2ri /αiΨ (u)(1 + o(1)),

(A.1)

here Mγ,u = ψ(Ω ∩ ΓR,ααα(γ, u)).

.2. Manifolds and geometric integration theory

We collect some basic facts about manifolds and geometric integration theory used in this pa-
er for the convenience of the reader. There exist many texts on manifolds (see, e.g., Guillemin
nd Pollack [19]) and geometric measure theory (see, e.g., Evans and Gariepy [16]).

A map ψ : A → Rn defined on an arbitrary subset A ⊂ Rr is said to be differentiable,
f for each point x ∈ A, around x there exist an open set U ⊂ Rr and a differentiable map
F : U → Rn such that F and ψ are equal on U ∩A. For a subset B ⊂ Rn , the map ψ : A → B
s called a diffeomorphism if ψ is one to one and onto, and if the inverse map ψ−1

: B → A
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s also differentiable. A subset M ⊂ Rn is an r -dimensional submanifold, if for any point
t ∈ M, there exists a neighborhood V of x in M, an open set G ⊂ Rr , and a diffeomorphism
ψ : G → V . Denote t̃ = ψ−1(t) ∈ G and let Jψ (̃t ) be the Jacobian matrix of ψ at t̃ , whose
dimension is n × r . When ψ : G → V is a diffeomorphism, Jψ (̃t ) has full rank for all t̃ ∈ G.

Consider Jψ (̃t ) as a linear map from Rr to Rn . Define the tangent space of M at t , also
denoted by TtM, to be the image of the map Jψ (̃t ) : Rr

→ Rn , which is an r -dimensional
subspace of Rn . The r -dimensional normalized Hausdorff measure, denoted by Hr , is defined
as follows. Let diam(E) be the diameter of a subset E of Euclidean spaces.

Definition A.1. For any subset E of a Euclidean space, define

Hr (E) = ωr lim
δ↓0

inf
{ ∞∑

i=1

(diam(Ei ))r
: E ⊂

∞⋃
i=1

Ei , diam(Ei ) < δ
}
,

where ωr =
πr/2

Γ ( r
2 +1) is the r -dimensional Lebesgue volume of the unit ball in Rr .

It is known that for any positive integer r , the r -dimensional Hausdorff measure coincides
ith the r -dimensional Lebesgue measure on the class of Lebesgue measurable sets, and the
-dimensional Hausdorff measure gives the cardinality of a discrete set. Let t̃ = (̃t1, . . . , t̃r )T .
onsider an r -dimensional infinitesimal rectangle R t̃ := [̃t1, t̃1 + dt̃1] × · · · × [̃tr , t̃r + dt̃r ].
he corresponding image of this rectangle under Jψ (̃t ) is an r -dimensional parallelotope

n the tangent space TtM with r -dimensional volume Hr (Jψ (̃t )(R t̃ )) = Bψ (̃t )Hr (R t̃ ) =

Bψ (̃t )dt̃1 ×· · ·×dt̃r , where Bψ (̃t ) = [det(Jψ (̃t )T Jψ (̃t ))]1/2 is called the Jacobian determinant,
nd it is the scale factor that reflects the local change of volume in the transformation.

heorem A.2 (Area Formula, See Theorem 2, Evans and Gariepy [16], Chapter 3.3). Let G be
n open subset of Rr and ψ : G → Rn be a continuously differentiable map, 1 ≤ r ≤ n. Then
or any Lebesgue measurable subset Ω ⊂ G and non-negative Lebesgue measurable function

g : G → R, we have∫
Ω

g(̃t )[det(Jψ (̃t )T Jψ (̃t ))]1/2dHr (̃t) =

∫
Rn

∑
t̃∈Ω∩ψ−1(t)

g(̃t )dHr (t).

When ψ : G → V ⊂ Rn is a diffeomorphism, for any t ∈ V , the set ψ−1(t) only consists
f a single point. Then the above area formula can be simplified into the following form.

emma A.4 (Change of Variables). Let G be an open subset of Rr and ψ : G → V ⊂ Rn

e a C1-diffeomorphism, 1 ≤ r ≤ n. Then for any Lebesgue measurable subset Ω ⊂ G and
on-negative Lebesgue measurable function g : G → R, we have with U = ψ(Ω ) that∫

Ω

g(̃t )[det(Jψ (̃t )T Jψ (̃t ))]1/2dHr (̃t ) =

∫
U

g(ψ−1(t))dHr (t). (A.2)

Lemma A.4 is a typical change of variable formula. A slightly different form of this formula
s given in the following corollary.

orollary A.1. Under the same assumptions as in Lemma A.4, if f : G → R is a non-negative
ebesgue measurable function, we have∫

Ω

f (̃t )dHr (̃t ) =

∫
U

f (ψ−1(t))
[det(Jψ (ψ−1(t))T Jψ (ψ−1(t)))]1/2 dHr (t). (A.3)
190



W. Qiao Stochastic Processes and their Applications 133 (2021) 166–192

P
L

R

roof. This can be immediately obtained by taking g(̃t ) = f (̃t )[det(Jψ (̃t )T Jψ (̃t ))]−1/2 in
emma A.4. □
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