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Abstract

Depending on a parameter & € (0, 1], let {X;(¢),t € My} be a class of centered Gaussian fields
indexed by compact manifolds M, with positive reach. For locally stationary Gaussian fields X, we
study the asymptotic excursion probabilities of X, on Mj. Two cases are considered: (i) & is fixed
and (ii) &~ — 0. These results are also extended to obtain the limit behaviors of the extremes of locally
stationary x-fields on manifolds.
© 2020 Elsevier B.V. Allrights reserved.
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1. Introduction

We study the following two related problems in this paper.
(1) Let {X(¢), t € M} be a centered Gaussian field indexed on a compact submanifold M
of R". For X(¢) satisfying a local stationarity condition (see Definition 2.1), we derive the
asymptotic form of the excursion probability

P(sup X(t)>u>, as u — oo. (1.1)
teM

(i1) Let {Xx(¢#), t € Mp}pe.1) be a class of centered Gaussian fields, where M, is a compact
submanifold of R” for each i € (0, 1]. Suppose that we have the structure M, = M, | x M, »
such that ¢t = (t(Tl), t(T2))T € M means tqy € M, and tp € My, where we allow
My to be a null set. The Gaussian fields X, (¢#) we consider have a rescaled form X,(¢) =
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Yh(t(l) /h, ta), t € M, for some Yh satisfying the local stationarity condition. We derive the
following limit result

limP {a, [ sup Xp(t) —by ) <z) =", (1.2)
h—0 teM,,

for some a;, b, € R, and any fixed z € R.

While there is a large amount of literature on excursion probabilities of Gaussian processes
or fields (see, e.g., Adler and Taylor [1], and Azais and Wschebor [3]), most of the existing
work only considers index sets M (or M,) of dimension n (the same as the ambient Euclidean
space), while we focus on Gaussian fields indexed by manifolds that can be low-dimensional.

For problem (i), some relevant results can be found in Mikhaleva and Piterbarg [30],
Piterbarg and Stamatovich [35], and Cheng [12]. Compared with these works, the framework
of our result is more general in the following aspects: First of all, Cheng [12] studies the
excursion probabilities of locally isotropic Gaussian random fields on manifolds, where local
isotropy means the variance between two local points only depends on their (geodesic) distance,
while we consider locally stationary Gaussian fields, for which not only the distance between
the points but also their locations are involved in the variance. Furthermore, in Mikhaleva
and Piterbarg [30] and Piterbarg and Stamatovich [35], the Gaussian fields are assumed to be
indexed by R”, while we only require the index sets to be the manifolds. As pointed out in
Cheng [12], it is not clear whether one can always find a Gaussian field indexed by R" whose
restriction on M is X(¢). Also see Cheng and Xiao [13] for some further arguments on this
point. In addition, all the above works assume that the manifolds are smooth (C*), while we
consider a much larger class of manifolds (only satisfying a positive reach condition). In fact,
the properties of positive reach play a critical role in the geometric construction in our proofs.

For problem (ii), the study in Qiao and Polonik [37] corresponds to a special case of (1.2)
when M, = M for some manifold M independent of 4, and M, , = . They use some ideas
from Mikhaleva and Piterbarg [30] and also assume that X; is indexed by a neighborhood
of higher dimensions around M, while we only need X, to be indexed by the manifolds
M, by making use of the result developed for problem (i). This weaker requirement for the
Gaussian fields finds broader applications when the Gaussian fields are observable or can be
approximated only on low-dimensional manifolds. See (1.7) for example. At a more technical
level, we use Voronoi diagrams to construct partitions to the index sets, as one of the major
building blocks in the proof to utilize the classical double-sum method (Pickands [32]). See
Sections 4.1 and 4.3 . This strategy is different from what is used in Qiao and Polonik [37],
where they adopt Delaunay triangulations for the partitions. When extended from R” to low-
dimensional submanifolds, the construction of Delaunay triangulations becomes nontrivial and
needs a particular algorithm. See Chapter 7 of Boissonnat, Chazal and Yvinec [9]. By contrast,
the construction of Voronoi diagrams on manifolds is straightforward. We expect that the
approach based on Voronoi diagrams can be generalized to study the extreme value distributions
of Gaussian fields indexed by more sophisticated sets such as stratified spaces (i.e. sets with
manifolds of different dimensions glued together). Furthermore, by using the assumed structure
of M, only rescaling the parameter #(;, allows us to apply (1.2) to get asymptotic extreme
value distributions of y-fields on manifolds, which in fact is one of the motivations of this
work, as described below.

Let {X(s), s € M} be a p-dimensional Gaussian vector field, where X = (X1, ..., Xp)T has
zero mean and identity variance—covariance matrix. Note that we have suppressed the possible
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dependence of X and M on h. Define
X)) =[X7®) 4+ X3)]'% s e M, (1.3)

which is called a x-field, where we allow the components X;(s;) and X;(s;) to be dependent,
if s; #s;. Let SP~!' = {x e R? : |x|| = 1} be the (p — 1)-dimensional unit sphere. Using the
property of Euclidean norm, we have

sup x(s) = sup  Yu(s,v), (1.4)
seM seM,veSP-1
where v = (vq,...,v,) € R and

Y(s,v) =Xi(S)vi + -+ X,($)v,, s xveMx sP1.

Note that Y(s, v) is a zero-mean and unit-variance Gaussian field on M x SP~!. Using the
relation in (1.4) and by applying the results in (1.1) and (1.2), we can study the asymptotic
excursion probabilities of sup,. 14 x(s), and obtain a result in the form of

lim P (ah <sup x(s/h) — bh> < z) =e . (1.5)

seM

The result in (1.5) (see Corollary 3.1) has the following two interesting applications. We
consider a vector-valued signal plus noise model

Fu(s) = f(8)+ X(s/h), s € M, (1.6)

where f(s) is a p-dimensional signal, X(s) is the noise modeled by the Gaussian vector field
considered above. We assume that only f,(s) is directly observable. Given « € (0, 1), let z,
be such that exp(—exp(—z4)) =1 — .

(a) Suppose that M is known, and the inference for the signal f(s) is of interest. We have
the following asymptotic (1 — «) confidence tube for f(s):

Gi(s):={g €R”: a; (I 1) — gl = bn) < za}, 5 € M. (1.7)

In other words, P(f(s) € G(s), Vs e M) - 1 —a, as h — 0.

(b) Suppose that the manifold M is unknown but implicitly defined by M = {s € A :
f(s) = gy}, where A C R” is a known neighborhood of M (say, a unit cube), and g is a
known p-dimensional vector so that M is the intersection of multiple level sets. Suppose that
f,(s) is observable on A, and the inference for the manifold M is of interest. We have the
following asymptotic (1 — «) confidence region for M:

Fui={s € A: @ (I1F4(s) = goll = ba) =< 2o} (1.8)

That is, P(M C F,) — 1 —«, as h — 0. See Remark 3.3(b) for more details.

In statistics the suprema of empirical processes can be approximated by the suprema of
Gaussian processes or fields under regularity assumptions (see Chernozhukov et al. [14]).
Applying results in (a) and (b) to the approximating Gaussian fields, one can study the
statistical inference for a large class of objects including functions and geometric features
(low-dimensional manifolds). In a form similar to (1.7), confidence bands for density functions
are given in Bickel and Rosenblatt [7] and Rosenblatt [39]. Similar work for regression
functions can be found in Konakov and Piterbarg [22]. We note that in these examples the
study of the suprema of the approximating Gaussian processes or fields focuses on M being
compact intervals or hypercubes. We expect that our result (1.7) is useful in studying functions
supported on more general (low-dimensional) manifolds, especially in the context of manifold
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learning, which usually assumes that data lie on low-dimensional manifolds embedded in
high-dimensional space. The result (1.8) is useful to infer the location of the manifolds. In
fact, the results proved in this work provide the probabilistic foundation to our companion
work Qiao [36], where the confidence regions for density ridges are obtained. Ridges are low-
dimensional geometric features (manifolds) that generalize the concepts of local modes, and
have been applied to model filamentary structures such as the Cosmic Web and road systems.
See Qiao and Polonik [38] for a similar application for the construction of confidence regions
for level sets.

The study of the asymptotic extreme value behaviors of y-processes and fields has drawn
quite some interest recently. To our best knowledge, the study in the existing literature has
only focused on y-processes and fields indexed by intervals or hypercubes, but not low-
dimensional manifolds. See, for example, Albin et al. [2], Bai [4], Hashorva and Ji [20], Ji
et al. [21], Konstantinides et al. [23], Lindgren [26], Ling and Tan [27], Liu and Ji [28,29],
Piterbarg [33,34], Tan and Hashorva [41,42], Tan and Wu [43]. Also it is worth mentioning
that it is often assumed that X1, ..., X, are independent copies of a Gaussian process or field
X in the literature, while the cross-dependence among X1, ..., X, is allowed under certain
constraints in this work. The cross-dependence structures of multivariate random fields have
been important objects to study in multivariate geostatistics (see Genton and Kleiber [18]).
Also see Zhou and Xiao [44] for the study of the excursion probability of a bivariate Gaussian
random field over R" with cross-dependence.

The paper is organized as follows: In Section 2 we introduce the concepts that we use
in this paper to characterize the manifolds (positive reach) and the Gaussian fields (local
stationarity). Then the result for (1.1) (called the unscaled case) is formulated in Theorem 2.1,
As an application, a similar result for the y-fields in presented in Corollary 2.2. In Section 3
we give the result (1.2) (called the rescaled case) in Theorem 3.1 and its x-fields extension
in Corollary 3.1. All the proofs are presented in Section 4, and the Appendix contains some
miscellaneous results used in the paper, as well as a collection of concepts and facts related to
manifolds and geometric integration theory.

2. Extremes of unscaled Gaussian and y fields on manifolds

We consider a centered Gaussian field X(¢), ¢t € M, where M is an r-dimensional
submanifold of R” (1 < r < n). Let rx(¢, t;) = Cov(X(¢;), X(¢,)) for any #,,¢, € M. We
first review some existing concepts in the literature that we need to characterize the covariance
ry of the Gaussian field X and the manifold M.

For a positive integer k < n, let E = {ey, ..., e;} be a collection of positive integers such
that n = ey +---+ ¢, and let @ = {1, ..., o} be a collection of positive numbers. Then the
pair (E, a) is called a structure. Let || - || denote the Euclidean norm. Denote E(0) = 0 and
E@G)=e +---+e,i=1,...,k. For any t = (1, ..., )T € R, its structure module is
denoted by |t|g, = Zle l#@)l1%, where ¢y = (tgG—1)+1, - - - » tEG))T - This notation has been
used, e.g., in Chapter 2 of Piterbarg [34].

Suppose that o; < 2,i = 1,...,k, and consider a Gaussian field W(¢),¢t € R”", with
continuous trajectories such that EW(¢) = —|t|g, and Cov(W(t), W(s)) = |t|py + ISl —
|t — §|g o It is known that such a field exists (see page 98, Piterbarg [34]). For any measurable
subset 7 C R" define

Hpo(T)=E exp(sup W(t)). @.1)
teT
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For any T > 0, denote [0, T]" = {t € R" : ¢; € [0, T']}. The generalized Pickands’ constant
is defined as
Hg o([0, T1")

Heo = lim Tn ’
which is a positive finite number. When £k = 1, E = {1} and ¢ = «a € (0,2], we
denote Hrp, = H,. We use the following local stationarity concept (see Definition 7.1 in

Piterbarg [34]).

Definition 2.1 (Local-(E, a, D;)-Stationarity). Let {Z(t), t € M} be a Gaussian random field
with covariance function rz, indexed on a submanifold M of R". Z is said to be locally-
(E, a, Dy)-stationary on M, if for every ¢t € M there exists an n X n nonsingular matrix D;
such that

rz(t1,82) = 1 — |D(t) — t2)|g (1 + 0(1)), (2.2)

as max{||t — t1]|, ||t — t2]|} — O for ¢y, t, € M, where the o(1)-term is uniform in ¢ € M.

Positive reach: We use the concept of reach to characterize the manifold M. For a set A C R”
and a point x € R”, let d(x, A) = inf{||x — y|| : y € A} be the distance from x to A. The
normal projection onto A is defined as ms(x) ={y € A: |x — y|| = d(x, A)}. For § > 0, let
B(x,8) ={y €e R": ||x — y|| <} be the closed ball centered at x with radius 8, and B°(x, §)
be its interior. The reach of A, denoted by A(A), is defined as the largest § > 0 such that
for each point x € Uy,caB(y, §), ma(x) consists of a single point. See Federer [17]. The reach
of a manifold is also called condition number (see Niyogi et al. [31]). A closed submanifold
of R" has positive reach if and only if it is C''! (see Scholtes, [40]). Here a C"! manifold
by definition is a C' manifold equipped with a class of atlases whose transition maps have
Lipschitz continuous first derivatives. The concept of positive reach is also closely related to
“r-convexity” and “rolling conditions” (Cuevas et al. [15]).

Suppose that the structure (E, &) is given. Let R = {ry, ..., r¢} be a collection of positive
integers such that r; <e;,i = 1,...,k, for which we denote R < E.Letr =r;+---+r. We
impose the following assumptions on the manifold M and the Gaussian field X(¢), ¢ € M:

(A1) For R < E, we assume that M = M x --- x My, where fori = 1,...,k, M; is an
r;-dimensional compact submanifold of R with positive reach.

(A2) Let D; = diag(D 4, ..., Dit) be a block diagonal matrix, where the dimension of D, ;
is ¢; X ¢;, and the matrix-valued function D;; is continuous in £ € M, fori =1,..., k.
For 0 < ay,...,a; < 2, we assume that the Gaussian field X(¢) on M has zero mean
and is locally-(E, a, D;)-stationary.

Remark 2.1. With the condition in (A1), we have the following expression for [D;(¢; — £2)| 4
in (2.2).

k
1Dt — )0 = Y _I1Dju(t1(y — t2.)I.
j=1
where we denote ¢; = (¢, 1), .. ., t,-,(k))T, i = 1, 2. Note that the local stationarity condition for
the Gaussian field is given using the structure (E, &) for R". The structural assumptions on M
and Dy in (Al) and (A2) are used to guarantee that a similar structure (R, @) can be found
when the local stationarity of the Gaussian field is expressed on a low-dimensional manifold,
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which locally resembles R". Note that, however, in the special case of k = 1 we do not have
these structural constraints for M and D, any more.

Some notation: Let 1 <m < n. For an n x m matrix G, let ||G||,2n be the sum of squares of all

minor determinants of order m. For m > 0, let H,, be the m-dimensional normalized Hausdorff
measure (see Definition A.l in the appendix). It coincides with the m-dimensional Lebesgue
measure for Lebesgue measurable sets when m is a positive integer. For a C! manifold M, at
each u € M, let T,M denote the tangent space of M at u. Let ¢ and & denote the standard
normal density and cumulative distribution function, respectively, and let 4_5(14) =1— &(u) and
W(u) = u""'$p(u). Recall that t = (¢[,, ..., )" The following is a result for the asymptotic
behavior of the excursion probability of X on the manifold M.

Theorem 2.1. For a Gaussian field X(t), t € M satisfying assumptions (Al) and (A2), if
rx(t,s) <1 forallt,s from M, t # s, then

teM

k k
P (sup X(t) > u) = Hra / [TUD) Py ;@M @) [ [/ @)1 + o(1)), (2.3)
Mo i=1

as u — 0o, where Pj,t(j)
tangent space Ty ; M .

is an e; X r; matrix whose columns are orthonormal and span the

Remark 2.2.

a. The factorization lemma (Lemma 6.4, Piterbarg [34]) implies that Hg , = I—[f:1 Hy, o
where in the notation we do not distinguish between r; (or «;) and {r;} (or {o;}).
b. An equivalent expression of the integrand in (2.3) is given by (see (4.2) in the proof)

k
[T1D5Pisiylls; = IDePell, = \/det(PT DI D, Py), 2.4)
j=1

where P; = diag(Pl,t(]), el Pk,,(k)), whose columns form a basis of the tangent space
T; M. The quantity in (2.4) is invariant if we choose a different basis of 7;,M for the
projection matrix P;. See (4.3) in the proof. Here P, D] D, P; is a Gramian matrix of the
column vectors of D;P;, and || D; P, is the r-dimensional volume of the parallelotope
formed by these vectors. Heuristically, ||D;P;||, reflects the local variability of the
Gaussian field X(¢#) when projected to the tangent space 7; M, and is independent of
the choice of the local coordinate system represented by P;.
c. When E = R, (2.3) becomes

k
P <sup X(@t) > u> = HE,a/ | det(D;)|dH, (t) Huze"/“i Tu)1+o(l), (2.5
teM M i=1
as u — 0o, which is consistent with Theorem 7.1 in Piterbarg [34].

When D, = cI for some constant ¢ # 0 and k = 1 such that « = «, the local stationarity
condition of X(¢) used in Theorem 2.1 becomes the following local isotropy condition.

rx(t, t2) =1 —c|*llty — 2[|*(1 4+ o(1)), as ||t — 2]l — 0. (2.6)

We give the explicit form of the asymptotic excursion probability for this case in the following
corollary, as an immediate result of Theorem 2.1.
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Corollary 2.1. When the assumptions in Theorem 2.1 hold with Dy = cI for some constant
¢ #0and k = 1 such that & = a, we have

P (sup X(t) > u> = Hgolc|"H (M & u)(1 + o(1)), as u — oo. 2.7)
teM

Remark 2.3. The case of M =S" when n = r + 1 is of special interest in some applications.
Let dsr (¢, 1) = arccos(tthz) be the spherical distance between ¢, ¢, € S". It is easy to see
that the local isotropy condition (2.6) for M = S" can be equivalently written as

rx(t, t2) = 1 — |c|*[dsr (1, £2)]1°(1 + o(1)), as [t — 2] — 0.

Correspondingly (2.7) becomes

P (sup X(@t) > u) = Hgolc|"H (SHu>/* @ (u)(1 + o(1)), as u — oo. (2.8)

tesSr

r+l

It is known that H,(S") = ;’E é > where [' is the gamma function. This result is consistent

with Theorem 2.4 in Cheng ané Xiao (2016).

We will apply Theorem 2.1 to study the excursion probabilities of x-fields indexed by
manifolds. Let {X(s), s € L} be a centered p-dimensional (p > 2) Gaussian vector field, where
X =(Xy,..., XP)T with Var(X;) =1,i=1,..., p, and L is an m-dimensional submanifold
of R" (1 <m < n). We consider the asymptotics of

P (sup X)) > u) , asu — oo. 2.9)
sel
Let v =(vi,...,v,) e RP, ¢t =(s",v")" € R*™7, and
Y&)=Y(s,v) = Xi(S)v + -+ Xp()v,. (2.10)

Due to the relation in (1.4), it is clear that (2.9) is equivalent to

IP’( sup Y(t)>u), as u — 00. (2.11)

teLxSr—1

To study (2.9) through (2.11), we directly impose an assumption on the covariance function
ry of Y, which we find convenient because it allows us to encode the possible cross-dependence
structure among Xi,..., X, into ry. See example (ii) below. For i = 1,2, denote t; =
(sT,v1)T, where v/ = (vi1,...,v; ). Let ry(¢1, t2) = Cov(Y(¢), Y(£2)). Then notice that

p
ry(ty, t2) =Z ZCOV(Xi(Sl), Xj(s2))vyiva,j

i=1 j=I

p P
=v] v — Z Z[Sij — Cov(X;(s1), Xj(s2)]vy,iv2,j

i=1 j=I

1 P p
=1— Sllor =2l = 3 3 18 — Cov(Xi(s0), Xj(s2)lvn iva . (2.12)

i=1 j=I

where §;; = 1(i = j) is the Kronecker delta. The structure in (2.12) suggests the following
assumption on ry(Zy, ¢;).

172



W. Qiao Stochastic Processes and their Applications 133 (2021) 166—-192

(A3) We assume that Y (¢) given in (2.10) is a local-(E, a, Dy)-stationary Gaussian field on
L x SP~! with D, = diag(B;, \%I,,), where B, is a nonsingular n x n matrix for all
t e LxSPLE ={n, p}and @ = {, 2}, for some 0 < o < 2. We assume that the
matrix-valued function B, is continuous in ¢ € £ x SP~1.

Remark 2.4. Note that assumption (A3) implies that for s € Land 1 <i,j < p,

0 i#j

Cov(Xi(s), X;(s)) = | iz

In other words, we are considering a Gaussian vector field X(s) whose variance—covariance
matrix at any point s € £ has been standardized. However, cross-dependence between X;(s;)
and X (s ;) is still possible under assumption (A3) for s;,s; € £, s; #5; and i # j.

Corollary 2.2. Let {X(s), s € L} be a Gaussian p-dimensional (p > 2) vector field with zero
mean on a compact m-dimensional submanifold L C R" of positive reach, such that {Y(t),
t € LxSP71} in (2.10) satisfies assumption (A3). If ry(t1, t2) < 1 for all t,, t, from £ x SP~1,
t) £ ty, then

H, —
P(sug IX©)l >u) = G-I /L oo VB Pellnd My (P ) (1o(1),
S XSSP~

(2.13)

as u — oo, where Pg is an n x m matrix whose columns are orthonormal and span the tangent
space Ty L.

Remark 2.5.

a. This corollary is a direct consequence of Theorem 2.1 using R = (m, p — 1). To see this,
notice that Hgrq = HpyoHp-12 = Hy (/7)) PV, because of the factorization lemma
(see Remark 2.2) and the well known fact H, = ()~!/? (see page 31, Piterbarg [34]).
Also notice that || \%I,,Pu lp—1 = 2-(P=D/2 where P, is a p x (p — 1) orthonormal matrix
whose columns span the tangent space T, S”~.

b. Even though the result in this corollary is stated for p > 2, it can be easily extended to
the case p = 1. When p = 1, we write X(s) = X(s) € R and SP~! = {£1}. Then using
the same proof of this corollary, one can show that under the assumptions given in this
corollary (in a broader sense such that B, = B, only depends on s € £, because SP~!
now is a discrete set), we have that as u — 00,

P (SUP | X ()] > u) = 2Hm.a/ || By Py lmd Hon ()™ W (u)(1 + o(1)), (2.14)
sel L

where the factor 2 on the right-hand side is the cardinality (i.e., the O-dimensional
Hausdorff measure) of the set S°.

Examples. Below we give two examples of Gaussian vector fields X that satisfy assumption
(A3).

(i) Let X(s),..., X,(s) be iid. copies of {X(s), s e L}, which is assumed to be
locally-(n, o, Bg)-stationary, where 0 < o < 2, that is,

rx(s1,82) = 1 — || Bs(s1 — $2)[“(1 + o(1)),
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as max{|ls — s, l|ls — s2||} — O. In this case, (A3) is satisfied because
ry(ty, t2) =rx(s1, $2)v] va
1
=1 —[lIBs(s1 — s2)II* + E”vl — 2”11 + o(1)),

as max{||t — t1|| [t —t2]]} — 0. In other words, Y (¢) is locally-(E, @, D;)-stationary, where
dlag(Bs, 7 1,), E={n,p}and a = {a,2}.

(11) Consider X;(s) as a locally-(n, 2, (AL')!/?) stationary field, where A’ are positive definite

n X n matrices, for i = 1,..., p. Also for | <i # j < p, suppose COV(X (sl) X(s2)) =

(s1 — s2)T A (s — s2)(1 + 0(1)) as max{||s — si||, |s — 52/} — O, where Ay’ are n x n

symmetric matrices. So overall for 1 <i # j < p we may write

Cov(Xi(s1), Xj(s2)) = 8 — (51 — 52)" AL (s1 — s2)(1 + o(1)),

as max{|ls — s, lIs — s2|l} — 0. Using (2.12), we have
1 14 p o
ry(tn ) =1 = Sllvr = ol = (51 =) 1 D) [wiw;ALT ¢ (51 = 52)(1+ o(1).
i=1 j=I

Let A, = Y./, Zle[vivjAls’]]. If A, is positive definite, then (A3) is satisfied with
B; = (A)"?, E =n+ p and @ = 2. The matrix A, is positive definite under many possible
conditions. For example, if for each i, Apin(A;') > i |Amin(A;’] )|, where A, is the smallest
eigenvalue of a matrix, then A, is positive definite because for any u € R" with |u|| > 0 and
any v € S,_1,

p 14

T i,J 2 T 2

u Atu > E E )‘-min(Altj)vivj”u“ = Aminv”u” >07
i=1 j=1

where Ap;, is a matrix consisting of )»min(Ai’j ), which is positive definite.

3. Extremes of rescaled Gaussian and yx fields on manifolds

In this section, we consider a class of centered Gaussian fields {X,(¢), ¢ € My}ue,n,) for
some 0 < hy < 1, where M;, = M x M, are r-dimensional compact submanifolds of
R”". We will develop the result in (1.2), where the index ¢ is (partially) rescaled by multiplying
h~!. For simplicity of exposition, in the structure (E, ), we take k = 1 or k = 2. The case
k = 1 also corresponds to My, = @ for the case k = 2. The results in this section can be
generalized using the same structure (E, &) as in Section 2.

When k = 2, we denote K = {1, 2} and have @ = {«;, an}, E = {e1, e;} and R = {r(, 12},
where 1 < r  <e, 1 <r <e,r=r+r,andn = ¢ +e. Fort = (t(l),t(Tz))T €
R x R2 = R", let & : R” — R” be a function such that &,(t) = (ht(l), t(z)) . For any
s € My =My x My, let Dy = dlag(Dilz, D(Z)) be an n x n block diagonal matrix.

When £k = 1, we denote K = {1} and have @ = o = o, 1 =0, E =n = e and
R=r=r,wherel <r <n.Fort =ty €R" let§ : R" — R”" be a function such that
&y(t) = ht. For s € M), = My, 1, let Dy, = D(1 be an n X n matrix.

We first give the following assumptions before formulatmg the main result of this section.
Let éhl be the inverse function of &,. Denote M, = & M) = {t : &@) € M,). Let
X,(0) = XnGn(0), t € M. Let 74(t1, t>) be the covariance between X,(¢;) and X,,(¢,), for
ti,t, € My.
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(B1) For i € K, assume that M, ; is an r;-dimensional compact submanifold of R¢, with
il‘lf()<h§h0 A(Mh,i) > 0, and

0< inf H,(Mp;) < sup H,(M;,;) <oo, ie€K.
O<h=hg 0<h<hg

(B2) &(t) is locally-(E, &, D¢, (t),)-stationary in the following uniform sense: for ¢, ¢, ¢, €
My, as max{[|t — ¢, [t — t2l[} — O,

ra(ty, ) = 1 — | Dg, .0t — t2)l o (1 + 0(1)), (3.1

where the o(1)-term is uniform in ¢ € M, and 0 < h < ho. Here for i € K, the dimension
of Dg’)h is e; x e;, and the matrix-valued function Di’;l of s has continuous components
on M. Also

O< inf (DI DY) < sup Ama(ID{17 DY)

v < oo, i €K,
O0<h<hg,seMy, 0<h<hg,seMy,

(3.2)

where Amin and An.x are the smallest and largest eigenvalues of symmetric matrices,
respectively.
(B3) Suppose that, for any x > 0, there exists n > 0 such that Q(x) < n < 1, where

O(x) = sup {|F(t,$)| : t,5 € My, ity — syl > x}. (3.3)
0<h<h

(B4) There exist xo > 0 and a function v(-) such that for x > x(, we have
Q(x)|(log x)*M/er+r2/e2)| < p(x), (34
where v is monotonically decreasing, such that, for any ¢ > 0, v(x?) = O(v(x)) = o(1)

and v(x)x? — 0o as x — Q.

Remark 3.1. Assumptions (B1)—(B3) extends their counterparts used in Theorem 2.1 to some
forms that are uniform for the classes of Gaussian fields and manifolds. Assumption (B4) is
analogous to the classical Berman condition used for proving extreme value distributions (see
Berman [5]). An example of v(x) in assumption (B4) is given by v(x) = (log x)~#, for some
B> 0.

Theorem 3.1. Suppose assumptions (B1)—(B4) hold. Let

N -
Bn =<2r1 log Z) + (2r1 log —)

h
1 1 Q2rp)ar a2
r 1) ri o o
o T ) leglog o Hlogy —————Hral , (35
x |:<a1 + o 2) oglog - + og{ T Ra h(Mh)}] (3.5)

where I,(M;) = th | D¢ p Pe|l,dH,(t) with Py an n X r matrix with orthonormal columns
spanning Ty M. Then

lim P {,/2r log & Xn(t) — =e . .
lim [ r og”(:iﬁ% n(t) ﬁh)fz] e (3.6)
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Remark 3.2.

a. If there exists ¥ > 0 such that I,(M;) — y as h — 0, then obviously y can replace
I,(My,) in the theorem. Also if M; = M and D, = D; (i.e. they are independent of
h), then I,(My) = [y D¢ Pell,dH,(2).

b. The case k = 1 corresponds to the scenario studied in Qiao and Polonik (2018). Compared
with their result, here we only need X, to be indexed by the manifold My, instead of its
neighborhood.

c. When D, ), = cl, for all ¢t € M, for some constant ¢ # 0 (also see Corollary 2.1), we
have I,(Mp) = |c|"H,(Mp).

Next we consider the asymptotic extreme value distribution of rescaled y-fields on mani-
folds. For some 0 < ho < 1, let {X,(s), s € Lj}ne.n, be a class of centered p-dimensional

Gaussian random vector fields, where X;, = (Xp1,..., Xp, p)T and £, are m-dimensional
compact submanifolds of R” (1 <m <n). Let v = (vy,...,v,)" € R” and ¢t = (s”,v")T €
R"P. Let

Xp(t) = Xu(s, v) = X 1()v1 + -+ + Xy p($)vp, t € My, = Ly x SP! (3.7)
Using the property of Euclidean norm, we have

sup || Xp(s)]l = sup Xp(). (3.8)

sely teMy,

Corollary 3.1. Suppose p > 2 and {X;(t), t € L), xSp_l}hE(o,hol in (3.7) satisfies assumptions
(B1)~(B4) with E = {n, p}, R ={m, p — 1}, a = {«, 2}, and D, ), = diag(By , %21,,) where
By is a nonsingular n x n matrix. Let

m p—2
1y} IN-4[/m p—2 1 @myat'T
By = <2m log ﬁ>2+<2mlog 7) 2|:<E+pT>loglog E—I—log WHm,alh(Mh)”:

(3.9)

where I,(My) = fcthﬁ—l | Be i PsllmdHomsp—1(8) with Py an n x m matrix with orthonormal
columns spanning TyL;,. Then

h—0 sely

1
lim P {(Zm log %)2 (sup X 4(s)]| — ﬁh> < z} —e (3.10)

Remark 3.3.

a. The result in this corollary immediately follows from Theorem 3.1. See Remark 2.5(a)
for some relevant calculation. Also, similar to Remark 2.5(b), the result in this corollary
can be extended to the case p = 1 such that SP~! = {£1}, for which (3.10) holds with

1

Br = (Zm log %)%—i-(Zm log %)_7 [(%—%) loglog %+log{%Hm,alh(Mh)”,

where y(My) =2 [ 1| Ben Pellnd Hon(s).

b. In the introduction section, we briefly indicate two examples (a) and (b) as applications
of this corollary using the signal plus noise model in (1.6), by taking £, = M in this
corollary. The application of this corollary to example (a) is straightforward. For example
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(b), we consider M as (the intersection of) level sets with the form M = {s € A : f(s) =
g0}, where A C R”" is a neighborhood of M and f and g, are p-dimensional vectors.
We take 1 < p < n. The positive reach condition of M required by this corollary is met
when f satisfies the conditions given in Lemma 4.11 and Theorem 4.12 of Federer (1959),
e.g., when the component functions of the Jacobian matrix of f are Lipschitz continuous
and g, corresponds to regular (i.e., non-critical) values of f, meaning that the Jacobian
matrix of f at every point of M has full rank. Also note that under this condition, M is an
m-dimensional manifold by the constant-rank level set theorem (Theorem 5.12, Lee [24]),
where m = n — p. If all the assumptions in this corollary are satisfied, then the validity of
Fn in (1.8) as an asymptotic (1 — o) confidence region for M is simply the consequence
of the equivalence of the following two events.

M C Fy & ay (sup I1F4(s) — goll — bh) < Za,
seM
where we can take a;, = (2m log %)% and b, = B, as in this corollary.

4. Proofs

4.1. Geometric construction for the proof of Theorem 2.1

The proof of Theorem 2.1 relies on some geometric construction on manifolds with positive
reach, which we present first. Let M be an r-dimensional submanifold of R". Suppose it has
positive reach, i.e., A(M) > 0. For g, n > 0, a set of points Q on M is called an (g, n)-sample,
if

(i) e-covering: for any x € M, there exists y € Q such that ||x — y|| < ¢;
(ii) n-packing: for any x,y € Q, [lx — y|l > 7.

For simplicity, we always use n = ¢, and such an (g, ¢)-sample is called an e-net. It is known
that an e¢-net always exists for any positive real number ¢ when M is bounded (see Lemma
5.2, Boissonnat, Chazal and Yvinec [9]). Let N, be the cardinality of this e-net. Let

P, = max{n : there exists an e-packing of M of size n},
Ce

min{n : there exists an e-covering over M of size n},

which are called the e-packing and e-covering numbers, respectively. It is known that (see
Lemma 5.2 in Niyogi et al. [31])

P2s§Cs§N£§Ps'

Also it is given on page 431 of Niyogi et al. [31] that when ¢ < A(M)/2
H, (M)

* = [cos"(0)]e" B,
where B, is the volume of the unit r-ball, and 6 = arcsin(e/2). This implies that N, = O(¢™"),
as ¢ — 0, when H,(M) is bounded.

Let {x;,...,xn.} C M be an e-net. With this e-net, we can construct a Voronoi diagram

restricted on M consisting of N, Voronoi cells Vi, ..., Vy,, where Vi = {x e M : ||x — x;|| <
lx — x;ll, forall j # i}. The Voronoi diagram gives a partition of M, that is M = U?ﬁlvi.

’

177



W. Qiao Stochastic Processes and their Applications 133 (2021) 166—-192

Due to the definition of the £-net, we have that
Bxi,e/2yNM)CV; C (B(xj,e)NM), i=1,...,N,.

In other words, the shape of all the Voronoi cells is always not very thin.
4.2. Proof of Theorem 2.1

We first give a lemma used in the proof of Theorem 2.1. Recall that a bounded subset of
R" is called Jordan measurable if its boundary has Lebesgue measure zero.

Lemma 4.1. Suppose that the conditions in Theorem 2.1 hold. For a subset V. C M, suppose
that there exist an open set G C R" and a diffeomorphism  : G — V, where the component
Sfunctions of the Jacobian matrix Jy of Y are uniformly continuous. For any subset U C V,
if 2 := vy~ YU) is a compact Jordan set of positive r-dimensional Lebesgue measure, then as
u— oo,

k k
P (sup X() > u) = Hpa / [T1DscPiclr,dte @ [u?/* w1 + o(1)).  (4.1)
Ui

teU i=1

Proof. Let X = X o Y, which is a Gaussian field indexed by V C R’. Consider 7, 71,72 €
{2 C V such that max{||t — ¢;||, ||t — ||} — 0. Since ¢ is a diffeomorphism, we also have
max{||y @) — v (DI, [Yv () — ¥ (£)||} — 0. Using assumption (Al), we have
Cov(X (@), X(12)) =Cov(X (¥ 11)), X (©>))
=1 =Dy W(t1) = ¥ (£l (1 +o(1))
=1 — Dy Jy ()& =Tl o, (1 + 0(1)),
where in the last step we have used a Taylor expansion. Note that the above o(1)-term is uniform
in t € {2 due to the definition of the local-(E, a, D;)-stationarity given in Definition 2.1, and
the uniform continuity of Jy assumed in this lemma. Since the columns of the Jacobian matrix
Jy span the tangent space Ty )M, and the matrix Dy, is assumed to be nonsingular, the
matrix Dy g)Jy (¢) is of full rank, and therefore
AW = Wy (O 1Dy @)l Dy Jy (©)

is positive definite. Also note that A(f) is a block diagonal matrix, where the diagonal blocks
have dimension r; x r;, i =1, ..., k. Let A(f)"/? be the principal square root matrix of A(f).
We have that

Cov(X(E1), X(E2) = 1 — |AD) () — )| o (1 + 0(1)).
Using Theorem 7.1 in Piterbarg [34], we obtain that as u — oo,

k
P (sup X#) > u) = Hpa / det{A®)"1dH, @) [ [u?* wu)(1 + o(1)).
(7

te2 i=1

By using the change of variables formula (see Corollary A.1 in the appendix) and noticing that
Supy .o X(t) = sup,cy X(¢), we have

_ detl Ay~ #))'] S
P (f?},’ X(t) > u) = HR,O,/U det[B(w_l(t))l/z]dH,(t)il]u )1+ o(1)),
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where B(y =1 (#)) = [Jy (Y @D Ty (v =1 (8)). Let {pi1(¢), ..., p,(¢)} be an orthonormal basis
of the tangent space T; M and write P, = [p;(¢), ..., p,(¢t)]. There exists an r X r nonsingular
matrix Q; such that Jy, (¥ ~'(¢)) = P;Q;. Hence

det[A(y~'(¢))'/?] _ det[Q]det[(P/ D] D, P,)'*] _ det[(P? DT D, P,)'/]
- t “ Ml :

det[B(y~'(1))'?] det[Q/]
Notice that P, = diag(P1 ), - - -, Pk, ,(k)) where P i) is an e; x r; matrix whose columns
are orthonormal and span T,(j)./\/l j» J = 1,...,k. Then by the Cauchy-Binet formula (see

Broida and Williamson [11], page 214), we have

k

I D¢ Pell, = det[ P} D] Dy P]'/* = Hdet[( 1 D1 Prig) 1= TTID e Prag -
j=1

“4.2)

Therefore we get (4.1). We can also show that the quantity in (4.2) is invariant if we choose a
different orthonormal basis of T; M, say {p|(¢), ..., fiL(t)}. Let P, = [pi(f), ..., p-(®)]. Then
there exists an r x r orthogonal matrix W; such that P, = P,W,. We have

det[ P DI D, P,]'* = det{]W, W] 1'2 det[P] D! D, P;]'* = det[P] D! D, P,]'*. O
(4.3)

Proof of Theorem 2.1. For any t € M, denote C; = B°(, A(M)/2) N M and let
T =1 :C — T;M be the projection map to the tangent space 7;.M, that is, T is a restriction
of the normal projection 77, ¢ to the set C;. Let D, be the image of C; under 7, which is an
open set in T; M. It is known that 7 is a diffeomorphism between C; and D; (see Lemma 5.4,
Niyogi et al. [31]). It follows from the proof of Theorem B in Leobacher and Steinicke [25]
that the Jacobian of t~!, denoted by J,-1, is locally Lipschitz continuous in the following
uniform sense: for any 7 € D;, let a > 0 be such that B°(f, a) N\ T, M C Dy; for any § € T, M
such that ||§]| < %a, there exists a constant L > 0 only depending on A(M) such that

11+ 8) = Jo-1 Dllop < LIS, “4)
where | - [lop is the operator norm of matrices. Therefore J -1 is uniformly continuous when
restricted to 7' (B(t,€) N M) for any 0 < € < A(M)/2. Suppose that {e;, ..., e} is an

orthonormal basis of Ty M. Let ¢ : T, M — R” be a map such that «(y) = (y1,...,y,) € R”
for y = yie; +---y,e, € T M. Then ¢ ==t~ ! o1 ! is the diffeomorphism we need to apply
Lemma 4.1.

We choose € < A(M)/10. Using the method in Section 4.1, we find an e-net {¢1, ..., ¢y, }
for M, and construct a partition of M with Voronoi cells Vi, ..., Vy_, where N. = O(e™").
Since V; C (B(t;, ) N M), T = 1, is a diffeomorphism on V;, i = 1,..., N..

Using Lemma 4.1, we have that

P(supX(t)>u) HR,,/ H||DJ,P]t||,/d’H (t)l_[uzrf/"‘f P (u)(1 4 o(1)),
teV;

z/ 1
as u — 00, and hence
ZP(sup X(t) > u) HR o / ﬂ ||DJtP,t||rjdHr(t)]_[u2”/°‘f w(u)(1+ o(1)). (4.5)
i=1 tevi j=l
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We will apply the double-sum method (see Piterbarg [34]). Using the Bonferroni inequality,
we have

Ne
ZIP’ (supX(t) > u) — ZIP’ (supX(t) > u, sup X(t) > u)

i=1 teV; i#j teV; tev;
Ne
<P <sup X(@) > u) < ZIP’ (supX(t) > u) .
teM i=1 teV;
4.6)
For any two subsets A, A, C R", define

dmax (A1, A2) = sup{llt; — ta| = 1 € Ay, £ € Ay},

dmin(A1, Ay) =inf{|[t, — ]| : t; € Ay, t; € Ay} 4.7)
We divide the set of indices S = {({,j) : 1 < i # j < N.} into §; and S, where
S1=A{G,j) €S dmax(Vi, V;) < 5e}and S, = {(i, j) € S : dmax(Vi, Vj)} > S5e}. If (0, j) € Si,
then there exists £ € M such that (V; UV;) C (B(t, 5¢)NM) C (B°(t, A(M)/2)N M), due to
the choice € < A(M)/10. With the diffeomorphism i defined at the beginning of the proof,
we apply Lemma 4.1, and have that as u — oo,

P (sup X(t) > u, sup X(t) > u)

teV; tGVj

=P (supX(t) > u) +P (sup X() > u) —]P’( sup X(t) > u)
teV; tEVj tGViUVj

k k
=0(1)Hg a / [ 10D Pl dHe @) ] Tu? s/ ().
V;uv;

Jj=1 j=1

Therefore as u — oo,

k
P <sup X(t) > u, sup X(¢) > u) =0 (]‘[ u?ile lll(u)) . (4.8)

i, ) teV; ter i=1

Next we proceed to consider (i, j) € S,. Let Y (¢, s) = X(¢) + X(s). Note that

teV; teV; teVi.seV;

P (sup X(t) > u, sup X(t) > u) < ]P’( sup Y(¢,s) > 2u) . 4.9)

In order to further bound the probability on the right-hand side, we will use the Borell
inequality [10] (see Theorem D.1 in Piterbarg [34]). Notice that dpin(V;, V;) > dmax(Vi, V) —
4¢, and hence

min dmin(via V/) > €.
(i,))€Ss ’

The assumption in the theorem guarantees that p := sup,_g . rx(#, s) < 1. This then yields
that

max sup Var(Y(¢,5)) <2+ 2p
(.1)€82 (1,5)eV; x V;
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and

sup sup E(Y(,s) =0.

(i, ))eS) (£,5)€V; x V;

Now it remains to show that [P (SuPte\/,,seV,- Y(,s) > b) < 1/2 for some constant b for all
(i, j) € S, in order to apply the Borell inequality to Y (¢, s). Such b exists because

]P’( sup Y(t,s)>u)§IP< sup Y(t,s)>u>§IP’<supX(t)>u/2>

teV,seV; te M, seM teM

k k s
<tiva [ TT10sPlaro [T (5)7" o (5) 0+,
j=1 j=1

which tends to zero as u — oco. The application of the Borell inequality now gives that

- u—>b/2
P Y 2 20| —— ). 4.10
<tevs,~‘,ls‘iv,- 0= ”)5 <¢—<1+p)/2> 10

Also note that the cardinality |S;| < Nf < Ce %, for some constant C > O. Using the
well-known fact that é(u)/ ¥(u) — 1 as u — oo, we have

- —b/2
Z P (sup X(t) > u, sup X(t) > u) §2|Sz|¢<u)
(.j)esy \I€Vi

tEVj V(l+p)/2
—2|S|( u—bj2 >_1¢( u—bj2 )(1+a<1>>
—\Va T2 JaT+p)/2

k
=0 1_[ uilai Uw) |, (4.11)
i=1

as u — oo, where the last step follows from /(1 + p)/2 < 1. Combining (4.5), (4.6), (4.8)
and (4.11), we have the desired result. [

4.3. Geometric construction for the proof of Theorem 3.1

We first give some geometric construction used in the proof of Theorem 3.1. We focus on
the case k = 2 below. For k = 1, only the geometric construction on My ; is needed.

(i) Voronoi diagram on My: Let £1 = infje,ny] A(My,1)/2. It is known from Section 4.1 that
there exists an (h€;)-net {sy, ..., $y, } on My, where m, = O((h€;)™"") is the cardinality of the
net. With this (4¢,)-net and using the technique described in Section 4.1, we construct a Voronoi
diagram restricted on M, ;. The collections of the cells are denoted by {J, : k =1, ..., mp},
which forms a partition of M, ;. Similarly for M, 5, with €, = infj¢ ny) A(Mj2)/2, there
exists an {p-net {u, ..., u,,} on M, where n, = 0(6;’2). The cells of the corresponding
Voronoi diagram on My, , are denoted by Uy, ..., Uy, 1.

(ii) Separation of Voronoi cells: The construction of the Voronoi diagram restricted on M,
guarantees that each cell Ji, D (M1 N B(sk, (h€1)/2)). In other words, Ji ; is not too thin.
For0 <é§ < €,/2,let 07, = Uzl:hl(afk,h) be the union of all the boundaries of the cells. Let

B" ={x e My, :d(x,dT,) < hd},
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which is the (h§)-enlarged neighborhood of 9.7,. We obtain J,f’h = Jk,h\B/“S and J,;,‘f =
Jew\JY,, for 1 < k < my,. The geometric construction ensures that if k # k', J?, and J;, , are

separated by B"® which is partitioned as {ka;f , k=1,..., my}. Furthermore it is clear from
the definition of B that with dp;, defined in (4.7) we have

duin(J2 . J) ) = 2h8, for k # k', 4.12)
(iii) Discretization: We construct a dense grid on M, as follows. Let II; ; = (I, Huj)

be the projection map from J;, x U, to the tangent space Ty, M x T, ./\/lh 5. Let the
image of Jy, x Uj; be th X U 4 The choice of ¢; and Zz guarantees that II; ; is a
dlffeomorphlsm Let {M¢, ! :i=1,...,r} be orthonormal vectors spannmg the tangent space

Ts, My 1. For any given y,@ > 0 consrder the (discrete) set uh},@ Z/al(]k n) = {t € Z{h :
t = s¢ + (hy6~ 2/“1)2” e; Sk,e, € Z} and let = Shyo- ey (Jn) = 1, l(uhye 2/a1(Jk ),

which is a subset of J; ;. Similarly, let {M’ =1, r2} be orthonormal vectors spanning
the tangent space T, /\/lhz and we dlscretlze U,h with = Z,0- z/az(Ujh) ={v € U]h v =
u; +yoH2y?, eiM! . e; € 7} and denote =, o2 (Ujp) = 1(_]/0 2, (Ujn).
We denote the union of all the grid points by
Iy .0 = Uk h] Unh [Ehy(.)*z/oq (-]k n) X Z 9*2/062(Uj ] (4.13)
- [Uk—l—'hyg—ﬂdl (Je.n)] % [Uj 1‘—’;/0 2/ay (Uj ]l (4.14)

For any discrete set A, let | A| be the cardinality of .A. Denote N(l) = U uhye 2/ay (Jien)|-
Then obviously as i,y — 0 and 6 — oo,

o He (Tin) _o Hy (M)
(hy@=2/e)nt - (hy6=2/eryn
— 0(92r]/a|h7r1 y*rl)_

1 = g
N/E ) = | Uk 1 '—hyg 2/061(Jk,h)| =0 (

Similarly, the cardinality of U"" im15,9-210(Uj ) is given by
NP = | U 5 g2sar (Uja)] = O(O7/%2y72), (4.15)

It is easy to see that (Jh X Mp2)N Iy = [UZ“l:hye —2/a (J,f,h)] x [U ;”’ 1:V0—2/a2 W;ml,
and for § > O fixed and small,

N = U 5 g2 ()1 = OWND) = 0@/ "1y =), (4.16)
4.4. Proof of Theorem 3.1

We focus on the case k = 2 in the proof. The proof for k = 1 (corresponding to M, =
when k = 2) is omitted since it is similar and simpler. For a random process or field X(¢),
t e S CR"” and 9 € R, we denote

Px(6,S) = P(sup X (1) < 0),
teS

Qx(0,8) =1—Px®,S).
With B, in (3.9), let
1

/2 log(l/h)z'

On: = Bn + 4.17)
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With this notation, we can rewrite (3.10) as

}111_{13) Px,6hz, Mp) =e°

—I

To prove Theorem 3.1, we need to establish a sequence of approximations using the above
geometric construction, detailed in Lemmas 4.2—4.7 as follows.

Recall that I,,(A) = fA | D¢y Pell;dH,(¢) for any Borel subset A C M. In the following
lemmas we consider 6 as a large number with & = 6, ; as a special case in mind.

Lemma 4.2. For any € > 0, there exist 8y > 0 such that for all 0 > 6y, 0 < h < hy, and
Jr € Uk, J,f,h, ka,‘f} with 1 < k < my, we have for some €, with | | < €,

Qx, (0, Jx x M)
G201 /e1+r2/e2) @ (9)

=+ e n)h™ Hpolpn(Je X My ). (4.18)

Proof. For J; € {Jip, J,f,h, Jk_,,f}, denote 7k = {twy/h : tqy € Ji} such that 7k X My, C ﬂh.
Then notice that J; has a positive diameter and r;-dimensional Hausdorff measure. Recall that

En(t) = (ht()), t))! fort = (], 1) € J X Mj,» and the Gaussian field X, (£) = X;,(&,(¢))
is locally-(E, a, D¢, ) ,)-stationary on Je X My Let T,(A) = fA | Dg, o), Pell dH,(t) for

any Borel subset A C My,. Then using Theorem 2.1, we obtain that

Qx, 0, Tk x My2)
O2ri/artr2/e2) §(9)

= Hgoln(Jx x My2)(1 +o(1)),

where the o(1)-term is uniform in 1 < k < my and 0 < h < hg, because of the uniformity in
assumptions (B1)—-(B3), as well as the fact the Jacobian matrix of the diffeomorphism 7 we
establish in the proof of Theorem 2.1 is locally Lipschitz continuous with the Lipschitz constant
only depending on the reach of the manifold as shown in (4.4). Noticing that T(Je x M n2) =
h™" I (Je x Mp2), we then get the desired result. [

Lemma 4.3. For any € > 0, there exist yy > 0, 6y > 0 such that for all y < yy, 6 > 0y,
0 < h < hy, and J € {Jins J,f’h, ka,‘f} with 1 < k < my,, we have for some €;  with | ;| < €,

Qx, 0, (Je X Mp2) N I} y0)

Q2(r1/ay+ra/az) v(6) =0+ Ek’h)h_ 1 HR,u(V)Ih(]k % Mhl)’ *19)

where ﬁR,,,(y) only depends on y such that I:IVR,,,()/) — Hpgqasy — 0.

Proof. The proof is similar to that of Lemma 4.2. The main difference is that, instead of
applying Theorem 2.1, we use Lemma A.3 in the appendix. Note that in order to apply
Lemma A.3, one needs to find a diffeomorphism 1 ; between J; x U;; and its preimage
in R", for each k = 1,...,m;, and j = 1,...,n;,. This diffeomorphism is constructed in
the same way as shown at the beginning of the proof of Theorem 2.1. By using Lemma A.3
and following the proofs of Theorem 2.1 and Lemma 4.3 we obtain the result stated in this
lemma. [

Lemma 4.4. For 6 = 6, ; given in (4.17) with any fixed z, we have that as h — O,

hr12r /it /) v(0) = #W)(] +o(1)) = 0o(). (4.20)
Ralh h
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Proof. Observe that the first equality in (4.20) follows from a direct calculation using (4.17).
Next we show (4.20) is bounded. Recall that || Dy, P, = [det(PtTDZh Dy p P12 (see (4.2)),
where the columns of P, are orthonormal and span the tangent space 7;.M,,. Notice that for
any a € S’~' we have P,a € S"~!. Therefore

Amax(Pl D DeyP) = sup a’ (P D],D,yP)a < sup b'(D],D, )b

acS—! besr—1
= Amax(D{, De.1)-
Similarly,
Amin(P/ D}, Dy Py) = 1é1f a" (P D/,D;,P)a > 1nf bT(D W Den)b
acS—1
= Jmin(D; , De.1)-
It then follows from (4.2) that
min(D7 4, De)l? < D Pellr < [hmax(D{ Do)l (4.21)

The left-hand side in (4.20) is bounded because with assumption (B2) we have
0< inf [Ammw,f, pDew)l”? inf M, (My)
<h=hgy

O<h<hg,te M

< 1nf Ih(/\/lh)< sup I,(My)
0<h= 0O<h<h

< sup Danax(D],De)l? sup Mo (My) < 00, O
O0<h=<hg,teMy, O<h<hy
Denote J? = Us<m, J{,. Recall that M, = M, x M, ,. Approximating M, by
j,f x M leads to the approximation of Qy, (6, M) by Qy, (6, J;f x My, 2). The volume
of UkSmh Jk_Jf , 1.e., the difference between the volumes of M and Jf, is of the order
O(8) uniformly in h. As the next lemma shows, the order of the difference Qy, (6, M) —
Qx, 0, jf x My, 2) turns out to be of the same order.

Lemma 4.5. With 6 = 6, , given in (4.17), there exists a positive constant C < oo such that
for all 5 and h small enough,

0 < Px, (6, J; x M) —Px, (6, My) < C8, (4.22)
and
mp my
0< Y Qx,0, Jin x My2) =Y Qx, 0, J ), x My2) < C8. (4.23)
k=1 k=1

Proof. Using (3.2) and (4.21), we have that

sup  IDesPill, < sup [mad(D],Dep)’? = €y < oo, (4.24)
0<h<hg,teMy, 0<h<hg,te My,

Also note that there exists a positive constant C; < oo such that max|<i<m, H, (Jk n X
My) < Cr8h™ for all h € (0, ho]. Our construction of the partition of the M), guarantees that
there exists a positive constant C3 < oo such that mj, < C3h™"!. Therefore

mp
Y (g x M) <my  sup Dy Prlle max Ho(J ) x My) < C1C2C38. (4.25)
1 O<h<hg,teM,, I<k<my,
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Using Lemma 4.2, for any € > 0, we have for 4 small enough that

0 < Qx, On,z, Mp) — Qx, Onos TP x My 2)

mp

< ZQX,, O,z Jk_,,f x Mj2)

k=1

mp
<(1+eh™ HR,NQ;’(;I/O”J”’Z/O{Z) W(G)Zlh(‘lktg x Mh,z)-

k=1
Then (4.23) follows from Lemma 4.4 and (4.25). Also (4.22) holds because
mpy
0 < Px, (0, J; x My2) = Px, (0, My) <Y Qx, Onz, Jp x My2). O
k=1

With Ij,,, ¢ given in (4.13), (jh‘s x M) N I},¢ represents a set of grid points over
jh‘s x M 2. Next we show that the excursion probabilities over these two sets are close, by
choosing both & and y sufficiently small.

Lemma 4.6. With 0 =6, ; given in (4.17), we have that

Py, (0, TP x My2) =Py, 0, (TS x My2) N Ty )+ o(1) (4.26)
and
mp mp
D Q0. x Mi2) =Y Qx, (0. (J2,, x M) N Iy )+ o(1), (4.27)
k=1 k=1
as y,h — Q.

Proof. Lemmas 4.2 and 4.3 imply that for any € > 0, there exist y > 0 and 6y > 0 such that
forall 0 < h < hgy, y <y and 6 > 6,
0 < Qx, (0, I ), x Miy2) = Qu, (0, (J2 ), x Mi2) N Ty )
< eh™" gAr/artr/w) ‘I/(Q)Hk.alh(J/ih X Mp2).

As a result,

0 < Qx, 0, T x My2) — Qx, (0, (T x My2) N Tyyp)

mp

= D[ Q0. 9 x Mi2) = @y, 0, (U X M) 0 D)
k=1

<eh™ g2(r1/ar+ra/az) U(0)Hg oI, (jf x Mhﬁz)

< eh™"1 g2/NTRD Y (0) Hy o [H(M).
Then (4.26) and (4.27) immediately follow from (4.20). O

Recall that (J,f x My2) N1}, 6 gives a set of dense grid points in jf x M, ». For any

1 < k < my, denote the set Tkh’y’g = (J} ), x My 2)NT}.y.9. Define a probability measure P such
that under P the vectors (Xnt): t € Tkh’y’g) and (X,(t"): t' € Tkh,’y’g) are independent for
k 75 k’. In other WOI‘dS, th (9, (kﬁ X thg) n Fh'yyg) = l_[kgmh th(e, (Jlf,h X Mh,Z) N Fh,ng).
As the next lemma shows, the probability Py, (6, (jh‘s x My 2) N I}, 9) can be approximated
by using the probability measure P, when &, y and § are small.
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Lemma 4.7. For § > 0 fixed and small enough, there exists y = y(h) — 0 as h — 0, such
that with 60 = 6, ; given in (4.17), we have

Py, (0. (T} x My2) N Tiyo) = [ P, 0. () x My2) O Do) +o(1). (428)

k<myp,

T T T (T\T
Proof. D:no;e t=(ty, 2(2)2) and ' = (¢}, £(3))", where t), £}, € R and ¢, t{,) € R*.
Fort € ;""" and t' € T,;”" with k # k', we have ¢, € J;, and t(,, € J;, ,, and hence for
all 0 < h < hy, by (4. 12) we have

18 @) — &7 @) = k) — £/ hll = (2h8)/h = 25 > 0,

Let r;,(t1, t;) be the covariance between X (1) and X,(¢,), for ¢y, t, € M. By the definition
of 7, we can write r,(t1, t2) = rp(§, L)), &, L(t,)). Then assumption (B3) implies that there
exists n = n(8) > 0, such that

sup sup sup sup |m(&, )] <n <1 (4.29)

O<h<hg k#k" teTh v.0 eTh V.0
By Lemma 4.1 of Berman [6] (aslo see Lemma A4 of Bickel and Rosenblatt [7]), we have
|Px, (0, (T x Mp2) N Tyyp) — ﬁx,, 0, (Ty x Mp2) N Tyyo)l

(e 02
22DV Z/ 2n(1 — ,\2)1/26Xp<_1+,\>dk

L<k#k'<mp 4 Th 70 pe ’l .0

= Y Y Z o, 1), (4.30)

1<k#k'<my, teTkh’V'@ t/erh/,v,a
k

where
Alrp(t, ) 6
t,t _— -_ .
ot t) = () exp( ESPRONG)
We take y = [v(h~")]M/Gr1+32) Let w be such that 0 < @ < —2— — 1, and define

(I+m)
G o =) e TP X T ity — )l < hNSD®M 0™ 1 <k £ K < my),
Thv h, -
G o =t ) e T L0 1 ity — (Il = hNE Dy 0720 1 <k £ K < my),
where N,% is given in (4.16). Then the triple sum on the right-hand side of (4.30) can be
written as

dooawH+ Y ). 4.31)

w.1)eG;) 1G5

Note that the cardinality of G, , is of the order O((N; )**'(N;*)?), where N,” is given in
(4.15). Hence for the first sum in (4.31) we have

" (Dot 7 2\2 A
> ;h(t,t)—O((N,,,,s) (N exp{ 1+n}>

(t,t’)eg,(,l_;ﬁ

_0 92r1/a| I+o 94}*2/(12 92

- hi yrl y2r2 eXpy — 1+ n
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_o (IOg %)r|/a]+2r2/[a2(1+m)] I4+w B 2’,] lOg %
- hriyrit2n/(+o) xp 1+7

(I+w)ry ZQ _(1+w)rl+2r2 )

2r
ZO(hI-F;_rl(ler)(lOg %> oy +a2 (U(%)) 3r1+3rp
=o(l) as h— 0. (4.32)

Now we consider the second sum in (4.31). Because (1 + |r;(¢, £)])™' > 1 — |ru(¢, t))], we
have
ry(t, b))

ot b)) < 7'[(1——772)1/2

exp (—(1 — |ry(t, £)))0?).

Since 6% = O(log %), with Q given in (3.3) and by using (3.4) we have that for & small
enough,

sup (¢, £)16% < QN 60
.eG),
U((N,(ll;)w/” y0*2/a] )92
= , e
= (log((N}(llg)w/rl ]/972/0‘1 ))z(rl/alJrrz/az)

Also notice that exp(—6%) = O(h*1), and hence exp (—(1 — |r4(¢, #)))0?) = O(h*1) uniformly
in (¢,t) € (_},(12’;'9. Consequently, when £ is sufficiently small, there exists a constant C > 0
such that

NIo/r1,9-2/a1
sup  gp(t, ) < Ch* V(N )* "y )

wired?, Hog (NS )/ y§-2/enPriferiznes

(4.33)

Therefore it follows from (4.15) and (4.16) that

Yo )

edy)

v N(l) w/rq 9—2/0(1
=0 (th] (N,(:g)Z(N,(lz))Z (( h,S) 14 )

[IOg((Nh(lg )w/rl y9*2/0t1 )]2r1 Jay+2rp fap

(log %)Zrl/al +2ry /0y v((N,(:; Yo/ry g2y

w—1 2ry /a1 +2rp /ay
|:log <h“’ ((log Dlery(1)=1/6n +3r2)) )j| (v(%))z/3

—o(1) as h — 0. (4.34)

=0

Combining (4.30), (4.32) and (4.34), we obtain (4.28). [

Proof of Theorem 3.1. We choose the same y = y (k) as in Lemma 4.7, and use 6 = 6,
given in (4.17). For any arbitrarily small (fixed) § > 0, by using (4.22), (4.26), and (4.28), we
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have that as &7 — 0,

Py, 0, M) = [ Px, 0. (J2 ), x Mu2) 0 Thy0) + 0(1) + O)

k<my,
= exp{ > tog (1= Qx, (0, (I x My2) N Fh,y,9>)} +o(l) + 0(8)
k<my,
= exp{—(l +o(1) Y Qu, 0. (J), x My2) N Fh,y,e)} + o(1) + 0(9).

k<mp

Then by using (4.27), (4.23), and (4.18), we get
Px, (6, My) = exp{—(1+o(1)h ™" §2"1/AH72/42§(0) Hp o (M) +0(8) }H0(1)+0(3).
The proof is completed by noticing (4.20).
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Appendix

In this appendix, we collect some miscellaneous results that are straightforward extensions
from some existing results in the literature, and have been used in our proofs, as well as some
basic facts about manifolds and geometric integration theory.

A.l. Miscellaneous results

For an integer £ > O and y > 0, let C(¢, y) = {try : t € [0,£]" N Z"}. Given a structure
(E,a), let Hp (£, y) = HEo(C(€, y)), where Hg 4 is defined in (2.1) for subsets of R”, and
HE,ot(gs V)

ey '
The existence of this limit follows from Pickands [32]. Using the factorization lemma (Lemma
6.4 of Piterbarg [34]) and Theorem B3 of Bickel and Rosenblatt [8], we have

HE,ot(y) = [lggo

Lemma A.l. Hp, = lim, HE);”;()/)
Let [go(y,u) = {(x1,...,x) € R" : x; = yu 2, 4; € Z¢4,i = 1,...,k}. The

following result extends Lemma 4.2 in Qiao and Polonik [37] from assuming a simple structure
with £ = {n} and a scalar 0 < @ = o < 2 to a more general structure. The proof uses similar
ideas and therefore is omitted. Also see Lemma 3 of Bickel and Rosenblatt [8], and Lemma
7.1 of Piterbarg [34].
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Lemma A.2. Given a structure (E, @), let X(t), t € R", be a centered homogeneous Gaussian
field with covariance function r(t) = E(X(t+s)X(s)) = 1—|t|g o (1+(1)), as t — 0. Then there
exists 89 > 0 such that for any compact Jordan measurable set A of positive n-dimensional
Lebesgue measure with diameter not exceeding 8, the following asymptotic behavior occurs:

k
) - Ih’y;n(y)mm)l_[uz“/"” T(u)(1 + o(1)),

i=1

IP’( sup X(t) > u

teAyu
as u — 0o, where A, , = AN I'gq(y,u).

The next theorem is similar to Theorem 7.1 of Piterbarg [34], except that the supremum is
over a dense grid. The proof is similar, where one needs to replace the role of Lemma 7.1 of
Piterbarg [34] by our Lemma A.2.

Theorem A.1. Let X(¢), t € A C R" be a locally-(E, a, D;)-stationary Gaussian field with
zero mean, where A is a compact Jordan set of positive n-dimensional Lebesgue measure.
Assume also that the matrix-valued function Dy is continuous in t and non-singular everywhere
on A. Then ifrx(t,s) < 1 forallt,s from A, t # s, the following asymptotic behavior occurs:

k
IP( sup X(¢) > u) = M/ | det D,|dt1_[uzei/°‘i U(u)(1 + o(1)),
" A il

teAy .y
as u — 0o, where A, , = AN I'gq(y,u).

The following lemma is analogous to Lemma 4.1 with the index set being a grid. The proof
is also similar to that of Lemma 4.1, except that in the proof we use Theorem A.l to replace
the role of Theorem 7.1 of Piterbarg [34].

Lemma A.3. Suppose that the conditions in Theorem 2.1 hold. For a subset V.C M, suppose
that there exist an open set G C R" and a diffeomorphism  : G — V, where the component
Sfunctions of the Jacobian matrix Jy of Y are uniformly continuous. For any subset U C V,
if 2 : =y~ YU) is a compact Jordan set of positive r-dimensional Lebesgue measure, then as
u— oo,

H w k k
IP( sup X(t) > u) = Ry—(” / [TUD. Pl dHo @) | T @u)(1 + o(1),
Uizl i=1

teMy y
(A.1)
where M, , = ¥(2 N I'ro(y, u)).

A.2. Manifolds and geometric integration theory

We collect some basic facts about manifolds and geometric integration theory used in this pa-
per for the convenience of the reader. There exist many texts on manifolds (see, e.g., Guillemin
and Pollack [19]) and geometric measure theory (see, e.g., Evans and Gariepy [16]).

A map ¢ : A — R” defined on an arbitrary subset A C R” is said to be differentiable,
if for each point x € A, around x there exist an open set U C R” and a differentiable map
F : U — R” such that F and ¢ are equal on UN.A. For a subset B C R”", the map ¢ : A — B
is called a diffeomorphism if v is one to one and onto, and if the inverse map ¥~' : B — A
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is also differentiable. A subset M C R” is an r-dimensional submanifold, if for any point
t € M, there exists a neighborhood V of x in M, an open set G C R, and a diffeomorphism
¥ :G — V.Denote f = ¥ '(t) € G and let J,,,(?) be the Jacobian matrix of ¥ at 7, whose
dimension is n x r. When ¢ : G — V is a diffeomorphism, J]/,(T) has full rank for all 7 € G.

Consider J]/,(T) as a linear map from R” to R”. Define the tangent space of M at ¢, also
denoted by T;.M, to be the image of the map J¢(7) : R” — R”, which is an r-dimensional
subspace of R”. The r-dimensional normalized Hausdorff measure, denoted by #,, is defined
as follows. Let diam(E) be the diameter of a subset E of Euclidean spaces.

Definition A.1. For any subset E of a Euclidean space, define

o0 o0
H,(E) = o, lslg)llnf{;(dlam(Ei)) CEcC L_Jl E;, diam(E;) < 5},
ﬂr/Z

where w, = T is the r-dimensional Lebesgue volume of the unit ball in R".
2

It is known that for any positive integer r, the r-dimensional Hausdorff measure coincides
with the r-dimensional Lebesgue measure on the class of Lebesgue measurable sets, and the

0-dimensional Hausdorff measure gives the cardinality of a discrete set. Let 7= A A
Consider an r-dimensional infinitesimal rectangle Ry = [f;, 1, + df] x --- x [f,, 1, + dt,].

The corresponding image of this rectangle under J,,,(?) is an r-dimensional parallelotope
in the tangent space T; M with r-dimensional volume H,.(J¢(7)(R7)) = B,,,(?)H,(Ry) =
By (£)dt x - - - x dt,, where By (f) = [det(Jy, (£ )T J,, (£))]"/? is called the Jacobian determinant,
and it is the scale factor that reflects the local change of volume in the transformation.

Theorem A.2 (Area Formula, See Theorem 2, Evans and Gariepy [16], Chapter 3.3). Let G be
an open subset of R” and ¥ : G — R" be a continuously differentiable map, 1 <r < n. Then
for any Lebesgue measurable subset {2 C G and non-negative Lebesgue measurable function
g:G — R, we have

/ gD det(Jy ()T Ty (EN'2dH, (&) = / Y gO)dH, ).
7] R ~ 1
te2ny—1(t)

When ¢ : G — V C R”" is a diffeomorphism, for any ¢ € V, the set ¥ ~!(¢) only consists
of a single point. Then the above area formula can be simplified into the following form.

Lemma A.4 (Change of Variables). Let G be an open subset of R" and v : G —- V C R”
be a C'-diffeomorphism, 1 < r < n. Then for any Lebesgue measurable subset 2 C G and
non-negative Lebesgue measurable function g : G — R, we have with U = ({2) that

fﬂ g()[det(Jy () Ty, ENI'2dH, () = / g O)dH,(2). (A2)
U

Lemma A.4 is a typical change of variable formula. A slightly different form of this formula
is given in the following corollary.

Corollary A.1. Under the same assumptions as in Lemma A4, if f : G — R is a non-negative
Lebesgue measurable function, we have

o )
t)YdH,(t) = dH,(t). A3
/Qf () /U[det<f¢(wl(t))TJ¢(w1<t)>)1l/2 © (A-3)
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Proof. This can be immediately obtained by taking g(f) = f(f)[det(Jy(£)" J,#))1'/? in
Lemma A4. O
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