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We develop large sample theory including nonparametric confidence regions for r-dimensional ridges of proba-
bility density functions on R

d , where 1 ≤ r < d. We view ridges as the intersections of level sets of some special
functions. The vertical variation of the plug-in kernel estimators for these functions constrained on the ridges is
used as the measure of maximal deviation for ridge estimation. Our confidence regions for the ridges are deter-
mined by the asymptotic distribution of this maximal deviation, which is established by utilizing the extreme value
distribution of nonstationary χ -fields indexed by manifolds.
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1. Introduction

A ridge in a data cloud is a low-dimensional geometric feature that generalizes the concept of local
modes, in the sense that the density values on ridge points are local maxima constrained in some
subspace. In the literature ridges are also called filaments, or filamentary structures, which usually
exhibit a network-like pattern. They are widely used to model objects such as fingerprints, fault lines,
road systems, and blood vessel networks. The vast amount of modern cosmological data displays a
spatial structure called Cosmic Web, and ridges have been used as a mathematical model for galaxy
filaments [45].

The statistical study on ridge estimation has recently attracted much attention. See [8,17–19,40].
One of the fundamental notions under ridge estimation is that ridges are sets, and most of the above
statistical inference work focuses on the maximal (or global) deviation in ridge estimation, that is,
how the estimated ridge approximates the ground truth as a whole. This requires an appropriately
chosen measure of global deviation. For example, the Hausdorff distance is used in [8,17–19], while
[40] uses the supremum of “trajectory-wise” Euclidean distance between the true and estimated ridge
points, where trajectories are driven by the second eigenvectors of Hessian. Both distances measure
the deviation of ridge estimation in the space where the sets live in, which we call horizontal variation
(HV).

In this paper, we develop large sample theory for the nonparametric estimation of density ridges,
which in particular includes the construction of confidence regions for density ridges. Our methodology
is based on the measure of global deviation in ridge estimation from a different perspective. Briefly
speaking, we treat ridges as intersections of special level sets, and use the measure of maximal deviation
in levels, which we call vertical variation (VV).

We first give the mathematical definition of ridges. Let ∇f (x) and ∇2f (x) be the gradient and Hes-
sian of a twice differentiable probability density function f at x ∈R

d with d ≥ 2. Let v1(x), . . . , vd(x)

be orthonormal eigenvectors of ∇2f (x), with corresponding eigenvalues λ1(x) ≥ λ2(x) ≥ · · · ≥ λd(x).
For r = 1,2, . . . , d − 1, write V (x) = (vr+1(x), . . . , vd(x)). The r-ridge Mr induced by f is defined
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as the collection of points x that satisfy the following two conditions:

V (x)T ∇f (x) = 0, (1.1)

λr+1(x) < 0. (1.2)

We fix r ≥ 1 in this paper and denote the ridge by M. This definition has been widely used in the
literature (see, e.g., [14]). A ridge point x is a local maximum point of f in a (d − r)-dimensional
subspace spanned by vr+1(x), . . . , vd(x). This geometric interpretation can be seen from the fact that
vT
i ∇f and λi are the first and second order directional derivatives of f along vi , respectively. In fact, if

we take r = 0, then conditions (1.1) and (1.2) just define the set of local maxima, which is the 0-ridge.
Condition (1.1) indicates that an r-ridge is contained in the intersection of (d − r) level sets of the
functions vT

i ∇f , i = r + 1, . . . , d , and is an r-dimensional manifold with co-dimension (d − r) under
some mild assumptions (e.g., see assumption (F4) below). The confidence regions for the set of modes
(0-ridge) can also be constructed by using the VV idea presented in this paper. They need to be treated
in a slightly different way because of the discreteness of the sets. The study of confidence regions for
modes is not included in this paper for convenience.

Given an i.i.d. sample X1, . . . ,Xn of f , the ridge M can be estimated using a plug-in approach
based on kernel density estimators (KDE). Let f̂ ≡ f̂n,h be the KDE of f with bandwidth h > 0 (see
(2.1)), and let v̂1(x), . . . , v̂d (x) be orthonormal eigenvectors of ∇2f̂ (x), with corresponding eigenval-
ues λ̂1(x) ≥ λ̂2(x) ≥ · · · ≥ λ̂d (x). Also write V̂ (x) = (̂vr+1(x), . . . , v̂d (x)). Then a plug-in estimator
for M is M̂, which is the set of points defined by plugging in these kernel estimators into their coun-
terparts in conditions (1.1) and (1.2). See Figure 1 for example. [8,17–19] focus on the estimation of
ridges induced by the smoothed kernel density function fh ≡ Ef̂ , instead of the true density f . Such
ridges, denoted by Mh, depend on the bandwidth h and are called surrogates. Focusing on Mh instead
of M avoids the well-known bias issue in nonparametric function and set estimation.

In this paper, we consider confidence regions for both M and Mh in the form of

Ĉn,h(an, bn) = {
x :

√
nhd+4

∥∥Qn(x)V̂ (x)T ∇f̂ (x)
∥∥≤ an, and λ̂r+1(x) < bn

}
, (1.3)

Figure 1. Left: contour plot of a density function, where the red solid curve is a ridge and the dotted lines are
contour lines; Right: simulated data points from the density function and the estimated ridge (blue solid curve).
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where an > 0, bn ∈ R and Qn(x) is a normalizing matrix. Here determining Qn, an and bn is critical
to guarantee that Ĉn,h(an, bn) has a desired asymptotic coverage probability for M or Mh as n → ∞
and h → 0. The basic idea for our VV approach is as follows. We consider density ridges as the
intersection of the zero-level sets of the functions V T ∇f and a sublevel set of λr+1. When we use
plug-in estimators for these functions, we allow their values to vary in a range (specified by an and
bn), which implicitly defines a neighborhood near M̂. The shape of this neighborhood is envisioned
as a tube around M̂ with varying local radii. This tube is geometrically different from the one with
constant radius based on the asymptotic distribution of dH (M̂,Mh), which is the Hausdorff distance
(belonging to HV) between M̂ and Mh. As seen from its definition given in (1.1) and (1.2), ridge
estimation mainly involves the estimation of the density gradient and Hessian. Between these two
major components, the rate

√
nhd+4 in (1.3) follows from the rate of convergence of the Hessian,

which is 1/
√

nhd+4 (ignoring the bias). Note that the rate of convergence of the gradient is 1/
√

nhd+2,
which is much faster than that of the Hessian, and makes the Hessian estimation a dominant component
in ridge estimation. We note in passing that this statement also applies to the asymptotic properties of
dH (M̂,Mh) (see [8]).

The asymptotic validity of the confidence regions for Mh and M in the form of (1.3) will be shown
through the following steps, which are also the main results in the paper. Note that if we write Bn(x) =
‖Qn(x)V̂ (x)T ∇f̂ (x)‖, then Mh ⊂ Ĉn,h(an, bn) is equivalent to

√
nhd+4 supx∈Mh

Bn(x) ≤ an and
supx∈Mh

λ̂r+1(x) < bn. Under some regularity assumptions one can show that

(i) the distribution of
√

nhd+4 supx∈Mh
Bn(x) equals that of supg∈Fh

Gn(g) asymptotically, where
Gn is an empirical process and Fh is a class of functions, which is induced by some linear
functionals of the second derivatives of kernel density estimators;

(ii) the distribution of supg∈Fh
Gn(g) is asymptotically the same as that of supg∈Fh

B(g), where B

is a locally stationary Gaussian process indexed by Fh;
(iii) the distribution of supg∈Fh

B(g) is derived by applying the extreme value theory of χ -fields
indexed by manifolds developed in our companion work [37].

Then an is determined by the above approximations and distributional results and bn is chosen
such that supx∈Mh

λ̂r+1(x) < bn holds with probability tending to one. In fact, one can show that

P(Mh ⊂ Ĉn,h(an, bn)) = e−e−z + o(1) with bn = 0 and an = z+c√
2r log (h−1)

+√
2r log(h−1), for some

c > 0 depending on f , K , and Mh. This type of result is similar to the confidence bands for univariate
probability density functions developed in the classical work [4]. The derivation for M is similar
except that we have to deal with the bias in the estimation.

The way that we study ridge estimation is naturally connected to the literature of level set estimation
(see, e.g., [7,22,31,35,36,46]), which mainly focuses on density functions and regression functions.
Confidence regions for level sets have been studied in [9,30,42]. It is clear that technically a ridge is a
more sophisticated object to study than a density or regression level set, not only because the former
involves the estimation of eigen-decomposition of Hessians and their interplay with gradients, but also
a ridge is viewed as the intersection of level sets of multiple functions if d − r ≥ 2. To our knowledge
there are no nonparametric distributional results for the estimation of intersections of density or re-
gression level sets in the literature. In addition to the papers mentioned above, previous work on ridge
estimation also includes [2,10,16,21,28,32,48,49].

The paper is organized as follows. We first introduce our notation and assumptions in Section 2.
In Section 3.1, we develop the asymptotic confidence regions for Mh following the procedure listed
above. Specifically, steps (i)–(iii) are established in Proposition 3.3, and Theorems 3.4, and 3.7, respec-
tively. In Section 3.2, we use bias correction methods to extend the results to asymptotic confidence
regions for M. The confidence regions involve unknown surface integrals on ridges. In Section 3.3,
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we show the asymptotic validity of the confidence regions with these unknown quantities replaced by
their plug-in estimators. In particular, Corollary 3.10, as our main result from a statistical perspective,
gives a data-driven asymptotic confidence regions for ridges. For technical reasons, the consideration
of critical points on ridges are deferred until Section 3.4, where we also discuss different choices of bn.
The proofs are given in Section 5 and the supplementary material [38].

2. Notation and assumptions

We first give the notation used in the paper. For a real matrix A and compatible vectors u and v, denote
〈u,v〉A = uT Av. Also we write 〈u,u〉A = ‖u‖2

A and ‖u‖ is the Euclidian norm of u. Let ‖A‖F be
the Frobenius norm of A and ‖A‖max = maxi,j |aij | where A = (aij ). Let A+ be the Moore-Penrose
pseudoinverse of A (see page 36, [29]), which always exists and is unique. For a positive integer m, let
Im be the m × m identity matrix. For a vector field W :Rm →R

n, let R(W) = ∫
Rm W(x)W(x)T dx ∈

R
n×n, assuming the integral is well defined. For a d × d matrix A, vec(A) vectorizes A by stacking

the columns of A into a d2 × 1 column vector, while vech(A) only vectorizes the lower triangular part
of A into a d(d + 1)/2 × 1 column vector. The duplication matrix D is such that vec(A) = D vech(A)

for a symmetric matrix A. The matrix D does not depend on A and is unique for dimension d (and
we have suppressed d in the notation). For example, when d = 2 and A = ( a11 a12

a12 a22

)
, using the above

notation we have

vech(A) = (a11, a12, a22)
T , vec(A) = (a11, a12, a12, a22)

T , and D =
⎛⎝1 0 0 0

0 1 1 0
0 0 0 1

⎞⎠T

.

For two matrices A and B , let A⊗B be the Kronecker product between A and B (see page 31 of [29]).
For a real symmetric matrix A, let λmin(A) and λmax(A) be the smallest and largest eigenvalues of A,
respectively.

For a smooth function K : Rd → R, let ∇K and ∇2K be its gradient and Hessian, respectively, and
we denote d2K = vech∇2K . Let Z+ be the set of non-negative integers. For m ∈ Z+, we use Hm to
denote the m-dimensional normalized Hausdorff measure. Let B(x, t) = {y ∈ R

d : ‖y − x‖ ≤ t} be the
ball centered at x with radius t > 0. For a set M ⊂ R

d and ε > 0, let M ⊕ ε = ⋃
x∈M B(x, ε), which

is the ε-enlarged set of M . For m ∈ Z+, let Sm = {x ∈ R
m+1 : ‖x‖ = 1} be the unit m-sphere. For any

subset A ⊂ R
d , let 1A be the indicator function of A. Let int(A) and ∂A be the interior and boundary

of A, respectively.
Given an i.i.d. sample X1, . . .Xn from the probability density function f on R

d , denote the kernel
density estimator

f̂ (x) = f̂n,h(x) = 1

nhd

n∑
i=1

K

(
x − Xi

h

)
, x ∈ R

d, (2.1)

where h > 0 is a bandwidth and K is a twice differentiable kernel density function on R
d . The no-

tation h is used as a default bandwidth unless otherwise indicated, and we suppress the subscripts
n, h in the kernel density estimator and all the quantities induced by it (so that V̂ = V̂n,h and
λ̂r+1 = λ̂r+1,n,h, for example). Let fh(x) = Ef̂ (x) and let v1,h(x), . . . , vd,h(x) be orthonormal eigen-
vectors of ∇2fh(x), with corresponding eigenvalues λ1,h(x) ≥ λ2,h(x) ≥ · · · ≥ λd,h(x). Also write
Vh(x) = (vr+1,h(x), . . . , vd,h(x)). We focus on ridge estimation on a compact subset H of Rd , which
is assumed to be the hypercube [0,1]d for simplicity, and all the ridge definitions M, M̂ and Mh are
restricted on H, such as Mh = {x ∈H : Vh(x)T ∇fh(x) = 0, λr+1,h(x) < 0}.
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For γ = (γ1, . . . , γd)T ∈ Z
d+, let |γ | = γ1 + · · · + γd . For a function g : Rd → R with |γ |th partial

derivatives, define

g(γ )(x) = ∂ |γ |

∂γ1x1 · · ·∂γd xd

g(x), x ∈R
d . (2.2)

Let R := R(d2K). For δ > 0, define

Nδ(M) = {
x ∈H : ∥∥∇f (x)T V (x)

∥∥≤ δ,λr+1(x) < 0
}
. (2.3)

For a bandwidth h > 0, let γ
(k)
n,h =

√
logn

nhd+2k , which is the rate of convergence of supx∈Rd |f̂ (γ )(x) −
f

(γ )

h (x)| for |γ | = k ∈ Z+ under standard assumptions. We use the following assumptions in the con-
struction of confidence regions for ridges.
Assumptions:

(F1) f is four times continuously differentiable on H⊕ η0 for some η0 > 0.
(F2) There exists δ0 > 0 such that Nδ0(M) ⊂ int(H) and the following is satisfied. For all x ∈

Nδ0(M), the smallest d − r eigenvalues of ∇2f (x) are simple, i.e., λr(x) > λr+1(x) > · · · >
λd(x). In particular, λr(x) > λr+1(x) for all x ∈ H.

(F3) {x ∈H : λr+1(x) = 0,V (x)T ∇f (x) = 0} =∅.
(F4) When d − r = 1, we require that ‖∇(∇f (x)T vd(x))‖ > 0 for all x ∈Nδ0(M); When d − r ≥

2, we require that ∇(∇f (x)T vi(x)), i = r + 1, . . . , d are linearly independent for all x ∈
Nδ0(M).

(K1) The kernel function K is a spherically symmetric probability density function on R
d with

B(0,1) as its support. It has continuous partial derivatives up to order 4.
(K2) For any open ball S with positive radius contained in B(0,1), the coordinate functions of

s �→ 1S(s)d2K(s) are linearly independent as functions.

(K3) If d = 2, we require that aK :=
∫
Rd [K(ρ1)(s)]2 ds∫
Rd [K(ρ2)(s)]2 ds

> 1, where ρ1 = (3,0, . . . ,0)T ∈ Z
d+ and

ρ2 = (2,1,0, . . . ,0)T ∈ Z
d+; If d ≥ 3, we require 1

aK
≤ bK :=

∫
Rd [K(ρ3)(s)]2 ds∫
Rd [K(ρ2)(s)]2 ds

< 1, where

ρ3 = (1,1,1,0, . . . ,0)T ∈ Z
d+.

Remark 2.1.

(i) Note that ridges are defined using the second derivatives of densities. Assumption (F1) requires
the existence of two additional orders of derivatives. This is similar to other work on the distri-
butional results of ridge estimation (see [8,40]).

(ii) Assumptions (F2)–(F3) exclude some scenarios that are on the boundary of the class of density
functions we consider (note that these assumptions only exclude some equalities). Here we give
some brief discussion of the implications of these assumptions.
(a) Assumption (F2) requires that the smallest d − r eigenvalues of ∇2f (x) for x ∈ M all

have multiplicity one, in order to have the differentiability of the functions vi(x)T ∇f (x)

for i = r + 1, . . . , d , which generally does not hold when the eigenvalues are repeated.
(b) Assumption (F3) avoids the existence of some degenerate ridge points. Such points have

zero first and second directional derivatives along vr+1 and so they are almost like ridge
points. This assumption has been used in [8,19,40].

(iii) When d −r = 1, assumption (F4) is related to the margin assumption in the literature of level set
estimation [35]. In addition, as we consider ridges as intersections of level sets when d − r ≥ 2,
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this assumption guarantees the transversality of the intersecting manifolds. Assumption (F4)
holds, for example, if f satisfies assumptions (A1) and (P1) in [8], which require λ2(x) ≤
−β1, λ1(x) ≥ β0 − β1 and ‖∇fh(x)‖max|α|=3 |f (α)

h (x)| ≤ β0(β1 − β2) for some constants
β0, β1, β2 > 0, for all x in a neighborhood of Mh (see their Lemma 2).

(iv) Assumptions (K1)–(K3) are for the kernel function K . In particular (K2) can guarantee that R is
positive definite. In general one can show that aK ≥ 1 ≥ bK (see Lemma B.1 in the supplemen-
tary material [38]). In fact, if we assume that K(ρ1), K(ρ2) and K(ρ3) are linearly independent
as functions, then the condition aK > 1 > bK required in (K3) is satisfied. This can be easily
seen from the proof of Lemma B.1. One can show that the following kernel density function is
an example that satisfies (K1)–(K3):

K(x) = cd

(
1 − ‖x‖2)51B(0,1)(x), x ∈R

d ,

where cd is a normalizing constant.

3. Main results

In the literature, the following assumption or even stronger ones are used to get distributional results
for ridge estimation, for example, assumption (F7) of [40].

(F5) ‖∇f (x)‖ �= 0, for all x ∈M.

In other words, it is assumed that M does not contain any critical points of f . This assumption
excludes many important scenarios in practice because (F5) implies that f does not have local modes
on H.

Our confidence regions for Mh and M eventually do not require assumption (F5). But the critical
points and regular points on ridges need to be treated in different ways, because for critical points
the estimation is mainly determined by the gradient of f , while the estimation of regular ridge points
depends on both the gradient and Hessian. It is known that the estimation of Hessian has a slower
rate of convergence than the critical points using kernel type estimators, which results in different
behaviors of regular ridge and critical points. To deal with this issue, the strategy we use is to construct
confidence regions for the set of critical points and regular ridge points individually and then combine
them (see Section 3.4). For convenience we will first exclude critical points from our consideration and
tentatively assume (F5).

3.1. Asymptotic confidence regions for Mh

Given any 0 < α < 1, we first study how to determine an and bn to make Ĉn,h(an, bn) an asymptotic
100(1 − α)% confidence region for Mh. The following lemma shows some basic properties of M as
well as Mh. For any subset L ⊂R

d and x ∈ R
d , let d(x,L) = infy∈L ‖x − y‖. A point u ∈ L is called

a normal projection of x onto L if ‖x − u‖ = d(x,L). For x ∈ L, let �(L, x) denote the reach of L at
x (see [15]), which is the largest r ≥ 0 such that each point in B(x, r) has a unique normal projection
onto L. The reach of L is defined as �(L) := infx∈L �(L, x). If L is a manifold, its reach reflects the
curvature of L and the width of its nearly self-intersecting structure [1,3,15].

Lemma 3.1. Under assumptions (F1)–(F4) and (K1), we have

(i) M is an r-dimensional compact manifold without boundary and with �(M) > 0.
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When h is small enough, we have

(ii) for any fixed 0 < δ ≤ δ0, with δ0 given in (F2), we haveMh ⊂Nδ(M), whereNδ(M) is defined
in (2.3);

(iii) infx∈Mh
[λj−1,h(x)−λj,h(x)] > β0, j = r +1, . . . , d , and supx∈Mh

λr+1,h(x) < −β0 for some
constant β0 > 0 that does not depend on h;

(iv) Mh is an r-dimensional compact manifold without boundary and with �(Mh) > β1 for some
constant β1 > 0 that does not depend on h.

Remark 3.1. Property (iii) states that λr+1,h is uniformly bounded away from zero on Mh. As we
show in Lemma A.1 in the supplementary material [38], λ̂r+1 is a strongly uniform consistent estimator
of λr+1,h under our assumptions, that is, supx∈H |̂λr+1(x) − λr+1,h(x)| = o(1) almost surely, which
implies that with probability one λ̂r+1 has the same sign as λr+1,h on Mh for large n. This allows
us to use bn = 0 in Ĉn,h(an, bn), and focus on the behavior of V̂ (x)T ∇f̂ (x) on Mh to choose an so
that Ĉn,h(an, bn) in (1.3) is an asymptotic confidence region for Mh. Also see Section 3.4 for different
choices of bn.

Note that Vh(x)T ∇fh(x) = 0 for all x ∈ Mh by the definition of ridges. We need to study the
behavior of V̂ (x)T ∇f̂ (x) = V̂ (x)T ∇f̂ (x) − Vh(x)T ∇fh(x) for x ∈ Mh. The following proposition
shows the asymptotic normality of this difference, which can be uniformly approximated by a linear
form of d2f̂ (x) − d2fh(x). This is not surprising because the difference depends on the estimation
of eigenvectors of the Hessian, which has a slower rate of convergence than the estimation of the
gradient. Note that each unit eigenvector has two possible directions. Without loss of generality, for
i = r + 1, . . . , d , suppose that we fix the orientations of v̂i (x), vi,h(x) and vi(x) in such a way that
they vary continuously for x in a neighborhood of M and have pairwise acute angles. By treating the
ith unit eigenvector as a vector-valued function of d × d symmetric matrices, the application of matrix
calculus (see [29]) gives the following first order approximation:

v̂i (x) − vi,h(x) ≈ 
i(x)vec
[∇2f̂ (x) − ∇2fh(x)

]= 
i(x)D
[
d2f̂ (x) − d2fh(x)

]
,

where 
i(x) = vi(x)T ⊗ (λiI d − ∇2f (x))+ is a d × d2 matrix representing the first derivatives in the
linear approximation, and D is the duplication matrix defined in Section 2. By ignoring the error caused
by the gradient estimation, which has a faster rate than the Hessian estimation, we approximately have
that for x ∈Mh and i = r + 1, . . . , d ,

v̂i (x)T ∇f̂ (x) = v̂i (x)T ∇f̂ (x) − vi,h(x)T ∇fh(x)

≈ [̂
vi(x) − vi,h(x)

]T ∇f (x)

≈ mi(x)T
[
d2f̂ (x) − d2fh(x)

]
, (3.1)

where mi(x) = DT 
i(x)T ∇f (x). It turns out that for i = r + 1, . . . , d , mi(x) has the following form
given by

mi(x) = DT

(
vi(x) ⊗

r∑
j=1

[
vj (x)T ∇f (x)

λi(x) − λj (x)
vj (x)

])
, (3.2)

which are d(d + 1)/2 dimensional column vectors. Let M(x) = (mr+1(x), . . .md(x)), which is a
[d(d +1)/2]× (d − r) matrix. The following result shows the asymptotic behavior of V̂ (x)T ∇f̂ (x) on
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Mh with a first-order approximation, where the matrix M(x)T can be viewed as the Jacobian matrix
with respect to the perturbation of the Hessian of the density at x.

Proposition 3.2. Under assumptions (F1)–(F5), (K1), and (K2), as γ
(2)
n,h → 0 and h → 0, we have

sup
x∈Mh

∥∥V̂ (x)T ∇f̂ (x) − M(x)T
[
d2f̂ (x) − d2fh(x)

]∥∥= Op

(
γ

(1)
n,h + (

γ
(2)
n,h

)2)
, (3.3)

and there exists a constant δ1 ∈ (0, δ0] such that for all x ∈Nδ1(M),√
nhd+4M(x)T

[
d2f̂ (x) − d2fh(x)

] D−→ Nd−r

(
0, f (x)�(x)

)
, as n → ∞, (3.4)

where �(x) = M(x)T RM(x) is a positive definite matrix for all x ∈ Nδ1(M), and x ∈Mh, when h is
small enough.

Remark 3.2. The result in (3.4), especially the form of �(x) in the variance, is a direct consequence
of Theorem 3 of [13], which says√

nhd+4
[
d2f̂ (x) − d2fh(x)

] D−→ Nd(d+1)/2
(
0, f (x)R

)
, as n → ∞. (3.5)

For a positive definite matrix A, let A1/2 be its square root such that A1/2 is also positive definite and
A = A1/2A1/2. It is known that A1/2 is uniquely defined. The asymptotic normality result in (3.4) sug-
gests that we can standardize V̂ (x)T ∇f̂ (x) by left multiplying the matrix Q(x) := [f (x)�(x)]−1/2,
which is unknown and can be further estimated by a plug-in estimator Qn(x) := [f̂ (x)�̂(x)]−1/2 as
specified below. Let �̂(x) = M̂(x)T RM̂(x) with M̂(x) = (m̂r+1(x), . . . m̂d(x)), where

m̂i(x) = DT

(
v̂i (x) ⊗

r∑
j=1

[
v̂j (x)T ∇f̂ (x)

λ̂i(x) − λ̂j (x)
v̂j (x)

])
.

We can show that Qn(x) is a consistent estimator of Q(x) for all x ∈Nδ1(M) (see the proof of Propo-
sition 3.3 in the supplementary material [38]), for δ1 given in Proposition 3.2. Then in view of Propo-
sition 3.2, for any x ∈ Mh, Qn(x)V̂ (x)T ∇f̂ (x) asymptotically behaves like a (d − r)-dimensional
standard normal random vector. In fact, the distribution of supx∈Mh

‖Qn(x)V̂ (x)T ∇f̂ (x)‖ can be
approximated by the extreme value distributions of a sequence of Gaussian random fields. The stan-
dardization by using Qn(x) is related to the appearance of surface integrals over Mh in these extreme
value distributions (see (3.22) and Theorem 3.7 below). Heuristically, the surface integral stands for
the summation of the contribution of the standard normal random variables indexed by all the points
on Mh. An alternative approach, which is not pursued here, is to directly consider the distribution of
supx∈Mh

‖V̂ (x)T ∇f̂ (x)‖ (without standardization), which can be approximated by the extreme value
distributions of Gaussian random fields with varying variances. Typically, for this type of Gaussian ran-
dom fields, the asymptotic extreme value distributions are only related to the behaviors of the Gaussian
random fields at the locations where the maximum variance is achieved, instead of the behaviors over
the entire index set. See [26], for example. We only consider the approach with standardization, which
requires the estimation of surface integrals (see Section 3.3) to construct confidence regions for ridges.
It is expected that the other approach without standardization involves the estimation of the modes of
the variance functions of the approximating Gaussian random fields.
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Let

Bn(x) = ∥∥Qn(x)V̂ (x)T ∇f̂ (x)
∥∥= ∥∥V̂ (x)T ∇f̂ (x)

∥∥[f̂ (x)�̂(x)]−1 . (3.6)

We consider the following form of confidence regions for Mh, which is slightly more formal than
(1.3). For any an ≥ 0 and bn ∈ R, let

Ĉn,h(an, bn) = {
x ∈H :

√
nhd+4Bn(x) ≤ an, and λ̂r+1(x) < bn

}
. (3.7)

We first consider bn = 0 for the reason given in Remark 3.1 and for simplicity write Ĉn,h(an) =
Ĉn,h(an,0). For any α ∈ (0,1), we want to find a sequence an,h,α such that P(Mh ⊂ Ĉn,h(an,h,α)) →
1 − α, that is, Ĉn,h(an,h,α) is an asymptotic 100(1 − α)% confidence region for Mh. Let

Dn(x) = ∥∥Q(x)M(x)T
(
d2f̂ (x) − d2fh(x)

)∥∥. (3.8)

The following proposition indicates that the behaviors of the suprema of Bn(x) and Dn(x) on Mh are
close, and hence an,h,α can be determined by the distribution of

√
nhd+4 supx∈Mh

Dn(x).

Proposition 3.3. Under assumptions (F1)–(F5), (K1), and (K2), as γ
(2)
n,h → 0 and h → 0, we have

sup
x∈Mh

Dn(x) = Op

(
γ

(2)
n,h

)
, (3.9)

sup
x∈Mh

Bn(x) − sup
x∈Mh

Dn(x) = Op

((
γ

(2)
n,h

)2 + γ
(1)
n,h

)
. (3.10)

Remark 3.3. When r = 1, for i = 2, . . . , d and x ∈ M, mi(x) in (3.2) can be simplified to

mi(x) = ‖∇f (x)‖
λi(x) − λ1(x)

DT
(
vi(x) ⊗ v1(x)

)
.

Correspondingly, we can replace m̂i(x) in Bn(x) by m̃i(x) = ‖∇f̂ (x)‖
λ̂i (x)−λ̂1(x)

DT (̂vi(x) ⊗ v̂1(x)), and the
conclusion in this proposition is not changed, following the same proof of this proposition and the fact
that the Hausdorff distance between M and Mh is of the order O(h2) (see Lemma 3.11 below).

We need to find the asymptotic distribution of
√

nhd+4 supx∈Mh
Dn(x). In particular, we will show

that for any z ∈ R there exists βh such that,

P

{√
2 log

(
h−1

)(√
nhd+4 sup

x∈Mh

Dn(x) − βh

)
≤ z

}
→ e−e−z

.

To this end, we will represent
√

nhd+4Dn(x) as an empirical process and approximate its supremum
by the extreme value of a Gaussian process defined on a class of functions.

For any z ∈ R
d−r\{0}, let A(x, z) = M(x)Q(x)z. Notice that

√
f (x)‖A(x, z)‖R = ‖z‖. Let

gx,z(·) = 1√
hd

〈A(x, z), d2K(x−·
h

)〉, and define the class of functions

Fh = {
gx,z(·) : x ∈ Mh, z ∈ S

d−r−1}. (3.11)
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Consider the local empirical process {Gn(gx,z) : gx,z ∈Fh}, where

Gn(gx,z) = 1√
n

n∑
i=1

[
gx,z(Xi) −Egx,z(X1)

]
.

Due to the elementary result ‖v‖ = supz∈Sd−r−1 vT z for any v ∈ R
d−r , we can write

√
nhd+4Dn(x) =

supz∈Sd−r−1 Gn(gx,z). Hence √
nhd+4 sup

x∈Mh

Dn(x) = sup
gx,z∈Fh

Gn(gx,z). (3.12)

Using similar arguments as given in [11], the supremum of the empirical process in (3.12) can be
approximated by the supremum of a Gaussian process, as shown in the following theorem. Let B be a
centered Gaussian process on Fh such that for all gx,z, gx̃,z̃ ∈Fh,

E
(
B(gx,z)B(gx̃,z̃)

)= Cov
(
gx,z(X1), gx̃,z̃(X1)

)
.

Theorem 3.4. Under assumptions (F1)–(F5), (K1), and (K2), as γ
(0)
n,h log4 n → 0 and h → 0 we have

sup
t>0

∣∣∣P(√nhd+4 sup
x∈Mh

Dn(x) < t
)

− P

(
sup

g∈Fh

B(g) < t
)∣∣∣= o(1). (3.13)

Remark 3.4.

(i) In the derivation of the asymptotic distribution of the maximal deviation of density function
estimation, [4] uses a sequence of Gaussian approximations. When extending the idea to mul-
tivariate density function estimation, [44] imposes an assumption that requires f to be d times
continuously differentiable in order to use the Rosenblatt transformation (see [43]). This type
of assumption is further used in related work for Gaussian approximation to maximal devia-
tion in multivariate regression function estimation (see [25]). In fact, if one is willing to impose
a similar assumption in our context (that is, f is d + 2 times continuously differentiable, be-
cause ridges are defined using up to the second derivatives of f ), then it can be verified that the
Gaussian process B(gx,z) has the following representation:

B(gx,z)
D=
∫
Rd

gx,z(s) dB
(
M(s)

)
,

where B is the d-dimensional Brownian bridge, and M is the Rosenblatt transformation. In fact,
by using a sequence of Gaussian approximations similar to those given in [44], we can show the
following approximation holds.

B(gx,z)
D≈√

f (x)

∫
Rd

gx,z(s) dW (s) =: U(x, z), (3.14)

where W is the d-dimensional Wiener process. Instead of following the approach in [44], we
directly find out the limiting extreme value distribution of B(gx,z), which is shown to be locally
stationary (see Definition 3.1). This allows us to use a less stringent smoothness condition on f .

(ii) Let wx(·) = 1√
hd

Q(x)T M(x)T d2K(x−·
h

), so that gx,z(·) = zT wx(·). Note that here the scal-

ing factor 1√
hd

can guarantee that Var(wx(X1)) = I d−r + o(1) as h → 0. Also let Sh(x) =
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(S1,h(x), . . . , Sd−r,h(x))T be a vector of centered Gaussian random fields indexed by Mh

such that E(Sh(x)Sh(̃x)T ) = Cov(wx(X1),wx̃(X1)), for x, x̃ ∈ Mh. Then it is clear that
supg∈Fh

B(g) = supx∈Mh
‖Sh(x)‖, where approximately ‖Sh(x)‖2 ∼ χ2

d−r for any x ∈ Mh,
because Var(Sh(x)) = I d−r + o(1), i.e., S1,h(x), . . . , Sd−r,h(x) are asymptotically independent
when d − r ≥ 2. Note the standardization in Sh(x) is only pointwise, and if x − x̃ = o(h) then
Si,h(x) and Sj,h(̃x) are asymptotically dependent in general for i �= j when d − r ≥ 2. Overall
‖Sh(x)‖2 is approximately a χ2 field indexed by Mh, as a sum of squares of Gaussian fields
with cross dependence, whereas independence of the Gaussian fields is usually assumed in the
literature of extreme value theory for χ2 fields (see, e.g., [33]). This dependence structure has
an effect on the form of the final extreme value distribution result (see Remark 3.6 below).

The confidence region for Mh that we seek relies on the asymptotic distribution of supg∈Fh
B(g),

for which we need the following definition and probability result. Suppose that n1 and n2 are positive
integers and 0 < α1, α2 ≤ 2.

Definition 3.1 (Local equi-(α1,D
(1)
t,v , α2,D

(2)
t,v )-stationarity). Let {Zh(t, v), (t, v) ∈ Sh,1 × Sh,2}h∈H

be a class of random fields, where H is an index set, and Sh,i is a compact subset of Rni for i = 1,2.
We say that this class is locally equi-(α1,D

(1)
t,v , α2,D

(2)
t,v )-stationary, if the following conditions hold.

For any t ∈ Sh,1, v ∈ Sh,2 and h ∈ H, there exist non-degenerate matrices D
(1)
t,v and D

(2)
t,v such that for

t1, t2 ∈ Sh,1 and v1, v2 ∈ Sh,2, as max{‖t1 − t‖,‖t2 − t‖}/h → 0 and max{‖v1 − v‖,‖v2 − v‖} → 0,

(i) Cov
(
Zh(t1, v1),Zh(t2, v2)

)= 1 −
[∥∥∥∥1

h
D

(1)
t,v (t1 − t2)

∥∥∥∥α1

+ ∥∥D(2)
t,v (v1 − v2)

∥∥α2

](
1 + o(1)

)
,

uniformly in t ∈ Sh,1, v ∈ Sh,2, h ∈ H, and

(ii) 0 < infλmin
([

D
(i)
t,v

]T
D

(i)
t,v

)≤ supλmax
([

D
(i)
t,v

]T
D

(i)
t,v

)
< ∞, i = 1,2,

where the infimum and supremum are taken over (t, v) ∈ Sh,1 × Sh,2, and h ∈ H.

We consider 1 ≤ r1 < n2 and 1 ≤ r2 < n2 below. Let H
(ri)
αi

, i = 1,2 be the generalized Pickands’
constant of Gaussian fields (see the appendix of [37]). The following result is given as Theorem 3.1 in
our companion work [37]. For the convenience of the reader, we also give a very brief sketch of proof
in Appendix B in the supplementary material [38]. For a differentiable submanifold S of Rd , at each
u ∈ S , let TuS denote the tangent space of S at u. Let �(TuS) be a matrix with orthonormal columns
that span TuS , that is, the orthogonal projection matrix onto TuS . For an n × r matrix M with r ≤ n,
we denote by ‖M‖2

r the sum of squares of all minor determinants of order r .

Theorem 3.5. With some fixed h0 ∈ (0,1), for 0 < h ≤ h0 and i = 1,2, let M(i)
h be an ri -dimensional

compact submanifold of R
ni with inf0<h≤h0 �(M(i)

h ) > 0, and 0 < inf0<h≤h0 Hri (M
(i)
h ) ≤

sup0<h≤h0
Hri (M

(i)
h ) < ∞. Let {Zh(t, v) : (t, v) ∈ M(1)

h × M(2)
h }h∈(0,h0] be a class of centered lo-

cally equi-(α1,D
(1)
t,v , α2,D

(2)
t,v )-stationary Gaussian random fields with 0 < α1, α2 ≤ 2, and all the

components of D(i)
t,v continuous in t and v. For x > 0, let

Q(x) = sup
0<h≤h0

{∣∣rh(t1, t2, v1, v2)
∣∣ : (t1, v1), (t2, v2) ∈ M(1)

h ×M(2)
h ,‖t1 − t2‖ > hx

}
,
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where rh(t1, t2, v1, v2) denotes the covariance between Zh(t1, v1) and Zh(t2, v2). Suppose that, for any
x > 0, there exists η > 0 such that

Q(x) < η < 1. (3.15)

Furthermore, assume that there exist x0 > 0 and a function v(·) such that for all x > x0,

Q(x)
∣∣(logx)2(r1/α1+r2/α2)

∣∣≤ v(x), (3.16)

where v is a monotonically decreasing function, such that, for any p > 0, v(xq) = O(v(x)) = o(1) and
v(x)xq → ∞ as x → ∞. Let

βh =
(

2r1 log
1

h

) 1
2 +

(
2r1 log

1

h

)− 1
2

×
[(

r1

α1
+ r2

α2
− 1

2

)
log log

1

h

+ log

{
(2r1)

r1
α1

+ r2
α2

− 1
2

√
2π

H(r1)
α1

H(r2)
α2

Ih

(
M(1)

h ×M(2)
h

)}]
, (3.17)

where

Ih

(
M(1)

h ×M(2)
h

)=
∫
M(2)

h

∫
M(1)

h

∥∥D(1)
s,u�

(
TsM(1)

h

)∥∥
r1

∥∥D(2)
s,u�

(
TuM(2)

h

)∥∥
r2

dHr1(s) dHr2(u).

Then for any z ∈ R,

lim
h→0

P

{√
2r1 log

1

h

(
sup

v∈M(2)
h

sup
t∈M(1)

h

Zh(t, v) − βh

)
≤ z

}
= e−e−z

. (3.18)

For g ∈Fh, let σg = √
Var(B(g)). The standardization of the functions in Fh gives σg = 1 + o(1) as

h → 0, and we can show that

sup
g∈Fh

B(g) ≈ sup
g∈Fh

σ−1
g B(g) = sup

(x,z)∈Mh×Sd−r−1
σ−1

gx,z
B(gx,z).

To find the asymptotic distribution of supg∈Fh
B(g), we will apply Theorem 3.5 to the Gaussian field

σ−1
gx,z

B(gx,z), which is indexed by the manifold Mh × S
d−r−1. It is critical to calculate the covariance

structure of σ−1
g B(g), g ∈ Fh, and verify it has the desired properties (especially the local stationarity

condition) to apply Theorem 3.5. For any gx,z, gx̃,z̃ ∈Fh (which means x, x̃ ∈Mh and z, z̃ ∈ S
d−r−1),

let rh(x, x̃, z, z̃) be the correlation coefficient between B(gx,z) and B(gx̃,z̃).

Proposition 3.6. Let �x = x̃ − x and �z = z̃ − z. Under assumptions (F1)–(F5), (K1), and (K2), as
h → 0, �z → 0 and �x/h → 0, we have

rh(x, x̃, z, z̃) = 1 − 1

2
‖�z‖2 − 1

2h2
�xT �(x, z)�x + o

(∥∥∥∥�x

h

∥∥∥∥2

+ ‖�z‖2
)

, (3.19)
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where

�(x, z) =
∫
Rd

[∇d2K(u)
]T

A(x, z)A(x, z)T ∇d2K(u)du, (3.20)

and the o-term in (3.19) is uniform in x ∈ Mh, z ∈ S
d−r−1, and h ∈ (0, h0] for some h0 > 0.

Remark 3.5.

(i) When d − r = 1, we have z, z̃ ∈ {1,−1} and �z ≡ 0, and then (3.19) should be understood as

rh(x, x̃, z, z̃) = 1 − 1

2h2
�xT �(x,1)�x + o

(∥∥∥∥�x

h

∥∥∥∥2)
. (3.21)

(ii) The geometric interpretation of �(x, z) is as follows. Recall that if higher-order smoothness of
f is assumed, the Gaussian process B(g), g ∈ Fh can be approximated by a Gaussian field U

given in (3.14), which is differentiable. It can be shown that the matrix diag( 1
h2 �(x, z), I d−r )

is the leading term of Var(∇U(x, z)) by using Itô’s lemma, where 1
h2 �(x, z) corresponds to the

variance of the partial gradient of U(x, z) with respect to x.

To construct a confidence region for Mh, we will use the distribution of supg∈Fh
B(g). The dis-

tribution depends on the geometry of the manifold Mh × Sd−r−1, through a surface integral on the
manifold specifically defined below, which is originated from Theorem 3.5. For any nice (meaning the
following is well-defined) set A⊂H, define

c
(d,r)
h (A) = log

{
r(d−2)/2

2πd/2

∫
Sd−r−1

∫
Mh∩A

∥∥�(x, z)1/2�(TxMh)
∥∥

r
dHr (x) dHd−r−1(z)

}
. (3.22)

For simplicity we write c
(d,r)
h = c

(d,r)
h (H). The quantity c

(d,r)
h reflects the integrated local variabil-

ity of the approximating Gaussian fields over the index set, as explained below. By the Cauchy-
Binet formula (see page 214 in [5]), the integrand in the above double integral can also be written
as [det(diag(J

(1)
x,z , J

(2)
x,z ))]1/2 = [det(J (1)

x,z )]1/2 × [det(J (2)
x,z )]1/2, where

J (1)
x,z = [

�(TxMh)
]T

�(x, z)�(TxMh),

J (2)
x,z = [

�
(
TzS

d−r−1)]T I d−r�
(
TzS

d−r−1).
Note that J

(2)
x,z = I d−r−1 and det(J (2)

x,z ) = 1. In view of Remark 3.5(ii), diag(J
(1)
x,z , J

(2)
x,z ) can be in-

terpreted as the covariance matrix of the orthogonal projection of the gradient of the approximating
Gaussian fields onto the tangent space TxMh × TzS

d−r−1, up to a scaling factor. So the integrand in
(3.22) quantifies the local variability of the approximating Gaussian fields as the square root of the
determinant of this projected covariance matrix.

In the context of confidence bands for density functions on the unit interval or hypercube [4,44], the
counterpart of the quantity c

(d,r)
h , denoted by cK , is a constant only depending on the kernel function

K (see, e.g., Theorem 2 in [44]). The connection between cK and c
(d,r)
h is as follows. The error in the

kernel density estimation can be approximated by stationary Gaussian fields, so that the variance of
the gradient of the Gaussian fields, denoted by ιK , is a constant. In fact cK can also be understood as
an integral, but since its integrand ιK is a constant, the integral is simplified to a constant that is pro-
portional to the volume of index set, which equals one in [4,44] since the unit interval and hypercube
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are considered. In the setting of ridge estimation, the form of the surface integral in c
(d,r)
h arises for

the following reasons: (1) the approximating Gaussian fields is locally stationary (see Definition 3.1),
which means that their covariances depend on the locations, so that the integrand in c

(d,r)
h is not a con-

stant in general; (2) ridges are low-dimensional manifolds, and so the projections to the tangent spaces
are involved in the integrand. Also see [40] for a similar line integral that appears in the asymptotic
distribution of ridge estimation in the case of d = 2 and r = 1.

For z, c ∈R, let

bh(z, c) = z√
2r log (h−1)

+
√

2r log
(
h−1

)+ 1√
2r log(h−1)

[
d − 2

2
log log

(
h−1)+ c

]
. (3.23)

Note that the quantity bh(z, c
(d,r)
h ) in the following theorem corresponds to z√

2r log (h−1)
+ βh, where

βh is given in (3.17), with r1 = r , r2 = d − r − 1, and α1 = α2 = 2. For any α ∈ (0,1), let zα =
− log[− log(1 − α)] so that e−e−zα = 1 − α. By applying Theorem 3.5 to the class of Gaussian fields
{B(g) : g ∈ Fh}, the following theorem gives an asymptotic confidence region for Mh.

Theorem 3.7. Under assumptions (F1)–(F5), and (K1)–(K3), as γ
(2)
n,h logn → 0 and h → 0, we have

P

(
sup
g∈Fh

B(g) ≤ bh

(
z, c

(d,r)
h

))→ e−e−z

. (3.24)

This implies that for any α ∈ (0,1), as n → ∞,

P
(
Mh ⊂ Ĉn,h

(
bh

(
zα, c

(d,r)
h

)))→ 1 − α, (3.25)

where Ĉn,h is defined in (3.7).

Remark 3.6. We give more discussion on the quantity c
(d,r)
h . When d − r = 1, we have S

0 = {−1,1}
and H0 is the counting measure, and so

c
(d,r)
h = log

{
r(d−2)/2

πd/2

∫
Mh

∥∥�(x,1)1/2�(TxMh)
∥∥

r
dHr (x)

}
.

When d − r ≥ 2, for any x ∈ Mh,
∫
Sd−r−1 ‖�(x, z)1/2�(TxMh)‖r dHd−r−1(z) is a hyperelliptic in-

tegral. Note the cross dependence in the Gaussian fields discussed in Remark 3.4(ii) is also reflected in
c
(d,r)
h , where the integrals on Mh and S

d−r−1 are not independent.

The confidence regions for Mh given in (3.25) is a theoretical result depending on the unknown
quantity c

(d,r)
h . In what follows we address a few important questions: (i) confidence regions for M by

correcting the bias (Section 3.2); (ii) data-driven confidence regions for Mh and M by consistently
estimating c

(d,r)
h (Section 3.3); (iii) different choices of bn and modified confidence regions for Mh

and M when assumption (F5) is relaxed (Section 3.4).

3.2. Asymptotic confidence regions for M

We consider asymptotic confidence regions for M in this section. The difference between M and
Mh is attributed to the bias in kernel type estimation. In Section 3.1, we focused on Mh by only
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considering the stochastic variation Bn, which is of order Op(γ
(2)
n,h). As we show in Lemma 3.8 below,

the bias part in ridge estimation is of order O(h2). Usually there are two approaches to dealing with the
bias in kernel type estimation: implicit bias correction using an undersmoothing bandwidth and explicit
bias correction (see, e.g., [20]). The former makes the bias asymptotically negligible compared with
the stochastic variation in the estimation, while the latter directly debiases the estimator by estimating
the higher order derivatives in the leading terms of the bias using additional kernel estimation, which
also means that the latter usually requires stronger assumptions on the smoothness of the underlying
functions (see, e.g., [50]). We use both methods to construct asymptotic confidence regions for M.

The next lemma gives the asymptotic form of the bias in ridge estimation. Let μK = ∫
Rd s2

1K(s)ds,

where s = (s1, . . . , sd)T . Let �L be the Laplacian operator, that is, �Lξ(x) =∑d
i=1

∂2ξ(x)

∂x2
i

, for a twice

differentiable function ξ on R
d . If ξ is a vector-valued function, then �L applies to each element of ξ .

Lemma 3.8. Under assumptions (F1)–(F4) and (K1), as h → 0, we have

Vh(x)T ∇fh(x) − V (x)T ∇f (x) = 1

2
h2μKβ(x) + Rh,

where β(x) = {M(x)T [�Ld2f (x)]∇f (x) + V (x)T [�L∇f (x)]} and Rh = o(h2), uniformly in x ∈
Nδ0(M). When both f and K are six times continuously differentiable, we have Rh = O(h4), uni-
formly in x ∈ Nδ0(M).

Undersmoothing requires the use of a small bandwidth h such that γ
(4)
n,h → ∞. One can also explic-

itly correct the bias by using a debiased estimator. For a bandwidth l > 0, let

β̂n,l(x) = {
M̂n,l(x)T

[
�Ld2f̂n,l(x)

]∇f̂n,l(x) + V̂n,l(x)T
[
�L∇f̂n,l(x)

]}
,

where we have brought the subscripts n, l back to the kernel estimators to show their dependence on a
different bandwidth l. For an ≥ 0 and bn ∈ R, let

Ĉbc
n,h,l(an, bn)

=
{
x ∈H :

√
nhd+4

∥∥∥∥Qn(x)

[
V̂ (x)T ∇f̂ (x) − 1

2
h2μKβ̂n,l(x)

]∥∥∥∥≤ an,

and λ̂r+1(x) < bn

}
, (3.26)

and denote Ĉbc
n,h,l(an) = Ĉbc

n,h,l(an,0) for simplicity. Define

c(d,r) = log

{
r(d−2)/2

2πd/2

∫
Sd−r−1

∫
M

∥∥�(x, z)1/2�(TxM)
∥∥

r
dHr (x) dHd−r−1(z)

}
,

where we simply replace the domain of integration Mh by M in c
(d,r)
h .

Theorem 3.9. Suppose assumptions (F1)–(F5), and (K1)–(K3) hold. Also assume that γ
(2)
n,h logn → 0

and h → 0. For any α ∈ (0,1) we have the following.

(i) Undersmoothing: As γ
(4)
n,h/ logn → ∞,

P
(
M ⊂ Ĉn,h

(
bh

(
zα, c(d,r)

)))→ 1 − α. (3.27)
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(ii) Explicit bias correction: Assume both f and K are six times continuously differentiable. As
(h/l) logn → 0 and γ

(4)
n,h/(l2 logn) → ∞,

P
(
M ⊂ Ĉbc

n,h,l

(
bh

(
zα, c(d,r)

)))→ 1 − α. (3.28)

Remark 3.7. We emphasize that the method in (i) is feasible because we only require γ
(2)
n,h logn → 0

and h → 0 for n and h in the results in Section 3.1. As a comparison, the Hausdorff distance based
approach for Mh developed in [8] requires an oversmoothing bandwidth such that γ

(4)
n,h → 0, which

implies that the bias dominates the stochastic variation in ridge estimation using the Hausdorff distance
if a second order kernel is used, and hence the approach using an undersmoothing bandwidth is not
applicable in their method.

3.3. Estimating the unknowns

The surface integrals c
(d,r)
h and c(d,r) are unknown quantities that need to be estimated in order to make

the confidence regions in Theorems 3.7 and 3.9 computable with data. For a bandwidth l > 0, we use
the following plug-in estimators. Let

Ân,l(x, z) = M̂n,l(x)
[
f̂n,l(x)�̂n,l(x)

]−1/2
z,

�̂n,l(x, z) =
∫
Rd

∇d2K(u)T Ân,l(x, z)Ân,l(x, z)T ∇d2K(u)du,

M̂n,l = {
x ∈H : V̂n,l(x)T ∇f̂n,l(x) = 0, λ̂r+1,n,l(x) < 0

}
.

Note that the bandwidth l here is not necessarily the same one as used for explicit bias correction in
Section 3.8. But we do need a similar condition for them so the same bandwidth l is used for simplicity.
For any nice set A⊂H, let

ĉ
(d,r)
n,l (A) = log

{
r(d−2)/2

2πd/2

∫
Sd−r−1

∫
M̂n,l∩A

∥∥�̂n,l(x, z)1/2�(TxM̂n,l)
∥∥

r
dHr (x) dHd−r−1(z)

}
.

For simplicity we denote ĉ
(d,r)
n,l = ĉ

(d,r)
n,l (H). To prove the confidence regions for Mh and M are still

valid after replacing bh(zα, c
(d,r)
h ) and bh(zα, c(d,r)) by bh(z, ĉ

(d,r)
n,l ), we need to show that ĉ

(d,r)
n,l is a

consistent estimator of c
(d,r)
h and c(d,r). The proof uses similar ideas as in [39], where the focus is

on the estimation of surface integrals of density level sets, which are (d − 1)-dimensional manifolds
embedded in Rd . Since we view density ridges as the intersections of d − r level sets (in a broad
sense to include d − r = 1), the methods in [39] are extended in our proof. The data-driven confidence
regions are given in the following corollary.

Corollary 3.10. Suppose assumptions (F1)–(F5), and (K1)–(K3) hold, and assume that γ
(2)
n,h logn →

0, γ
(4)
n,l → 0, h → 0 and l → 0. For any α ∈ (0,1) we have the following.

(i) For Mh:

P
(
Mh ⊂ Ĉn,h

(
bh

(
zα, ĉ

(d,r)
n,l

)))→ 1 − α. (3.29)
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(ii) For M using an undersmoothing bandwidth: as γ
(4)
n,h/ logn → ∞,

P
(
M ⊂ Ĉn,h

(
bh

(
zα, ĉ

(d,r)
n,l

)))→ 1 − α. (3.30)

(iii) For M using explicit bias correction: Assume that both f and K are six time continuously
differentiable. As (h/l) logn → 0 and γ

(4)
n,h/(l2 logn) → ∞,

P
(
M ⊂ Ĉbc

n,h,l

(
bh

(
zα, ĉ

(d,r)
n,l

)))→ 1 − α. (3.31)

3.4. Further improvements related to eigenvalues and critical points

We have considered the confidence regions in the form of Ĉn,h(an, bn) defined in (3.7) and
Ĉbc

n,h,l(an, bn) defined in (3.26) for some an > 0 and bn = 0. So far our main focus has been on the
determination of an, after the justification for the choice bn = 0 given in Remark 3.1. In fact, one can
use some nonpositive bn as the upper bound of λ̂r+1, to potentially make the confidence regions more
efficient. This is because supx∈M λr+1(x) is strictly bounded away from 0 under assumption (F3),
which allows us to choose a nonpositive bn such that supx∈M λ̂r+1(x) < bn holds with probability
tending to one under our assumptions. Here bn is determined by using supx∈M̂ λ̂r+1(x), and so we
first need to give the rate of convergence of the Hausdorff distance between M̂ and M. For any two
nonempty subsets A and B of Rd , their Hausdorff distance is defined as

dH (A,B) = inf
{
ε > 0 : A ⊂ (B ⊕ ε) and B ⊂ (A ⊕ ε)

}
. (3.32)

Lemma 3.11. Suppose assumptions (F1)–(F4) and (K1) hold and h → 0. Also assume that γ
(2)
n,h → 0

for d − r = 1 and γ
(3)
n,h → 0 for d − r ≥ 2. Then there exists a constant C0 > 0 such that

dH (M,Mh) ≤ C0h
2, (3.33)

P
(
dH (M̂,Mh) ≤ C0γ

(2)
n,h

)→ 1, (3.34)

which implies that P(dH (M̂,M) ≤ C0(γ
(2)
n,h + h2)) → 1.

For a, b ∈R, denote a ∧ b = min(a, b). Let νn be a sequence such that νn → ∞ and define

ζ 0
n =

[
sup

x∈M̂
λ̂r+1(x) + νnγ

(2)
n,h

]
∧ 0, (3.35)

ζn =
[

sup
x∈M̂

λ̂r+1(x) + νn

(
γ

(2)
n,h + h2)]∧ 0. (3.36)

Proposition 3.12. Suppose assumptions (F1)–(F4) and (K1) hold and h → 0. Also assume that γ (2)
n,h →

0 for d − r = 1 and γ
(3)
n,h → 0 for d − r ≥ 2. Then

P

(
sup

x∈Mh

λ̂r+1(x) ≥ ζ 0
n

)
→ 0, (3.37)

P

(
sup

x∈M
λ̂r+1(x) ≥ ζn

)
→ 0. (3.38)
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Remark 3.8. The result in Proposition 3.12 immediately implies that we can use ζ 0
n to replace 0 as

bn in the confidence regions that we construct in Corollary 3.10 for Mh (and use ζn for M), if we
additionally assume γ

(3)
n,h → 0 for d − r ≥ 2.

So far we have imposed assumption (F5) to exclude critical points on ridges from our consideration.
The reason is that the behaviors of the estimators of critical points and regular ridge points are different
in our approach. Below we remove assumption (F5), that is, we allow the existence of points x such
that ‖∇f (x)‖ = 0 on M. For any 0 < η < 1, let Kh,η = {x ∈ H : ‖∇fh(x)‖ ≤ hη}. Note that Mh =
(Mh ∩ Kh,η) ∪ (Mh ∩ K�

h,η). When h is small, the set Mh ∩ Kh,η is a small neighborhood near all

the critical points on the ridge Mh, and Mh ∩K�
h,η is the set of the remaining points on the ridge. Our

strategy is to construct two regions to cover Mh ∩Kh,η and Mh ∩K�
h,η separately and then combine

them. For a sequence μn → ∞ such that hμn → 0, let En,η = {x ∈ H : ‖∇f̂ (x)‖ ≤ μnγ
(1)
n,h + hη} and

G0
n,η = En,η ∩ {

x ∈ H : λ̂r+1(x) < ζ 0
n

}
,

Gn,η = En,η ∩ {
x ∈ H : λ̂r+1(x) < ζn

}
.

Then G0
n,η and Gn,η cover Mh ∩Kh,η and M∩Kη, respectively, with a large probability, where Kη =

{x ∈H : ‖∇f (x)‖ ≤ hη}. The following theorem gives the confidence regions for Mh and M without
the assumption (F5), where we also incorporate a new choice for bn as discussed in Remark 3.8.

Theorem 3.13. Suppose assumptions (F1)–(F4), and (K1)–(K3) hold and there exists at least one point
x0 ∈ M such that ‖∇f (x0)‖ > 0. Also we assume that γ

(2)
n,h logn → 0 for d − r = 1 and γ

(3)
n,h → 0 for

d − r ≥ 2; γ
(4)
n,l → 0 and l → 0. Suppose 0 < η < 1, νn → ∞, μn → ∞ and hμn → 0. For any

α ∈ (0,1) we have the following.

(i) For Mh:

P
(
Mh ⊂ [

Ĉn,h

(
bh

(
zα, ĉ

(d,r)
h,l

(
E�

n,η

))
, ζ 0

n

)∪ G0
n,η

])→ 1 − α. (3.39)

(ii) For M using an undersmoothing bandwidth: as γ
(4)
n,h/ logn → ∞,

P
(
M ⊂ [

Ĉn,h

(
bh

(
zα, ĉ

(d,r)
n,l

(
E�

n,η

))
, ζn

)∪ Gn,η

])→ 1 − α. (3.40)

(iii) For M using explicit bias correction: Assume that both f and K are six time continuously
differentiable. As (h/l) logn → 0 and γ

(4)
n,h/(l2 logn) → ∞,

P
(
M ⊂ [

Ĉbc
n,h,l

(
bh

(
zα, ĉ

(d,r)
n,l

(
E�

n,η

))
, ζn

)∪ Gn,η

])→ 1 − α. (3.41)

Remark 3.9.

(i) The results in this theorem still hold if ζ 0
n and ζn are replaced by 0 as discussed in Remark 3.1.

(ii) We use two sequences μn → ∞ and νn → ∞ in the construction of the confidence regions. One
may choose μn = h−μ and νn = h−ν for some 0 < μ < 1 and ν > 0 to satisfy the assumptions in
the theorem. The need for using these tuning parameters μ, ν as well as η reflects the fact that the
definition of ridges involves multiple components, that is, the eigenvectors and eigenvalues of
the Hessian and the gradient (see (1.1) and (1.2)). These components have different asymptotic
behaviors and roles in the estimation. The choice of the tuning parameters allows us to focus on
the asymptotic behaviors related to the eigenvectors.
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4. Discussion

In this paper, we develop asymptotic confidence regions for density ridges. We treat ridges as the
intersections of some level sets and use the VV based approach. The construction of our confidence
regions is based on Gaussian approximation of suprema of empirical processes and the extreme value
distribution of suprema of χ -fields indexed by manifolds. It is known that the rate of convergence of this
type of extreme value distribution is slow. As an alternative approach, we are working on developing a
bootstrap procedure using the VV idea for the confidence regions.

Apparently our approach can also be used for the construction of confidence regions for the intersec-
tions of multiple functions in general (such as density function and regression functions). It’s known
that estimating such intersections has applications in econometrics. See, for example, [6].

5. Proofs

We give the proofs of Lemma 3.1 and Theorem 3.7 in this section. The proofs of Proposition 3.2,
Proposition 3.3, Theorem 3.4, Proposition 3.6, Lemma 3.8, Theorem 3.9, Corollary 3.10, Lemma 3.11,
Proposition 3.12, and Theorem 3.13 can be found in the supplementary material [38].

Proof of Lemma 3.1. Under assumption (F4), the claim that M is an r-dimensional manifold is a
consequence of the constant-rank level set theorem (see Theorem 5.12 in [27]). Under assumption (F3),
we can write M = {x ∈H : V (x)T ∇f (x) = 0, λr+1(x) ≤ 0}, which is a compact set, whose boundary
is ∂M = {x ∈ H : V (x)T ∇f (x) = 0, λr+1(x) = 0} = ∅. Next we show that M has positive reach. For
any twice differentiable function η on an open subset A ⊂ R

d , let Lη = {x ∈ A : η(x) = 0}. Suppose
that Lη is nonempty. The proof of Lemma 4.11 in [15] shows that for any x ∈ Lη, the inequality

�(Lη, x) ≥ min

{
ε

2
,

infx∈Lη⊕ε ‖∇η(x)‖
supLη⊕(2ε) ‖∇2η(x)‖F

}
. (5.1)

holds for all ε > 0 such that Lη ⊕ (2ε) ⊂A and the right-hand side of (5.1) is well defined and positive.
For i = 1, . . . , d − r , let

pi(x) = ∇f (x)T vr+i (x) and li (x) = ∇pi(x), (5.2)

and define sets Mi = {x ∈ Nδ0(M) : pi(x) = 0, λr+1(x) < 0}. Note that M = ∩d−r
i=1 Mi . Under as-

sumption (F4), there exists δ1 > 0 such that M ⊕ δ1 ⊂ Nδ0(M), and there exists ε1 > 0 such that
infx∈Nδ0 (M) ‖li (x)‖ > ε1, for i = 1, . . . , d −r . It is known that there exist second derivatives of the unit
eigenvectors corresponding to simple eigenvalues as functions of symmetric matrices (see, e.g., [12]).
Therefore with assumptions (F1) and (F2), the functions pi , i = 1, . . . , d − r are twice differentiable
and there exists a constant 0 < C < ∞ such that supx∈Nδ0 (M) ‖∇2pi(x)‖F < C, for i = 1, . . . , d − r .
Then applying (5.1), we get

inf
u∈M

�(Mi , u) ≥ min(δ1/4, ε1/C) =: C0. (5.3)

If d−r = 1, then (5.3) has given a positive lower bound of �(M). Next, we consider the case d−r ≥ 2.
The proof follows similar arguments as given in the proof of Theorem 4.12 in [15]. Specifically, let
b1 = C0, and for k = 2, . . . , d − r , let

bk = 1

2
min

{
1, inf

x∈Nδ0 (M)
inf

(a1,...,ak)
T �=0

‖∑k
i=1 aili(x)‖

‖∑k−1
i=1 aili(x)‖ + ‖aklk(x)‖

}
.
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Note that bk > 0, for k = 2, . . . , d − r under assumption (F4). Then using (5.3) and Theorem 4.10 of
[15] inductively, we get

inf
u∈M

�

(
k⋂

i=1

Mi , u

)
≥ b1 · · ·bk, (5.4)

and hence �(M) = infu∈M �(
⋂d−r

i=1 Mi , u) ≥ b1 · · ·bd−r > 0. This is assertion (i).
Next, we show assertion (ii). Let δgap := infx∈H[λr(x)−λr+1(x)]. Since H is compact and λr −λr+1

is continuous on H, we have δgap > 0 due to assumption (F2). Lemma A.1 in the supplementary
material [38] implies that

inf
x∈H

[
λr,h(x) − λr+1,h(x)

]= δgap + O
(
h2)≥ 1

2
δgap, (5.5)

when h is small enough. Then using the Davis–Kahan theorem (see, e.g., [47]) and Lemma A.1 in the
supplementary material [38] leads to

sup
x∈H

∥∥V (x)V (x)T − Vh(x)Vh(x)T
∥∥

F
≤ 2

√
2 supx∈H ‖∇2f (x) − ∇2fh(x)‖F

δgap
= O

(
h2). (5.6)

Noticing that V (x)T V (x) = I d−r , we can write

sup
x∈Mh

∥∥V (x)T ∇f (x)
∥∥= sup

x∈Mh

∥∥V (x)V (x)T ∇f (x) − Vh(x)Vh(x)T ∇fh(x)
∥∥

≤ sup
x∈H

∥∥V (x)V (x)T ∇f (x) − Vh(x)Vh(x)T ∇fh(x)
∥∥

= O
(
h2), (5.7)

where we use (5.6) and Lemma A.1 in the supplementary material [38].
Let M(1) = {x ∈ H : V (x)T ∇f (x) = 0} and M(2) = {x ∈ H : λr+1(x) < 0}. Then M = M(1) ∩

M(2). For any δ > 0, let Nδ(M(1)) = {x ∈ H : ‖V (x)T ∇f (x)‖ ≤ δ}. Note that (5.7) implies that for
any fixed δ ∈ (0, δ0], Mh ⊂Nδ(M(1)) when h is small enough. It suffices to show Mh ⊂M(2), when
h is small enough. Since M(1) is a compact set and λr+1 is continuous on H, under assumption (F3)
there exists β0 > 0 such that infx∈M(1) |λr+1(x)| ≥ 4β0, and hence there exists δ2 with 0 < δ2 ≤ δ0

such that

inf
x∈Nδ2 (M(1))

∣∣λr+1(x)
∣∣≥ 2β0, (5.8)

which further implies that infx∈Mh
|λr+1(x)| ≥ 2β0, when h is small enough. Then we must have

sup
x∈Mh

λr+1(x) ≤ −2β0, (5.9)

since if there exists x0 ∈ Mh such that λr+1(x0) ≥ 2β0, then Lemma A.1 in the supplementary material
[38] would lead to

λr+1,h(x0) ≥ λr+1(x0) − ∣∣λr+1(x0) − λr+1,h(x0)
∣∣≥ 2β0 + O

(
h2)≥ β0,
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when h is small, which contradicts the definition of Mh. Hence, Mh ⊂ [Nδ0(M(1)) ∩ M(2)] =
Nδ0(M), when h is small enough. This is assertion (ii).

For assertion (iii), it can be seen from (5.9) that

sup
x∈Mh

λr+1,h(x) ≤ −β0 (5.10)

when h is small enough. Using a similar argument, we get that when h is small,

inf
x∈Mh

[
λj−1,h(x) − λj,h(x)

]
> β0, j = r + 1, . . . , d, (5.11)

by possibly decreasing β0 to a smaller positive constant.
To show that Mh is an r-dimensional manifold without boundary and has positive reach when h is

small in assertion (iv), we use a similar argument as given in the proof of assertion (i). We first show that
there exists a constant δ3 ∈ (0, δ0] such that Nδ3(M) is a compact set. Let A= {x ∈ H : λr+1(x) = 0}.
If A = ∅, then we simply take δ3 = δ0 and can write Nδ0(M) = {x ∈ H : ‖V (x)T ∇f (x)‖ ≤
δ0, λr+1(x) ≤ 0}, which is a compact set. Otherwise, A is a compact nonempty set and we let
δ∗

3 = infx∈A ‖V (x)T ∇f (x)‖. Since ‖V T ∇f ‖ is a continuous function of x, we must have δ∗
3 > 0 un-

der assumption (F3). Taking δ3 = min( 1
2δ∗

3 , δ0), we can write Nδ3(M) = {x ∈ H : ‖V (x)T ∇f (x)‖ ≤
δ3, λr+1(x) ≤ 0}, which is a compact set.

Next we show that fh satisfies the similar properties as in the assumptions (F1)–(F4) for f , when h

is small. First, fh is four times continuous differentiable on H due to assumption (K1). Also it is easy to
see from (5.8) that the set {x ∈ H : Vh(x)T ∇fh(x) = 0, λr+1,h(x) = 0} = ∅, when h is small enough.
Hence we can write Mh = {x ∈ H : Vh(x)T ∇fh(x) = 0, λr+1,h(x) ≤ 0}, which is a compact set. Sim-
ilar to (5.11), we can show that there exists a constant β2 > 0 such that infx∈Nδ4 (M)[λj−1,h(x) −
λj,h(x)] > β2, j = r + 1, . . . , d , for some 0 < δ4 ≤ δ0 and infx∈H[λr,h(x) − λr+1,h(x)] > β2, when
h is small enough. It suffices to show that fh satisfies a similar condition as given in assumption (F4)
for f . With the notation in (5.2), let L(x) = (l1(x), . . . , ld−r (x)). Then assumption (F4) is equivalent
to infx∈M det(L(x)T L(x)) > 0. Since Nδ3(M) is a compact set and det(L(x)T L(x)) is a continuous
function on H under our assumptions, we can find ε0 > 0 such that

inf
x∈Nδ3 (M)

det
(
L(x)T L(x)

)≥ ε0. (5.12)

Let Lh(x) = (l1,h(x), . . . , ld−r,h(x)), where li,h(x) = ∇(∇fh(x)T vr+i,h(x)), i = 1, . . . , d − r . With
(5.12) we have

inf
x∈Nδ3 (M)

det
(
Lh(x)T Lh(x)

)
≥ inf

x∈Nδ3 (M)
det

(
L(x)T L(x)

)− sup
x∈Nδ3 (M)

∣∣det
(
L(x)T L(x)

)− det
(
Lh(x)T Lh(x)

)∣∣
≥ ε0 − O

(
h2), (5.13)

where we use Lemma A.1 in the supplementary material [38] and Theorem 3.3 in [23], the latter giving
a perturbation bound for matrix determinants. This then implies that there exists ε1 > 0 such that for h

small enough, infx∈Nδ3 (M) ‖li,h(x)‖ > ε1, and li,h(x), i = 1, . . . , d − r are linearly independent for all
x ∈ Nδ3(M). The rest of the proof is omitted because it is similar to the proof of assertion (i). �
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To prove Theorem 3.7, we need the following lemma.

Lemma 5.1. Suppose assumptions (F1)–(F5), and (K1)–(K3) hold. There exists a constant δ1 > 0 such
that for all x ∈ Nδ1(M) and z ∈R

d−r\{0}, �(x, z) in (3.20) is positive definite.

Proof of Lemma 5.1. We need to introduce some notation first. Recall that for any d × d symmetric
matrix A, vech(A) is the half-vectorization of A, that is, it vectorizes only the lower triangular part of A

(including the main diagonal of A). Let diag(A) be the vector of the diagonal entries of A and vechs(A)

be the vectorization of the strictly lower triangular portion of A, which can be obtained from vech(A)

by eliminating all the diagonal elements of A. Let dvech(A) be a vectorization of the lower triangular
portion of A, such that dvech(A) = (diag(A)T ,vechs(A)T )T . Let Q be a [d(d + 1)/2] × [d(d + 1)/2]
matrix such that dvech(A) = Qvech(A). Note that Q is nonsingular.

Let I = Id ∪ Io, where Id = {1,2, . . . , d} and Io = {d + 1, d + 2, . . . , d(d + 1)/2}, that is, Id and
Io are the index sets for diag(A) and vechs(A) in dvech(A), respectively. Suppose that we can write
A = (al,m)1≤l,m≤d . Define a map π = (π1,π2) : I → Id × Id such that the kth element of dvech(A)

is aπ1(k),π2(k), k ∈ I . For k1, k2 ∈ I , let π�(k1, k2) = {π1(k1),π2(k1)}�{π1(k2),π2(k2)}, where �

denotes the symmetric difference between two sets, i.e., A�B = (A\B) ∪ (B\A) for any two sets A

and B . For i, j ∈ Id , let π−1
q (i) = {k ∈ I : πq(k) = i}, q = 1,2, and

π−1(i, j) =
{

π−1
1 (i) ∩ π−1

2 (j) if i ≥ j,

π−1
1 (j) ∩ π−1

2 (i) if i < j.

Note that π−1(i, j) = π−1(j, i). Let π−1
∪ (i) = π−1

1 (i) ∪ π−1
2 (i), i ∈ Id . Let δ(i, j) be the Kronecker

delta. For any set J , let δ(i,J ) = 1J (i), which is an indicator function regarding whether i ∈ J .
With δ1 > 0 given in Proposition 3.2, for x ∈ Nδ1(M), and z ∈ R

d−r\{0}, let Ã(x, z) =
A(x, z)T Q−1 =: (t1(x, z), . . . , td(d+1)/2(x, z)). Recall that

√
f (x)‖A(x, z)‖R = ‖z‖ for all x ∈ Nδ1

and z ∈R
d−r\{0}. Hence for any x ∈Nδ1 and z ∈R

d−r\{0},
tk(x, z) �= 0, for at least one k ∈ I. (5.14)

Then we can write �(x, z) = ∫ [∇d2K(u)]T QT Ã(x, z)T Ã(x, z)Q∇d2K(u)du, for which �i,j (x, z)

denotes the element at the ith row and j th column. Below we consider any x ∈ Nδ1 and z ∈ R
d−r\{0}

and will suppress x and z in the notation. Let η : Id ×Id → Z
d+ be a map such that for (l,m) ∈ Id ×Id ,

∂2K(u)
∂ul ∂um

= K(η(l,m))(u), u ∈R
d (see (2.2)). Then

�i,j =
∑

(k1,k2)∈I×I
w

(i,j)
k1k2

tk1 tk2 ,

where w
(i,j)
k1k2

=
∫
Rd

[
∂

∂ui

K(η(π(k1)))(u)

][
∂

∂uj

K(η(π(k2)))(u)

]
du. (5.15)

Next, we will show that we can write

� =
∫
Rd

[
K(ρ2)(s)

]2
dsP, (5.16)

where ρ2 is given in assumption (K3), P = (pij ) is a d × d matrix depending on x and z, and P

is positive definite under the given assumptions in this lemma. When d = 2, it follows from direct
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calculation using Lemma B.1 in the supplementary material [38] that the elements of P are given by

p11 = aKt2
1 + t2

2 + t2
3 + 2t1t3,

p12 = p21 = 2t1t2 + 2t2t3,

p22 = aKt2
3 + t2

2 + t2
1 + 2t1t3.

It is clear from Proposition 3.2 that P is positive definite, when we assume aK > 1. We consider d ≥ 3
below. Note that w

(i,j)
k1k2

∈ {∫ [K(ρq)(u)]2 du : q = 1,2,3} ∪ {0} and we can determine the values of

w
(i,j)
k1k2

using Lemma B.1 in the supplementary material [38]. We split our discussion into two cases:

i = j and i �= j . When i = j , the values of w
(i,j)
k1k2

can be determined by the following tree diagram.

w
(i,j)
k1k2

=

0

k1 �= k2

∫ [K(ρ2)(u)]2 du

k1 ∈ π −1∪ (i)

∫ [K(ρ3)(u)]2 du
k1 /∈ π

−1
∪ (i)

k1 = k2

k1 , k2 ∈ I o

0
k1 ∈ Id & k2 ∈ Io

or k2 ∈ Id & k1 ∈ Io

∫ [K(ρ3)(u)]2 du

k1 �= i & k2 �= i

∫ [K(ρ2)(u)]2 du

k1 = i or k2 = ik1 �= k2

∫ [K(ρ2)(u)]2 du

k1 �= i

∫ [K(ρ1)(u)]2 du
k1 = i

k1 = k2

k1,
k2

∈ I
d

When i �= j , the values of w
(i,j)
k1k2

can be determined by the following tree diagram.

w
(i,j)
k1k2

=

∫ [K(ρ3)(u)]2 du

π�(k1, k2) = {i, j}

0
π�(k1, k2) �= {i, j}

k1 , k2 ∈ I o

∫ [K(ρ2)(u)]2 du

k2 ∈ {i, j}

∫ [K(ρ3)(u)]2 du

k2 /∈ {i, j}
k1 = π −1

(i, j)

0
π−1(i, j) /∈ {k1, k2}

∫ [K(ρ2)(u)]2 du

k1 ∈ {i, j}

∫ [K(ρ3)(u)]2 du

k1 /∈ {i, j}

k2 = π
−1 (i,

j)

k1 ∈ Id & k2 ∈ Io

or k2 ∈ Id & k1 ∈ Io

0

k 1,
k 2

∈ I
d
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Plugging these values of w
(i,j)
k1k2

into (5.15) we can show that the elements of the matrix P in (5.16)
are given by

pij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ ∑
(k1,k2)∈Id×Id

a
δ(i,k1)δ(i,k2)
K b

(1−δ(i,k1))(1−δ(i,k2))(1−δ(k1,k2))
K tk1 tk2

+
∑
k∈Io

b
1−δ(k,π−1∪ (i))

K t2
k

]
if i = j,

2
∑
k∈Id

b
1−δ(k,{i,j})
K tktπ−1(i,j) + bK

∑
k1,k2∈Io:π�(k1,k2)={i,j}

tk1 tk2 if i �= j.

(5.17)

We will find a matrix L such that

P = LLT + S, (5.18)

where S = (aK − 1/bK)diag(t2
1 , t2

2 , . . . , t2
d ). The matrix L is in the form of L = (L1,L2,L3) and the

construction of L1, L2, and L3 is as follows. First, L1 = (l
(1)
ij ) is a d × d matrix where

l
(1)
ij =

⎧⎪⎨⎪⎩
1√
bK

ti +√
bK

∑
k∈Id\{i}

tk if i = j,√
bKtπ−1(i,j) if i �= j.

L2 = (l
(2)
ij ) is a d × (

d
3

)
matrix, whose columns are constructed in the following way. For any 1 ≤ j1 <

j2 < j3 ≤ d , a generic column v = (v1, . . . , vd)T of L2 is defined by

vi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√

bKtπ−1(j2,j3)
if i = j1,√

bKtπ−1(j1,j3)
if i = j2,√

bKtπ−1(j1,j2)
if i = j3,

0 otherwise.

(5.19)

L3 = (l
(3)
ij ) is a d × [d(d − 1)] matrix consisting of

(
d
2

)
paired columns. For any 1 ≤ j1 < j2 ≤ d , each

pair of the generic columns of L3, denoted by v(1) = (v
(1)
1 , . . . , v

(1)
d )T and v(2) = (v

(2)
1 , . . . , v

(2)
d )T , are

defined by

v
(1)
i =

⎧⎪⎨⎪⎩
√

1 − bKtj2 if i = j1,√
1 − bKtπ−1(j1,j2)

if i = j2,

0 otherwise,

v
(2)
i =

⎧⎪⎨⎪⎩
√

1 − bKtπ−1(j1,j2)
if i = j1,√

1 − bKtj1 if i = j2,

0 otherwise.

(5.20)

It is straightforward to verify that (5.18) holds with the above construction. The explicit expressions
of P , L and S when d = 3 are given as an example in Appendix B of the supplementary material [38].

To show that P is positive definite, using (5.18) and assumption (K3) we only need to show that
L is of full rank. This can be seen from the following procedure. Let ei be the ith standard basis
vector of Rd , that is, its ith element is 1 and the rest are zeros. Denote L̃1 = 1√

bK
(t1e1, . . . , tded) and

L̃ = (L̃1,L2,L3). Below we show that there exists a non-singular d × d matrix M such that L̃ = LM ,
which implies that L and L̃ have the same rank. Here M can be constructed by finding a sequence of
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elementary column operations on L, which transform L1 into L̃1. Let l
(1)
i and l

(3)
i be the ith columns

of L1 and L3, respectively. The transformation is achieved by simply noticing that

l
(1)
i −

∑
k:l(3)

ik ∈Id\{i}

√
bK

1 − bK

l
(3)
k = 1√

bK

tiei .

Below we will show that there exists at least one column of L̃1, L2 or L3 in the form of 1√
bK

tkei ,√
bKtkei or

√
1 − bKtkei for some tk �= 0, for all i = 1,2, . . . , d , which implies that L is full rank.

This is trivially true if none of t1, . . . , td is zero. Now assume there is at least one of t1, . . . , td is zero.
Without loss of generality, assume t1 = 0 and we would like to show that there exists at least one
column of L2 or L3 in the form of √

bKtke1 or
√

1 − bKtke1, (5.21)

for some tk �= 0. In the construction of the paired columns v(1) and v(2) of L3 given in (5.20), take j1 =
1 and let j2 be any integer such that 1 < j2 ≤ d . If tπ−1(1,j2)

�= 0 then v(2) satisfies (5.21); otherwise if

tj2 �= 0 then v(1) satisfies (5.21). If neither v(1) nor v(2) satisfies (5.21), then we must have tπ−1(1,k) =
tk = 0 for all k ∈ Id (note that tπ−1(1,1) = t1), which is what we assume for the rest of the proof. Now
we consider the columns in L2. For v given in (5.19) we take j1 = 1 and let j2 and j3 be any two
integers satisfying 1 < j2 < j3 ≤ d . Then there must exist tπ−1(j2,j3)

�= 0 according to (5.14) so that v

satisfies (5.21), because I = Id ∪ Io and Io = {π−1(i, j) : 1 ≤ i < j ≤ d}. �

Proof of Theorem 3.7. We first consider the case d − r ≥ 2 and then briefly discuss the case d − r = 1
at the end of the proof. Recall that σg = √

Var(B(g)) for g ∈ Fh. First, we want to show

lim
h→0

P

(
sup
g∈Fh

σ−1
g B(g) < bh

(
z, c

(d,r)
h

))= e−e−z

. (5.22)

We need to show that B(x, z) := σ−1
gx,z

B(gx,z) for gx,z ∈ Fh satisfies the conditions of the Gaussian
fields in Theorem 3.5. Note that rh(x, x̃, z, z̃) in (3.19) is the covariance between B(x, z) and B(x̃, z̃).
Proposition 3.6 and Lemma 5.1 can be used to verify that B(x, z), (x, z) ∈ Mh × S

d−r−1 is locally
equi-(α1,D

(1)
x,z, α2,D

(2)
x,z)-stationary (see Definition 3.1), where

α1 = α2 = 2, D(1)
x,z = 1√

2
�(x, z)1/2, and D(2)

x,z = 1√
2
I d−r . (5.23)

Also recall that β1 > 0 given in Lemma 3.1 is a lower bound of �(Mh) for all h ∈ (0, h1] for some
h1 > 0. Without loss of generality we assume that β1 ≤ δ0. Then applying Lemma 3 in [24] we get
suph∈(0,h1] Hd−r (Mh) ≤ d!

(d−r)!β
r−d
1 Hd(H) < ∞. Using Proposition 3.2, we can suppose h1 is small

enough such that Mh ⊂Nδ1(M) for all h ∈ (0, h1].
Note that (3.16) in Theorem 3.5 is clearly satisfied, simply because the kernel function K is assumed

to have bounded support in assumption (K1). We only need to verify that rh satisfies (3.15). For any
λ ∈R, x, x̃ ∈ Mh and z, z̃ ∈ S

d−r−1, let κ(λ;X1, x, x̃, z, z̃, h) = gx,z(X1) − λgx̃,z̃(X1) and

ζ(λ;X1, x, x̃, z, z̃, h) = [
κ(λ;X1, x, x̃, z, z̃, h) −Eκ(λ;X1, x, x̃, z, z̃, h)

]2
.
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Denote B(x, x̃, h) = B(x,h) ∪ B (̃x, h). Using the boundedness of the support of K and the Cauchy-
Schwarz inequality we have[

Eκ(λ;X1, x, x̃, z, z̃, h)
]2

= 1

hd

{∫
Rd

[〈
A(x, z), d2K

(
x − s

h

)〉
− λ

〈
A(̃x, z̃), d2K

(
x̃ − s

h

)〉]
f (s) ds

}2

= 1

hd

{∫
B(x,x̃,h)

[〈
A(x, z), d2K

(
x − s

h

)〉
− λ

〈
A(̃x, z̃), d2K

(
x̃ − s

h

)〉]√
f (s)

√
f (s) ds

}2

≤ E
[
κ(λ;X1, x, x̃, z, z̃, h)2]F(x, x̃, h),

where F(x, x̃, h) = ∫
B(x,x̃,h)

f (s) ds = O(hd), uniformly in x, x̃ ∈ Mh for all 0 < h ≤ h1. This im-
plies that there exists h2 ∈ (0, h1] such that for all 0 < h ≤ h2,

Eζ(λ;X1, x, x̃, z, z̃, h) = E
[
κ(λ;X1, x, x̃, z, z̃, h)2]− [

Eκ(λ;X1, x, x̃, z, z̃, h)
]2

≥ 1

2
E
[
κ(λ;X1, x, x̃, z, z̃, h)2]. (5.24)

Denote �x = x̃ − x and �z = z̃ − z. Due to the bounded support of K we have

E
[
κ(λ;X1, x, x̃, z, z̃, h)2]≥ E

{
1B(x,h)\B(x̃,h)(X1)κ(λ;X1, x, x̃, z, z̃, h)2}

= E
{
1B(x,h)\B(x̃,h)(X1)κ(0;X1, x, x̃, z, z̃, h)2}

= E
{
1B(x,h)\B(x̃,h)(X1)

[
gx,z(X1)

]2}
=
∫

B(0,1)\B(�x/h,1)

〈
A(x, z), d2K(s)

〉2
f (x − hs) ds

= f (x)

∫
B(0,1)\B(�x/h,1)

〈
A(x, z), d2K(s)

〉2
ds + O(h), (5.25)

where in the last step we use a Taylor expansion for f (x − hs) and the O(h)-term is uniform in
x, x̃ ∈Mh for all 0 < h ≤ h2 and z, z̃ ∈ S

d−r−1.
Note that for any δ > 0, if ‖�x‖ > hδ, then the set B(0,1)\B(�x/h,1) contains a ball B∗ with

radius min(1, δ/2). It follows that for any x ∈ Mh, 0 < h ≤ h2 and z ∈ S
d−r−1,

inf‖�x‖>hδ

∫
B(0,1)\B(�x/h,1)

〈
A(x, z), d2K(s)

〉2
ds ≥

∫
B∗

〈
A(x, z), d2K(s)

〉2
ds.

Recall that
√

f (x)‖A(x, z)‖R = 1 and hence A(x, z) �= 0 for all x ∈ Nδ1(M) and z ∈ S
d−r−1. Then∫

B∗〈A(x, z), d2K(s)〉2 ds > 0 under assumption (K2). Without loss of generality suppose that δ1 is
small enough such that Nδ1(M) is compact (see the proof of Lemma 3.1). Since S

d−r−1 is also com-
pact and A(x, z) in continuous in x ∈ Nδ1(M) and z ∈ S

d−r−1, we have

inf
0<h≤h2

inf
x∈Mh,z∈Sd−r−1

inf‖�x‖>hδ

∫
B(0,1)\B(�x/h,1)

〈
A(x, z), d2K(s)

〉2
ds > 0,
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which by (5.24) and (5.25) further implies that for some h0 ∈ (0, h2],
inf

x,x̃∈Mh,z,z̃∈Sd−r−1

‖�x‖>hδ,‖�z‖>δ,0<h≤h0

Eζ(λ;X1, x, x̃, z, z̃, h) > 0. (5.26)

Note that Eζ(λ;X1, x, x̃, z, z̃, h) = λ2σ 2
gx̃,z̃

− 2λCov(gx̃,z̃(X1), gx,z(X1)) + σ 2
gx,z

, which is a quadratic
polynomial in λ and its discriminant is given by

σ(x, x̃, z, z̃, h) = 4 Cov
(
gx̃,z̃(X1), gx,z(X1)

)− 4σ 2
gx,z

σ 2
gx̃,z̃

.

Then (5.26) implies that

sup
x,x̃∈Mh,z,z̃∈Sd−r−1

‖�x‖>hδ,‖�z‖>δ,0<h≤h0

σ(x, x̃, z, z̃, h) < 0,

or equivalently,

sup
x,x̃∈Mh,z,z̃∈Sd−r−1

‖�x‖>hδ,‖�z‖>δ,0<h≤h0

∣∣rh(x, x̃, z, z̃)
∣∣< 1.

Thus the condition in (3.15) has been verified.
With βh =√

2r log(h−1) + 1√
2r log(h−1)

[ d−2
2 log log(h−1) + c

(d,r)
h ], Theorem 3.5 yields

lim
h→0

P

{√
2r log

(
h−1

)(
sup

g∈Fh

σ−1
g B(g) − βh

)
≤ z

}
= e−e−z

, (5.27)

where in the calculation of c
(d,r)
h we use (5.23) and H

(2)
m = π−m/2 for any m ∈ Z

+, which is a well-
known fact for Pickands’ constant (see page 31 of [34]). This is (5.22).

For gx,z ∈Fh we have

σ 2
gx,z

= E
[
gx,z(X1)

2]− [
Egx,z(X1)

]2

= 1

hd

∫
Rd

〈
A(x, z), d2K

(
x − u

h

)〉2

f (u)du − 1

hd

[∫
Rd

〈
A(x, z), d2K

(
x − u

h

)〉
f (u)du

]2

=
∫
Rd

〈
A(x, z), d2K(u)

〉2
f (x − hu)du − hd

[∫
Rd

〈
A(x, z), d2K(u)

〉
f (x − hu)du

]2

= 1 + O
(
h2),

where the O(h2)-term is uniform in x ∈ Mh for 0 < h ≤ h0 and z ∈ S
d−r−1. Note that (5.27) implies

that supg∈Fh
|σ−1

g B(g)| = Op(
√

log (h−1)) and hence∣∣∣ sup
g∈Fh

B(g) − sup
g∈Fh

σ−1
g B(g)

∣∣∣≤ sup
g∈Fh

∣∣(σg − 1)σ−1
g B(g)

∣∣= Op

(
h2
√

log
(
h−1

))
.

We then get (3.24) by using (5.27). By Theorem 3.4, for Dn defined in (3.8) we have

P

(√
nhd+4 sup

x∈Mh

Dn(x) ≤ bh

(
z, c

(d,r)
h

))→ e−e−z

. (5.28)
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Next we show (3.25). It follows from Lemma A.1 in the supplementary material [38] and Lemma 3.1
that

P
(
Mh ⊂ {

x ∈ H : λ̂r+1(x) < 0
})→ 1. (5.29)

Let Ĉ∗
n,h(a) = {x ∈H : √nhd+4Bn(x) ≤ a}, for a ≥ 0. Then by (5.29) we get

sup
a≥0

∣∣P(Mh ⊂ Ĉn,h(a)
)− P

(
Mh ⊂ Ĉ∗

n,h(a)
)∣∣→ 0. (5.30)

Furthermore it is clear that P(Mh ⊂ Ĉ∗
n,h(a)) = P(

√
nhd+4 supx∈Mh

Bn(x) ≤ a) for all a ≥ 0. By
applying Proposition 3.3 and (5.28), we finish the proof of (3.25) for the case d − r ≥ 2. When d − r =
1, the covariance structure of B is simplified (see Remark 3.5). Then instead of using Theorem 3.5, we
apply the main theorem in [41]. The rest of the proof is similar to the above. �
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