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Asymptotic confidence regions for density
ridges
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We develop large sample theory including nonparametric confidence regions for r-dimensional ridges of proba-
bility density functions on R¥, where 1 < r < d. We view ridges as the intersections of level sets of some special
functions. The vertical variation of the plug-in kernel estimators for these functions constrained on the ridges is
used as the measure of maximal deviation for ridge estimation. Our confidence regions for the ridges are deter-
mined by the asymptotic distribution of this maximal deviation, which is established by utilizing the extreme value
distribution of nonstationary y-fields indexed by manifolds.
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1. Introduction

A ridge in a data cloud is a low-dimensional geometric feature that generalizes the concept of local
modes, in the sense that the density values on ridge points are local maxima constrained in some
subspace. In the literature ridges are also called filaments, or filamentary structures, which usually
exhibit a network-like pattern. They are widely used to model objects such as fingerprints, fault lines,
road systems, and blood vessel networks. The vast amount of modern cosmological data displays a
spatial structure called Cosmic Web, and ridges have been used as a mathematical model for galaxy
filaments [45].

The statistical study on ridge estimation has recently attracted much attention. See [8,17-19,40].
One of the fundamental notions under ridge estimation is that ridges are sets, and most of the above
statistical inference work focuses on the maximal (or global) deviation in ridge estimation, that is,
how the estimated ridge approximates the ground truth as a whole. This requires an appropriately
chosen measure of global deviation. For example, the Hausdorff distance is used in [8,17-19], while
[40] uses the supremum of “trajectory-wise” Euclidean distance between the true and estimated ridge
points, where trajectories are driven by the second eigenvectors of Hessian. Both distances measure
the deviation of ridge estimation in the space where the sets live in, which we call horizontal variation
(HV).

In this paper, we develop large sample theory for the nonparametric estimation of density ridges,
which in particular includes the construction of confidence regions for density ridges. Our methodology
is based on the measure of global deviation in ridge estimation from a different perspective. Briefly
speaking, we treat ridges as intersections of special level sets, and use the measure of maximal deviation
in levels, which we call vertical variation (VV).

We first give the mathematical definition of ridges. Let V £ (x) and V2 f (x) be the gradient and Hes-
sian of a twice differentiable probability density function f atx € R? with d > 2. Let v (x), ..., va(x)
be orthonormal eigenvectors of v2 f (x), with corresponding eigenvalues A1 (x) > Az (x) > --- > Aq(x).
Forr=1,2,...,d — 1, write V(x) = (vy41(x), ..., vg(x)). The r-ridge M" induced by f is defined
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as the collection of points x that satisfy the following two conditions:

V)TV Fx) =0, (1.1)
A1 (x) < 0. (1.2)

We fix r > 1 in this paper and denote the ridge by M. This definition has been widely used in the
literature (see, e.g., [14]). A ridge point x is a local maximum point of f in a (d — r)-dimensional
subspace spanned by v,1(x), ..., vg(x). This geometric interpretation can be seen from the fact that
viT V f and A; are the first and second order directional derivatives of f along v;, respectively. In fact, if
we take r = 0, then conditions (1.1) and (1.2) just define the set of local maxima, which is the O-ridge.
Condition (1.1) indicates that an r-ridge is contained in the intersection of (d — r) level sets of the
functions viT Vf,i=r+1,...,d,and is an r-dimensional manifold with co-dimension (d — r) under
some mild assumptions (e.g., see assumption (F4) below). The confidence regions for the set of modes
(0-ridge) can also be constructed by using the VV idea presented in this paper. They need to be treated
in a slightly different way because of the discreteness of the sets. The study of confidence regions for
modes is not included in this paper for convenience.

Given an i.i.d. sample Xy, ..., X,, of f, the ridge M can be estimated using a plug-in approach
based on kernel density estimators (KDE). Let fz fA,, n be the KDE of f with bandwidth 7 > 0 (see

(2.1)), and let 11 (x), ..., Dy (x) be orthonormal eigenvectors of sz(x), with corresponding eigenval-
ues A1 (x) > A2(x) > -+ > Ag(x). Also write V(x) = (Uy41(x), ..., D4(x)). Then a plug-in estimator

for M is M, which is the set of points defined by plugging in these kernel estimators into their coun-
terparts in conditions (1.1) and (1.2). See Figure 1 for example. [8,17-19] focus on the estimation of
ridges induced by the smoothed kernel density function f;, = Ef, instead of the true density f. Such
ridges, denoted by M, depend on the bandwidth / and are called surrogates. Focusing on M, instead
of M avoids the well-known bias issue in nonparametric function and set estimation.

In this paper, we consider confidence regions for both M and M}, in the form of

Coinan, by) = {x : Vrhd 4| () V() VF ()| < @, and &y 41(x) < by}, (1.3)
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Figure 1. Left: contour plot of a density function, where the red solid curve is a ridge and the dotted lines are
contour lines; Right: simulated data points from the density function and the estimated ridge (blue solid curve).
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where a, > 0, b, € R and Q,(x) is a normalizing matrix. Here determining Q,, a, and b,, is critical
to guarantee that C w.h(an, by) has a desired asymptotic coverage probability for M or My as n — oo
and h — 0. The basic idea for our VV approach is as follows. We consider density ridges as the
intersection of the zero-level sets of the functions V7V f and a sublevel set of A, 1. When we use
plug-in estimators for these functions, we allow their values to vary in a range (specified by a, and
by), which implicitly defines a neighborhood near M. The shape of this neighborhood is envisioned
as a tube around M with varying local radii. This tube is geometrically different from the one with
constant radius based on the asymptotic distribution of di (M, My,), which is the Hausdorff distance
(belonging to HV) between M and M. As seen from its definition given in (1.1) and (1.2), ridge
estimation mainly involves the estimation of the density gradient and Hessian. Between these two
major components, the rate ~/nh?+4 in (1.3) follows from the rate of convergence of the Hessian,
which is 1/+/nh9t4 (ignoring the bias). Note that the rate of convergence of the gradient is 1/+/nh4+2,
which is much faster than that of the Hessian, and makes the Hessian estimation a dominant component
in ridge estimation. We note in passing that this statement also applies to the asymptotic properties of
dy (M, Mpy) (see [8]).

The asymptotic validity of the confidence regions for M}, and M in the form of (1.3) will be shown
through the following steps, which are also the main results in the paper. Note that if we write B, (x) =
104 )V ()T V F()l, then My, C Cpp(an, by) is equivalent to vnhd™*sup, g, By(x) < ay and
SUPye M, X,H (x) < by. Under some regularity assumptions one can show that

(i) the distribution of vnh9**sup,c , Bn(x) equals that of sup, . 7, G, (g) asymptotically, where
G,, is an empirical process and F}, is a class of functions, which is induced by some linear
functionals of the second derivatives of kernel density estimators;

(ii) the distribution of sup,. 7, G, (g) is asymptotically the same as that of sup,c 7, B(g), where B
is a locally stationary Gaussian process indexed by F;

(iii) the distribution of sup,. 7, B(g) is derived by applying the extreme value theory of x -fields
indexed by manifolds developed in our companion work [37].

Then a, is determined by the above approximations and distributional results and b, is chosen
such that sup, ¢ rq, Ar+1(x) < b, holds with probability tending to one. In fact, one can show that

P(My C Cop(an, by)) =e¢ " + o(1) with b, =0 and a, = W + /2r log(h~1), for some

¢ > 0 depending on f, K, and Mj,. This type of result is similar to the confidence bands for univariate
probability density functions developed in the classical work [4]. The derivation for M is similar
except that we have to deal with the bias in the estimation.

The way that we study ridge estimation is naturally connected to the literature of level set estimation
(see, e.g., [7,22,31,35,36,46]), which mainly focuses on density functions and regression functions.
Confidence regions for level sets have been studied in [9,30,42]. It is clear that technically a ridge is a
more sophisticated object to study than a density or regression level set, not only because the former
involves the estimation of eigen-decomposition of Hessians and their interplay with gradients, but also
aridge is viewed as the intersection of level sets of multiple functions if d — r > 2. To our knowledge
there are no nonparametric distributional results for the estimation of intersections of density or re-
gression level sets in the literature. In addition to the papers mentioned above, previous work on ridge
estimation also includes [2,10,16,21,28,32,48,49].

The paper is organized as follows. We first introduce our notation and assumptions in Section 2.
In Section 3.1, we develop the asymptotic confidence regions for M}, following the procedure listed
above. Specifically, steps (i)—(iii) are established in Proposition 3.3, and Theorems 3.4, and 3.7, respec-
tively. In Section 3.2, we use bias correction methods to extend the results to asymptotic confidence
regions for M. The confidence regions involve unknown surface integrals on ridges. In Section 3.3,
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we show the asymptotic validity of the confidence regions with these unknown quantities replaced by
their plug-in estimators. In particular, Corollary 3.10, as our main result from a statistical perspective,
gives a data-driven asymptotic confidence regions for ridges. For technical reasons, the consideration
of critical points on ridges are deferred until Section 3.4, where we also discuss different choices of b,,.
The proofs are given in Section 5 and the supplementary material [38].

2. Notation and assumptions

We first give the notation used in the paper. For a real matrix A and compatible vectors u and v, denote
(u,v)4 = ul Av. Also we write (u,u)s = ||u||124 and ||u| is the Euclidian norm of u. Let ||A| r be
the Frobenius norm of A and || A|lmax = max;, ; |a;;| where A = (a;;). Let AT be the Moore-Penrose
pseudoinverse of A (see page 36, [29]), which always exists and is unique. For a positive integer m, let
I,, be the m x m identity matrix. For a vector field W : R" — R",let R(W) = me Wx)Wx) dx e
R™" assuming the integral is well defined. For a d x d matrix A, vec(A) vectorizes A by stacking
the columns of A into a d® x 1 column vector, while vech(A) only vectorizes the lower triangular part
of Aintoad(d + 1)/2 x 1 column vector. The duplication matrix D is such that vec(A) = D vech(A)
for a symmetric matrix A. The matrix D does not depend on A and is unique for dimension d (and
we have suppressed d in the notation). For example, when d =2 and A = (Zi; azz) using the above
notation we have

T

1 0 0 O
vech(A) = (a11, a2, a2) ", vec(A) = (ar1,a12,a12,a22)", and D=|0 1 1 0
0 0 0 1

For two matrices A and B, let A ® B be the Kronecker product between A and B (see page 31 of [29]).
For a real symmetric matrix A, let Apin(A) and Apax (A) be the smallest and largest eigenvalues of A,
respectively.

For a smooth function K : R? — R, let VK and V2K be its gradient and Hessian, respectively, and
we denote d>K = vech V2K . Let 7. be the set of non-negative integers. For m € Z.., we use #,, to
denote the m-dimensional normalized Hausdorff measure. Let B (x, 1) = {y € R? : ||y — x| <1} be the
ball centered at x with radius 7 > 0. For a set M C R and € > O,let M ®e= UxeM B(x, €), which
is the e-enlarged set of M. For m € Z_, let S" = {x € R"*!: ||x|| = 1} be the unit m-sphere. For any
subset A C RY, let 14 be the indicator function of A. Let int(.A) and 8.4 be the interior and boundary
of A, respectively.

Given an i.i.d. sample X1, ... X, from the probability density function f on R?, denote the kernel
density estimator

~ ~ 1 < X;
f(X)=fn,h(X)=W§K<x ) x eRY, 2.1)

where 4 > 0 is a bandwidth and K is a twice differentiable kernel density function on R¢. The no-
tation h is used as a default bandwidth unless otherwise indicated, and we suppress the subscripts
n, h in the kernel density estimator and all the quantities induced by it (so that V= Vn » and
Ar+1 = Ar+1 n.h» for example). Let f5(x) = Ef(x) and let vy 4 (x), ..., vg, h(x) be orthonormal eigen-
vectors of V2 fn(x), with corresponding eigenvalues A ;(x) > A2 (x) > ..o > Ag.p(x). Also write
Vi(x) = (Vrg1,0(x), ..., vg,n(x)). We focus on ridge estimation on a compact subset H _of R?, which
is assumed to be the hypercube [0, 11¢ for simplicity, and all the ridge definitions M, M and M, are
restricted on H, such as My = {x € H: Vi, (x)T V f,(x) =0, Apy1.5(x) < O}.



950 W. Qiao

Fory = (y1,...,ya)! € Zi, let |y| = y1 4 --- + ya. For a function g : RY — R with |y |th partial
derivatives, define

alvl

) - v d
70 = s @), ¥ e R (22)

Let R := R(d%K). For § > 0, define

NsM) = {x e H: [V )T V@) <8, Ars1(x) <0} (2.3)

For a bandwidth 4 > 0, let y,fk,z =,/ nlh(fi%, which is the rate of convergence of sup, cgd |f(”)(x) -
h(y)(x)| for |y| = k € Z4 under standard assumptions. We use the following assumptions in the con-
struction of confidence regions for ridges.

Assumptions:

(F1) f is four times continuously differentiable on H & 79 for some g > 0.

(F2) There exists 8o > 0 such that N, (M) C int(#) and the following is satisfied. For all x €
N, (M), the smallest d — r eigenvalues of V2 f(x) are simple, i.e., A, (x) > App1(x) > -+ >
Ag(x). In particular, A, (x) > A,41(x) forall x € H.

F3) xeH:hy1(x)=0, V) Vf(x)=0}=0.

(F4) When d — r = 1, we require that ||V(Vf(x)Tvd(x))|| > 0 for all x e./\/go(./\/l); Whend —r >
2, we require that V(V f(x)Tv;(x)), i =r + 1,...,d are linearly independent for all x €
Ny (M.

(K1) The kernel function K is a spherically symmetric probability density function on R¢ with
B(0, 1) as its support. It has continuous partial derivatives up to order 4.

(K2) For any open ball S with positive radius contained in B(0, 1), the coordinate functions of
s > 15(s)d*K (s) are linearly independent as functions.

. JKPD ()12 d
(K3) If d = 2, we require that ag := W > 1, where p; = (3,0,...,0)T € Zi and

Jpa[K®3) ()] ds

Tl KD Pds = 1 where

P2 =(2,1,0,...,007 € Z4; If d > 3, we require # < bg =
p3=(1,1,1,0,...,00" e Z4.

Remark 2.1.

(i) Note that ridges are defined using the second derivatives of densities. Assumption (F1) requires
the existence of two additional orders of derivatives. This is similar to other work on the distri-
butional results of ridge estimation (see [8,40]).

(i1) Assumptions (F2)—(F3) exclude some scenarios that are on the boundary of the class of density
functions we consider (note that these assumptions only exclude some equalities). Here we give
some brief discussion of the implications of these assumptions.

(a) Assumption (F2) requires that the smallest d — r eigenvalues of V2 f(x) for x € M all
have multiplicity one, in order to have the differentiability of the functions v; (x)” V f (x)
fori =r+1,...,d, which generally does not hold when the eigenvalues are repeated.

(b) Assumption (F3) avoids the existence of some degenerate ridge points. Such points have
zero first and second directional derivatives along v,41 and so they are almost like ridge
points. This assumption has been used in [8,19,40].

(iii)) When d —r = 1, assumption (F4) is related to the margin assumption in the literature of level set

estimation [35]. In addition, as we consider ridges as intersections of level sets when d —r > 2,
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this assumption guarantees the transversality of the intersecting manifolds. Assumption (F4)
holds, for example, if f satisfies assumptions (Al) and (P1) in [8], which require A;(x) <
—B1, M(x) = Bo — A1 and |V fi(x) [ maxjei—3 | £ ()] < Bo(B1 — B2) for some constants
Bo, B1, B2 > 0, for all x in a neighborhood of M}, (see their Lemma 2).

(iv) Assumptions (K1)—(K3) are for the kernel function K. In particular (K2) can guarantee that R is
positive definite. In general one can show that ag > 1 > b (see Lemma B.1 in the supplemen-
tary material [38]). In fact, if we assume that K®V) K2 and K (¥3) are linearly independent
as functions, then the condition ax > 1 > bk required in (K3) is satisfied. This can be easily
seen from the proof of Lemma B.1. One can show that the following kernel density function is
an example that satisfies (K1)—(K3):

5
K@) =ca(1—Ix1%)1g0,1(x), xeR?,

where ¢4 is a normalizing constant.

3. Main results

In the literature, the following assumption or even stronger ones are used to get distributional results
for ridge estimation, for example, assumption (F7) of [40].

(F5) V£ @)l %0, for all x € M.

In other words, it is assumed that M does not contain any critical points of f. This assumption
excludes many important scenarios in practice because (F5) implies that f does not have local modes
on H.

Our confidence regions for My, and M eventually do not require assumption (F5). But the critical
points and regular points on ridges need to be treated in different ways, because for critical points
the estimation is mainly determined by the gradient of f, while the estimation of regular ridge points
depends on both the gradient and Hessian. It is known that the estimation of Hessian has a slower
rate of convergence than the critical points using kernel type estimators, which results in different
behaviors of regular ridge and critical points. To deal with this issue, the strategy we use is to construct
confidence regions for the set of critical points and regular ridge points individually and then combine
them (see Section 3.4). For convenience we will first exclude critical points from our consideration and
tentatively assume (F5).

3.1. Asymptotic confidence regions for M,

Given any 0 < a < 1, we first study how to determine a, and b, to make C n.h(ay, by) an asymptotic
100(1 — )% confidence region for M}. The following lemma shows some basic properties of M as
well as My,. For any subset £ C R? and x e R?, let d(x, £) = infycz [[x — y|l. A point u € L is called
a normal projection of x onto L if ||x —u|| =d(x, £). For x € L, let A(L, x) denote the reach of L at
x (see [15]), which is the largest » > 0 such that each point in B(x, r) has a unique normal projection
onto L. The reach of L is defined as A(L) :=inf, <, A(L, x). If £ is a manifold, its reach reflects the
curvature of £ and the width of its nearly self-intersecting structure [1,3,15].

Lemma 3.1. Under assumptions (F1)—(F4) and (K1), we have

(1) M is an r-dimensional compact manifold without boundary and with A(M) > 0.
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When h is small enough, we have

(i) for any fixed 0 < § < 8o, with 8¢ given in (F2), we have M, C N5(M), where Ng(M) is defined
in (2.3);

(iii) infyepq, [Aj—1,0(X) =Ajn(xX)]1> Bo, j =r+1,...,d,and sup,c aq, Ar+1,0(x) < —Po for some
constant By > 0 that does not depend on h;

(iv) My, is an r-dimensional compact manifold without boundary and with A(Mp,) > B1 for some
constant 1 > 0 that does not depend on h.

Remark 3.1. Property (iii) states that A,y 5 is uniformly bounded away from zero on M. As we
show in Lemma A.1 in the supplementary material [38], 3:,“ is a strongly uniform consistent estimator
of A,y1,, under our assumptions, that is, sup, .y |/):r+1 (x) — Arg1,0(x)| = o(1) almost surely, which
implies that with probability one ’):r+1 has the same sign as A1, on My, for large n. This allows
us to use b, =0in Cn n(an, by), and focus on the behavior of V(x)TVf(x) on My, to choose a, so
that C, w.h(an, by) in (1.3) is an asymptotic confidence region for M. Also see Section 3.4 for different
choices of b,,.

Note that Vj,(x)TV Vfn(x) =0 for all x € M;, by the definition of ridges. We need to study the
behavior of V(x)TVf(x) V(x)TVf(x) Vi(x)TV f,(x) for x € Mj,. The following proposition
shows the asymptotic normality of this difference, which can be uniformly approximated by a linear
form of dzf(x) — d? f,(x). This is not surprising because the difference depends on the estimation
of eigenvectors of the Hessian, which has a slower rate of convergence than the estimation of the
gradient. Note that each unit eigenvector has two possible directions. Without loss of generality, for
i=r+1,...,d, suppose that we fix the orientations of v; (x), v; 5(x) and v;(x) in such a way that
they vary continuously for x in a neighborhood of M and have pairwise acute angles. By treating the
ith unit eigenvector as a vector-valued function of d x d symmetric matrices, the application of matrix
calculus (see [29]) gives the following first order approximation:

0 (x) — vip(¥) & B (x) vec[ V2 F(x) — V2 (1)) = E; (x) D[d* f(x) — d* fr, ()]

where E;(x) = v; ()T @ (A4 — V2 fx)tisad x d? matrix representing the first derivatives in the
linear approximation, and D is the duplication matrix defined in Section 2. By ignoring the error caused
by the gradient estimation, which has a faster rate than the Hessian estimation, we approximately have
thatforx e Mpandi=r+1,...,d,

TV =00V Fx) = vinx) TV fi(x)
~ [0:() —vin ()] V()
~mi ()T [d? F(x) —d? fr(0)], 3.1)

where m; (x) = DT Ei(x)TVf(x). It turns out that fori =r + 1, ..., d, m;(x) has the following form
given by

r TV
mi<x>=DT<vi(x>®Z[% e >D (32)
j=1=""

which are d(d + 1)/2 dimensional column vectors. Let M (x) = (m,41(x), . -.mg(x)), Wthh is a
[d(d +1)/2] x (d — r) matrix. The following result shows the asymptotic behav10r of V(x)T v f (x) on
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My, with a first-order approximation, where the matrix M (x)T can be viewed as the Jacobian matrix
with respect to the perturbation of the Hessian of the density at x.

Proposition 3.2. Under assumptions (F1)—(F5), (K1), and (K2), as y(zg — 0and h — 0, we have

n,

sup [V V) — M) [d2 Fx) — a2 )] = 0p (v + (n)7). (3.3)

xeMy,

and there exists a constant §1 € (0, §o] such that for all x € J\/:;1 (M),

Vahd M) [d2 F(x) — d* ()] > Na—r (0, F()D(x)),  asn — oo, (3.4)

where ¥ (x) = M(x)T RM (x) is a positive definite matrix for all x € N5, (M), and x € My, when h is
small enough.

Remark 3.2. The result in (3.4), especially the form of X (x) in the variance, is a direct consequence
of Theorem 3 of [13], which says

VrhtH4[d Fx) = d ()] = Nawenp (0, FEOR),  asn— oo, (3-5)

For a positive definite matrix A, let A'/2 be its square root such that A'/? is also positive definite and
A = A2 A2 Tt is known that A'/? is uniquely defined. The asymptotic normality result in (3.4) sug-
gests that we can standardize V(x)TVf(x) by left multiplying the matrix Q(x) :=[f ®)T )12,
which is unknown and can be further estimated by a plug-in estimator Q,(x) := [f(x)f(x)]_l/ 2 as
specified below. Let & (x) = M (x)T RM (x) with M (x) = (fiiy41(x), . ..74(x)), where

PO 5% 00TV }
i =b (v’(x)@’;[mx)—X,-(x)”’(x) )

We can show that Q, (x) is a consistent estimator of Q(x) for all x € A5, (M) (see the proof of Propo-
sition 3.3 in the supplementary material [38]), for 6; given in Proposition 3.2. Then in view of Propo-
sition 3.2, for any x € My, O, (x)V(x)TVf(x) asymptotically behaves like a (d — r)-dimensional
standard normal random vector. In fact, the distribution of sup,ca, [1Qn (x)V(x)TVf(x)H can be
approximated by the extreme value distributions of a sequence of Gaussian random fields. The stan-
dardization by using Q, (x) is related to the appearance of surface integrals over M, in these extreme
value distributions (see (3.22) and Theorem 3.7 below). Heuristically, the surface integral stands for
the summation of the contribution of the standard normal random variables indexed by all the points
on Mj. An alternative approach, which is not pursued here, is to directly consider the distribution of
SUPye M, Il V(x)TVf(x) |l (without standardization), which can be approximated by the extreme value
distributions of Gaussian random fields with varying variances. Typically, for this type of Gaussian ran-
dom fields, the asymptotic extreme value distributions are only related to the behaviors of the Gaussian
random fields at the locations where the maximum variance is achieved, instead of the behaviors over
the entire index set. See [26], for example. We only consider the approach with standardization, which
requires the estimation of surface integrals (see Section 3.3) to construct confidence regions for ridges.
It is expected that the other approach without standardization involves the estimation of the modes of
the variance functions of the approximating Gaussian random fields.
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By(x) = | n )V @ VI = [V VIO 7050011+ (3.6)

We consider the following form of confidence regions for My, which is slightly more formal than
(1.3). For any a,, > 0 and b, € R, let

Coh(an, by) = {x € H 1 Vnh@+4 B, (x) < ay, and Ar41(x) < by} 3.7)
We first consider b, = 0 for the reason given in Remark 3.1 and for simplicity wrlte C,Z nlap) =

Cn n(ay, 0). For any o € (0, 1), we want to find a sequence a,_j o such that P(M; C Cn n(n.ha)) =
1 — «, that is, Cn,h (an.n.«) 1s an asymptotic 100(1 — )% confidence region for M. Let

Dy (x) = | Q)M )T (@* f(x) — d* fr ). (3.8)

The following proposition indicates that the behaviors of the suprema of B, (x) and D, (x) on M, are
close, and hence a,, ;.o can be determined by the distribution of v nhd+4 SUpye, Dn(x).

Proposition 3.3. Under assumptions (F1)—(F5), (K1), and (K2), as yn(z}z — 0and h — 0, we have

sup Dy (x) = 0, (y), (3.9)
xeMy

B (x) — D (x) = (@) M 3.10

sup By(x) — sup Du(x) = 0,((I) + ). (3.10)
xeMy xeMy

Remark 3.3. Whenr =1, fori =2,...,d and x € M, m;(x) in (3.2) can be simplified to

IVl
mi(x) = mBT(Ui(X) ®vi(x)).

Correspondingly, we can replace m;(x) in B, (x) by m;(x) = %DT(U, (x) ® 1(x)), and the
conclusion in this proposition is not changed, following the same proof of this proposition and the fact

that the Hausdorff distance between M and M, is of the order O (h?) (see Lemma 3.11 below).

We need to find the asymptotic distribution of v/nh4+4sup, . v, Dy (x). In particular, we will show
that for any z € R there exists B, such that,

P{y/210g(h ") (Vahi ™+ sup Dy(x) = py) 2} > e

xeM,,

To this end, we will represent ~/nh4+4 D, (x) as an empirical process and approximate its supremum
by the extreme value of a Gaussian process defined on a class of functions.

For any z € R¥7\{0}, let A(x,z) = M(x)Q(x)z. Notice that /F(x)||A(x,z)|lgr = llz. Let
grz() = ﬁ(A(x, 2), de(%)), and define the class of functions

Fin={gx:():ix e My, zeS 1) (3.11)
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Consider the local empirical process {G,(gx.z) : §x.; € Fh}, where
1 n
Gnlgrd) = 7= E[gx,z(xo —Eg. o (X1)].

Due to the elementary result [|v|| = sup,cgd—r-1 Tz for any v € R~ we can write Jahd D, () =
SUP,csd—r-1 Gn (gx,z). Hence

Vnhit4 sup D,(x)= sup G,(gx.)- (3.12)
XEMh gx,zE]:h

Using similar arguments as given in [11], the supremum of the empirical process in (3.12) can be
approximated by the supremum of a Gaussian process, as shown in the following theorem. Let B be a
centered Gaussian process on Jy, such that for all g, ., gz 7 € Fy,

E(B(gx,-)B(gz,2)) = Cov(gx.-(X1), g5,:(X1)).

Theorem 3.4. Under assumptions (F1)~(E5), (K1), and (K2), as y.) log* n — 0 and h — 0 we have

n,

sup P(x/nh‘”“ sup Dy (x) < t) - IP’( sup B(g) < z)‘ —o(1). (3.13)

t>0 xeM,, geFy

Remark 3.4.

(i) In the derivation of the asymptotic distribution of the maximal deviation of density function
estimation, [4] uses a sequence of Gaussian approximations. When extending the idea to mul-
tivariate density function estimation, [44] imposes an assumption that requires f to be d times
continuously differentiable in order to use the Rosenblatt transformation (see [43]). This type
of assumption is further used in related work for Gaussian approximation to maximal devia-
tion in multivariate regression function estimation (see [25]). In fact, if one is willing to impose
a similar assumption in our context (that is, f is d 4 2 times continuously differentiable, be-
cause ridges are defined using up to the second derivatives of f), then it can be verified that the
Gaussian process B(gy ;) has the following representation:

B(gy..) = / 2c.(s)dB(M(s)),
]Rd

where B is the d-dimensional Brownian bridge, and M is the Rosenblatt transformation. In fact,
by using a sequence of Gaussian approximations similar to those given in [44], we can show the
following approximation holds.

B(gx.2) g\/f(X)/Rd 8x,z($)dW(s) = U(x,2), (3.14)

where W is the d-dimensional Wiener process. Instead of following the approach in [44], we
directly find out the limiting extreme value distribution of B(gy ;), which is shown to be locally
stationary (see Definition 3.1). This allows us to use a less stringent smoothness condition on f.
(i) Let wy(-) = ﬁQ(x)TM(x)szK(%), so that g, () = z" w,(-). Note that here the scal-

ing factor \/L}Td can guarantee that Var(w,(X1)) = I4—» + 0o(1) as h — 0. Also let S;(x) =
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Srpx), ...,y Sd_r’h(x))T be a vector of centered Gaussian random fields indexed by M,
such that E(S;,(x)S, (X)) = Cov(w,(X1), wi(X1)), for x,X € M. Then it is clear that
SUPge 7, B(g) = sup,enm, I1Sh(x) |, where approximately 1S5 (x)||> ~ Xc%fr for any x € My,
because Var(S,(x)) = I4—, +0(1), i.e., S1 p(x), ..., Sa—rn(x) are asymptotically independent
when d — r > 2. Note the standardization in Sy, (x) is only pointwise, and if x — X = o(h) then
Sin(x) and S; ,(X) are asymptotically dependent in general for i # j when d — r > 2. Overall
1S, (x) || is approximately a x? field indexed by M}, as a sum of squares of Gaussian fields
with cross dependence, whereas independence of the Gaussian fields is usually assumed in the
literature of extreme value theory for x> fields (see, e.g., [33]). This dependence structure has
an effect on the form of the final extreme value distribution result (see Remark 3.6 below).

The confidence region for M), that we seek relies on the asymptotic distribution of sup, 7, B(g),
for which we need the following definition and probability result. Suppose that n1 and n; are positive
integers and 0 < o1, o0 < 2.

Definition 3.1 (Local equi-(«1, D), @2, D))-stationarity). Let {Z (7, v), (1, v) € Sy.1 X Sq2}hem
be a class of random fields, where H is an index set, and Sy, ; is a compact subset of R fori =1, 2.

We say that this class is locally equi-(«q, D,(’lv) , 002, Dt(zv) )-stationary, if the following conditions hold.

For any t € 5.1, v € Sp,2 and h € H, there exist non-degenerate matrices D,(}J and D,(ZU) such that for
t1,t2 € Sp,1 and vy, v € Sp 2, as max{|lt; —¢||, |12 — t||}/h — 0 and max{|lv; — v, [[v2 — v||} = O,

«
h + D2 - v2)||a2}(1 +o(1)),

, _ oo
(i) Cov(Zu(t1,v1), Zn(t2, v2)) =1 — | | =D; ) (11 — 12)

uniformly in t € Sp,1, v € Sp 2, h € H, and
Gi) 0 <infimin([DS)] DY) < supmax (D] DY) <00, i=1,2,
where the infimum and supremum are taken over (¢, v) € Sp.1 X Sp2, and h € H.

We consider 1 <ry <np and 1 <ry < ny below. Let H(g’ ), i = 1,2 be the generalized Pickands’
constant of Gaussian fields (see the appendix of [37]). The following result is given as Theorem 3.1 in
our companion work [37]. For the convenience of the reader, we also give a very brief sketch of proof
in Appendix B in the supplementary material [38]. For a differentiable submanifold S of R¢, at each
u €8, let T,S denote the tangent space of S at u. Let A(7,S) be a matrix with orthonormal columns
that span 7, S, that is, the orthogonal projection matrix onto 7,,S. For an n X r matrix M with r <n,
we denote by || M ||3 the sum of squares of all minor determinants of order r.

Theorem 3.5. With some fixed ho € (0, 1), for 0 < h < hg and i = 1,2, let M\ be an r;-dimensional
compact submanifold of R™ with info<p<p, A(M;li)) > 0, and 0 < infocp<py Hr, (M;li)) <
SUPgj<hy Hr; (Mg)) < 00. Let {Zy(t,v): (t,v) € M;Zl) X M;,Z)}he(o,ho] be a class of centered lo-
cally equi-(ay, D,(’]v), o, D,(’zg)-stationary Gaussian random fields with 0 < a1, 00 <2, and all the

components of D,(ll), continuous in t and v. For x > 0, let

1 2
Q)= sup {|rn(tr, 12, v1, )| 2 (11, v1), (12, v2) € MY x MP, Iy — 12l > hx},
0<h<hy
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where 1y, (11, t2, V1, V2) denotes the covariance between Zj(t1, v1) and Zj(t2, v2). Suppose that, for any
x > 0, there exists n > 0 such that

Ox)<n<l. (3.15)
Furthermore, assume that there exist xo > 0 and a function v(-) such that for all x > x,
0 (x)|(logx)2/atr/a)| < y(x), (3.16)

where v is a monotonically decreasing function, such that, for any p > 0, v(x?) = O (v(x)) = o(1) and
v(x)x? — 00 as x — o0. Let

N 1\
Bn= <2r1 log E) + <2r1 log E)

r1+r2 1 1 1 1
X[ —+——=]loglog —
o oy 2 & gh

@rete
+ log{ ITHOSTI)H;gz)Ih (M x MP) ” (3.17)

where
s Py = [ [ IDOAGME) [ DEATM), a8, 0) d 0,
h h

Then for any 7 € R,

. 1 2
}}%P{,MrllogZ( sup  sup Zh(t,v)—ﬁh>§z}=e €. (3.18)

ve./\/l,(f) rem;?

For g € Fj, let o, = /Var(B(g)). The standardization of the functions in F}, gives o =14 0(1) as
h — 0, and we can show that

sup B(g) ~ sup o, 'B(g) = sup oy ' B(gx.0).
geFn geFn (x,z7)eM) xSd—r—1 "

To find the asymptotic distribution of sup,. 7, B(g), we will apply Theorem 3.5 to the Gaussian field

O, iIB%(gx, .), which is indexed by the manifold M, x SY~"~! It is critical to calculate the covariance

structure of o, 'B(g), g € Fy, and verify it has the desired properties (especially the local stationarity
condition) to apply Theorem 3.5. For any gy ., gz.; € F (which means x,X € M), and z,7 € Sd=r=1y,
let r4(x, X, z,7) be the correlation coefficient between B(g, ;) and B(g; z).

Proposition 3.6. Let Ax =X — x and Az =7 — z. Under assumptions (F1)—~(F5), (K1), and (K2), as
h— 0, Az — 0and Ax/h — 0, we have

- 1 1 Ax ||?
rh(x,x,z,E)zl—§||Az||2——AxTQ(x,z)Ax+0< +||Az||2), (3.19)

2h? ’ h
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where

Q(x,2) :/d[deK(u)]TA(x,z)A(x,z)TdeK(u)du, (3.20)
R

and the o-term in (3.19) is uniform in x € My, z € S¥"=1 and h € (0, ho) for some ho > 0.

Remark 3.5.
(1) Whend —r =1, we have z,7 € {1, —1} and Az =0, and then (3.19) should be understood as
F 2D =1— AT DHax+of |2 i (3.21)
r =l—-— - : :
h\X,X,2,2 02 X X, X +o A

(ii)) The geometric interpretation of €2(x, z) is as follows. Recall that if higher-order smoothness of
S is assumed, the Gaussian process B(g), g € F;, can be approximated by a Gaussian field U
given in (3.14), which is differentiable. It can be shown that the matrix diag(hl—ZSZ (x,2), Ig—y)

is the leading term of Var(VU (x, z)) by using Itd’s lemma, where hle (x, z) corresponds to the
variance of the partial gradient of U (x, z) with respect to x.

To construct a confidence region for Mp, we will use the distribution of sup,. 7, B(g). The dis-

tribution depends on the geometry of the manifold M, x S¢~"~!, through a surface integral on the
manifold specifically defined below, which is originated from Theorem 3.5. For any nice (meaning the
following is well-defined) set A C H, define

Fd=2)/2
i (A) =log] e / f Q@ P AT M), d 3 (x)dHa—r-1(2) | (3.22)
27T / §d—r—1 MhnA r

For simplicity we write c}(ld’r) = c,(ld’r) (H). The quantity c,(ld’r) reflects the integrated local variabil-

ity of the approximating Gaussian fields over the index set, as explained below. By the Cauchy-
Binet formula (see page 214 in [5]), the integrand in the above double integral can also be written

as [det(diag(J, 7)1V/2 = [det(J{")]'/2 x [det(J{2)]'/2, where
T
IO =[ATMD] @, DATMy),

IO = [ATS D) Lo, (TS,

X,Z

Note that J)EZZ) =1I4_,-1 and det(J)g?Z)) = 1. In view of Remark 3.5(ii), diag(J)E,lZ), JSZ)) can be in-

terpreted as the covariance matrix of the orthogonal projection of the gradient of the approximating
Gaussian fields onto the tangent space T M), x T;SY"~!, up to a scaling factor. So the integrand in
(3.22) quantifies the local variability of the approximating Gaussian fields as the square root of the
determinant of this projected covariance matrix.

In the context of confidence bands for density functions on the unit interval or hypercube [4,44], the

counterpart of the quantity c;ld’r), denoted by cg, is a constant only depending on the kernel function

K (see, e.g., Theorem 2 in [44]). The connection between cx and cgld’r) is as follows. The error in the
kernel density estimation can be approximated by stationary Gaussian fields, so that the variance of
the gradient of the Gaussian fields, denoted by (g, is a constant. In fact cx can also be understood as
an integral, but since its integrand (g is a constant, the integral is simplified to a constant that is pro-
portional to the volume of index set, which equals one in [4,44] since the unit interval and hypercube
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are considered. In the setting of ridge estimation, the form of the surface integral in c}(,d’ arises for
the following reasons: (1) the approximating Gaussian fields is locally stationary (see Definition 3.1),
which means that their covariances depend on the locations, so that the integrand in céld’r) is not a con-
stant in general; (2) ridges are low-dimensional manifolds, and so the projections to the tangent spaces
are involved in the integrand. Also see [40] for a similar line integral that appears in the asymptotic
distribution of ridge estimation in the case of d =2 and r = 1.
For z,c e R, let

r)

2 loglog(h™") + ci|. (3.23)

z 1 d
bp(z,¢) = ——=—==+,/2r1 h=1) + |:
n, ) V2rlog (h—1) rlog(h!) V2rlog(h—HL 2

Note that the quantity by (z, c,(ld’r)) in the following theorem corresponds to ——=%—— + f;,, where

/2rlog(h—1)

Bn is given in (3.17), with ry =r, m=d —r — 1, and a1 = op = 2. For any o € (0, 1), let z, =
—log[—log(1 — a)] so that e=¢ “ =1 — a. By applying Theorem 3.5 to the class of Gaussian fields
{B(g) : g € F1}, the following theorem gives an asymptotic confidence region for My,.

Theorem 3.7. Under assumptions (F1)~(E5), and (K1)~(K3), as y,") logn — 0 and h — 0, we have

IP( sup B(g) < by (z, c,(j’*’))) e (3.24)
geFn

This implies that for any @ € (0, 1), as n — o0,
P(My, C Con(bi(zar ci¥7))) = 1 — @, (3.25)

where 6n,h is defined in (3.7).

Remark 3.6. We give more discussion on the quantity c}(ld’r). When d —r = 1, we have S = {—1, 1}
and # is the counting measure, and so

d.r) rd-2/2 1,2
;" =1log iz ]y, |G, DZATMy) |, d3He(x) ¢
h

When d —r > 2, for any x € My, fsa—r1 [|Q(x, 2)'2A(TeMp) |l d Ha—r—1(2) is a hyperelliptic in-
tegral. Note the cross dependence in the Gaussian fields discussed in Remark 3.4(ii) is also reflected in
c,(ld’r) , where the integrals on M, and SY~"~! are not independent.

The confidence regions for M, given in (3.25) is a theoretical result depending on the unknown
quantity c}(ld’r). In what follows we address a few important questions: (i) confidence regions for M by
correcting the bias (Section 3.2); (ii) data-driven confidence regions for M; and M by consistently
estimating c;ld’r) (Section 3.3); (iii) different choices of b,, and modified confidence regions for My,

and M when assumption (F5) is relaxed (Section 3.4).

3.2. Asymptotic confidence regions for M

We consider asymptotic confidence regions for M in this section. The difference between M and
My, is attributed to the bias in kernel type estimation. In Section 3.1, we focused on M) by only
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considering the stochastic variation B,,, which is of order O p(yn(zz ). As we show in Lemma 3.8 below,

the bias part in ridge estimation is of order O (h?). Usually there are two approaches to dealing with the
bias in kernel type estimation: implicit bias correction using an undersmoothing bandwidth and explicit
bias correction (see, e.g., [20]). The former makes the bias asymptotically negligible compared with
the stochastic variation in the estimation, while the latter directly debiases the estimator by estimating
the higher order derivatives in the leading terms of the bias using additional kernel estimation, which
also means that the latter usually requires stronger assumptions on the smoothness of the underlying
functions (see, e.g., [50]). We use both methods to construct asymptotic confidence regions for M.
The next lemma gives the asymptotic form of the bias in ridge estimation. Let yux = fRd h 2K (s)ds,

where s = (sq, ...,54)T. Let Ay be the Laplacian operator, that is, Ay §(x) = Zfl 1 a;(zx),

differentiable function & on R?. If £ is a vector-valued function, then A applies to each element of .

for a twice

Lemma 3.8. Under assumptions (F1)—(F4) and (K1), as h — 0, we have
Vi)V fir(x) = V()T Vf(X)— h* g B(x) + Ry,

where B(x) = {M(x)T[ALdzf(x)]Vf(x) + V(x)T[ALVf(x)]} and Ry, = o(hz), uniformly in x €
MO (M). When both f and K are six times continuously differentiable, we have Rj, = O (h"), uni-
formly in x € Ns,(M).

Undersmoothing requires the use of a small bandwidth % such that y(4) — 00. One can also explic-
itly correct the bias by using a debiased estimator. For a bandwidth [ > 0, let

Bt (x) = { My ;)T [ALd? o )]V Fut(0) + Vit )T [ALY Fui ()]},

where we have brought the subscripts 7, [ back to the kernel estimators to show their dependence on a
different bandwidth /. For a,, > 0 and b,, € R, let

nh[(an,b )

= {x e H :vVnhdt4

Eans

o~ o 1, -
Qn(X)[V(x) VIikx) — Eh MK,Bn,l(x):|

and A41(x) < by, } (3.26)

and denote Cn ni(an) = 6}1’?,1’ ;(an, 0) for simplicity. Define

(d=2)/2

.

c(d’r)zlog{ﬁ / / ||sz<x,z)1/2A(TxM)||,dﬂr(x)dﬂd_,_l(z)},
T Sdfrfl M

where we simply replace the domain of integration M, by M in c;ld’r).

Theorem 3.9. Suppose assumptions (F1)—(F5), and (K1)—~(K3) hold. Also assume that yn(zg logn — 0
and h — 0. For any a € (0, 1) we have the following.

(i) Undersmoothing: As yn(j‘z /logn — oo,

P(M C Cup(bn (20, @) = 1 —a. (3.27)
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(i) Explicit bias correction: Assume both f and K are six times continuously differentiable. As
(h/D)logn — 0 and v\ /(1> logn) — oo,

P(M C C, (b (za. ¢ 97))) = 1 —a. (3.28)

Remark 3.7. We emphasize that the method in (i) is feasible because we only require yn(z,z logn — 0
and & — 0 for n and # in the results in Section 3.1. As a comparison, the Hausdorff distance based
approach for M, developed in [8] requires an oversmoothing bandwidth such that yn(ﬁz — 0, which
implies that the bias dominates the stochastic variation in ridge estimation using the Hausdorff distance
if a second order kernel is used, and hence the approach using an undersmoothing bandwidth is not
applicable in their method.

3.3. Estimating the unknowns

The surface integrals c(d " and ¢@") are unknown quantities that need to be estimated in order to make

the confidence regions in Theorems 3.7 and 3.9 computable with data. For a bandwidth / > 0, we use
the following plug-in estimators. Let

A1 (6,2) = My 0 Fra (0 S (0)]
?Zn,z(x,z)=/ VA?K )" Ay (x,2) An i (x, 2)T VA2 K () du,
Rd

Moy ={x € H: V1)V f1(x) =0, Rpi10(x) <0}

Note that the bandwidth / here is not necessarily the same one as used for explicit bias correction in
Section 3.8. But we do need a similar condition for them so the same bandwidth [ is used for simplicity.
For any nice set A C H, let

) Hd=2)/2 R -
ar =gl S [ [ 180 PAT R, 43t ) d a2
2 / §d-r—1 Mn.zﬂ.A

For simplicity we denote ¢ A(d )= 'c"(dlr) (H). To prove the confidence regions for M, and M are still
valid after replacing by, (za, )) and by, (zq, @) by by (z, 'fld, )) we need to show that ¢ 'M " isa
(d, r)

consistent estimator of c;, and ¢@"). The proof uses similar ideas as in [39], where the focus is
on the estimation of surface integrals of density level sets, which are (d — 1)-dimensional manifolds
embedded in R?. Since we view density ridges as the intersections of d — r level sets (in a broad
sense to include d — r = 1), the methods in [39] are extended in our proof. The data-driven confidence
regions are given in the following corollary.

Corollary 3.10. Suppose assumptions (F1)—(F5), and (K1)—-(K3) hold, and assume that yn(zz logn —
0, y(4) —0,h — 0and! — 0. For any o € (0, 1) we have the following.

(i) For My,:

P(My, € Con (b1 (20, €57))) = 1 — . (3.29)
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(i) For M using an undersmoothing bandwidth: as y / logn — oo,

P(M C Cp (b (0. 257))) = 1 — . (3.30)

(iii) For M using explicit bias correction: Assume that both f and K are six time continuously
differentiable. As (h/1)logn — 0 and y, h/(lz logn) — oo,

P(M C C%, (bn(24. €)= 1 —a. (3.31)

Cn,l

3.4. Further improvements related to eigenvalues and critical points

We have considered the confidence regions in the form of Cn n(ay, by) defined in (3.7) and
C T ;(an, by) defined in (3.26) for some a, > 0 and b, = 0. So far our main focus has been on the
determmatlon of a,, after the justification for the choice b,, = 0 given in Remark 3.1. In fact, one can
use some nonpositive b, as the upper bound of /):r+1 , to potentially make the confidence regions more
efficient. This is because sup, ¢ aq Ar41(x) is strictly bounded away from 0 under assumption (F3),
which allows us to choose a nonpositive b, such that sup, . a4 ’):r—&- 1(x) < b, holds with probability
tending to one under our assumptions. Here b, is determined by using sup ggl):rﬂ (x), and so we

first need to give the rate of convergence of the Hausdorff distance between M and M. For any two
nonempty subsets A and B of R?, their Hausdorff distance is defined as

dy(A,B)=infle >0: AC(B®e)and BC (Ade)}. (3.32)

Lemma 3.11. Suppose assumptions (F1)—(F4) and (K1) hold and h — 0. Also assume that y( ) 50
ford —r =1and y(3) — 0 for d —r > 2. Then there exists a constant Cy > 0 such that

dy (M, My) < Coh?, (3.33)
P(dp (M, My) < Coy, ) — 1, (3.34)

which implies that P(dy (M, M) < Co(y(z) h?)) — 1.

For a, b € R, denote a A b = min(a, b). Let v, be a sequence such that v, — oo and define

&0 = sup T 0+ wur, | o0, (335)
xeM

G = [ sup Zor4100) + v (1,2 + hz)] AO. (3.36)
xeM

Proposition 3.12. Suppose assumptions (F1)~(F4) and (K1) hold and h — 0. Also assume that y,, @ _,
Oford—rzlandynh—>Of0rd—r22. Then

]P’( Sup st (x) > ;,9) -0, (3.37)
xeMy
]P’( sup Ry1 (x) > g,,) 0. (3.38)

xeM
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Remark 3.8. The result in Proposition 3.12 immediately implies that we can use {,? to replace 0 as
b, in the confidence regions that we construct in Corollary 3.10 for My, (and use ¢, for M), if we

additionally assume 7,1(3;2 —Oford —r >2.

So far we have imposed assumption (F5) to exclude critical points on ridges from our consideration.
The reason is that the behaviors of the estimators of critical points and regular ridge points are different
in our approach. Below we remove assumption (F5), that is, we allow the existence of points x such
that [Vf(x)|=0on M. Forany 0 <n < 1,let K, ={x e H: |V fr(x)|| <h"}. Note that M), =

MpNEKpp) UMy N ICE n)‘ When £ is small, the set My N Ky, is a small neighborhood near all
the critical points on the ridge M}, and Mj N ICE, 0 is the set of the remaining points on the ridge. Our
strategy is to construct two regions to cover My N Ky , and My N ’C/E,n separately and then combine

them. For a sequence 1, — oo such that A, — 0,1et &, , ={x e H : ||Vf(x)|| < ,unyn(lz + h"} and

Go = Enn N{x €M hri(x) < g0},
Gy = Eny N {x €M T (x) < L)

Then g‘) and G, ; cover M, N Kp , and M N IC,I, respectively, with a large probability, where KC;, =
{(xeH: ||V f (@)l <h"}. The following theorem gives the confidence regions for M, and M without
the assumption (F5), where we also incorporate a new choice for b,, as discussed in Remark 3.8.

Theorem 3.13. Suppose assumptions (F1)—-(F4), and (KI) (K3) hold and there exists at least one point
X0 € M such that IV f(x0)]l > 0. Also we assume that y h logn —O0ford —r=1and y(3) — 0 for

d—r=>2 y ) 0 and | — 0. Suppose 0 < n < 1, v, — 00, u, — oo and hu, — 0. For any
ae(0,1)we have the following.

(i) For My,:
B(Mp C [Con(bn (za T4 (67,)) £) UGN, ]) = 1~ (3.39)
(ii) For M using an undersmoothing bandwidth: as y / logn — oo,

P(M C [Con (bn(2- €57 (€8 ). €0) UGnp]) = 1 — e (3.40)

(iii) For M using explicit bias correction: Assume that both f and K are six time continuously
differentiable. As (h/1)logn — 0 and )/n(fz/(lz logn) — oo,

P(M C [C, ; (bn(2a- 457 (E,))- &) U Gnp]) — 1 — . (3.41)

Remark 3.9.

(i) The results in this theorem still hold if §,? and ¢, are replaced by 0 as discussed in Remark 3.1.

(ii)) We use two sequences (, — oo and v, — oo in the construction of the confidence regions. One
may choose p, =h *and v, = h~" forsome 0 < u < 1 and v > 0 to satisfy the assumptions in
the theorem. The need for using these tuning parameters i, v as well as n reflects the fact that the
definition of ridges involves multiple components, that is, the eigenvectors and eigenvalues of
the Hessian and the gradient (see (1.1) and (1.2)). These components have different asymptotic
behaviors and roles in the estimation. The choice of the tuning parameters allows us to focus on
the asymptotic behaviors related to the eigenvectors.
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4. Discussion

In this paper, we develop asymptotic confidence regions for density ridges. We treat ridges as the
intersections of some level sets and use the VV based approach. The construction of our confidence
regions is based on Gaussian approximation of suprema of empirical processes and the extreme value
distribution of suprema of x -fields indexed by manifolds. It is known that the rate of convergence of this
type of extreme value distribution is slow. As an alternative approach, we are working on developing a
bootstrap procedure using the VV idea for the confidence regions.

Apparently our approach can also be used for the construction of confidence regions for the intersec-
tions of multiple functions in general (such as density function and regression functions). It’s known
that estimating such intersections has applications in econometrics. See, for example, [6].

5. Proofs

We give the proofs of Lemma 3.1 and Theorem 3.7 in this section. The proofs of Proposition 3.2,
Proposition 3.3, Theorem 3.4, Proposition 3.6, Lemma 3.8, Theorem 3.9, Corollary 3.10, Lemma 3.11,
Proposition 3.12, and Theorem 3.13 can be found in the supplementary material [38].

Proof of Lemma 3.1. Under assumption (F4), the claim that M is an r-dimensional manifold is a
consequence of the constant-rank level set theorem (see Theorem 5.12 in [27]). Under assumption (F3),
we can write M = {x e H: V(x)T V f(x) =0, A,41(x) < 0}, which is a compact set, whose boundary
isIM={xeH: V@) Vf(x)=0,1r41(x)=0}=a. Next we show that M has positive reach. For
any twice differentiable function 1 on an open subset A C R?, let L, ={x € A:n(x) =0}. Suppose
that £, is nonempty. The proof of Lemma 4.11 in [15] shows that for any x € £,;, the inequality

inf Vn(x
A(L,,,x)Zmin{E erye V@] }

) 5.1
2 SUPL, ®(2¢) V20 ()|l p

holds for all € > 0 such that £, @ (2¢) C A and the right-hand side of (5.1) is well defined and positive.
Fori=1,...,d —r,let

pi) =V ) v4(x) and [(x) =Vp;i(x), (5.2)

and define sets M; = {x € Ns,(M) : p;i(x) =0, 1,41 (x) < 0}. Note that M = ﬂ?;lr/\/l,-. Under as-
sumption (F4), there exists §; > 0 such that M & §; C N,(M), and there exists €; > 0 such that
infxej\/50 ) i) || > €1, fori =1,...,d—r.Itis known that there exist second derivatives of the unit
eigenvectors corresponding to simple eigenvalues as functions of symmetric matrices (see, e.g., [12]).
Therefore with assumptions (F1) and (F2), the functions p;, i = 1,...,d — r are twice differentiable
and there exists a constant 0 < C < oo such that suprNaO(M) ||V2pi | <C,fori=1,...,d—r.

Then applying (5.1), we get
inf A(M;,u) >min(8;/4,€,/C) =: Cyp. (5.3)
ueM
If d —r = 1, then (5.3) has given a positive lower bound of A(M). Next, we consider the case d —r > 2.

The proof follows similar arguments as given in the proof of Theorem 4.12 in [15]. Specifically, let
bi=Co,andfork=2,...,d —r,let

! E
by = —min{l, inf n kJZl_lal i ()] }
21 xeNag M @120 | DI i (1) + e ()]
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Note that by > 0, for k =2, ...,d — r under assumption (F4). Then using (5.3) and Theorem 4.10 of
[15] inductively, we get

inf A iU b 54
inf (ﬂ/\/l >>1 br, (5.4)

and hence A (M) = inf,c pq A(ﬂf;lr M;,u)>by---by_, > 0. This is assertion (i).

Next, we show assertion (ii). Let 8gap := infy e3[4, (x) — A, 1(x)]. Since H is compact and A, — A1
is continuous on H, we have dg,p > 0 due to assumption (F2). Lemma A.1 in the supplementary
material [38] implies that

. 1
inf [2,1 (¥) = Ar 1,5 (0] = 8gap + O (%) = 5 Sgap, (5.5)
xeH 2

when # is small enough. Then using the Davis—Kahan theorem (see, e.g., [47]) and Lemma A.1 in the
supplementary material [38] leads to

282 5up, ey IV £ (x) — V2 fi(x) || F
sgap

sup [Vev e = vV, < =0(h?). (5.6
xXe

Noticing that V (x)T V (x) = I;_,, we can write

sup Ve 'V = slﬁ [V V@V ) = V@) Vi)V (0|
h XE

Xe

< sup [V V)V Fx) = Vi) Vi)V (0 |

xeH

= 0(r?), (5.7)

where we use (5.6) and Lemma A.1 in the supplementary material [38].

Let MDY =(x e H: Vx)TVf(x) =0} and MP = {x € H : A,41(x) <0}. Then M =MD N
M® _ For any § > 0, let Ny(MD) = {x e H: |[V(x)T V. f(x)|| <8}. Note that (5.7) implies that for
any fixed 8 € (0, 8], My, € Ns(M D) when h is small enough. It suffices to show Mj c M? | when
h is small enough. Since M is a compact set and A, is continuous on #, under assumption (F3)
there exists Bp > 0 such that inf, 4 [Ar+1(x)| = 480, and hence there exists §, with 0 < § < §g
such that

inf A0 0] > 280, (5.8)
xej\/az(/\/l('))| r+1 | /30

which further implies that infyc A, [Ar+1(x)| > 280, when £ is small enough. Then we must have

sup Ar4+1(x) < =280, (5.9
xeM,,

since if there exists xg € My, such that A, 1(xg) > 280, then Lemma A.1 in the supplementary material
[38] would lead to

A 1,1 (X0) = A1 (x0) = |Ar41 (X0) = Ary1,1(x0)| = 280 + O(h?) = Bo,
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when # is small, which contradicts the definition of Mj. Hence, M, C [/\/,so(/\/lm) NM®?] =
./\/50 (M), when £ is small enough. This is assertion (ii).
For assertion (iii), it can be seen from (5.9) that

sup Ar41,0(x) < —PBo (5.10)

xeMy

when / is small enough. Using a similar argument, we get that when / is small,
inf [Aj_10(x) —Aja(0)]>Bo, j=r+1,....d, (5.11)
xeMy

by possibly decreasing Sy to a smaller positive constant.

To show that My, is an r-dimensional manifold without boundary and has positive reach when £ is
small in assertion (iv), we use a similar argument as given in the proof of assertion (i). We first show that
there exists a constant 63 € (0, o] such that ./\/53 (M) is a compact set. Let A ={x € H : A,4+1(x) =0}.
If A= @, then we simply take 83 = §p and can write N5,(M) = {x e H: [V(x)TVFfx)| <
80, Ar+1(x) < 0}, which is a compact set. Otherwise, A is a compact nonempty set and we let
85 =inficq |l V(x)TV f(x)|. Since ||VTV £]| is a continuous function of x, we must have 85 > 0 un-
der assumption (F3). Taking 83 = min(%é*, 80), we can write N5, (M) ={x e H : || VIV <
83, Ar4+1(x) <0}, which is a compact set.

Next we show that f, satisfies the similar properties as in the assumptions (F1)—(F4) for f, when h
is small. First, fj, is four times continuous differentiable on H due to assumption (K1). Also it is easy to
see from (5.8) that the set {x € H : V4 (x)T V fi,(x) =0, Ar41,n(x) =0} = &, when A is small enough.
Hence we can write My, = {x € 1 : V;,(x)TV fi(x) =0, Ar41,1(x) <0}, which is a compact set. Sim-
ilar to (5.11), we can show that there exists a constant 8, > 0 such that inf, ¢ N3, ( MyAj—1,n(x) —
Ajn(X)] > B2, j=r+1,...,d, for some 0 < 84 < ¢ and inf,cpy[Arn(X) — X110 (x)] > B2, when
h is small enough. It suffices to show that fj, satisfies a similar condition as given in assumption (F4)
for f. With the notation in (5.2), let L(x) = (/1 (x), ..., ls—(x)). Then assumption (F4) is equivalent
to inf, e A4 det(L(x)T L(x)) > 0. Since ./\/53 (M) is a compact set and det(L(x)T L(x)) is a continuous
function on ‘H under our assumptions, we can find €y > 0 such that

infM) det(L(x)" L(x)) = €. (5.12)

xeNss (

Let Ly (x) = (1,p(x), ..., la—rn(x)), where I; 4(x) = V(V fiy(0) T vppin(x), i = 1,...,d — r. With
(5.12) we have

inf )det(Lh(x)TLh(x))

xeNs, (

> inf  det(L(x)"L(x))— sup |det(L(x)" L(x)) — det(Ls(x)" Ly(x))]
xeNs; (M) xeNs; (M)

> €0 — O(h?), (5.13)

where we use Lemma A.1 in the supplementary material [38] and Theorem 3.3 in [23], the latter giving
a perturbation bound for matrix determinants. This then implies that there exists €; > 0 such that for &
small enough, infxe/\/‘;3 o i n )|l > €1, and [; ,(x),i =1, ..., d —r are linearly independent for all
x € N, (M). The rest of the proof is omitted because it is similar to the proof of assertion (i). O
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To prove Theorem 3.7, we need the following lemma.

Lemma 5.1. Suppose assumptions (F1)—(F5), and (K1)—(K3) hold. There exists a constant §1 > 0 such
that for all x € N5, (M) and z € Rd_’\{O}, Q(x, 2) in (3.20) is positive definite.

Proof of Lemma 5.1. We need to introduce some notation first. Recall that for any d x d symmetric
matrix A, vech(A) is the half-vectorization of A, that is, it vectorizes only the lower triangular part of A
(including the main diagonal of A). Let diag(A) be the vector of the diagonal entries of A and vechg(A)
be the vectorization of the strictly lower triangular portion of A, which can be obtained from vech(A)
by eliminating all the diagonal elements of A. Let dvech(A) be a vectorization of the lower triangular
portion of A, such that dvech(A) = (diag(A)T, vechy (A)1)T . Let Obealdd+1)/2] x[d(d+1)/2]
matrix such that dvech(A) = Q vech(A). Note that Q is nonsingular.

LetZ=79UZ° whereZ? ={1,2,...,d}and Z° ={d + 1,d + 2, ...,d(d + 1)/2}, that is, 7% and
77 are the index sets for diag(A) and vechg(A) in dvech(A), respectively. Suppose that we can write
A = (a;m)1<l,m<q. Defineamap n = (71, m) : Z — 79 x 79 such that the kth element of dvech(A)
IS Az (k)1 k), k € L. For ki, ky € I, let ma(ky, kp) = {mm1(k1), ma(k1)}A{my(k2), ma(k2)}, where A
denotes the symmetric difference between two sets, i.e., AAB = (A\B) U (B\A) for any two sets A
and B. Fori, j € 79 letm (i) =tk € T: my (k) =i}, g = 1,2, and

—1,. —1,. e .
R 7, (()Nm ifi > j,
G, ) = 1_1(.) 2_1(].) =
T (DN, @) ifi<j.

Note that 7' (i, j) =7~ (j, ). Let 75" (i) = ;' (i) Uy ' (i), i € Zy. Let 8(i, j) be the Kronecker
delta. For any set 7, let 6(i, J) =17(i), which is an indicator function regarding whether i € J.
With 8§; > 0 given in Proposition 3.2, for x € Ny (M), and z € RI-\{0}, let A(x,z) =

A()c,z)TQ_1 =: (t1(x,2), ..., ta@+1,2(x,2)). Recall that \/f(x)[|A(x,2)||lr = llz|| for all x € /\/51
and z € R?~"\{0}. Hence for any x € N, and z € R4\ {0},

tx(x,z) #0, foratleastonek € 7. (5.14)

Then we can write Q(x, z) = [[Vd?K )] QT A(x, 2)T A(x, 2) QVd?K (u) du, for which ©; ;(x, z)
denotes the element at the ith row and jth column. Below we consider any x € N, and z € R4\ {0}
and will suppress x and z in the notation. Let  : 79 x 7¢ — Zi be a map such that for (I, m) € T¢ x I,

KW _ g (nd,m)) (u), u € R? (see (2.2)). Then

ouy oupy
)
Q= § Wi ks iy Uiy
(kl,kz)EIXI
where w,(f’,i)=f 9 g o, || 2 g @@ ) | au. (5.15)
1%2 R | Ou; ouj

Next, we will show that we can write
Q= / [K“(5)]* dsP, (5.16)
R4

where p is given in assumption (K3), P = (p;;) is a d x d matrix depending on x and z, and P
is positive definite under the given assumptions in this lemma. When d = 2, it follows from direct



968 W. Qiao
calculation using Lemma B.1 in the supplementary material [38] that the elements of P are given by

pi =agti +13 +13 + 213,
P12 = p21 =211 + 2013,

pn=axti + 1 + 1} + 201

It is clear from Proposition 3.2 that P is positive definite, when we assume ax > 1. We consider d > 3
below. Note that w,(fllgz) e f [K®)wu))?du g =1,2,3} U {0} and we can determine the values of
w,(cllliz) using Lemma B.1 in the supplementary material [38]. We split our discussion into two cases:
i=jandi # j. When i = j, the values of w,?llf; can be determined by the following tree diagram.

. f[K<p')(u)]2du

f[K(”Z)(u)]Z du

. f[K<p3)(u)]2 du
keIl &k €1°

orkyeZd & ki €1°

o [1K®) )] du

. f[K<p2)(u)]2 du

When i # j, the values of w,?l,g; can be determined by the following tree diagram.

f[K(p3)(u)]2du

SIK @D )1 du
ki eZd &k el
ork, eI & ki € I°

f[K(m)(u)]zdu

f[K(pz)(u)]zdu

. f[K("3)(u)]2du
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Plugging these values of w( i )

are given by

into (5.15) we can show that the elements of the matrix P in (5.16)

Z a?((i,kl)5(i,k2)b§(1—3(i,k1))(1—5(1',1(2))(1—S(kl ’kZ))tk] It
(k1 k) eTd x T4
1-8(k. 251 () 2 .
pi={ T2 bk fk] ifi=j. 1)
keI°
1- e,
) Z bl U )+ K Z i, ifi#j.
keZd ki ka€Z0:mwa (k. k2)={i, j}

We will find a matrix L such that
P=LL" +5, (5.18)

where S = (ax — 1/bk)diag(¢?, 3, ...,t3). The matrix L is in the form of L = (L1, Lo, L3) and the
construction of L, Ly, and L3 is as follows. First, L| = (ll.(jl)) is a d x d matrix where

;0 _ \/_tlJ”bK > n ifi=j,
ij = keZ\{i}

\/th_l(i,j) 1fl¢]

Lr= (ll.(jz)) isad x (‘31) matrix, whose columns are constructed in the following way. For any 1 < j; <
J2 < j3 <d, a generic column v = (vy, ..., va)T of L, is defined by

\ bKtﬂ_‘(jz»js) ifti=j,

DKty 7= 02 (5.19)

Vi = cp . .
btx-1(yjpy =3,
0 otherwise.

L= (1(3)) isad x [d(d — 1)] matrix consisting of ( ) paired columns. For any 1 < j; < j» <d, each
pair of the generic columns of L3, denoted by v(!) = (vil), e fil))T and v® = (v%z), .. (2))T
defined by

v1—bgtj, if i = ji, V1 _bKtﬂ_l(j1,jz) ifi = ji,

1 e 2 e

o) =T —bgty 1, 5 ifi= ), v® = 1= bgi), ifi=j, (5.20)
0 otherwise, 0 otherwise.

It is straightforward to verify that (5.18) holds with the above construction. The explicit expressions
of P, L and S when d = 3 are given as an example in Appendix B of the supplementary material [38].
To show that P is positive definite, using (5.18) and assumption (K3) we only need to show that
L is of full rank. This can be seen from the following procedure. Let e; be the ith standard basis
vector of RY, that i is, its ith element is 1 and the rest are zeros. Denote L1 F(tle 1,...,teq) and

= (Ll, Ly, L3). Below we show that there exists a non-singular d x d matrix M such that L=LM s
which implies that L and L have the same rank. Here M can be constructed by finding a sequence of
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elementary column operations on L, which transform L1 into L 1. Let ll.(l) and ll.(S) be the ith columns
of L1 and L3, respectively. The transformation is achieved by simply noticing that

bk
M ) _
A ml /_t,e,

kA eTy\ i}

Below we will show that there exists at least one column of L, 1, Ly or L3 in the form of \/%tke,-,
K

D tre; or /T—bgtre; for some t; #0, for all i =1,2,...,d, which implies that L is full rank.
This is trivially true if none of 71, ..., 4 is zero. Now assume there is at least one of #1, ..., t; is zero.
Without loss of generality, assume #; = 0 and we would like to show that there exists at least one
column of L, or L3 in the form of

Vbgtrer or /1—bgtre, (5.21)

for some ; # 0. In the construction of the paired columns v" and v® of L3 given in (5.20), take j; =
1 and let j> be any integer such that 1 < jo <d.If 1;-1; ;,) # 0 then v? satisfies (5.21); otherwise if
tj, # 0 then v satisfies (5.21). If neither vV nor v@® satisfies (5.21), then we must have Le—1(14) =
tx =0 for all k € Z¢ (note that ¢, (1,1) = t1), which is what we assume for the rest of the proof. Now
we consider the columns in L;. For v given in (5.19) we take j; = 1 and let j and j3 be any two
integers satisfying 1 < j» < j3 <d. Then there must exist 7,-1(;, ;,) 7 0 according to (5.14) so that v
satisfies (5.21), because Z =79 UZ° and 7° = {n (i, j): 1 <i < j <d}. O

Proof of Theorem 3.7. We first consider the case d —r > 2 and then briefly discuss the cased —r =1
at the end of the proof. Recall that o, = /Var(B(g)) for g € Fj. First, we want to show

lim IP( sup o, “B(g) < by (z c;ld r))) e ¢ . (5.22)
h—0 g€Fn

We need to show that B(x, z) := 0o, E(gx ;) for g, , € Fy satisfies the conditions of the Gaussian
fields in Theorem 3.5. Note that r, (x x Z,2) in (3.19) is the covariance between B(x, z) and B(X, 7).
Proposition 3.6 and Lemma 5.1 can be used to verify that B(x, z), (x,z) € My X Sd—r=1 s locally
equi-(o, D)(C ; o), D)(C 2)-stationary (see Definition 3.1), where

1 1
o =y =2, D" =—Q@x,2"% and D& =—I,,. (5.23)

Vi o V2

Also recall that 81 > 0 given in Lemma 3.1 is a lower bound of A(My},) for all & € (0, i1] for some
hy1 > 0. Without loss of generality we assume that 81 < §p. Then applying Lemma 3 in [24] we get
SUPye(0.h,] Hd—r (Mp) < ﬁﬂ{f‘lﬂd(’l{) < 00. Using Proposition 3.2, we can suppose /1 is small
enough such that M, C Ns, (M) for all 1 € (0, hy].

Note that (3.16) in Theorem 3.5 is clearly satisfied, simply because the kernel function K is assumed
to have bounded support in assumption (K1). We only need to verify that r, satisfies (3.15). For any
reR, x,¥e My and 2,7 € S9! let k(A; X1, x,%, 2,2, h) = gv.o(X1) — Agz.z(X1) and

COs X1, %, %, 5T ) =[O X1, 6,8, 2,5 h) — B (s X1, 6,5, 2.5 W) ]
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Denote B(x, X, h) = B(x, h) U B(X, h). Using the boundedness of the support of K and the Cauchy-
Schwarz inequality we have

[ExGi; X1, %, %, 2,7 )]

bl (55 oo o]

bl (55 (7

<E[k(: X1,x, 5%, 2.2, 1) F(x, X, ),

where F(x,X,h) = fB(x i) f(s)ds = O(hd), uniformly in x, X € M}, for all 0 < i < hy. This im-
plies that there exists /5 € (0, 2] such that for all 0 < i < h»,

E¢(h; X1, %, %, 2,5 h) = B[O X1, %, %, 2,7, %] = [Ec O X1, %, %, 2.5 )]

1
2 _E[K()";lex5;’ ZaEv h)z]‘ (5'24)

[\

Denote Ax =X — x and Az =7 — z. Due to the bounded support of K we have

E[k(h: X1,x,%, 2.2, 1)?] =2 E{lg(msi.m (X 1)k (A X1, x, %, 2,7, h)?}
=E{1g(m\8G.n XDk ©0; X1,x,5%, 2,7, h)?}
Ef

18, m\B@G.h) (Xl)[gx,z(Xl)]2}

(A(x, 2), dZK(s)>2f(x —hs)ds
BO,1)\B(Ax/h.1)

— f(x (A(x,2), 2K (5)) ds + O(h),  (5.25)
B(O,)\B(Ax/h,1)

where in the last step we use a Taylor expansion for f(x — hs) and the O(h)-term is uniform in
x,¥eM,forall0<h <hpand 7,7 eS¢ "1,

Note that for any § > 0, if ||Ax| > &é, then the set B(0, 1)\B(Ax/h, 1) contains a ball 8* with
radius min(1, §/2). It follows that for any x € M}, 0 <h < hs and z € S,

inf / (Ax,2), d*K (s)) ds = / (A(x,2),d*K (5)) ds

|AxI>hd J 8(0,1)\B(Ax/h,1) B*

Recall that /f(x)||A(x, z)||g = 1 and hence A(x,z) # 0 for all x € N5, (M) and z € S?=r=1_ Then
f g+(A(x, 2), d’K (s))zds > 0 under assumption (K2). Without loss of generality suppose that §; is
small enough such that N5, (M) is compact (see the proof of Lemma 3.1). Since S?=r=1 is also com-
pact and A(x, z) in continuous in x € N5, (M) and z € S9==1 we have

inf inf inf

/ (Ax,2),d*K () ds > 0,
O<h<hy xe My, zeS4-"= 'IIAXI|>h8 B(0,D\B(Ax/h,1)
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which by (5.24) and (5.25) further implies that for some hg € (0, k2],

inf E¢(A; X1,x,X,2,Z,h) > 0. (5.26)
x,5eMy,z,ze84-1
| Ax|>h8, || Az]|>8,0<h<hg

Note that B (4; X1, x, X, 2,%, h) = A%, . — 24 Cov(gz :(X1), gx - (X1)) + 04 _, which is a quadratic
polynomial in A and its discriminant is glven by

0 (x. 7.2, h) = 4Cov(gs 2(X1). gx.: (X)) — 407, 07 .
Then (5.26) implies that
sup o(x,X,2,7,h) <0,
x,ieMy,z,7e8477 1
|Ax[> k8| Az >8.0<h<ho

or equivalently,

sup |rh(x,f,z,2)|<1.
x,feMy,z,ze87" !
[|Ax||>h8,||Az]|>8,0<h<hg

Thus the condition in (3.15) has been verified. @
. _ —1 1 yd=2 1 r :
With g, =+/2rlog(h™') + ———— s [“5=loglog(h™") + ¢, '], Theorem 3.5 yields

: -1 1 _,—e*
}}1_%1?’{ 2r10g(h )(gseu}l_)ha B(g) — ,3;,)51}-6 , (5.27)

where in the calculation of c}(ld’r) we use (5.23) and H,E?Z) = 7~"/2 for any m € Z*, which is a well-
known fact for Pickands’ constant (see page 31 of [34]). This is (5.22).
For g, , € Fj, we have

02 =E[g.(X1)?] ~ [Egr..(XD)]

hld/ <A(x 2).d*K ( . )> f(u)du—i[/ <A(x ). d*K ( >>f(u)du]2

2
= /d(A(x, 2, d>K @)Y f (x — hu)du — h? [/d(A(x, 2), d* K ) f (x — hu)du}
R R
=14 0(h?),

where the O (h?)-term is uniform in x € My, for 0 < h < hg and z € S~"~!. Note that (5.27) implies
that sup,. , |crg’]IB%(g)| = 0, (y/log (h~1)) and hence

sup B(g) — sup o, IB%(g)‘ < sup |(og — 1)(7 1IB%(g)| = Op(hz,/log (h ))

geFy geFn geFn

We then get (3.24) by using (5.27). By Theorem 3.4, for D,, defined in (3.8) we have

P(\/nh‘”“ sup D) < ba(z, ¢\ ’>)) e (5.28)
X€ h



Ridge confidence regions 973

Next we show (3.25). It follows from Lemma A.1 in the supplementary material [38] and Lemma 3.1
that

P(My, C{x e H: A1 (x) <0}) — L. (5.29)
Let 6;’h(a) ={x € H :vnhit4B,(x) < a}, for a > 0. Then by (5.29) we get

sup|P(My, C Coi(@)) — P(My, € Ci (@) | — 0. (5.30)

a>0

Furthermore it is clear that P(M;, C 6:,;!(61)) = P(Vnh?**sup,c ry, Bn(x) < a) for all a > 0. By
applying Proposition 3.3 and (5.28), we finish the proof of (3.25) for the case d —r > 2. Whend —r =
1, the covariance structure of B is simplified (see Remark 3.5). Then instead of using Theorem 3.5, we
apply the main theorem in [41]. The rest of the proof is similar to the above. g

Acknowledgements

We would like to thank Anand Vidyashankar and three anonymous referees for their insightful com-
ments that have led to significant improvements of the paper. The author’s work is partially supported
by NSF Grant No. 1821154 and Grant No. 1900061.

Supplementary Material

Supplement to “Asymptotic confidence regions for density ridges” (DOI: 10.3150/20-
BEJ1261SUPP; .pdf). This supplementary material presents additional proofs that are not shown in
Section 5 due to page constraints, as well as some miscellaneous results.

References

[1] Aamari, E., Kim, J., Chazal, F., Michel, B., Rinaldo, A. and Wasserman, L. (2019). Estimating the reach of
a manifold. Electron. J. Stat. 13 1359-1399. MR3938326 https://doi.org/10.1214/19-ejs1551

[2] Arias-Castro, E., Donoho, D.L. and Huo, X. (2006). Adaptive multiscale detection of filamentary structures
in a background of uniform random points. Ann. Statist. 34 326-349. MR2275244 https://doi.org/10.1214/
009053605000000787

[3] Berenfeld, C., Harvey, J., Hoffmann, M. and Shankar, K. (2020). Estimating the reach of a manifold via its
convexity defect function. arXiv:2001.08006.

[4] Bickel, P.J. and Rosenblatt, M. (1973). On some global measures of the deviations of density function esti-
mates. Ann. Statist. 1 1071-1095. MR0348906

[5] Broida, J.G. and Williamson, S.G. (1989). A Comprehensive Introduction to Linear Algebra. Redwood City,
CA: Addison-Wesley Company. Advanced Book Program. MR1045200

[6] Bugni, F.A. (2010). Bootstrap inference in partially identified models defined by moment inequalities: Cov-
erage of the identified set. Econometrica 78 735-753. MR2656646 https://doi.org/10.3982/ECTA8056

[7] Cadre, B. (2006). Kernel estimation of density level sets. J. Multivariate Anal. 97 999-1023. MR2256570
https://doi.org/10.1016/j.jmva.2005.05.004

[8] Chen, Y.-C., Genovese, C.R. and Wasserman, L. (2015). Asymptotic theory for density ridges. Ann. Statist.
43 1896-1928. MR3375871 https://doi.org/10.1214/15- A0S 1329


https://doi.org/10.3150/20-BEJ1261SUPP
http://www.ams.org/mathscinet-getitem?mr=3938326
https://doi.org/10.1214/19-ejs1551
http://www.ams.org/mathscinet-getitem?mr=2275244
https://doi.org/10.1214/009053605000000787
http://arxiv.org/abs/arXiv:2001.08006
http://www.ams.org/mathscinet-getitem?mr=0348906
http://www.ams.org/mathscinet-getitem?mr=1045200
http://www.ams.org/mathscinet-getitem?mr=2656646
https://doi.org/10.3982/ECTA8056
http://www.ams.org/mathscinet-getitem?mr=2256570
https://doi.org/10.1016/j.jmva.2005.05.004
http://www.ams.org/mathscinet-getitem?mr=3375871
https://doi.org/10.1214/15-AOS1329
https://doi.org/10.3150/20-BEJ1261SUPP
https://doi.org/10.1214/009053605000000787

974

(9]

(10]

(1]

[12]

[13]

(14]

[15]

(16]

(17]

(18]

(19]
(20]
(21]
(22]
(23]
[24]

[25]

(26]

[27]
(28]
(29]
(30]

(31]

W. Qiao

Chen, Y.-C., Genovese, C.R. and Wasserman, L. (2017). Density level sets: Asymptotics, inference, and
visualization. J. Amer. Statist. Assoc. 112 1684-1696. MR3750891 https://doi.org/10.1080/01621459.2016.
1228536

Cheng, M.-Y., Hall, P. and Hartigan, J.A. (2004). Estimating gradient trees. In A Festschrift for Herman
Rubin. Institute of Mathematical Statistics Lecture Notes — Monograph Series 45 237-249. Beachwood, OH:
IMS. MR2126901 https://doi.org/10.1214/Inms/1196285394

Chernozhukov, V., Chetverikov, D. and Kato, K. (2014). Gaussian approximation of suprema of empirical
processes. Ann. Statist. 42 1564—-1597. MR3262461 https://doi.org/10.1214/14- AOS1230

Dunajeva, O. (2004). The second-order derivatives of matrices of eigenvalues and eigenvectors with an appli-
cation to generalized F-statistic. Linear Algebra Appl. 388 159-171. MR2077857 https://doi.org/10.1016/].
1aa.2003.08.019

Duong, T., Cowling, A., Koch, I. and Wand, M.P. (2008). Feature significance for multivariate kernel density
estimation. Comput. Statist. Data Anal. 52 4225-4242. MR2432459 https://doi.org/10.1016/j.csda.2008.02.
035

Eberly, D. (1996). Ridges in Image and Data Analysis. Boston, MA: Kluwer.

Federer, H. (1959). Curvature measures. Trans. Amer. Math. Soc. 93 418-491. MRO0110078
https://doi.org/10.2307/1993504

Genovese, C., Perone-Pacifico, M., Verdinelli, I. and Wasserman, L. (2017). Finding singular features. J.
Comput. Graph. Statist. 26 598-609. MR3698670 https://doi.org/10.1080/10618600.2016.1260472
Genovese, C.R., Perone-Pacifico, M., Verdinelli, I. and Wasserman, L. (2009). On the path density of a
gradient field. Ann. Statist. 37 3236-3271. MR2549559 https://doi.org/10.1214/08- AOS671

Genovese, C.R., Perone-Pacifico, M., Verdinelli, I. and Wasserman, L. (2012). The geometry of nonparamet-
ric filament estimation. J. Amer. Statist. Assoc. 107 788—799. MR2980085 https://doi.org/10.1080/01621459.
2012.682527

Genovese, C.R., Perone-Pacifico, M., Verdinelli, I. and Wasserman, L. (2014). Nonparametric ridge estima-
tion. Ann. Statist. 42 1511-1545. MR3262459 https://doi.org/10.1214/14- AOS1218

Hall, P. (1992). Effect of bias estimation on coverage accuracy of bootstrap confidence intervals for a proba-
bility density. Ann. Statist. 20 675-694. MR1165587 https://doi.org/10.1214/a0s/1176348651

Hall, P, Qian, W. and Titterington, D.M. (1992). Ridge finding from noisy data. J. Comput. Graph. Statist. 1
197-211. MR1270818 https://doi.org/10.2307/1390716

Hartigan, J.A. (1987). Estimation of a convex density contour in two dimensions. J. Amer. Statist. Assoc. 82
267-270. MR0883354

Ipsen, I.C.F. and Rehman, R. (2008). Perturbation bounds for determinants and characteristic polynomials.
SIAM J. Matrix Anal. Appl. 30 762-776. MR2421470 https://doi.org/10.1137/070704770

Kim, J., Rinaldo, A. and Wasserman, L. (2019). Minimax rates for estimating the dimension of a manifold.
J. Comput. Geom. 10 42-95. MR3918925 https://doi.org/10.1214/19-ejs1551

Konakov, V.D. and Piterbarg, V.I. (1984). On the convergence rate of maximal deviation distribution
for kernel regression estimates. J. Multivariate Anal. 15 279-294. MR0768499 https://doi.org/10.1016/
0047-259X(84)90053-8

Konstantinides, D.G., Piterbarg, V. and Stamatovic, S. (2004). Gnedenko-type limit theorems for cy-
clo stationary xz—processes. Liet. Mat. Rink. 44 196-208. MR2116482 https://doi.org/10.1023/B:LIMA.
0000033781.86969.c9

Lee, J.M. (2013). Introduction to Smooth Manifolds, 2nd ed. Graduate Texts in Mathematics 218. New York:
Springer. MR2954043

Li, W. and Ghosal, S. (2020). Posterior contraction and credible sets for filaments of regression functions.
Electron. J. Stat. 14 1707-1743. MR4083733 https://doi.org/10.1214/20-EJS1705

Magnus, J.R. and Neudecker, H. (2007). Matrix Differential Calculus with Applications in Statistics and
Econometrics. 3rd ed. Chichester: Wiley. MR1698873

Mammen, E. and Polonik, W. (2013). Confidence regions for level sets. J. Multivariate Anal. 122 202-214.
MR3189318 https://doi.org/10.1016/j.jmva.2013.07.017

Mason, D.M. and Polonik, W. (2009). Asymptotic normality of plug-in level set estimates. Ann. Appl.
Probab. 19 1108-1142. MR2537201 https://doi.org/10.1214/08- AAP569


http://www.ams.org/mathscinet-getitem?mr=3750891
https://doi.org/10.1080/01621459.2016.1228536
http://www.ams.org/mathscinet-getitem?mr=2126901
https://doi.org/10.1214/lnms/1196285394
http://www.ams.org/mathscinet-getitem?mr=3262461
https://doi.org/10.1214/14-AOS1230
http://www.ams.org/mathscinet-getitem?mr=2077857
https://doi.org/10.1016/j.laa.2003.08.019
http://www.ams.org/mathscinet-getitem?mr=2432459
https://doi.org/10.1016/j.csda.2008.02.035
http://www.ams.org/mathscinet-getitem?mr=0110078
https://doi.org/10.2307/1993504
http://www.ams.org/mathscinet-getitem?mr=3698670
https://doi.org/10.1080/10618600.2016.1260472
http://www.ams.org/mathscinet-getitem?mr=2549559
https://doi.org/10.1214/08-AOS671
http://www.ams.org/mathscinet-getitem?mr=2980085
https://doi.org/10.1080/01621459.2012.682527
http://www.ams.org/mathscinet-getitem?mr=3262459
https://doi.org/10.1214/14-AOS1218
http://www.ams.org/mathscinet-getitem?mr=1165587
https://doi.org/10.1214/aos/1176348651
http://www.ams.org/mathscinet-getitem?mr=1270818
https://doi.org/10.2307/1390716
http://www.ams.org/mathscinet-getitem?mr=0883354
http://www.ams.org/mathscinet-getitem?mr=2421470
https://doi.org/10.1137/070704770
http://www.ams.org/mathscinet-getitem?mr=3918925
https://doi.org/10.1214/19-ejs1551
http://www.ams.org/mathscinet-getitem?mr=0768499
https://doi.org/10.1016/0047-259X(84)90053-8
http://www.ams.org/mathscinet-getitem?mr=2116482
https://doi.org/10.1023/B:LIMA.0000033781.86969.c9
http://www.ams.org/mathscinet-getitem?mr=2954043
http://www.ams.org/mathscinet-getitem?mr=4083733
https://doi.org/10.1214/20-EJS1705
http://www.ams.org/mathscinet-getitem?mr=1698873
http://www.ams.org/mathscinet-getitem?mr=3189318
https://doi.org/10.1016/j.jmva.2013.07.017
http://www.ams.org/mathscinet-getitem?mr=2537201
https://doi.org/10.1214/08-AAP569
https://doi.org/10.1080/01621459.2016.1228536
https://doi.org/10.1016/j.laa.2003.08.019
https://doi.org/10.1016/j.csda.2008.02.035
https://doi.org/10.1080/01621459.2012.682527
https://doi.org/10.1016/0047-259X(84)90053-8
https://doi.org/10.1023/B:LIMA.0000033781.86969.c9

Ridge confidence regions 975

(32]
(33]

[34]

(35]

[36]

(37]
(38]
(39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]
[47]
(48]

[49]

(501

Ozertem, U. and Erdogmus, D. (2011). Locally defined principal curves and surfaces. J. Mach. Learn. Res.
12 1249-1286. MR2804600

Piterbarg, V.I. (1994). High excursions for nonstationary generalized chi-square processes. Stochastic Pro-
cess. Appl. 53 307-337. MR1302916 https://doi.org/10.1016/0304-4149(94)90068-X

Piterbarg, V.I. (1996). Asymptotic Methods in the Theory of Gaussian Processes and Fields. Translations
of Mathematical Monographs 148. Providence, RI: Amer. Math. Soc. Translated from the Russian by V.V.
Piterbarg, Revised by the author. MR1361884 https://doi.org/10.1090/mmono/148

Polonik, W. (1995). Measuring mass concentrations and estimating density contour clusters —an excess mass
approach. Ann. Statist. 23 855-881. MR1345204 https://doi.org/10.1214/a0s/1176324626

Polonik, W. and Wang, Z. (2005). Estimation of regression contour clusters — an application of the excess
mass approach to regression. J. Multivariate Anal. 94 227-249. MR2167913 https://doi.org/10.1016/j.jmva.
2004.05.001

Qiao, W. (2020). Extremes of locally stationary Gaussian and chi fields on manifolds. Stochastic Process.
Appl. https://doi.org/10.1016/j.spa.2020.11.006

Qiao, W. (2021). Supplement to “Asymptotic confidence regions for density ridges.” https://doi.org/10.3150/
20-BEJ1261SUPP

Qiao, W. (2021). Nonparametric estimation of surface integrals on level sets. Bernoulli 27 155-191.
MR4177365 https://doi.org/10.3150/20-BEJ1232

Qiao, W. and Polonik, W. (2016). Theoretical analysis of nonparametric filament estimation. Ann. Statist. 44
1269-1297. MR3485960 https://doi.org/10.1214/15- AOS 1405

Qiao, W. and Polonik, W. (2018). Extrema of rescaled locally stationary Gaussian fields on manifolds.
Bernoulli 24 1834-1859. MR3757516 https://doi.org/10.3150/16-BEJ913

Qiao, W. and Polonik, W. (2019). Nonparametric confidence regions for level sets: Statistical properties and
geometry. Electron. J. Stat. 13 985-1030. MR3934621 https://doi.org/10.1214/19-EJS1543

Rosenblatt, M. (1952). Remarks on a multivariate transformation. Ann. Math. Stat. 23 470-472. MR0049525
https://doi.org/10.1214/a0ms/1177729394

Rosenblatt, M. (1976). On the maximal deviation of k-dimensional density estimates. Ann. Probab. 4 1009—
1015. MR0428580 https://doi.org/10.1214/a0p/1176995945

Sousbie, T., Pichon, C., Colombi, S., Novikov, D. and Pogosyan, D. (2008). The 3D skeleton: Tracing the
filamentary structure of the Universe. Mon. Not. R. Astron. Soc. 383 1655-1670.

Tsybakov, A.B. (1997). On nonparametric estimation of density level sets. Ann. Statist. 25 948-969.
MR1447735 https://doi.org/10.1214/a0s/1069362732

von Luxburg, U. (2007). A tutorial on spectral clustering. Star. Comput. 17 395-416. MR2409803
https://doi.org/10.1007/s11222-007-9033-z

Wegman, E.J., Carr, D.B. and Luo, Q. (1993). Visualizing multivariate data. In Multivariate Analysis: Future
Directions (C.R. Rao, ed.). Amsterdam: North-Holland.

Wegman, E.J. and Luo, Q. (2002). Smoothings, ridges, and bumps. In Proceedings of the ASA (Published
on CD). Development of the Relationship Between Geometric Aspects of Visualizing Densities and Density
Approximators, and a Discussion of Rendering and Lighting Models, Contouring Algorithms, Stereoscopic
Display Algorithms, and Visual Design Considerations 3666-3672. American Statistical Association.

Xia, Y. (1998). Bias-corrected confidence bands in nonparametric regression. J. R. Stat. Soc. Ser. B. Stat.
Methodol. 60 797-811. MR1649488 https://doi.org/10.1111/1467-9868.00155

Received October 2019 and revised July 2020


http://www.ams.org/mathscinet-getitem?mr=2804600
http://www.ams.org/mathscinet-getitem?mr=1302916
https://doi.org/10.1016/0304-4149(94)90068-X
http://www.ams.org/mathscinet-getitem?mr=1361884
https://doi.org/10.1090/mmono/148
http://www.ams.org/mathscinet-getitem?mr=1345204
https://doi.org/10.1214/aos/1176324626
http://www.ams.org/mathscinet-getitem?mr=2167913
https://doi.org/10.1016/j.jmva.2004.05.001
https://doi.org/10.1016/j.spa.2020.11.006
https://doi.org/10.3150/20-BEJ1261SUPP
http://www.ams.org/mathscinet-getitem?mr=4177365
https://doi.org/10.3150/20-BEJ1232
http://www.ams.org/mathscinet-getitem?mr=3485960
https://doi.org/10.1214/15-AOS1405
http://www.ams.org/mathscinet-getitem?mr=3757516
https://doi.org/10.3150/16-BEJ913
http://www.ams.org/mathscinet-getitem?mr=3934621
https://doi.org/10.1214/19-EJS1543
http://www.ams.org/mathscinet-getitem?mr=0049525
https://doi.org/10.1214/aoms/1177729394
http://www.ams.org/mathscinet-getitem?mr=0428580
https://doi.org/10.1214/aop/1176995945
http://www.ams.org/mathscinet-getitem?mr=1447735
https://doi.org/10.1214/aos/1069362732
http://www.ams.org/mathscinet-getitem?mr=2409803
https://doi.org/10.1007/s11222-007-9033-z
http://www.ams.org/mathscinet-getitem?mr=1649488
https://doi.org/10.1111/1467-9868.00155
https://doi.org/10.1016/j.jmva.2004.05.001
https://doi.org/10.3150/20-BEJ1261SUPP

	Introduction
	Notation and assumptions
	Main results
	Asymptotic conﬁdence regions for Mh
	Asymptotic conﬁdence regions for M
	Estimating the unknowns
	Further improvements related to eigenvalues and critical points

	Discussion
	Proofs
	Acknowledgements
	Supplementary Material
	References

