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ABSTRACT
A data-oblivious algorithm is an algorithm whose memory access
pattern is independent of the input values. We initiate the study of
parallel data oblivious algorithms on realistic multicores, best cap-
tured by the binary fork-join model of computation. We present a
data-oblivious CREW binary fork-join sorting algorithm with opti-
mal total work and optimal (cache-oblivious) cache complexity, and
in $ (log= log log=) span (i.e., parallel time); these bounds match
the best-known bounds for binary fork-join cache-e�cient inse-
cure algorithms. Using our sorting algorithm as a core primitive, we
show how to data-obliviously simulate general PRAM algorithms
in the binary fork-join model with non-trivial e�ciency, and we
present data-oblivious algorithms for several applications including
list ranking, Euler tour, tree contraction, connected components,
and minimum spanning forest. All of our data oblivious algorithms
have bounds that either match or improve over the best known
bounds for insecure algorithms.

Complementing these asymptotically e�cient results, we present
a practical variant of our sorting algorithm that is self-contained
and potentially implementable. It has optimal caching cost, and it
is only a log log= factor o� from optimal work and about a log=
factor o� in terms of span. We also present an EREW variant with
optimal work and caching cost, and with the same asymptotic span.

CCS CONCEPTS
• Theory of computation ! Parallel algorithms; • Security
and privacy! Cryptography.
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1 INTRODUCTION
As secure processors such as Intel SGX (with hyperthreading) be-
come widely adopted, there is a growing appetite for private ana-
lytics on big data. Most prior works on data-oblivious algorithms
adopt the classical PRAM model to capture parallelism. However,
it is widely understood that PRAM does not best capture realis-
tic multicore processors, nor does it re�ect parallel programming
models adopted in practice.

We initiate the study of data-oblivious algorithms for a multi-
core architecture where parallelism and synchronization are ex-
pressed with nested binary fork-join operations. Imagine that a
client outsources encrypted data to an untrusted cloud server which
is equipped with a secure, multicore processor architecture (e.g.,
Intel SGX with hyperthreading). All data contents are encrypted
to the secure processor’s secret key both at rest and in transit.
Data is decrypted only inside the secure cores’ hardware sand-
boxes where computation takes place. However, it is well-known
that encryption alone does not guarantee privacy, since access
patterns to even encrypted data leak a lot of sensitive informa-
tion [41, 54]. To defend against access pattern leakage, an active
line of work [15, 17, 36, 37, 45, 52] has focused on how to design
algorithms whose access pattern distributions do not depend on the
secret inputs — such algorithms are called data-oblivious algorithms,
and are the focus of our work. In this paper we present nested fork-
join data-oblivious algorithms for several fundamental problems
that are highly parallel, and work- and cache-e�cient. Throughout
this paper, we consider only data oblivious algorithms that are un-
conditionally secure (often called “statistically secure”), i.e., without
the need to make any computational hardness assumptions.

There has been some prior work exploring the design of par-
allel data-oblivious algorithms. Most of these prior parallel data-
oblivious algorithms [15, 17, 47] adopted PRAM as the model of
computation. However, the global synchronization between cores
at each parallel step of the computation in a PRAM algorithm does
not best capture modern multicore architectures, where the cores
typically proceed asynchronously. To better account for synchro-
nization cost, a long line of work [1, 3, 8–14, 22–24, 26–30, 34] has
adopted a multithreaded computation model with CREW (Concur-
rent Read Exclusive Write) shared memory in which parallelism is
expressed through paired fork and join operations. A binary fork
spawns two tasks that can execute in parallel. Its corresponding
join is a synchronization point: both of the spawned tasks must
complete before the computation can proceed beyond this join.
Such a binary fork-join model is also adopted in practice, and sup-
ported by programming systems such as Cilk [33], the Java fork-join
framework [48], X10 [20], Habanero [16], Intel Threading Building
Blocks [35], and the Microsoft Task Parallel Library [46].

E�ciency in a multi-threaded algorithmwith binary fork-joins is
measured through the following metrics: the algorithm’s total work
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(i.e., the sequential execution time), its cache complexity (i.e., the
number of cache misses), and its span (i.e., the length of the longest
path in the computation DAG). The span is also the number of
parallel steps in the computation assuming that unlimited number
of processors are available and they all execute at the same rate.
We discuss the binary fork-join model in more detail in Section 1.2.

1.1 Our Results
We present highly parallel data-oblivious multithreaded algorithms
that are also cache-e�cient for a suite of fundamental computation
tasks, starting with sorting. Our results show how to get privacy
for free for a range of tasks in this important parallel computation
model. Further, all of our algorithms are cache-agnostic [32]1, i.e.,
the algorithm need not know the cache’s parameters including
the cache-line (i.e., block) size and cache size. Besides devising
new algorithms, our work also makes a conceptual contribution by
creating a bridge between two lines of work from the cryptography
and algorithms literature, respectively. We now state our results.
Sorting. To attain our results, the most important building block
is data-oblivious sorting. We present a randomized data-oblivious,
cache-agnostic CREWbinary fork-join sorting algorithm,B���������
S���, which matches the work, span and cache-oblivious caching
bounds of SPMS [30], the current best insecure algorithm. These
bounds are given in Theorem 1.1. As noted in [30], these bounds
are optimal for work and cache complexity, and are within an
$ (log log=) factor of optimality for span (even for the CREW
PRAM). The key ingredient in B���������S��� is B���������
R������P������ (B�RP������), which randomly permutes the
input arraywithout leaking the permutation, and guided by a butter-
�y network. The overall B���������S��� simply runs B�RP������
and then runs SPMS on the randomly permuted array.

In comparison with known cache-agnostic and data-oblivious
sorting algorithms [19], B���������S��� improves the span by
an (almost) exponential factor — the prior work [19] requires =n
parallel runtime for some constant n 2 (0, 1) even without the
binary fork-join constraint. We now state our sorting result.

T������ 1.1 (B���������S���). Let ⌫ denote the block size and
" denote the cache size. Under the standard tall cache assumption
" = ⌦(⌫1+n ), and" = ⌦(log1+n =) where n 2 (0, 1) is an arbitrarily
small constant, B���������S��� is a cache-agnostic CREW binary
fork-join algorithm that obliviously sorts an array of size = with
an optimal cache complexity of $ ((=/⌫) · log" =), optimal total
work$ (= log=), and$ (log= · log log=) span which matches the best
known non-oblivious algorithm in the same model.

Practical and EREW variants. We devise a conceptually simple
algorithm, B���������R������S��� (B�RS���), to sort an input
array that has been randomly permuted. This algorithm uses a col-
lection of pivots, and is similar in structure to our B�RP������
algorithm. By replacing SPMS with B�RS��� to sort the randomly
permuted output of B�RP������, we obtain a simple oblivious
scheme for sorting, which we call B���������B���������S���
(BB�S���). By varying the primitives used within BB�S��� we ob-
tain two useful versions: a potentially practical sorting algorithm
1“Cache-agnostic” is also called cache-oblivious in the algorithms literature [32]. In
order to avoid confusion with data obliviousness, we will reserve the term ‘oblivious’
for data-oblivious, and we will use cache-agnostic in place of cache-oblivious.

which uses bitonic sort for small sub-problems, and an e�cient
EREW binary fork-join version which retains AKS sorting for small
subproblems.

Our practical version uses bitonic sort as the main primitive,
and for this we present an EREW binary fork-join bitonic sort
algorithm that improves on the naïve binary fork-join version by
achieving span$ (log2 = · log log=) and cache-agnostic caching cost
$ ((=/⌫) · log" = · log(=/")) while retaining its $ (= log2 =) work.

The use of AKS in our EREW and CREW algorithms may appear
impractical. However, it is to be observed that prior$ (= log=)-work
oblivious algorithms for sorting — the AKS network [2], Zigzag
sort [38], and an $ (= log=) version of oblivious bucket sort [4] —
all use expanders within their construction. Sorting can be per-
formed using an e�cient oblivious priority queue that does not use
expanders [42, 51]; however this incurs l (= log=) work to achieve
a negligible in = failure probability. Further, this method is not
cache-e�cient and is inherently sequential. It is to be noted that
our practical version does not use AKS or expanders.

Table 3 in Section 3 lists the bounds for our sorting algorithms.
Data-oblivious simulation of PRAM in CREW binary fork-
join. Using our sorting algorithm, we show how to compile any
CRCW PRAM algorithm to a data-oblivious, cache-agnostic binary-
fork algorithm with non-trivial e�ciency. We present two results
along these lines. The �rst is a compiler that works e�ciently
for space-bounded PRAM programs, i.e., when the space B used
is close to the number of processors ? . We argue that this is an
important special case because our space-bounded simulation of
CRCW PRAM on oblivious binary fork-join (space-bounded PRAM
on OBFJ) allows us to derive oblivious binary fork-join algorithms
for several computational tasks that are cornerstones of the parallel
algorithms literature. Our space-bounded PRAM on OBFJ result is
given in Theorem 4.1 in Section 4. As stated there, each step of a
?-processor CRCW PRAM can be emulated within the work, span,
and cache-agnostic caching bounds for sorting $ (?) elements.

Our second PRAM on OBFJ result works for the general case
when the space B consumed by the PRAM can be much greater
than (e.g., a polynomial function in) the number of processors ? .
For this setting, we show a result that strictly generalizes the best
known Oblivious Parallel RAM (OPRAM) construction [17, 18].
Speci�cally, we can compile any CRCW PRAM to a data oblivious,
cache-agnostic, binary fork-join program where each parallel step
in the original PRAM can be simulated with ? log2 B total work and
$ (log B · log log B) span. The exact statement is in Theorem 4.2 in
Section 4.2. In terms of work and span, the bounds in this result
match the asymptotical performance of the best prior OPRAM
result [17, 18], which is a PRAM on oblivious PRAM result, and
hence would only imply results for unbounded forking.2. Moreover,
we also give explicit cache complexity bounds for our oblivious
simulation which was not considered in prior work [17, 18].

To obtain the above PRAM simulation results, we use some
building blocks that are core to the oblivious algorithms literature,
called aggregation, propagation, and send-receive [15, 17, 47]. Table 2

2The concurrent work by Asharov et al. [6] shows that assuming the existence of
one-way functions, each parallel step of a CRCW PRAM can be obliviously simulated
in$ (log B) work and$ (log B) parallel time on a CRCW PRAM. Their work is of a
di�erent nature because they consider computational security and moreover, their
target PRAM allows concurrent writes.
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Table 1: Comparison with prior insecure algorithms. e$ (·) hides a single log log= factor. LR = “list ranking”, ET-Tree = “Tree computa-
tions with Euler tour”, TC = “Tree contraction”, CC = “connected components”, MSF = ”minimum spanning forest”. For graph problems, = is
the number of vertices, and< = ⌦(=) is the number of edges. We compare with insecure cache-e�cient CREW binary fork-join algorithms.
The prior bounds, except for tree contraction, are from [26], and implicit in other work [12, 24]. The prior result for sort is SPMS sort [25, 30].
The prior bound for tree contraction (TC) is from [12]. A ‘†’ next to a result indicates that we improve the performance relative to the best
known bound for the insecure case. If cache-e�ciency is not considered for insecure algorithms, the best CREW binary fork-join span for all
tasks except Sort is $ (log2 =); for Sort it remains e$ (log=).

Task Our data-oblivious algorithm Previous best insecure algorithm
work span cache work span cache

Sort $ (= log=) e$ (log=) $ ( =⌫ log" =) $ (= log=) e$ (log=) $ ( =⌫ log" =)
LR $ (= log=) e$ (log2 =) $ ( =⌫ log" =) $ (= log=) e$ (log2 =) $ ( =⌫ log" =)

ET-Tree $ (= log=) e$ (log2 =) $ ( =⌫ log" =) $ (= log=) e$ (log2 =) $ ( =⌫ log" =)
TC† $ (= log=) e$ (log2 =) $ ( =⌫ log" =) $ (= log=) e$ (log3 =) $ ( =⌫ log" =)
CC† $ (< log2 =) e$ (log2 =) $ (<⌫ log" = log=) $ (< log2 =) e$ (log3 =) $ (<⌫ log" = log=)
MSF† $ (< log2 =) e$ (log2 =) $ (<⌫ log" = log=) $ (< log2 =) e$ (log3 =) $ (<⌫ log" = log=)

Table 2: Comparison with prior oblivious algorithms. The prior best is obtained by taking the best known oblivious PRAM algorithm
and naïvely fork and join = threads at every PRAM step. e$ hides a single log log= or log log B factor. Aggr = aggregation, Prop = propagation,
S-R = send-receive, PRAM = oblivious simulation of a ?-processor, B-space PRAM (cost of simulating a single step, assuming B � ?), and
F = $ (log B · ((?/⌫) · log" ? + ? · log⌫ B)). The best known algorithm for aggregation and propagation are due to [17, 47], send-receive is
obtained by combining [17, 47], [2], and [19], oblivious simulation of PRAM is due to or implied by [15, 18].

Obliv. Our algorithm Prior best
Alg. work span cache work span cache

Aggr $ (=) $ (log=) $ (=/⌫) $ (=) $ (log2 =) $ (=/⌫)
Prop $ (=) $ (log=) $ (=/⌫) $ (=) $ (log2 =) $ (=/⌫)

Sort & S-R $ (= log=) e$ (log=) $ ( =⌫ log" =) $ (= log=) $ (log2 =) $ (= log=)
$ (= log= log2 log=) $ (=n ) $ ( =⌫ log" =)

PRAM $ (B log B) e$ (log B) $ ( B⌫ log" B) $ (B log2 B) $ (log2 B) $ (B log B)
$ (? log2 B) e$ (log B) F in caption $ (? log2 B) e$ (log2 B) $ (? log2 B)

shows the performance bounds of our algorithms for these building
blocks and general PRAM simulation vs. the best known data-
oblivious results, where the latter is obtained by taking the best
known oblivious PRAM algorithm and naïvely forking = threads in
a binary-tree fashion for every PRAM step. The table shows that
we improve over the prior best results for all tasks.
Applications. There is a very large collection of e�cient PRAM
algorithms in the literature for a variety of important problems. We
use our PRAM simulation results as a generic way of translating
some of these algorithms into e�cient data-oblivious algorithms
in binary fork-join. For other important computational problems
we use our new sorting algorithm as a building block to directly
obtain e�cient data-oblivious algorithms.

We list our results in Table 1 and compare with results for in-
secure cache-e�cient CREW binary fork-join algorithms. Our re-
sults for tree contraction (TC), connected components (CC), and
minimum spanning forest (MSF) are obtained through our space-
bounded PRAM on OBFJ result, and in all three cases our data-
oblivious binary fork-join algorithms improve the commonly-cited
span by a log= factor while matching the total work and cache
complexity of the best known insecure algorithms. For other com-
putational tasks such as list ranking and rooted tree computations

with Euler tour, we design data-oblivious algorithms that match the
best work, span and cache-e�ciency bounds known for insecure
algorithms in the binary fork-join model: these give better bounds
than what we would achieve with the PRAM simulation.

Throughout, we allow our algorithms to have only an extremely
small failure probability (either in correctness or in security) that is
> (1/=: ), for any constant : . We refer to such a probability as being
negligible in =. Such strong bounds are typical for cryptographic
and security applications, and are stronger than the w.h.p. bounds
(failure probability $ (1/=: ), for any constant :) commonly used
for standard (insecure) randomized algorithms.
Road-map. The rest of the paper is organized as follows. The rest
of this section has short backgrounds on multithreaded, cache-
e�cient and data-oblivious algorithms. Section 2 is on B���������
R������P������ and B���������S���, our most e�cient data
oblivious sorting algorithm. Section 3 is on B���������R������
S��� which gives our simple oblivious algorithm for sorting a
random permutation, and B���������B���������S���which gives
our practical and EREW sorting algorithms. Section 4 has PRAM
simulations, and Section 5 has applications. Many details are in the
online full version [50].
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1.2 Binary Fork-Join Model
For parallelism we consider a multicore environment consisting
of % cores (or processors), each with a private cache of size " .
The processors communicate through an arbitrarily large shared
memory. Data is organized in blocks (or ‘cache lines’) of size ⌫.

We will express parallelism using a multithreaded model through
paired fork and join operations (See Chapter 27 in Cormen et al. [31]
for an introduction to this model). The execution of a binary fork-
join algorithm starts at a single processor. A thread can rely on a
fork operation to spawn two tasks; and the forked parallel tasks
can be executed by other processors, as determined by a scheduler.
The two tasks will later join, and the corresponding join serves as a
synchronization point: both of the spawned tasks must complete
before the computation can proceed beyond this join. The memory
accesses are CREW: concurrent reads are allowed at a memory
location but no concurrent writes at a location.

The work of a multithreaded algorithm Alg is the total number of
operations it executes; equivalently, it is the sequential time when
it is executed on one processor. The span of Alg, often called its
critical path length or parallel time )1, is the number of parallel
steps in the algorithm. The cache complexity of a binary fork-join
algorithm is the total number of cache misses incurred across all
processors during the execution.

For cache-e�ciency, we will use the cache-oblivious model in
Frigo et al. [32]. As noted earlier, in this paper we will use the
term cache-agnostic in place of cache-oblivious, and reserve the
term ‘oblivious’ for data-obliviousness. We assume a cache of size
" partitioned into blocks (or cache-lines) of size ⌫. We will use
&B>AC (=) = ⇥((=/⌫) · log" =)) to denote the optimal caching bound
for sorting= elements, and for a cache-agnostic algorithm to achieve
this bound we need " = ⌦(⌫2) (or " = ⌦(⌫1+X ) for some given
arbitrarily small constant X > 0). Several sorting algorithms with
optimal work (i.e., sequential time) and cache-agnostic caching cost
are known, including two in [32].

We would like to design binary fork-join algorithms with small
work, small sequential caching cost, preferably cache-agnostic, and
small span. As explained in our online full version [50], this will
lead to good parallelism and cache-e�ciency in an execution under
randomized work stealing [14].

Let)sort (=) be the smallest span for a binary fork-join algorithm
that sorts = elements with a comparison-based sort. It is readily
seen that )sort (=) = ⌦(log=). The current best binary fork-join
algorithm for sorting is SPMS (Sample Partition Merge Sort) [30].
This algorithm has span $ (log= · log log=) with optimal work
,sort = $ (= log=) and optimal cache complexity &sort (=). But the
SPMS algorithm is not data-oblivious. No non-trivial data oblivi-
ous parallel sorting algorithm with optimal cache complexity was
known prior to the results we present in this paper.

More background on caching and multithreaded computations
is given in our online full version [50].

1.3 Data Oblivious Binary Fork-Join
Algorithms

Unlike the terminology “cache obliviousness”, data obliviousness
captures the privacy requirement of a program. As mentioned in
the introduction, we consider a multicore secure processor like

Intel’s SGX (with hyperthreading), and all data is encrypted to the
secure processor’s secret key at rest or in transit. Therefore, the
adversary, e.g., a compromised operating system or a malicious
system administrator with physical access to the machine, cannot
observe the contents of memory. However, the adversary may con-
trol the scheduler that schedules threads onto cores. Moreover, it
can observe 1) the computation DAG that captures the pattern of
forks and joins, and 2) the memory addresses accessed by all threads
of the binary fork-join program. The above observations jointly
form the “access patterns” of the binary fork-join program.

We adapt the standard de�nition of data obliviousness [17, 36, 37]
to the binary fork-join setting.

De�nition 1.2 (Data oblivious binary fork-join algorithm). We
say that a binary fork-join algorithm Alg data-obliviously realizes
(or obliviously realizes) a possibly randomized functionality F , i�
there exists a simulator Sim such that for any input I, the following
two distributions have negligible statistical distance: 1) the joint
distribution of Alg’s output on input I and the access patterns; and
2) (F (I), Sim( |I|)).

Note that the simulator Sim knows only the length of the input
I but not the contents of I, i.e., the access patterns are simulatable
without knowing the input.

We stress that our notion of data obliviousness continues to hold
if the adversary can observe the exact address a processor accesses,
even if that data is in cache. In this way, our security notion can
rule out attacks that try to glean secret information through many
types of cache-timing attacks. Our notion secures even against com-
putationally unbounded adversaries, often referred to as statistical
security in the cryptography literature.

One sometimes ine�cient way to design binary-fork-join al-
gorithms is to take a Concurrent-Read-Exclusive-Write (CREW)
PRAM algorithm, and simply fork = threads in a binary-tree fash-
ion to simulate every step of the PRAM. If the original PRAM has
) (=) parallel runtime and, (=) work, then the same program has
) (=) · log= span and, (=) work in a binary-fork-join model. More-
over, if the algorithm obliviously realizes some functionality F on
a CREW PRAM, the same algorithm obliviously realizes F in a
binary-fork-join model too. More details on data obliviousness are
in our online full version [50].

2 BUTTERFLY�SORT
To sort the input array, our CREW binary fork-join algorithm
B���������S��� �rst applies an oblivious random permutation to
the input elements, and then apply any (insecure) comparison-based
sorting algorithm such as SPMS [30] to the permuted array. It is
shown in [4] that this will give an oblivious sorting algorithm.

Our randompermutation algorithm,B���������R������P������
(B�RP������) builds on an algorithm for this problem given in
Asharov et al. [4] to obtain improved bounds as well as cache-
agnostic cache-e�ciency. To attain an oblivious random permu-
tation, a key step in [4] is to randomly assign elements to bins of
/ = l (log=) capacity but without leaking the bin choices — we
call this primitive oblivious random bin assignment (ORBA). For
simplicity, we shall assume / = ⇥(log2 =).
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In Section 2.1 we describe our improvements to the ORBA al-
gorithm in [4]. In Section 2.2 we describe B���������R������
P������ and B���������S���.

2.1 Oblivious Random Bin Assignment: ORBA
We �rst give a brief overview of an ORBA algorithm by Asharov
et al. [4]. By using an algorithm for parallel compaction in [5],
this ORBA algorithm in [4] can be made to run with $ (= log=)
work and in $ (log= · log log=) parallel time on an EREW PRAM
(though not on binary fork-join). In this ORBA algorithm [4], the =
input elements are divided into V = 2=// bins and each bin is then
padded with //2 �ller elements to a capacity of / . We assume that
V is a power of 2. Each real element in the input chooses a random
label from the range [0, V � 1] which expresses the desired bin.
The elements are then routed over a 2-way butter�y network of
⇥(log=) depth, and in each layer of the butter�y network there are
V bins, each of capacity/ . In every layer 8 of the network, input bins
from the previous layer are paired up in an appropriate manner, and
the real elements contained in the two input bins are obliviously
distributed to two output bins in the next layer, based on the 8-th
bit of their random labels. For obliviousness, the output bins are
also padded with �ller elements to a capacity of / .

Our ‘meta-algorithm’M����ORBA saves an $ (log log=) factor
in the PRAM running time while retaining the$ (= log=) work. For
this we use a W = ⇥(log=)-way butter�y network, with W a power
of 2, rather than 2-way. Therefore, in each layer of the butter�y
network, groups of ⇥(log=) input bins from the previous layer are
appropriately chosen, and the real elements in the log= input bins
are obliviously distributed to ⇥(log=) output bins in the next layer,
based on the next unconsumed ⇥(log log=) bits in their random
labels. Again, all bins are padded with �ller elements to a capacity
of / so the adversary cannot tell the bin’s actual load. To perform
this ⇥(log=)-way distribution obliviously, it su�ces to invoke the
AKS construction [2] $ (1) number of times.

We now analyze the performance of this algorithm.

• For $ (1) invocations of AKS on ⇥(log=) bins each of size
/ = ⇥(log2 =): Total work is $ (log3 = · log log=) and the
parallel time on an EREW PRAM is $ (log log=).

• For computing a single layer, with V/⇥(log=) = 2=/⇥(log3 =)
subproblems: Total work for a single layer is $ (= · log log=)
and EREW PRAM time remains $ (log log=).

• The ⇥(log=)-way butter�y network has ⇥(log=/log log=)
layers, henceM����ORBA performs $ (= log=) total work,
and runs in $ (log=) parallel time on an EREW PRAM.

Over�ow analysis. OurM����ORBA algorithm has deterministic
data access patterns that are independent of the input. However, if
some bin over�ows its capacity due to the random label assignment,
the algorithm can lose real elements during the routing process.
Asharov et al. [4] showed that for the special case W = 2, the proba-
bility of over�ow is upper bounded by exp(�⌦(log2 =)) assuming
that the bin size / = log2 =. Suppose now that W = 2A , then the
elements in the level-8 bins in our M����ORBA algorithm corre-
spond exactly to the elements in the level-(A · 8) bins in the ORBA
algorithm in [4]. Since the failure probability exp(�⌦(log2 =)) is
negligibly small in =, we have that for / = log2 = and W = ⇥(log=),

our M����ORBA algorithm obliviously realizes random bin assign-
ment on an EREW PRAM with $ (= log=) total work and $ (log=)
parallel runtime with negligible error.

We have now improved the parallel runtime by a log log= factor
relative to Asharov et al. [4] (even when compared against an
improved version of their algorithm that uses new primitives such
as parallel compaction [5]) but this is on an EREW PRAM. We
will now translate this into R���ORBA, our cache-agnostic, binary
fork-join implementation.

2.1.1 R���ORBA. We will assume a tall cache (" = ⌦(⌫2)) for
R���ORBA, our recursive cache-agnostic, binary fork-join imple-
mentation of our M����ORBA algorithm. We will also assume
" = ⌦(=1+n ) for any given arbitrarily small constant n > 0. In the
following we will use n = 2 for simplicity, i.e.," = ⌦(log3 =).

In R���ORBA, we implementM����ORBA by recursively solvingp
V subproblems, each with

p
V bins: in each subproblem, we shall

obliviously distribute the real elements in the
p
V input bins into

p
V

output bins, using the (1/2) log V most signi�cant bits (MSBs) in
the labels. After this phase, we use a matrix transposition to bring
the

p
V bins with the same (1/2) · log V MSBs together — thesep

V bins now belong to the same subproblem for the next phase.
where we recursively solve each subproblem de�ned above: for each
subproblem, we distribute the

p
V bins into

p
V output bins based

on the (1/2) · log V least signi�cant bits in the elements’ random
labels. Since the matrix transposition for . bins each of capacity
/ = ⇥(log2 =) can be performed with$ (. ·//⌫) cache misses, and
$ (log(. · / )) = $ (log=) span, we have the following recurrences
that characterize the cost of R���ORBAwhere. denotes the current
number of bins, and & (. ) and ) (. ) denote the cache complexity
and span, respectively, to solve a subproblem containing . bins:

& (. ) = 2
p
. ·& (

p
. ) +$ ((. · log2 =)/⌫)

) (. ) = 2 ·) (
p
. ) +$ (log(. · log2 =))

The base conditions are as follows. Since " = ⌦(log3 =) each
individual ⇥(log=)-way distribution instance �ts in cache and in-
curs $ ((1/⌫) log3 =) cache misses. Hence we have the base case
& (. ) = $ (. log2 =/⌫) when . log2 =  " . For the span, each
individual ⇥(log=)-way distribution instance works on $ (log3 =)
elements and has$ (log2 log=) span under binary forking, achieved
by forking and joining log3 = tasks at each level of the AKS sorting
network.

Therefore, we have that for V = 2=// : & (V) = $ ((=/⌫) log" =)
and) (V) = $ (log= · log log=). Finally, if we want" = ⌦(log1+n =)
rather than" = ⌦(log3 =), we can simply parametrize the bin size
to be log1+n/2 = and let W = logn/2 =. This gives rise to the following
lemma.

L���� 2.1. Algorithm R���ORBA has cache-agnostic caching
complexity$ ((=/⌫) log" =) provided the tall cache has" = ⌦(log1+n =),
for any given positive constant n . The algorithm performs $ (= log=)
work and has span $ (log= · log log=).
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2.2 B���������R������P������ and
B���������S���

From ORBA’s output (M����ORBA or R���ORBA) we obtain V bins
where each bin contains real and �ller elements. To obtain a random
permutation of the input array, it is shown in [4, 19] that it su�ces
to do the following: Assign a (log= · log log=)-bit random label to
each element, and sort the elements within each bin based their
labels using bitonic sort, where all �ller elements are treated as
having the label 1 and thus moved to the end of the bin. Finally,
remove the �ller elements from all bins, and output the result.

We will sort the elements in each bin by their labels with bitonic
sort (with a cost of $ (log log=) for each comparison due to the
large values for the labels). We have V parallel sorting problems on
⇥(log2 =) elements, where each element has an$ (log= · log log=)-
bit label. Each sorting problem can be performed with$ (log4 log=)
span and$ (log2 =·log3 log=) work in binary fork-join using bitonic
sort by paying a $ (log log=) factor for the work and span for each
comparison due to the$ (log= · log log=)-bit labels. The overall cost
for this step across all subproblems is$ (= · log3 log=) work and the
span remains $ (log4 log=). Since each bitonic sort subproblem �ts
in cache, the caching cost is simply the scan bound $ (=/⌫). These
bounds are dominated by our bounds for R���ORBA, so this gives
an algorithm to generate a random permutation with the same
bounds as R���ORBA.

Finally, once the elements have been permuted in random order,
we can use any insecure comparison-based sorting algorithm to sort
the permuted array. We use SPMS sort [30], the best cache-agnostic
sorting algorithm for the binary fork-join model (CREW) to obtain
B���������S���. Thus we achieve the bounds in Theorem 1.1 in the
introduction, and we have a data-oblivious sorting algorithm that
matches the performance bounds for SPMS [30], the current best
insecure algorithm in the cache-agnostic binary fork-join model.

3 PRACTICAL AND EREW SORTING
So far, our algorithm relies on AKS [2] and the SPMS [30] algorithm
as blackbox primitives and thus is not suitable for practical imple-
mentation. We now describe a potentially practical variant that is
self-contained and implementable, and gets rid of both AKS and
SPMS. To achieve this, we make two changes:

• Bitonic Sort. Our e�cient method uses bitonic sort within it,
so we �rst we give an e�cient cache-agnostic, binary fork-
join implementation of bitonic sort. A naïve binary fork-join
implementation of bitonic sort would incur$ ((=/⌫) · log2 =)
cache misses and $ (log3 =) span (achieved by forking and
joining the tasks in each layer in the bitonic network). In our
binary fork-join bitonic sort, the work remains $ (= · log2 =)
but the span reduces to$ (log2 = · log log=) and the caching
cost reduces to$ ((=/⌫)·log" =·log(=/")). (See Section 3.1.)

• Butter�y Random Sort. Second, we present a simple algo-
rithm to sort a randomly permuted input. This algorithm
B���������R������S��� (or B�RS���) uses the same struc-
ture as B�RP������ but uses a sorted set of pivots to de-
termine the binning of the elements. Outside of the need
to initially sort $ (=/log=) random pivot elements, this al-
gorithm has the same performance bounds as B�RP������.
(See Section 3.2.)

We obtain a simple sorting algorithm, which we call B���������
B���������S��� or BB�S��� by running B�RP������ followed
by B�RS��� on the input: The �rst call outputs a random permu-
tation of the input and the second call sorts this sequence since
B�RS��� correctly sorts a randomly permuted input. We highlight
two implementation of BB�S���:

Practical BB-Sort. By using our improved bitonic sort algo-
rithm in place of AKS networks for small subproblems in BB�S���
(both within B�RP������ and B�RS���), we obtain a simple and
practical data-oblivious sorting algorithm that has optimal cache-
agnostic cache complexity if" = ⌦(log2+n =) and incurs only an
$ (log log=) blow-up in work and an$ (log=) blow-up in span. This
algorithm has small constant factors, with each use of bitonic sort
contributing a constant factor of 1/2 to the bounds for the number
of comparisons made.

EREW BB-Sort. For a more e�cient EREW binary fork-join
sorting algorithm, we retain the AKS network in the butter�y com-
putations in both B�RP������ and B�RS���. We continue to sort
the pivots at the start of B�RS��� with bitonic sort. Thus the cost
of the overall algorithm is dominated by the cost to sort the =/log=
pivots using bitonic sort, and we obtain a simple self-contained
EREW binary fork-join sorting algorithm with optimal work and
cache-complexity and $̃ (log2 =) span.

Theorem 3.1 states the bounds on these two variants. In the rest
of this section we brie�y discuss bitonic sort in Section 3.1 and then
we present and analyze B�RS��� in Section 3.2.

T������ 3.1. For" = ⌦(log2+n =):
(i) Practical BB-Sort runs in$ (= log= log log=) work, cache-agnostic
caching cost &B>AC (=), and $ (log2 = · log log=) span.
(ii) EREW BB-Sort runs in$ (,B>AC (=)) work, cache-agnostic caching
cost $ (&B>AC (=)), and $ (log2 = · log log=) span.
Both algorithms are data oblivious with negligible error.

Table 3 lists the bounds for our sorting and permuting algorithms.

3.1 Binary Fork-Join Bitonic Sort
Bitonic sort has log= stages of B�������M����. We observe that
B�������M���� is a butter�y network and hence it has a binary
fork-join algorithmwith$ (= log=)work,$ (&B>AC (=)) caching cost,
and $ (log= log log=) span. Using this within the bitonic sort al-
gorithm we obtain the following theorem. (Details are in the full
write-up [50].)

T������ 3.2. There is a data oblivious cache-agnostic binary
fork-join implementation of bitonic sort that can sort = elements in
$ (= log2 =) work,$ (log2 = · log log=) span, and$ ((=/⌫) · log" = ·
log(=/")) cache complexity, when = > " � ⌫2.

3.2 Sorting a Random Permutation:
B���������R������S��� (B�RS���)

As mentioned, B���������R������S��� (B�RS���) uses the same
network structure as R���ORBA. During pre-processing, we pick
and sort a random set of pivot elements. Initially, elements in the
input array I are partitioned in bins containing ⇥(log3 =) elements
each. Then, the elements traverse a W-way butter�y network where
W = ⇥(log=) and is chosen to be a power of 2: at each step, we use
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Table 3: Permute & Sort. e$ hides a single log log= factor. All algorithms except B�RS��� are data-oblivious and all have negligible error,
except B�������S���, which is deterministic. Optimal bounds for general sorting (after the �rst two rows) are displayed in a box.

Algorithm Function work span cache

B�RP������ Outputs random permutation of input array $ (= log=) e$ (log=) $ ( =⌫ log" =)

B�RS��� Sorts a randomly permuted input array $ (= log=) e$ (log=) $ ( =⌫ log" =)

B���������S��� Sorts input array using B�RP������ and SPMS $ (= log=) e$ (log=) $ ( =⌫ log" =)

F�������� B�������S��� Based on deterministic sorting network $ (= log2 =) e$ (log2 =) $ ( =⌫ log" = · log =
" )

BB�S��� Sorts using B�RP������ and B�RS��� Practical: e$ (= log=) e$ (log2 =) $ ( =⌫ log" =)

EREW: $ (= log=) e$ (log2 =) $ ( =⌫ log" =)

sorting to distribute a collection of W bins at the previous level into
W bins at the next level. Instead of determining the output bin at
each level by the random label assigned to an element as in R���
ORBA, here each bin has a range determined by two pivots, and
each element will be placed in the bin whose range contains the
element’s value. Also, in R���ORBAwe needed to use �ller elements
to hide the actual load of the intermediate bins. B�RS��� does not
need to be data-oblivious since its input is a random permutation of
the original input, hence we do not need �ller elements in B�RS���.
Pivot selection. The pivots are chosen in a pre-processing phase,
so that we can guarantee that every bin has $ (log3 =) elements
with all but negligible failure probability, as follows.

(1) First, generate a sample ⇧ of size close to =/log= from the
input array I by sampling each element with probability
1/log=. We then sort ⇧ using bitonic sort.

(2) In the sorted version of ⇧, every element whose index is a
multiple of log2 = is moved into a new sorted array pivots.
Pad the pivots array with an appropriate number of1 pivots
such that its length plus 1 would be a power of 2.

Using a Cherno� bound it is readily seen that the size of ⇧ is
(=/log=) ± =3/4 except with negligible probability. We choose
every (log2 =)-th element after sorting ⇧ to form our set of pivots.
Hence A , the number of pivots, is =

log3 =
+ > (=/log3 =) except with

negligible probability.
By Theorem 3.2, sorting⇥(=/log=) samples incurs$ (= log=) to-

tal work,$ ((=/⌫) log" =) cache complexity, and span$ (log2 = log log=)
— this step will dominate the span of our overall algorithm. The
second step of the above algorithm can be performed using pre�x-
sum, incurring total work$ (=), cache complexity$ (=/⌫), and span
$ (log=).
Sort into bins. Suppose that A � 1 pivots were selected above;
the pivots de�ne a way to partition the values being sorted into
A roughly evenly loaded regions, where the 8-th region includes
all values in the range (pivots[8 � 1], pivots[8]] for 8 2 [A ]. For
convenience, we assume pivots[0] = �1 and pivots[A ] = 1. We
�rst describe algorithm R���SBA (Recursive Sort Bin Assignment),
which partially sorts the randomly permuted input into a sequence
of bins, and then we sort within each bin to obtain the �nal sorted
output. This is similar to applying R���ORBA followed by sorting
within bins in B�RP������.

In algorithm R���SBA the input array I will be viewed as A =
⇥(=/log3 =) bins each containing =/A = ⇥(log3 =) elements. The
R���SBA algorithm �rst partitions the input bins into

p
A groups

each containing
p
A consecutive bins. Then, it recursively sorts each

group using appropriate pivots among the precomputed pivots. At
this point, it applies a matrix transposition on the resulting bins.
After the matrix transposition all elements in each group of

p
A

consecutive bins will have values in a range between a pair of
pivots

p
A apart in the sorted list of pivots, and this group is in its

�nal sorted position relative to the other groups. Now, for a second
time, the algorithm recursively sorts each group of consecutive

p
A

bins, using the appropriate pivots and this will place each element
in its �nal bin in sorted order. Our algorithm also guarantees that
the pivots are accessed in a cache-e�cient manner.

We give a more formal description in R���SBAW (I, pivots). Recall
that W = ⇥(log=) is the branching factor in the butter�y network.
Final touch. To output the fully sorted sequence, BB�S��� simply
applies bitonic sort to each bin in the output of R���SBA and outputs
the concatenated outcome. The cost of this step is asymptotically
absorbed by R���SBA in all metrics.
Over�ow analysis. It remains to show that no bin will receive
more than ⇠ log3 = elements for some suitable constant ⇠ > 1
except with negligible probability.

Let us use the termM����SBA to denote the non-recursive meta-
algorithm for R���SBA. For over�ow analysis, we can equivalently
analyze M����SBA. Consider a collection of W = ⇥(log=) bins in
the 9-th subproblem in level 8 � 1 of M����SBA whose contents
are input to a bitonic sorter. Let us refer to this as group (8 � 1, 9).
These elements will be distributed into W bins in level 8 using the
W � 1 pivots with label pair (8 � 1, 9). The elements in these W
bins in group (8 � 1, 9) came from W8�1 bins in the �rst level, each
containing exactly log2 = elements from input array I. Let * be the
set of elements in these W8�1 bins in the �rst level, so size of * is
D = W8�1 · =/A = W8�1 · ⇥(log3 =).

Let us �x our attention on a bin1 in the 8-th level into which some
of the elements in group (8 � 1, 9) are distributed after the bitonic
sort. Consider the pair of pivots ?,@ that are used to determine
the contents of bin 1 (we allow ? = �1 and @ = 1 to account
for the �rst and last segment). This pair of pivots is used to split
the elements in the level 8 � 1 group (8 � 1, 9) hence the pivots ?
and @ are A/W8�1 apart in the sorted sequence pivots[1..A ]. We also

Paper Presentation SPAA ’21, July 6–8, 2021, Virtual Event, USA

379



know that the number of elements in Iwith ranks between any two
successive pivots in pivots[1..A ] is at most log3 = +> (log3 =) except
with negligible probability. Hence the number of elements in the
input array I that have ranks between the ranks of these two pivots
is : = (A/W8�1) · log3 =. Recalling that A  2=/log3 = (except with
negligible probability), we have : = (A/W8�1) · log3 =  2=/(W8�1)
except with negligible probability.

Let.1 be the number of elements in bin1. These are the elements
in * that have rank between the ranks of ? and @. The random
variable .1 is binomially distributed on D = |* | elements with
success probability at most :/= = 2/W8�1. Hence, E[.1 ]  D ·:/= =
⇥(log3 =) and using Cherno� bounds, .1 < ⇥(log3 =) + > (log3 =)
with all but negligible probability.

R���SBAW (I, pivots)
Input: The input array I contains V bins where V is assumed
to be a power of 2. The array pivots contains V � 1 number of
pivots that de�ne V number of regions, where the 8-th region
is (pivots[8 � 1], pivots[8]]. Each element in I will go to an
output bin depending on which of the V regions its value falls
into.

Algorithm: If V  W , use bitonic sort to assign the input array
I to a total of W bins based on pivots. Return the resulting list
of V bins.

Else, proceed with the following recursive algorithm.
(1) Divide the input array I into

p
V partitions where each par-

tition contains exactly
p
V consecutive binsa Henceforth

let I9 denote the 9-th partition.
(2) Let pivots0 be constructed by taking every pivot in pivots

whose index is a multiple of
p
V .

In parallel: For each 9 2 [
p
V], let Bin91, . . . ,Bin

9p
V
 

R���SBAW (� 9 , pivots0).
(3) Let Bins be a

p
V ⇥

p
V matrix where the 9-th row is the

list of bins Bin91, . . . ,Bin
9p
V
. Note that each element in the

matrix is a bin. Now, perform a matrix transposition:
TBins Bins) .
Henceforth, let TBins[8] denote the 8-th row of TBins
consisting of

p
V bins,

(4) In parallel: For 8 2 [
p
V]:

letgBin81, . . . ,gBin8pV  R���SBAW (TBins[8], pivots[(8�
1)
p
V + 1..8 ·

p
V � 1])

(5) Return the concatenationgBin11, . . . ,gBin1pV ,gBin21, . . . ,gBin2pV ,
. . ., . . ., gBin

p
V

1 , . . ., gBin
p
Vp
V
.

aFor simplicity, we assume that V is a perfect square in every recursive call.

Performance analysis. By the above over�ow analysis we can
assume that if any bin in R���SBA receives more than ⇠ log3 =
elements for some suitable constant ⇠ > 1, the algorithm fails,
since we have shown above that this happens only with negligibly
small in = probability.

For the practical version, we replace the AKS with bitonic on
problems of size⇥(log3 =), the total work becomes$ (= log= log log=),
and the span becomes $ (log= log log= log log log=).

To see the cache complexity, observe that Line 2 requires a se-
quential scan through the array pivots that is passed to the current
recursive call, writing down V � 1 number of pivots, and makingp
V copies of them to pass one to each of the

p
V subproblems. Now,

Line 4 divides pivots into
p
V equally sized partitions, removes the

rightmost boundary point of each partition, passes each partition
(now containing

p
V � 1 pivots) to one subproblem. Both Lines 2

and 4 are upper bounded by the scan bound &scan (V · ⇥(log3 =)),
and so is the matrix transposition in Line 3. Therefore, R���SBA
achieves optimal cache complexity similar to R���ORBA, but now
assuming that" = ⌦(log4 =).
Our practical variant. Putting everything all together, in our prac-
tical variant, we use RB�P������ (instantiated with bitonic sort for
each poly-logarithmically sized problem), and similarly in R���SBA
and in the �nal sorting of the bins. The entire algorithm — out-
side of sorting the $ (=/log=) pivots — incurs $ (= log= log log=)
total work, $ (log= log log= log log log=) span, and optimal cache
complexity $ ((=/⌫) log" =). When we add the cost of sorting the
pivots, the work and caching bounds remain the same but the span
becomes$ (log2 = · log log=). The constants hidden in the big-O are
small: for total work, the constant is roughly 18; for cache complex-
ity, the constant is roughly 6; and for span, the constant is roughly
1.
Improving the requirement on " . We can improve the con-
straint on" to" = ⌦(log2+n =) for an arbitrarily small n 2 (0, 1),
if we make the following small modi�cations:
(1) Choose every (log=)1+n -th element from the samples as a pivot;

and let W = ⇥(log=). Note that in this case, the total number of
pivots is A = ⇥(=/log2+n =).

(2) Earlier, we divided the input into A bins each with =/A elements;
but now, we divide the input array into A ·W bins, each �lled with
=/(A ·W) = ⇥(log1+n =) elements. Because there areW timesmore
bins than pivots now, in the last level of the meta-algorithm,
we will no longer have any pivots to consume – but this does
not matter since we can simply sort each group of W bins in the
last level.
Finally, for the EREW version, we retain the AKS networks for

the ?>;~;>6=-size subproblems, so the only step that causes an
increase in performance bounds is the use of bitonic sort to sort
=/log= pivots. Using our EREW binary fork-join algorithm for this
step, we achieve the bounds stated in Theorem 3.1.

4 OBLIVIOUS, BINARY FORK-JOIN
SIMULATION OF PRAMS

We show that our new oblivious sorting algorithm gives rise to
oblivious simulation of CRCWPRAMs in the binary fork-joinmodel
with non-trivial e�ciency guarantees. In Section 4.1 we give an
oblivious simulation of PRAM in the binary fork-join model that is
only e�cient if the space B consumed by the original CRCW PRAM
is small (e.g., roughly comparable to the number of cores ?). Then
in Section 4.2, we present another simulation that yields better
e�ciency when the original PRAM may consume large space.
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4.1 Oblivious, Binary Fork-Join Simulation of
Space-Bounded PRAMs

We give an oblivious simulation of PRAM in the binary fork-join
model that is only e�cient if the space B consumed by the original
CRCW PRAM is small (e.g., roughly comparable to the number of
cores ?). Our oblivious simulation is based on a sequential cache-
e�cient emulation of a PRAM step given in [21], which in turn is
based on a well-known emulation of a ?-processor CRCW PRAM
on an EREW PRAM in$ (log?) parallel time with ? processors (see,
e.g., [43]). To ensure data-obliviousness, we will make use of the
following well-known oblivious building block, send-receive:3.

send-receive: The input has a source array and a destination array.
The source array represents = senders, each of whom holding a key
and a value; it is promised that all keys are distinct. The destination
array represents =0 receivers each holding a key. Each receiver
needs to learn the value corresponding to the key it is requesting
from one of the sources. If the key is not found, the receiver should
receive ?. (Note that although each receiver wants only one value,
a sender can send its values to multiple receivers.)

The full paper [50] explains how to accomplish oblivious send-
receive within the sorting bound in the binary fork-join model.
Using this primitive, the PRAM simulation on binary fork-join
works as follows. We separate each PRAM step into a read step,
followed by a local computation step (for which no simulation is
needed), followed by a write step. Suppose that in some step of the
original CRCW PRAM, each of the ? processors has a request of the
form (read, addr8 , 8) or (write, addr8 , E8 , 8) where 8 2 [?], indicates
that either it wants to read from logical address addr8 or it wants
to write E8 to addr8 .

(1) For a read step, using oblivious send-receive, every request
obtains a fetched value from the memory array.

(2) In a write step we need to perform the writes to the memory
array. To do this, we �rst perform a con�ict resolution step in
which we suppress the duplicate writes to the same address
in the incoming batch of ? requests. Moreover, if multiple
processors want to write to the same address, the one that is
de�ned by the original CRCW PRAM’s priority rule is pre-
served; and all other writes to the same address are replaced
with �llers. This can be accomplished with $ (1) oblivious
sorts. Now, with oblivious send-receive, every address in the
memory array can be updated with its new value.

Thus we have the following theorem.

T������ 4.1 (S������������ PRAM����OBFJ). Let" > log1+n B
and B � " � ⌫2. Any ?-processor CRCW PRAM algorithm that uses
space at most B can be converted to a functionally equivalent, oblivious
and cache-agnostic algorithm in the binary fork-join model, where
each parallel step in the CRCW can be simulated with$ (,sort (?+B))
work, $ (&sort (? + B)) cache complexity, and $ ()sort (? + B)) span.

Using the above theorem, any fast and e�cient PRAM algorithm
that uses linear space (and many of them do) will give rise to an
oblivious algorithm in the cache-agnostic binary fork-join model
with good performance. In Section 5 we will use this theorem to

3The send-receive abstraction is often referred to as oblivious routing in the data-
oblivious algorithms literature [15, 17, 18]. We avoid the name “routing” because of its
other connotations in the algorithms literature.

obtain new results for graph problems such as tree contraction,
graph connectivity, and minimum spanning forest — for all three
problems, the performance bounds of our new data-oblivious al-
gorithms improve on the previous best results even for algorithms
that need not be data oblivious.

4.2 Oblivious, Binary Fork-Join Simulation of
Large-Space PRAMs

In this section, we describe a simulation strategy that achieves better
bounds when the PRAM’s space can be large. This is obtained by
combining our Butter�y Sort with the prior work of Chan et al. [18].
We assume familiarity with [18] here; the full paper [50] has an
overview of this prior result.

To e�ciently simulate any CRCW PRAM as a data-oblivious,
binary fork-join program, we make the following modi�cations
to the algorithm in [18]. First, we switch several core primitives
they use to our cache-agnostic, binary fork-join implementations:
we replace their oblivious sorting algorithm with our new sorting
algorithm in the cache-agnostic, binary fork-join model; and we
replace their oblivious “send-receive”, “propagation”, and “aggrega-
tion” primitives with our new counterparts in the cache-agnostic,
binary fork-join model (see Section 5).

Second, we make the following modi�cations to improve the
cache complexity:
• We store all the binary-tree data structures (called ORAM trees)
in Chan et al. [18] in an Emde Boas layout. In this way, access-
ing a tree path of length $ (log B) incurs only $ (log⌫ B) cache
misses.

• The second modi�cation is in the “simultaneous removal of
visited elements” step in the maintain phase of the algorithm
in [18]. In this subroutine, for each of $ (log B) recursion levels:
each of the ? processors populates a column of a (log B) ⇥ ?
matrix, and then oblivious aggregation is performed on each
row of the matrix. To make this cache e�cient, we can have
each of the ? threads populate a row of a ? ⇥ (log B) matrix,
and then perform matrix transposition. Then we then apply
oblivious aggregation to each row of the transposed matrix.
Plugging in these modi�cations to Chan et al. [18] we obtain the

following theorem:

T������ 4.2 (PRAM����OBFJ: S��������� �� CRCW PRAM
�� O��������, ������ ���������). Suppose that " > log1+n B ,
B � " � ⌫2, and B � ? . Any ?-processor CRCW PRAM using at
most B space can be converted to a functionally equivalent, oblivious
program in the cache-agnostic, binary fork-join model, where each
parallel step in the CRCW can be simulated with $ (? log2 B) total
work,$ (log B ·log log B) span, and$ (log B ·((?/⌫)·log" ?+? ·log⌫ B))
cache complexity.

P����. The total work is the same as Chan et al. [18] since none
of our modi�cations incur asymptotically more work.

Our span matches the PRAM depth of Chan et al. [18], that is,
$ (log B log log B), because all of our primitives, including sorting, ag-
gregation, propagation, and send-receive incur atmost$ (log B log log B)
span. The bottleneck in PRAM depth of Chan et al. [18] comes not
from the sorting/aggregation/propagation/send-receive, but from
having to sequentially visit$ (log B) recursion levels during the fetch
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phase, where for each recursion level, we need to look at a path in
an ORAM tree of length $ (log B), and �nd the element requested
along this path — this operation takes $ (log log B) PRAM depth
as well as $ (log log B) span in a binary fork-join model. Finally,
the new matrix transposition modi�cation in the “simultaneous
removal” step does not additionally increase the span.

For cache complexity, there are two parts, the part that comes
from log B number of oblivious sorts on $ (?) number of elements
— this incurs $ ((?/⌫) · log" ? · log B) cache misses in total. The
second part comes from having to access ? · log B ORAM tree paths
in total where each path is of length$ (log B). If all the ORAM trees
are stored in Emde Boas layout, this part incurs$ (? · log B · log⌫ B)
cache misses. These two parts dominate the cache complexity, and
the caching cost of all other operations is absorbed by the sum of
these two costs. ⇤

This result can be viewed as a generalization of the prior best
Oblivious Parallel RAM (OPRAM) result [17, 18]. The prior re-
sult [17, 18] shows that any ?-processor CRCW PRAM can be sim-
ulated with an oblivious CREW PRAM where each CRCW PRAM
step is simulated with ? log2 B total work and $ (log B log log B) par-
allel runtime (without the binary-forking requirement). Essentially
our result matches the best known result, and we further show
that the extra binary-forking requirement does not incur additional
overhead during this simulation. We additionally achieve cache-
agnostic cache e�ciency: The prior work [17, 18] also did not
explicitly consider cache complexity.

5 APPLICATIONS
We sketch our results for various applications of our new sorting
algorithm, assuming knowledge of results for the non-oblivious
case. (Self-contained descriptions of the algorithms are in the full
paper [50].) All of our data-oblivious algorithms either match or
outperform the best known bounds for their insecure counterparts
(in the cache-agnostic, binary fork-join model). Euler tour and tree
contraction were also considered in data-oblivious algorithms [7,
39, 40] but the earlier works are inherently sequential.

Basic data-oblivious primitives. Aggregration and propaga-
tion in a sorted array were primitives used in the simulation algo-
rithms in Section 4.2. These can be readily formulated as segmented
pre�x sums and can be computed data obliviously within the scan
bound ($ (log=) span,$ (=) work and$ (=/⌫) cache-agnostic cache
misses for an =-array.) The third primitive used in Section 4.2, send-
receive, can be performed obliviously with a constant number of
sorts and scans and hence achieves the sort bound. (See the full
paper [50] for details.)

List Ranking and Applications. To realize list ranking oblivi-
ously, we �rst apply R���OP��� to randomly permute the input
array and then apply a non-oblivious list ranking algorithm [26] to
match the bounds for the insecure case:$ (,B>AC (=)),$ (&B>AC (=)),
and $ ()B>AC (=) · log=).

For Euler tour in a unrooted tree we use the insecure algo-
rithm [26, 43] that reduces the problem to list ranking. In this
reduction there is an insecure step where each edge (D, E) needs
to locate the successor of edge (E,D) in E ’s circular adjacency list.
This can be seen as an instance of send-receive and hence can be
performed obliviously within the sort bound, so we can compute

the Euler tour obliviously with the same bounds as list ranking.
Once we have an Euler we can compute common tree functions
(e.g., pre and post order numbering and depth of each node) for any
given root with list ranking. Thus we obtain the bounds stated in
part (8) of Theorem 5.1 .

Results Using PRAM Simulation. Using our PRAM simulation
results in Section 4.2 we obtain oblivious algorithms with improved
bounds for over what is generally claimed for the insecure algo-
rithms. Our data-oblivious algorithms are randomized due to the
use of our randomized sorting algorithm; for the prior best insecure
algorithms it su�ces to use the SPMS sorting algorithm [30] and
therefore, they are deterministic (but not data oblivious).
Tree contraction. The EREW PRAM tree contraction algorithm of
Kosaraju and Delcher [44] runs in log= phases where the 8-th phase,
8 � 1, performs a constant number of parallel steps with$ (=/28�1)
work on $ (=/28�1) data items, for a constant 2 > 1. Further, the
rate of decrease is �xed and data independent, and at the end of
each phase, every memory location knows whether it is still needed
in future computation. Since the memory used is geometrically
decreasing in successive phases, a constant fraction of the memory
locations will be no longer needed at the end of each phase.

We now apply our earlier PRAM simulation result in Theorem 4.1
in a slightly non-blackbox fashion: We simulate each PRAM phase,
always using the actual number of processors needed in that step,
which is the work for that step in the work-time formulation. Addi-
tionally, we introduce the following modi�cation: at the end of each
phase, we use oblivious sort move the memory entries no longer
needed to the end, e�ectively removing them from the future com-
putation. This gives the �rst result in in Theorem 5.1 below.
Connected components andminimumspanning forest.These
two problems can be solved on the PRAM on an =-node,<-edge
graph in) (=) = $ (log=) parallel time and with$ (<+=) space and
number of processors [49, 53]. Hence using Theorem 4.1 for each
of the ) (=) steps we achieve the bounds stated in part (88) of the
theorem below. This improves over the generally cited bounds for
the insecure case, which are obtained through explicit algorithms
and have span that is large (i.e. slower) by a log= factor.

T������ 5.1. Suppose that" > log1+n (< +=) and< += � " �
⌫2. Then, we have the following bounds for oblivious cache-agnostic,
binary fork-join algorithms.

(i) List ranking, Euler tour and tree functions, and tree contraction
in $ (,sort (=)) work, $ (&sort (=)) cache complexity, and $ (log= ·
)sort (=)) span, where = is the size of the input.

(ii) Connected components and minimum spanning forest in a
graph with = nodes and < edges in $ (log= ·,sort (< + =)) work,
$ (log= ·&sort (< +=)) cache complexity, and$ (log= ·)sort (< +=))
span.
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