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Abstract

Understanding the interactions of vegetation and soil water under varying hydrologi-
cal conditions is crucial to aid quantitative assessment of land-use sustainability for
maintaining water supply for humans and plants. Isolating and estimating the volume
and ages of water stored within different compartments of the critical zone, and the
associated fluxes of evaporation, transpiration, and groundwater recharge, facilitates
quantification of these soil-plant-water interactions and the response of eco-
hydrological fluxes to wet and dry periods. We used the tracer-aided ecohydrological
model EcH,0-iso to examine the response of water ages of soil water storage,
groundwater recharge, evaporation, and root-uptake at a mixed land use site, in
northeastern Germany during the drought of 2018 and in the following winter
months. The approach applied uses a dynamic vegetation routine which constrains
water use by ecological mechanisms. Two sites with regionally typical land-use types
were investigated: a forested site with sandy soils and a deep rooting zone and a
grassland site, with loamier soils and shallower rooting zone. This results in much
younger water ages (<1 year) through the soil profile in the forest compared to the
grass, coupled with younger groundwater recharge. The higher water use in the for-
est resulted in a more pronounced annual cycle of water ages compared to the more
consistent water age in the loamier soil of the grasslands. The deeper rooting zone of
the forested site also resulted in older root-uptake water usage relative to soil evapo-
ration, while the grassland site root-uptake was similar to that of soil evaporation.
Besides more dynamic water ages in the forest, replenishment of younger soil waters
to soil storage was within 6 months following the drought (cf. >8 months in the grass-
land). The temporal evaluation of the responsiveness of soil and vegetation interac-
tions in hydrologic extremes such as 2018 is essential to understand changes in
hydrological processes and the resilience of the landscape to the longer and more

severe summer droughts predicted under future climate change.
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1 | INTRODUCTION

Many regions worldwide have been under increasing duress from
warmer, drier summers, with long-term projections showing likely future
exacerbation of these conditions (King & Karoly, 2017; Quesada,
Vautard, Yiou, Hirschi, & Seneviratne, 2012). Longer-term climatic pro-
jections indicate more frequent droughts, which will negatively impact
agricultural productivity with increased annual soil evaporation and tran-
spiration (“green” water fluxes), with a complementary reduction in
groundwater recharge (“blue” water fluxes) and annual water availability
(Iglesias & Garrote, 2015; Orth & Destouni, 2018). In Europe, with
increased occurrence of extreme heatwaves and long-term trends
of decreasing soil moisture (Christidis, Jones, & Stott, 2014; Hanel
et al., 2018; Schoetter, Cattiaux, & Douville, 2014), it is necessary to
quantitatively examine how different species, vegetation communities,
and land management strategies affect water partitioning to balance
increased crop and timber production with reductions in blue fluxes
and while maintaining ecosystem health (Teuling et al., 2010). There
is a need to continuously assess the recovery time of different
species/communities and soils under recurrent droughts to identify
regions with high sustainability risk due to limited availability of green
water sources (lvits, Horion, Fensholt, & Cherlet, 2014; Schwalm
et al,, 2017). Consequently, future land use and agricultural planning will
require an evidence base to inform the prioritization of vegetation man-
agement strategies. These strategies are needed to optimize yield under
low soil moisture conditions while reducing the financial and ecological
burden of abstraction (Berbel et al., 2019), and maintaining a balanced
partitioning of green and blue water fluxes. To discern how long-term
change will affect the coupling of green water fluxes with landscape
storage dynamics, we need to investigate the current response of par-
titioning and recovery of fluxes and water ages following extreme
events.

Examining the partitioning of ecohydrologic fluxes (evaporation
and transpiration) and their accompanying water ages requires the use
of ecohydrological models to isolate the effects of water availability
and plant physiological processes (Newman et al., 2006). Without a
sophisticated ecohydrological model or very large in situ datasets,
accurate assessment of the partitioning of ecohydrological fluxes tem-
porally and spatially with depth is difficult. While many hydrologic
models can estimate evaporation and transpiration, the majority of
these models do not consider the interaction of water stress and veg-
etation phenology (e.g., dynamic allocation to leaf growth) on transpi-
ration. During drought conditions, the non-linearity of plant water
usage becomes more important in assessing the role of different vege-
tation in exacerbating hydrological water stresses (Porporato, Laio,
Ridolif, & Rodriguez-Iturbe, 2001).

Besides ecohydrologic models, stable isotopes of water, deute-
rium (82H), and oxygen-18 (520), and estimated water ages are
useful tools to identify the partitioning of ecohydrologic fluxes at
both the plot and catchment scale (Rothfuss et al.,, 2010; Tetzlaff
et al., 2015). Incorporating isotope data into ecohydrological models
can help model evaluation. For example, isotopic fractionation during
evaporation can enrich soil waters and indicate the degree of soil
evaporation relative to modelled soil moisture estimations, where
over-enrichment indicates an overestimation of soil evaporation; and
vice versa (Sprenger, Tetzlaff, & Soulsby, 2017; Sutanto, Wenninger,
Coenders-Gerrits, & Uhlenbrook, 2012). Stable isotopes thus hold
considerable potential for evaluating whether the modelled mixing
mechanisms, flushing rates, and residence times of water in various
storage components are consistent with processes operating in real-
ity (Hrachowitz, Savenije, Bogaard, Tetzlaff, & Soulsby, 2013; Rinaldo
et al., 2011). The model, EcH,O-iso, incorporates the essential
ecohydrologic fluxes governing water partitioning; tracks the isotopic
composition of water in various storages and associated fluxes, con-
ceptualizes various mixing processes; estimates the associated water
ages; and has been applied and verified in a range of environments
(Douinot et al., 2019; Kuppel, Tetzlaff, Maneta, & Soulsby, 2018a;
Maneta & Silverman, 2013; Smith, Tetzlaff, Laudon, Maneta, &
Soulsby, 2019). The evaluation of water ages is essential for both
understanding and validating critical zone and atmospheric water
sources and water recycling (Evaristo et al., 2019), storage and con-
tamination vulnerability, sustainability of biological growth, and
duration of soil chemical reactions (Sprenger et al., 2019). Despite
the importance of vegetation for atmospheric recycling, there are lim-
ited studies quantifying ages of water used by vegetation (Sprenger
et al., 2019), which are likely profoundly influenced by extreme con-
ditions. As such, quantitative evaluation of the water age dynamics
of soil water and vegetation water during extreme events is useful
in interpreting the recovery (time until the system returns to more
normal functional states), resilience (the ability of the system to
maintain function during extreme events), and lethal water stress
(no vegetation recovery) of an ecosystem. Water age has shown to
be correlated with the water deficit caused by droughts and the
recovery of “blue” water fluxes and storages in catchments (Stoelzle,
Stahl, Morhard, & Weiler, 2014), and is useful in drought analysis
with pre-drought water dominating the “blue” water fluxes and
smaller rain events during drought used in “green” water fluxes
(McGuire, DeWalle, & Gburek, 2002). The correlation of water age to
catchment recovery during droughts may be due to storage-related
lag times of “blue” water fluxes (“memory” effect) between inputs
and outputs (e.g., 4-year recovery suggested Thomas, Lischeid,

Steidl, & Dietrich, 2015) and the associated influence of vegetation
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depending on these storages. However, the “memory” effect of
extreme events is often site-specific and can highly depend on preva-
iling hydroclimate, soil properties (e.g., porosity and permeability) and
vegetation species (e.g., rooting depth, water use efficiency, degree
of stomatal control, etc.) (e.g., Walter et al., 2011).

The primary aim of this study was to assess the influence of
drought and recovery on ecohydrologic fluxes and water ages of a
mixed land use site during the 2018 drought in northeast Germany. In
many parts of Europe, the drought of 2018 caused dramatically reduced
crop yields and in some places forest dieback (Toreti et al., 2019).
The drought provides an opportunity to couple uninterrupted field
investigations including soil water stable isotopes (5%H and 5*20) with
an isotope-aided ecohydrologic model (EcH,O-iso) to assess: (a) the
dynamics of ecohydrological fluxes of grasslands and forests during and
following the drought; and (b) evaluate how water ages change in soil
evaporation, transpiration, groundwater recharge and water storage
under varying periods of drought and recovery. It was envisaged that
quantifying the ecohydrologic partitioning and assessing resilience dur-
ing and following the drought would enhance understanding of hydro-
logical processes under drought and contribute to an evidence base for
informing long-term land-use planning in drought-sensitive regions such

as the North European plain where the study is based.

(a)
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2 | MATERIALS AND METHODS

21 | Studysite

The study site is in an agriculturally-dominated catchment, with long-
term monitoring for hydrology and stream water chemistry, known
as the Demnitzer Millcreek catchment (Smith, Tetzlaff, Gelbrecht,
Kleine, & Soulsby, 2020). Situated in northeast Germany, the catch-
ment is generally underlain by freely draining brown-earths and sandy
soils over glacial drift containing deeper groundwaters. The catchment
experiences a mid-continental climate with relatively low precipitation
(557 mm average annual precipitation between 1981 and 2010,
DWD, 2019) with higher precipitation during summers due to convec-
tive storms (317 mm average rainfall and 74% relative humidity in
May-October between 1981 and 2010) and lower, less intense pre-
cipitation during winters (240 mm average rainfall and 81% relative
humidity in November-April between 1981 and 2010).

The site has two high-resolution soil and vegetation monitoring
plots situated in the mid-section of the catchment (Figure 1a). The
two high-resolution monitoring plots are within 400 m (Figure 1b),
encompassing a grassland site and forest site, with different soil prop-

erties but a negligible elevation difference (both sites at 54 m a.s.l.).
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(a) Location of the Demnitzer Millcreek catchment (DMC) in Germany, and location of the grassland and forest study sites in the

DMC, (b) location of the grassland and forest sites, (c) numbered trees (number in the circle) with sap flow sensor orientation and number

(numbered ticks) in the forest site
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The grassland site is characterized as a sandy loam, while the forest
site is a loamy sand (podzolic brown-earth). While both sites show soil
texture dominated by larger grain-sizes (>0.063 mm) the clay content
in the surface horizons of the forest site (~3%) is around half that at
the grassland site (7%) (Table 1). Soil moisture conditions between the
sites reflect the soil textural differences, with more freely draining
coarser soils in the forest resulting in generally lower soil moisture.
The drawdown of soil moisture during the summer months is consis-
tent with the higher summer evapotranspiration in the catchment
(Smith et al., 2020).

The vegetation in the grassland is homogenous (10 m x 10 m
fenced area) with relatively new growth of grass (Echinochloa
polystachya) over a previously forested and ploughed soil. The grass-
land site is substantially sheltered by the adjacent forest to the south
and east (Figure 1b) and receives less rainfall than the forest, and
lower radiation because of the adjacent forest shading the southerly
sun angle, and is protected from the prevailing south and easterly
winds. The forest site has a variety of tree species including European
oak (Quercus robur), Red oak (Quercus rubra), common hazel (Corylus
avellana), and Scots Pine (Pinus sylvestris) with relatively even spacing
throughout the forest plot (Figure 1c). The European oak is the most

common tree in the plot, while the Scots Pine is the least common.

2.2 | The EcH;0-iso model and model set-up

221 | EcH,O-iso water balance

EcH,0O-iso is an ecohydrologic model based on core modules that
integrate water balance, energy balance, carbon fixation and vegeta-
tion dynamics (Maneta & Silverman, 2013). The full description of the
EcH,O model structure and parameterisation is provided in Maneta
and Silverman (2013) with a description of the isotope-related struc-

ture and parameterization provided in Kuppel et al. (2018a). Here we

TABLE 1
April) and summer (May-October)

Soil grain size distribution (%)

provide a synopsis of the key modules for the plot sites. In this study,
we applied the model in 1-D at the two sites, the forest and grassland
monitoring plots, using local data for each site to force, calibrate,
and evaluate the model (Table 2). The water balance component of
EcH,O-iso is divided into three distinct storages: vegetation storage
(canopy storage), ponded water, and soil storage. However, vegeta-
tion and ponded water storages are relatively minor, whereas the soil
storage controls the primary hydrological functions. Soil storage is
divided into three subsurface layers, with the first layer constraining
infiltration and evaporation, and the third layer regulating recharge to
the groundwater system. Infiltration to layer 1 is based on the Green-
Ampt model (Mein & Larson, 1973), and is a function of the Brooks-
Corey and air-entry pressure parameters, and the depth of soil layer
1 (top soil). Soil evaporation is constrained to the top soil layer, which
assumes that the deepest extent of soil evaporation is the depth
of soil layer 1. Vertical water flow between soil layers is based on a
gravitational drainage model that permits downward flow when soil
moisture exceeds field capacity. Downward flows occur at a rate con-
trolled by the soil moisture excess. Gravitational drainage from layer
3 can leak downward through the bottom boundary of the layer or

leave the plot via lateral groundwater outflow.

222 |
dynamics

EcH,O-iso energy balance and vegetation

The energy balance in EcH,O-iso is divided into canopy and surface
energy balance components, which are solved sequentially. In the can-
opy, available radiative energy (net radiation) is partitioned into latent
heat for transpiration and interception evaporation, and canopy sensi-
ble heat, by iteratively solving for the canopy temperature. Canopy
interception latent heat is governed by the maximum canopy storage
(CWSax Table 3), which controls the maximum water stored on

the vegetation per leaf area index. The latent heat associated with

Soil grain size properties at the grassland and forest sites and the average soil moisture content during the winter (November-

Average soil moisture

Depth Depth Winter water Summer water

(cm) <0.002 mm 0.002-0.063 mm 0.063-0.63 mm 0.63-2.0 mm (cm) content content
Grassland  0-8 6.3 11.3 78.5 3.9 20 23.8 15.8

8-28 77 11.0 765 48

28-42 3.8 8.6 82.7 4.9 60 18.8 16.0

42-70 1.0 1.6 96.4 1.0

70-95 0.8 0.4 91.8 7.0 100 22.6 223
Forest 0-5 3.2 13.0 721 11.6 20 17.0 7.1

5-18 3.7 12.2 71.7 124

18-35 13 9.6 75.9 13.2

35-65 1.9 5.0 78.3 14.7 60 12.1 6.3

65-70 8.9 8.0 66.2 16.9

70-100 7.3 31 71.8 17.7 100 9.2 6.4
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TABLE 2 Forcing, calibration, and validation datasets with the spatial and temporal resolution of collection, with the location of data

acquisition

Forcing datasets

Precipitation (m/s) N/A 15-min Weather Station
Temperature (°C) N/A 15-min Weather Station
Wind speed (m/s) N/A 15-min Weather Station
Relative humidity (%) N/A 15-min Weather Station
Short wave radiation (W/m?) 500 m 3 - hourly ERA-interim (ERA, 2019)
Long wave radiation (W/m?) 500 m 3 - hourly ERA-interim (ERA, 2019)
8°H N/A Daily Weather Station
5180 N/A Daily Weather Station

Calibration datasets

Spatial resolution

Temporal resolution

Data acquisition

Datasets Spatial resolution Temporal resolution Data acquisition
Soil moisture (m3/m?%) 20 cm 15-min UGT-SMT100
(3 probes in both 60 cm 15-min UGT-SMT100
grassland and Forest .
for each depth) 100 cm 15-min UGT-SMT100
Transpiration (mm/day)* Tree stand site Hourly Sap flow
Leaf area index (m?/m?) 500 m 4 day MODIS (MCD15-v006, Terra; NASA (2019a))
Evapotranspiration 500 m 8 day MODIS (MOD16-v006, Terra; NASA (2019b))
(mm/day)
Latent heat (W/m?) 500 m 8 day MODIS (MOD16-v006, Terra; NASA (2019b))

Validation datasets

Datasets Spatial resolution Temporal resolution Data acquisition
Soil moisture (m®/m?) 20 cm 15-min UGT-SMT100

60 cm 15-min UGT-SMT100

100 cm 15-min UGT-SMT100
LAI (m?/m?) 500 m 4 day MODIS (MCD15-v006, Terra; NASA (2019a))
Evapotranspiration 500 m 8 day MODIS (MCD15-v006, Terra; NASA (2019b))
Latent heat 500 m 8 day MODIS (MCD15-v006, Terra; NASA (2019b))
Bulk soil water isotopes 2.5cm Monthly Soil borehole

7.5cm Soil borehole

15cm Soil borehole

25cm Soil borehole

50 cm Soil borehole

90 cm Soil borehole

*Used in the forest site only

transpiration is controlled by the canopy temperature and the canopy
conductance using a Jarvis-type stomatal conductance model. The
transpiration component considers the maximum plant responsive-
ness to saturated conditions (g5 max, Table 3) and the response to envi-
ronmental stresses such as vapour pressure deficit (gsypq4, Table 3),
light, temperature, and soil water availability. Root-uptake from each
soil layer due to transpiration demand is determined by the proportion
of roots in each soil layer and the water available in the soil layer (root
distribution described in Kuppel, Tetzlaff, Maneta, & Soulsby, 2018b).

The total transpiration is determined by the sum of the products of
root-uptake and root proportion of all soil layers. The rooting zone
function (proportion of roots in each soil layer) is an exponential func-
tion, and allocates the root distribution by the depth of each of the
three soils layers. This formulation allows for a larger proportion of
total root-uptake to occur from a soil layer with high water availability
but lower rooting density than the other soil layers, albeit with a lower
total transpiration rate. Canopy temperature and net radiation are

used to estimate the surface energy balance, comprised of soil heat
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forest and grassland vegetation

WILEY_| 3

Priori parameter ranges of the soil and vegetation parameters used in calibration in the sand (forest site), loam (grassland site), and

Parameter Calibration range
Name
Soil parameters Description Sand (Forest) Loam (grassland)
¢ Soil porosity (m3/m°) 0.20-0.55 0.20-0.55
Asc Brooks-Corey exponent parameter (—) 2.50-5.70 1.00-7.50
WYae Air-entry pressure head (m) 0.05-0.60 0.05-1.20
Ky Saturated horizontal hydraulic conductivity (m/s) 1%x107°-0.75 1x 1078-0.05
K Kn Vertical to horizontal hydraulic conductivity ratio (-) 1x1077-0.5 1% 1077-0.40
Ly Leakance out of groundwater (—) 1x107%-10 1x 1073-10
0 Residual soil moisture (m®/m°) 0.01-0.02 0.01-0.10
Kroot Rooting exponential distribution factor () 0.10-50.0 0.10-50.0
Deoi Soil depth (m) 0.70-3.0 0.70-2.50
Vegetation parameters

Forest Grassland

8 max Maximum stomatal conductance (m/s)

e Stomatal conductance sensitivity factor due to vapour pressure deficit (—)
CWS,ax Maximum canopy interception storage per LAI (m)

Que Quantum canopy efficiency (gC%/J/m)

SLA Specific leaf area (m?/g)

LT, Mean leaf turnover rate (s™%)

LT, temp Maximum leaf turnover rate due to cold stress (s7%)

LT, sat Maximum leaf turnover rate due to water stress (s~%)

5x1073-3x 1072
1%x107%-1x 1072
1x10™-1.1x 1073
1x107*-1x 1077
0.01-0.10
1x107°-1x 10
1x1077-1x 107
1x1077-1x 10

5x107*-5x 1072
1%x107°-1x 1072
1x107°-8x 10~
1x107*-1x 1077
0.01-0.10

1x1077-1x 107°
1x1077-1x107°
1x107°-1x 107°

storage, latent heat of soil evaporation, and net radiation from the
surface. Soil evaporation is then estimated as the maximum of the
estimated latent heat and the total soil available water in layer
1 (the difference in porosity and residual soil moisture). EcH,0-iso also
comprises a vegetation dynamics module, which allows for the growth
and decay of vegetation species. Growth and decay are simulated
through the dynamics of leaves, stems, and roots, each of which influ-
ences the energy and water balance in the canopy and the soil
(Maneta & Silverman, 2013). The growth and decay is regulated by the
total estimated gross primary product, which is sensitive to the effi-
ciency of the canopy to utilize water (Que, Table 3). Leaf growth
dynamics are estimated as the difference between: the product of the
allocation of net primary product to leaf growth and specific leaf area
(SLA, Table 3), and the leaf turnover rate. Leaf turnover rate is
governed by the mean turnover rate (LTr), temperature stress (LT, temp,
Table 3) and water stress (LT, st Table 3). The dynamics of the leaf
area index (LAI) largely regulates the net radiation reaching the ground
and also regulates total stomatal surface that can transpire water, and
the total water storage capacity of the canopy, among other effects.
LAI seasonality therefore exerts a strong control on the dynamics of
intercepted energy and water, which may especially drive the severity

and recovery of droughts (Royer, Breshears, Zou, Cobb, & Kurc, 2010).

223 | EcH;O-iso: Fractionation, water ages, and
fractional water ages

Within EcH,O-iso, the isotopic and water age module (Kuppel
et al., 2018a) mixes and tracks incoming water (age and tracer compo-
sition) according to storage and accounting for each water layer. Com-
plete mixing is conducted for each volume (layers 1, 2 and 3, and
ponded water) on every time-step using a simplification of the com-

plete mixing assumption (for both isotopes and water ages):
_ 50Id . (Vnew -05- Qin) + (5in . Qin)

5new - Vnew +0.5- Qin ’ (1)

where 6§, represents the new tracer or water age in storage, o4
is the previous tracer or water age, Q;, is the incoming water flux
to the layer, &, is the incoming tracer or water age, and Vpew is a
flux balance of incoming and outgoing water to each water layer
(View = 0.5 (Voia + Qin + Max(Void — Qouts 0)), Voia is the previous
storage volume and Q. is the water flux out of storage). As soil evap-
oration occurs only from the completely mixed soil layer 1, soil evapo-
ration ages and isotopic compositions (non-vapour) are equivalent to

those estimated for layer 1. Isotopic tracers are additionally influenced



“2 | WILEY

SMITH ET AL.

by any isotopic fractionation using the Craig-Gordon model, adjusting
the soil relative humidity based on Lee and Pielke (1992), isotopic tur-
bulent factor based on Mathieu and Bariac (1996), and kinetic diffu-
sion based on Vogt (1976) (Di/D = 0.9877 and 0.9859 for §H and
520, respectively).

Fractional water ages were estimated in EcH,O-iso to facilitate
the evaluation of the distribution of water ages that form the mean
water age. These fractional water ages were estimated on the cali-
brated parameter sets using artificial tracers in the isotopic module
with isotopic fractionation was disabled. The model was run consecu-
tively, starting with the first precipitation event, for each time-step
that included precipitation. Each model run has a unique input time-
series of the artificial tracer concentration of precipitation, with a unit
concentration (value of one) on one precipitation event to assess the
concentration changes through time. With an incoming unit concen-
tration for only one event per simulation, the concentration repre-
sents the fraction of water in soil (or fluxes) of the precipitation event
with no overlapping influence of subsequent events. For each run,
the concentration in storage represents the fraction of stored water
from the current unit concentration input. The summation of the con-
centration in a storage from all runs (over a long period) yields a soil
water concentration with a value of one (all soil water is tracked to a
precipitation event). For example, a catchment (time-step of 1 day)
has 500 days of precipitation over a simulated 1,500 days. The cali-
brated model is run 500 times (all with 1,500 simulated days), once
for each precipitation event. For example, if there is a precipitation
event on June 1, the model is run by changing the artificial tracer
input to one on June 1 and zero for all other days (one of 500 model
runs). For this study, a spin-up period of 2-years prior to 2018
(2016-2018 from forcing datasets, Table 2) was used to initialize the
fractional water ages for calibrated model parameters. Fractional
water ages were assessed using the summation of soil water concen-
trations with moving averages of 7-day and for each 30-day incre-
ments up to 1 year to correspond to the isotopic measurement
intervals (i.e., 7, 30, 60, 90, etc.). For each time-step, t, a backward
window of the desired increment (e.g., 7-day) was used to identify
the precipitation events within the window. At time t, the concentra-
tions of each precipitation event within the backward window
were summed to estimate the fraction of water in storage or flux

(e.g., fraction of water younger than 7 days).

2.3 | Data acquisition for calibration and validation

2.3.1 | Modelforcing (meteorological) datasets

The data available in the catchment for plot scale modelling is centred
on combining existing weather stations operated by Deutscher
Wetterdienst (DWD, 2019), a site implemented weather station at
Hasenfelde (Figure 1a), and atmospheric reanalysis data (ERA-interim,
ERA, 2019). As the Hasenfelde station was a new addition to the
catchment, the total precipitation was compared to precipitation col-

lected at Muincheberg, and only minor differences were recorded.

Temperature, relative humidity, and wind speed (measured at 2 m
above the surface) were also collected at Hasenfelde on 15-min
sampling intervals and compared to the Miincheberg station with
good correlation. This allowed the Mincheberg data to be used
to complete the time-series at Hasenfelde between January-March
2018 (as the Hasenfelde weather station was installed in March
2018). As short and longwave downward radiation was unavailable at
either the DWD station or at Hasenfelde, ERA-interim data were used
as forcing data for the model. ERA-interim has been shown to be close
to the measured values in the study area (Douinot et al., 2019). The
three-hourly data of ERA-interim were interpolated to hourly using
the p-chip interpolation method (Fritsch & Carlson, 1980) which pre-
vents negative radiation (shortwave specific) and gap-fills the dataset
appropriate to the model resolution. Daily isotopes in precipitation
were collected at Hasenfelde beginning in June 2018 and analysed
for §2H and 880 with an off-axis Integrated Cavity Output Spectros-
copy (OA-ICOS) (Triple Water-Vapour Isotope Analyser TWIA-45-EP,
Model#: 912-0032-000 Los Gatos Research, Inc., USA) in liquid
analysed mode. Line-conditioned excess (lc-excess) (Landwehr &
Coplen, 2006) is a useful measure for identifying periods of significant
evaporation, notably when Ic-excess is less than 0. Lc-excess was esti-
mated for measured (and simulated) soil isotopes using the slope and
intercept of the local meteoric water (7.46 and 5.66 for the slope (a)
and intercept (b), respectively) (Ic — excess = §°H — a x 520 — b).

2.3.2 | Calibration and validation datasets

Soil moisture was measured at the grassland and forest plots in three
locations and at three depths (20, 60, and 100 cm) with UGT-SMT100
soil moisture probes (UGT, 2019) on 15-min intervals. The three loca-
tions provide an indication of the soil heterogeneity of each site. Sap
flow measurements were conducted on 12 trees in the forest site
using 2-4 thermal dissipation-based sap flow sensors (TDP probes,
Dynamix Inc., Houston, TX), radially installed in each tree. To represent
the tree frequency in the plot, nine TDP probes were installed in
Quercus robur, and one probe in each Quercus rubra, Corylus avellana,
and Pinus sylvestris. Temperature data were logged each hour by a
CR1000 datalogger (Campbell Scientific, USA) with sap flux density
and sap flow estimated in the same way as Komatsu et al. (2012).
Sap flow estimations were averaged for each tree and for the plot
weighted using the sapwood area. To qualitatively examine the
energy balance, vegetation growth, and evapotranspiration, MODIS
datasets of leaf area index (LAl), latent heat (LE), and evapotranspira-
tion (ET) were collected and processed for the pixel containing both
sites (500 m grid size). MODIS datasets were quality checked and
evaluated with the QC flags, where data with large uncertainty or high
unexplained temporal variability were not considered for calibration
or validation. Datasets for the LAl were available on 4-day average
time-step, while LE and ET were available only on eight-day average
time-steps (NASA, 2019a, 2019b). Soil water isotopes were collected
monthly, beginning in October 2018. Soil samples were collected
(with two replicates) at average depths of 2.5, 7.5, 15, 25, 50, and
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90 cm at each site (Kleine, Tetzlaff, Smith, Wang, & Soulsby, 2020).
Soil samples were analysed for stable isotopes §2H and §80 by equili-
brating dry air added to the sealed soil bag over 48 hours and ana-
lysing the vapour isotopic composition with Picarro Gas Analyser
(L2130-i) (Wassenaar, Hendry, Chostner, & Lis, 2008). Corrections of
the isotopic compositions of soil water for organic gas matrix changes
were made after isotopic analysis using the method described in
Gralher, Herbstritt, Weiler, Wassenaar, and Stumpp (2018).

24 |
analysis

Standardized precipitation index (SPI) and lag

To evaluate the stress of limited precipitation on the soils and vegeta-
tion, the standardized precipitation index (SPI) was assessed using the
daily precipitation from 1951-2018, the total duration of the precipita-
tion record at the closest long-term climate station. The SPI was used
to best provide an indication of extreme dryness conditions (McKee,
Doesken, & Kleist, 1993). To evaluate a stepwise comparison of
the precipitation index, the estimation of SPI was conducted for each
Julian day by using a moving sum with an equal time-step before each
Julian day. The SPI was assessed with four different moving window
sizes (backwards window only), 30, and 60, 180, and 365-day,
corresponding to 1 month, 2-month, half-year, and 1-year SPI. The
windows were used to estimate the climatological means to compare
different Julian days. The lengths of the backward windows provide
different information regarding the drought stress, where the smaller
windows (30 and 60-day) suggest immediate stress while the larger
windows (180 and 365-day) suggest a long-term and more severe
stress. The SPI was estimated by fitting a gamma distribution to the
Julian day precipitation amount for each moving window, with an esti-
mated t-statistic and percentile for the Julian day of each year. Nega-
tive t-statistics indicate lower than normal precipitation of the same
historical window. The beginning and end of the drought for each
respective SPI were determined by the t-statistic, where a t-statistic of
—1 on a 30-day window was used to characterize the drought. For our
study, the primary drought period was between May 26, 2018, and
September 30, 2018, after which the SPI increased above —1 for an
extended period (not driven by a single event). The end of the recovery
period was similarly characterized by a decrease of the SPI below —1
(April 8, 2019, beginning of another low precipitation period).
Temporal lags in the soil moisture time-series data were estimated
using the lag in cross-correlation (Stoica & Moses, 2005). The lag in
cross-correlation between soil moisture values in different soil layers is

output with the greatest significance (with conditions that p < .05).

2.5 | Model calibration, validation, and evaluation

2.5.1 | Performance metrics

The model was evaluated using a variety of performance metrics, used

to best evaluate the temporal variability of particular data sets. The

primary performance metrics used to assess the calibration and
validation of the model were the mean absolute error (MAE), Kling-
Gupta efficiency (KGE) (Kling, Fuchs, & Paulin, 2012), and Nash-
Sutcliffe efficiency (NSE) (Nash & Sutcliffe, 1970). The MAE
(MAE = (3_1.,|Sim; —Meas;|) /n) was used to measure the average sim-
ulation difference to a dataset when the measured variability of soil
moisture (%) is low (ratio of variance to mean < 1) and for the MODIS
datasets. The performance of the model against MODIS datasets
were evaluated only using the MAE due to the uncertainty of variabil-
ity, the relatively large grid encompassing multiple vegetation and
soil types, and the larger time-step of the MODIS datasets The KGE
and NSE were used simultaneously to optimize the simulations to
soil moisture (%) datasets with significant temporal variability. The
KGE (KGE = 1—\/(1—r)2 +(1—a)?+(1-$)?) provides a balance of
the mean (ratio of means, f = pusim/timeas), Standard deviation
(ratio of standard deviations, a= ("Sﬂ)/(M) ), and correlation

Hsim HMeas

coefficient (Pearson correlation coefficient, r), while the NSE

(NSE=1- Z%;T%) provides a ratio of the variance of the simu-
lation to the measured data. Initial testing of the model revealed
that NSE or KGE values below 0.4 did not show adequate simulations,
so a minimum acceptable NSE and KGE of 0.4 was set for the simula-
tions. To ensure a minimum performance metric of NSE and KGE
of 0.4, values below the 0.4 thresholds were given values of O.
These methods (or their subsequent components, e.g., r) have been
used to compare model simulations of soil moisture to measured
soil moisture and model simulations of LAI, LE and ET to MODIS
images (Fensholt, Sandholt, & Rasmussen, 2004; Hwang et al., 2008;
Trombetta, lacobellis, Tarantino, & Gentile, 2016).

2.5.2 | Calibration

The model was set up independently for the grassland and forest sites
using the fenced (controlled) area of each site to average the mea-
sured conditions, with a boundary of a 10 m x 10 m grid square. The
model was set-up with an hourly time-step and calibrated between
June first, 2018, to December 31, 2018, following a spin-up period
from January 1, 2018 to May 31, 2018, using stepwise multicriteria
calibration. Initial conditions of soil moisture and soil isotopes were
set using the average of measured soil moisture of the following
January (2019). The model exhibited limited differences in soil mois-
ture or soil isotopes with a spin-up period longer than 6 months. The
initial conditions of water age in each soil layer were set by running
the model for 3 years (twice the original simulation time) for each
parameter set to ensure that no long-term increasing trend was pre-
sent. The stepwise calibration was conducted in two stages: water
and energy balance calibration (soil moisture, ET, LE, and transpiration
in the forest, and soil moisture, ET, and LE in the grassland), and vege-
tation growth calibration (LAl at both sites) (soil and vegetation
parameters shown in Table 3, posterior parameter ranges shown in
Appendix A). Multicriteria calibration was conducted for each step-
wise calibration. In both sites, soil moisture in layers 1 and 2 was cali-

brated using KGE and NSE (based on the variability criteria), while
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layer 3 was calibrated using MAE because of a lack of variability.
The LAI, LE, transpiration (transpiration in the forest site only) and
ET were all calibrated using KGE and NSE. Both calibration steps
included 100,000 Latin Hypercube Sampling calibration parameters
sets (200,000 total calibration parameter sets). Parameter sets were
calibrated by normalizing each performance metric between 1 (best)
and O (worst). For each simulation, the minimum of all performance
metrics was used to rank the simulation performance and retain the

100 “best” simulations.

253 | Validation

Model validation was conducted between January 1, 2019 and May
31, 2019 following the beginning of the wet-up period (December
2018), including the soil moisture recovery period and the subsequent
drawdown in the following spring (April-May 2019). Similar to the cal-
ibration period, the validation period was assessed using soil moisture,
LAI, LE, and ET; however, transpiration in the forest site was not avail-
able for the validation period in the forest. Soil water isotopes (52H,
and Ic-excess) were used to informally validate soil water mixing
and soil evaporation processes through the whole simulation period
(calibration and validation period inclusive). The MAE of the §°H and
Ic-excess were calculated for each soil layer (no maximum criteria was
set for rejection). As there were relatively few soil isotope samples
available during the calibration period, the whole data set were sepa-
rated into each soil layer (layer 1:0-15 cm, layer 2:15-50 cm, and
layer 3: >50 cm) and evaluated as validation of the models' longer-

scale internal simulation dynamics.

2.5.4 | Evaluation of soil and vegetation sensitivity
to fluxes and water ages

To test the principal factors in the quantity and responsiveness of
storages, fluxes, and water ages, different combinations of soil (sandy
loam (grassland) and loamy sand (forest)) and vegetation (grass and
forest) were evaluated against the calibrated simulations (referred to
as the baseline conditions). From calibration there were 100 “best”
parameter sets pertaining to vegetation and soil. New uncalibrated
combinations of soil and vegetation parameter sets (e.g., sandy loam
and forest) were randomly designated from the calibrated vegetation
and soil parameter sets. To remove bias of a single combination of soil
and vegetation parameter sets, 100 random combinations of vegeta-
tion and soil parameters were selected. One hundred random combi-
nations were chosen for direct comparison to the 100 “best” baseline
conditions.

The effects of changing the soil under the grass (sandy loam to
loamy sand) and vegetation on sandy loam (grass to forest) was evalu-
ated using the 100 “best” calibrated simulations at the grassland site
as baseline conditions. Similarly, the effects of changing the soil under
forests (loamy sand to sandy loam) and vegetation on loamy sand

(forest to grass) were assessed using the forest site as baseline

conditions. The change was assessed as the absolute percent change
on each time-step (%Change = (Eii LICt) —S(t)\) Jts/S2E., C(t) x 100),
where C(t) is the calibrated simulation baseline, S(t) is the simulation
with changed soil (or vegetation) parameters, and ts is the number of
time-steps. With parameters for each soil and vegetation type, the
significance of the change from the baseline in storage, flux or water
age was assessed using the Wilcox-rank sum test, which does not
assume a normal distribution (Mann & Whitney, 1947). To better
understand whether the change in soil or vegetation is more signifi-
cant for storage, flux, and water age, the difference in percent change
for changing soil and changing vegetation was also assessed with the
Wilcox-rank sum test. The percent change and significance levels
were estimated for the whole time-series and the drought and recov-

ery periods.
3 | RESULTS
3.1 | Effect of drought and recovery on

ecohydrologic fluxes

Precipitation during the summer of 2018 was very low with respect
to the long-term historical record (1951-present; DWD, 2019), with
only one large event during the summer of 2018 (Figure 2a). Similarly,
the 30 and 60-day moving SPI during the summer were below —1
(one standard deviation below the mean, Figure 2b) for the majority
of the summer. Total precipitation increased towards the end of the
year (December 2018) with SPI (30 and 60-day) at long-term average
values (SPI = 0). In addition to the reduced precipitation, the drought
of 2018 was accompanied by higher than average air temperature
(Figure 2c) and lower than average relative humidity (Figure 2d). Soil
moisture in the forest (Figure 2e) and grassland (Figure 2f) reflect
the limited precipitation input to the catchment. Soil moisture in the
forest responds faster to precipitation than the grassland. However,
soil moisture at the grassland site is consistently higher than the
equivalent depth in the forest (Figure 2e,f). Both sites show delayed
response in soil moisture with depth (lag in cross-correlation, Stoica &
Moses, 2005), in the forests the soil moisture at 60 cm shows an
18-day lag (p-value <.05), and 100 cm shows a 42-day lag (p-value
<.05) from the 20 cm soil moisture. In the grassland, there is a 28-day
lag (p-value <.05) from 20 to 60 cm; however, there is only a very
small response in soil moisture at 100 cm with a 53-day lag only dis-
cernible with normalized soil moisture (p-value >.05 on non-
normalized data, p-value <.05 on normalized data).

The calibration period produced reasonable results for each mea-
sured soil moisture where the most variable measured soil moisture
(20 and 60 cm) was adequately captured by the soil layer 1 and layer
2 respectively (Figure 3a,d). While soil moisture in layer 2 did not yield
as much variability as the mean measured soil moisture (Figure 3b,e),
simulations were within the measurement bounds and vyielded a
response similar to the lower measured soil moisture bound and in
the forest site, captured the observed increase during the winter
(2018-2019). Simulated soil moisture in layer 3 did not show large
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variability at either site (Figure 3c,f); however, simulations at both
sites showed a modest increase in soil moisture during the winter with
some over-estimation of soil moisture during the drought (Figure 3c).
The limited drawdown of soil moisture in layer 3 is likely due to the
deeper calibrated soil layer 3 (Appendix A) than the measurement
depth (100 cm), with a deeper soil stabilizing the total water storage
in layer 3. The validation period (January-June 2019) did not perform
as well, primarily due to moderate under-estimation of soil moisture in
layer 1 at both sites in March 2019 (Figure 3a,d). This period coincides
with a higher than normal precipitation (30 and 60-day SPI > 1,
Figure 2b) during the wetter winter period. However, with the upper
bounds of the simulations capturing the mean measured soil moisture
conditions during this period, the model adequately captured high
precipitation in the wet winter and the drought. Soil parameter ranges
were most identifiable for soils in the grassland for the porosity,
leakance, root distribution parameter and soil depth (see Appendix A,
decrease in interquartile range). Soil parameters were not as identifi-
able in the forest (porosity and Brooks-Corey parameter, see
Appendix A). Some of the limitations in identifiability are likely due to
the inter-relationship of model parameters. Vegetation parameters

were more identifiable for both sites, with canopy storage, canopy
efficiency, and leaf turnover rates showing notable decreases from
the prior parameter ranges (Appendix A).

The simulated energy balance (LE) and “green” water fluxes
(ET) were satisfactory compared to measured datasets (calibrated sim-
ulations of LAI for both sites and transpiration in the forest shown in
Appendix B), with simulated energy balance components (e.g., latent
heat, Figure 4a,e) showing a similar magnitude and dynamics to
MODIS datasets. There was some under-estimation of ET in the for-
est compared to the MODIS data, though this was primarily limited to
the most severe parts of the drought (Figures 3a and 4b). The larger
variability of simulated ET compared to MODIS ET was mainly due to
the large measured variability of sap flow, which the simulations were
able to reproduce in the transpiration flux (Appendix B). In the sum-
mer drought, soil evaporation and groundwater recharge at the forest
site (Figure 4c,d) were negligible. Soil evaporation was generally low
in the forest, accounting for 10 + 4% of total ET between January
2018 and May 2019. Soil evaporation in the forest rebounded follow-
ing the winter recovery period and prior to significant leaf growth

(March-May 2019) when soil evaporation was not in competition
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with root-uptake (Figure 4b). In the forest, groundwater recharge pre-
dominantly occurred during the winter, beginning mid-December and
receding in spring (April and May 2019, Figure 4d). Despite the short
recharge period, the groundwater recharge accounted for 27 + 8% of
the total precipitation to the forest site.

The latent heat estimated in the grassland was moderately less
than the MODIS grid data; however, the MODIS data did not account
for shading of the nearby forest and the relatively large grid (500 m
x 500 m) primarily contained forested areas. As with the forest site,
the ET was under-estimated in the grassland site relative to the
MODIS grid. Similar to the latent heat estimation, the MODIS grid
was predominantly forest so lower ET was anticipated. Soil evapora-
tion and groundwater recharge in the grassland site were additionally
less affected during the drought than the soil evaporation and ground-
water recharge at the forest site (Figure 4g,h). Soil evaporation in
the drought corresponded to the soil moisture conditions in layer
1 (Figures 3d and 4g), with higher fluxes following the large rainfall
event in July. As with the forest, the soil evaporation in the grassland
rebounded in the spring of 2019. Although the wet and mild winter
(2018-2019) would likely result in more soil evaporation than a typi-
cal winter (freezing temperatures), the estimated total soil evaporation
flux is likely high for the 2019 spring. Soil evaporation accounted for
48 + 11% of total ET within the study period (January 2018 to May
2019). Groundwater recharge occurred throughout the year in the

grassland site (Figure 4h) with higher recharge rates only during the
large precipitation events (July 2018, January 2019, March 2019, and
May 2019). Due to the relatively constant recharge rate throughout
the year, groundwater recharge accounted for 33 + 9% of the total
precipitation in the grassland site.

The general sensitivity of storages and fluxes is temporally insen-
sitive to the drought or recovery periods (Appendix C). The ET and
transpiration were consistent throughout the simulation, showing
highest sensitivity to vegetation type, while soil moisture in layers
2 and 3 were consistently most sensitive to the soil type (Table C1).
Soil evaporation, groundwater recharge, and soil layer 1 exhibited
some temporal differences in the sensitivity, though changes in the
sensitivity were inconsistent between the sites with the sensitivity
against the forest baseline conditions showing the greatest temporal
differences (Table C1).

3.2 | Influence of drought and rewetting on soil
water isotopes and ages

Simulated soil water isotopes reflect the dynamics of the measured
bulk soil water isotopes in each soil layer, despite not being used in
calibration (Figure 5b-d, f-h). In the forest, 82H simulations captured

the higher dynamics of the measured &°H in layer 1 (Figure 5b,
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measured and simulated temporal standard deviation, 13.1 and
14.7%e., respectively) relative to the lower soil layers (uncalibrated
MAE in layer 1 for §2H and Ic-excess was 9.6 and 4.9%o, respectively).
There were short periods of under-enrichment of simulated §2H in
layer 1 relative to the measured isotopic compositions. The depleted
simulated 8°H and higher Ic-excess than measured (October-
December 2018, Figure 5b) coincide with low soil evaporation in the
forest (Figure 4c) (uncalibrated MAE in layer 1 for §%H and lc-excess
without summer samples was 5.5 and 26 %o, respectively). Variability
in §?H was more damped in layer 2 than layer 1 (Figure 5c, measured
and simulated temporal standard deviation, 6.6 and 5.5%., respec-
tively), and damped further in layer 3 (Figure 5d, measured and simu-
lated temporal standard deviation, 1.4 and 3.8%., respectively). The
5%H and Ic-excess were both reasonably captured with an average
MAE of 5.3 and 1.2%. for 62H and Ic-excess, respectively for layers
2 and 3. A similar effect of under-enrichment in layer 2 in the forest
(Figure 5c) was likely due to the lagged effect of the depleted soil §2H
and higher Ic-excess from layer 1. In the grassland, higher evaporation
and evaporative fractionation resulted in a more enriched isotopic
composition (lower Ic-excess) in layer 1 than the forest at the end of
2018 (mean Ic-excess was —10.5 and —6 %o in the grass and forest,
respectively). Unlike the forest site, the grassland simulations experi-
enced some over-enrichment, primarily during the winter months
(uncalibrated MAE in layer 1 for 8°H and Ic-excess was 13.7 and

3.1%o, respectively). Simulations additionally captured the variability
of 82H in the grassland shallow soils (layer 1) (Figure 5f, measured and
simulated temporal standard deviation, 12.5 and 9.3%., respectively).
Similar to the forest site, grassland isotopic simulations improved with
depth (average MAE of 4.3 and 1.3%o for §2H and Ic-excess, respec-
tively for layers 2 and 3), and were slightly better than the deeper soil
simulations in the forest. Simulations and measurements in the forest
also show damping occurred in layers 2 and 3 (Figure 5g,h) with lower
variability of both §%H and Ic-excess in layer 2 than layer 1 (Figure 5g,
measured and simulated temporal standard deviation, 4.7 and 3.7%o,
respectively). Isotopic variability was particularly reduced in grassland
layer 3 (Figure 5h, measured and simulated temporal standard devia-
tion, 3.8 and 0.8%o, respectively); however, the relatively low simu-
lated variability and higher measurement variability suggests that
some of the measured variability may be due to spatial differences.
Simulated soil water ages for each soil layer were distinctly differ-
ent for both the forest and grassland sites. Soil water in layer 1 in
the forest was the youngest and most dynamic water on average
(Figure 5a) but exhibited slightly greater changes in the mean age dur-
ing the drought compared to the long-term average or recovery
period (Table 4). The decrease in water age in layer 1 in the forest dur-
ing the drought was likely due to the low soil moisture accentuating
the influence of new precipitation inputs (age of O days). The water

ages in the grassland were consistently older than the forest, as well
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TABLE 4

Long-term, drought (May 26, 2018-Sept 30, 2018), and

Recovery (Oct 1, 2018-April 8, 2018) period water ages in each soil
layer in the grassland and forest sites

Layer 1 age (days)

Layer 2 age (days)

Layer 3 age (days)

Long-term
Drought
Recovery
Long-term
Drought
Recovery
Long-term
Drought

Recovery

Grassland Forest
48+ 11 24+5
51+10 207
49+ 11 24+5
264 + 69 180 + 42
254 + 47 234 + 38
271+70 169 + 49
1,252 + 336 707 £ 150
1,256 + 299 690 + 122
1,260 + 336 742 + 152

as less variable throughout the year (Figure 5e). Water ages in layer
1 were almost twice as old as the forest (Table 4), with more compara-
ble water ages in layer 2. However, layer 2 in the grassland showed
limited temporal variability (Figure 5e).

Throughout the year, soil water at the forest site in layer 1 was
dominated by water younger than 30 days (Figure 6a, Table 5), with a
notable and seemingly paradoxical increase in the younger fraction of
30 and 60 day water during the drought (Table 5). However, the frac-

tional water ages in layer 1 are very flashy in response to new water

inputs, with high peaks of fractional water age younger than 7 days
following precipitation events. Despite this, the contribution of water
younger than 30 and 60 days during the drought does not return to
pre-drought fractions until the post-recovery period (Table 5). Unlike
layer 1, during the drought layers 2 and 3 in the forest showed
decreasing fractions of water in the younger than 30, 60 and 180-day
fractions (Figure éb,c and Table 5). Layer 3 in the forest additionally
showed decreasing fractions of 365-day water during the recovery
period, likely lagged from the drought as younger waters percolated
to depth (Table 5). In both layers, the fractions of 30, 60, and 180-day
water returned to pre-drought conditions either in the recovery or
post-recovery period. With soil evaporation occurring only from layer
1, the fractional water ages of evaporation in the forest are the same
as to the fractional ages in layer 1 (Figure 6a). Rooting depths span-
ning all three soil layers in the forest results in a unique temporal
change in the fractional water used in transpiration. In the driest
periods of the drought, transpiration has a higher fraction of old water
(Figure 6d,e,g older than 180 days) than after the drought (Table 5). In
the post-recovery period, (recovery period has limited transpiration),
transpiration again is fed much more by younger water fractions
(Table 5).

The grassland site has a substantially higher fraction of older water
in layer 1 compared to the forest site (Figure 6a,e), with the older water
still evident in the grassland site even during the wetter periods (pre-

drought, recovery, and post-drought). During the drought, fractions of
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FIGURE 6 Forest and grassland site fractional water ages of water in storage younger than a certain age (7-day, and 30-day increments up to
1 year). Water older than 1 year was aggregated into a single fraction, water >365 days. Fractional water ages are shown for layer 1 (a and e),
layer 2 (b and f), layer 3 (c and g), and transpiration (d and h)

TABLE 5  Average fractions (standard deviation) of water ages younger than 30, 60, 180, and 365 days at the Forest and Grassland sites in
the pre-drought (Pre D, Jan 1, 2018-May 25, 2018), drought (D, May 26, 2018-Sept 30, 2018), recovery (R, Oct 1, 2018-Apr 8, 2019), and post-
recovery (post R, Apr 9, 2019-May 31, 2019) period

Layer 1

Layer 2

Layer 3

Transpiration

Pre D

Post R
Pre D

Post R
Pre D

Post R
Pre D

Post R

Forest site Grassland site

30 days 60 days 180 days 365 days 30 days 60 days 180 days 365 days
0.61+0.07 085+0.06 100+0.00 100+000 039+009 059+011 0.96+0.04 1.00=0.00
0.74+0.10 0.96 £ 0.03 1.00 + 0.00 1.00 + 0.00 0.39 £ 0.07 0.76 £ 0.08 0.97 £ 0.04 1.00 £ 0.01
0.70+0.07 092+0.04 100+0.00 100+000 046010 0.69+0.10 0.98+0.03 1.00+0.01
056+0.06 0.86+0.05 100+0.00 100+000 041+006 0.68+0.08 0.96+0.03 1.00+0.01
0.15+0.06 036+0.10 0.92+0.05 098+002 003+002 0.09+0.07 046022 0.73+0.22
0.02+0.02 015£0.09 0.60+0.15 098+002 002+001 0.10£0.05 0.34+0.15 0.70+0.20
021+0.06 042+0.09 0.75+0.09 095+004 005+004 0.13+0.08 043+0.15 0.65+0.18
0.12+0.05 033+0.10 0.92+005 098+002 004+003 010+0.06 045+0.22 0.70+0.18
0.01+0.01 006+0.05 037+019 049+022 000+000 0.00+£0.01 0.08+0.08 0.24+0.20
000+0.00 0.00+0.01 011009 050+021 000+000 0.01+0.00 0.03+0.03 0.20+0.17
0.02+0.01 006+0.04 0.16+0.11 035+020 000+000 0.01+0.01 0.05+0.03 0.14+0.10
0.01+0.01 0.04+0.04 039+0.18 048+021 000+000 0.00+£0.01 0.07+0.07 0.18+0.12
056+0.08 0.73+0.08 0.98+0.02 100+001 041+005 0.58+0.06 0.90+0.05 0.98+0.02
039+0.11 054+013 0.80+0.09 098+001 034+007 0.68+0.09 0.89+0.06 0.96+0.03
0.65+0.07 0.87+0.05 0.97+0.02 099+000 042+003 0.62+£0.03 0.93+0.01 097001
048+0.06 0.77+0.07 098+0.01 100+000 036+005 0.62+0.06 0.92+0.04 0.97+0.02

water younger than 60 days increase in the grassland site layer

1 (0.59-0.76, Table 5); however, the fractions of water younger than

60 days did not decrease to pre-drought conditions within the simula-

tion period (0.68 following post-recovery). Similar to the forest site,

young water fractions in layer 2 and 3 in the grassland decreased during
the drought, for 30, 60, and 180-day fractions in layer 2, and 180-day
fractions in layer 3 (Figure 6f,g). These fractions rebounded during the

recovery period. However, decreases in the water age fraction of
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365 days in layers 2 and 3 were delayed until the recovery period, with
only the fraction in layer 2 rebounding by the end of the post-recovery
period. With soil evaporation occurring only from layer 1, the fractional
water of soil evaporation in the grassland site was equivalent to that in
layer 1. Shallower rooting depths in the grassland resulted in higher
young water fractions in transpiration throughout the year and were
similar to the age fraction in layer 1. However, during the drought, the
transpiration fraction of water younger than 30 days decreased rather
than increased, more closely reflecting layer 2 than layer 1 (Figure 6h).
The sensitivity of the model water age simulations to changes in
soil and vegetation show temporal variability from during the drought
to the recovery following the drought. At both sites, the change in
vegetation was the most significant (p < .01, symbol b) for estimating
the transpiration water age, with larger influences in the transpiration
water age during the recovery period. During the drought, layer
1 water age was most influenced by the vegetation type (Figure 7b,e;
values of green boxplots) rather than soil type, with the soil type
influencing the layer 1 water age most significantly during the recov-
ery period (Figure 7c,f). The higher change in layer 1 water age due

to vegetation was not consistent with the change in soil moisture in

layer 1 during the drought (more significant change due to soil type,
Appendix C). During the recovery period, water ages in layer 2 were
most affected by the soil type (Figure 7cf). However, during the
drought, water age in layer 2 was influenced most by soil type in the
grassland site (e.g., changing sandy loam to loamy sand under a grass-
land), while at the forest site the water age in layer 2 was most signifi-
cantly influenced by vegetation (e.g., changing forest to grassland
over a sandy soil). In all periods, the soil layer 3 water age was most
affected by the soil type (Figure 7).

4 | DISCUSSION
4.1 | Partitioning of ecohydrologic fluxes in
drought and subsequent recovery

The increased likelihood of more frequent and increased severity of
extreme drought events in the Northern European Plain intensifies
the significance of evaluating water availability in both storage and

fluxes under contrasting land-use types (Blenkinsop & Fowler, 2007;
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FIGURE 7 Sensitivity of the fluxes and water ages to changes in the soil (brown) and vegetation (green) types relative to the baseline
conditions at the forest and grassland sites. Sensitivity is shown as the percent change from the baseline conditions during the (a and d) full
simulation, (b and e) drought, and (c and f) recovery periods. The symbol a indicates a significant (p < .01) percent change from the baseline and
symbol b indicates a significantly (p < .01) higher percent change for the flux (comparison of soil and vegetation percent change from baseline)
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Hwang et al, 2008). The continued advancements within
ecohydrologic modelling, including coupling tracers and water ages
with storage and flux interactions (Kuppel et al., 2018a) facilitates a
mechanism to evaluate current extreme events and provide a founda-
tion for projecting and mitigating the effects of future extremes.

Climatological conditions in 2018 were extreme relative to long-
term measurements with a combination of high temperatures, low
relative humidity and precipitation (Figure 2). Low relative humidity
and high temperatures maximized the effect of the drought due to
increased atmospheric demand for green water losses (higher poten-
tial ET, Eslamian, Khordadi, & Abedi-Koupai, 2011) with the only the
significant rainfall event in July 2018 (Figure 2a) alleviating the sever-
ity. Despite the extreme conditions, the consistency of simulations
of soil moisture (Figure 3), energy balance (Figure 4), soil isotopes
(Figure 5) and vegetation (Appendix B) to measured dynamics during
the drought provide confidence in the skill of the model to capture
the main features of ecohydrological functioning under water
stress. The flashy and more modulated soil moisture and isotopic
response in the forest and grassland site, respectively, are driven more
by the soil characteristics than vegetation at each site (Appendix C).
The high hydraulic conductivity and lower soil tension in the loamy
sand (Dingman, 2002) aids rapid and free-drainage in the forest, com-
pounding with a slower mean increase in near-surface soils wetness
(layer 1) relative to the grassland after the drought, but a more rapid
response of soil moisture in deeper layers (Figure 2e). There are limita-
tions of EcH,O-iso that fail to capture all of the moisture dynamics
and deficits of deeper soil layers, which is most likely due to the less-
robust, but computationally-efficient Green-Ampt soil moisture rou-
ting (Rao, Raghuwanshi, & Singh, 2006), with gravitational drainage
to lower soil layers (Kuppel et al., 2018b), which may under-estimate
water movement through more sandy soils (Ogden & Saghafian,
1997). However, the relatively small estimated error in simulations of
uncalibrated soil isotopes provides credible evidence that differences
between modelled and measured soil responses at depth are not seri-
ously in error. Furthermore, the crucial differences in the variability of
soil moisture between the two sites with depth were captured.

The evaluation of the “blue” and “green” fluxes during the drought
suggests further implications of the drought that are not observed solely
with the soil moisture dynamics. Both simulations and measurements of
transpiration in the forest suggest higher water use for the forest fol-
lowing rainfall events (transpiration simulation, Appendix B), with highly
variable (moisture-dependent) transpiration, and low soil evaporation
(Barbeta & Pefiuelas, 2016; Limousin et al., 2009). The high simulated
Ic-excess in the forest (Figure 5b) suggests some under-estimation of
soil evaporation during the summer, likely following rainfall events when
soils were wetter. Some of the under-estimation in soil evaporation may
be due to the simulated rapid response in transpiration to precipitation
during the drought, which was higher than the sap flow variability. The
potential over-estimation of transpiration response following the sum-
mer rainfall may be due to a “stress imprint” on vegetation impacting
the response of vegetation to water availability (Walter, Jentsch,
Beierkuhnlein, & Kreyling, 2013). Under a more extreme event, such as

a hypothetical situation where the July 2018 precipitation event had

not occurred, more severe water stress conditions for vegetation may
result in vegetation mortality (e.g., Allen et al., 2010). While there was
some under-estimation of total ET in the forest compared to the MODIS
ET data, the MODIS ET data may have bias during dry periods due to
the estimation method using vapour pressure deficit as a proxy for
water availability for transpiration. The partitioning of the “green” fluxes
into transpiration and soil evaporation was more complicated in the
grassland due to limitations in measurements of grass transpiration and
the use of large-scale MODIS data for calibration. However, the similari-
ties between simulated and observed Ic-excess in soil water suggest the
model accurately simulated the high estimated soil evaporation fraction
of ET. In addition, the high fraction of soil evaporation in ET in the shel-
tered moderated soil moisture grassland, is similar to the proportions
observed in lower energy usage vegetation in a forest canopy under-
story (e.g., Gobin, Korboulewsky, Dumas, & Balandier, 2015), and sites
with (infrequent) vegetation trimming (e.g., Fatichi, Zeeman, Fuhrer, &
Burlando, 2014).

Despite the dependence of soil moisture conditions both during
the drought and recovery on the soil types, the “blue” fluxes have a
strong dependence on both soil and vegetation. The combination of
vegetation water usage and sandy soils in the forest limited ground-
water recharge to the winter period, consistent with other studies in
the region (Douinot et al., 2019). In the grassland, the lower evapo-
transpiration relative to the forest, along with the slower soil drainage
probably explains the more consistent annual groundwater recharge.
Disentangling the effect of soil and vegetation on recharge is complex,
with vegetation type primarily impacting recharge (“blue” water) dur-
ing dry conditions (Appendix C). However, vegetation impact on
“blue” water fluxes may be lessened where soils are more retentive

(higher silt and clay content).

4.2 | Resilience and recovery of soil water ages
and ecohydrologic fluxes

The water age dynamics of the forest and grassland sites were compa-
rable to previous studies with younger water in more freely draining
soil and older water in more retentive soils (e.g., Tetzlaff, Birkel, Dick,
Geris, and Soulsby [2014] and Stumpp, Maloszewski, Stichler, and
Fank [2009]); while simultaneously revealing the influence of the
drought and recovery on the vulnerability of the vegetation and soils
to water limiting conditions. Surprisingly, the shallow soil water age
(layer 1, 0-15 cm) did not greatly change progressing through pre-
drought, drought, and recovery at either site (Figure 5), which high-
lights the differences in the reaction of water age and soil moisture to
drought. The fractional water ages suggest that the lack of change in
mean water age in shallow soils is complex. The mean age estimation
is driven by a low soil moisture content which causes a bimodal distri-
bution of young precipitation (increasing the 30-day water fraction,
Table 5) and older (with a decreasing volume) stored soil water. With
very young water ages in layer 1, it is clear that replenishment by pre-
cipitation is a dominant driver in setting water ages. While the mois-

ture content in the shallow soils during the drought is likely driven by
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the soil properties at each site (Appendix C), the water age is con-
trolled more by the vegetation than the soil type (Figure 7). This sug-
gests that the type of vegetation has implications for the ability of
each site to recover to initial conditions, as older water ages imply lon-
ger retention times and slower replenishment of the deeper storages
sustaining “blue” water fluxes. Layer 2 at both sites experienced lim-
ited percolation and increasing water ages during the drought, with
relatively limited change in soil moisture, thus highlighting the vulner-
ability of sub-soil storage in droughts. In the sandier forest soils, the
root-uptake during the drought significantly affected the water ages
in layer 2 (Figure 7), and similar to layer 1, has implications for the
recovery time of storages sustaining “blue” water fluxes. Similarly, the
marked change in root-uptake water ages during the drought suggests
that the drought resilience of the plot was approaching a limit. In the
loamier grassland site, the much older water present (Table 5) despite
the relatively limited change in the mean water age (Table 4) exem-
plifies the limited percolation of younger water during the drought.
Both sites showed a notable lag of 365-day water in layer 2, with
higher old water proportions during the recovery period compared to
the drought. This lag implies that while the water content appears to
have recovered, the system is still under stress from the drought.
While the complete mixing assumption used in EcH,O-iso (Kuppel
et al., 2018a) may influence the water ages estimated, the inclusion of
incomplete mixing would likely result in greater young water fractions
in deeper soils during the wetter recovery period (Kim et al., 2016)
and would length the whole system recovery.

Since soil evaporation is sustained by the moisture in the upper
soil layer, the effect of evaporation on water ages during the drought
is relatively minor. Transpired water ages reveal more distinct differ-
ences between the sites. With a notable decrease in transpiration, the
water ages of transpiration in the forest during the drought revealed
changes in primary water sources from layer 1 to layers 2 and 3 due to
physiological changes in the vegetation resulting from extreme water
stress in layer 1. With negligible transpiration during the recovery
period, the start of the 2019 growing season showed transpiration in
the forest rebounding to show a dominance of near-surface (layer 1)
water. Despite the relatively consistent transpiration rate in the grass-
land site, the water ages did not deviate greatly from the water ages in
layer 1 suggesting the grass did not experience water stress as severe
as the forest. Only a small proportion of transpired water in the grass-
land originated from layer 2, as evident from the older (>365-day)
water (Figure 6h). While the effect of rooting depths on different spe-
cies transpiration ages has been observed in other regions (Douinot
et al., 2019; Kuppel et al., 2018a; Sprenger et al., 2018) the water ages
uniquely reveal the vulnerability of the forest vegetation to temporal
variation in available waters during drought conditions. These esti-
mates of transpiration age are likely to be conservative as recent
work has shown that internal storage and cycling of water by trees
may involve additional residence times of several months (Knighton
et al., 2020; Kocher, Horna, Beckmeyer, & Leuschner, 2012; Urban,
Cermak, & Ceulemans, 2014).

Seeking to provide land and water managers with a quantitative

evidence base for building resilience in the face of increased

probability of more frequent and intense droughts is the fundamental
motivation for integrating empirical measurements and ecohydrologic
modelling techniques. A different combination of vegetation and soil
could likely reveal wider ranges of resilience in this region, and there
is an urgent need for monitoring in contrasting soil-vegetation units
and over longer periods (Kundzewicz et al., 2009). Further exploration
of either modelling or data-driven analysis could also be used to aid
upscaling and developing such understanding to larger management
areas (Vereecken, Pachepsky, Bogena, & Montzka, 2019).

5 | CONCLUSION

With the projected increases in the frequency of extreme climate con-
ditions, it is crucial to discern the long-term sustainability of land
and water management in drought-sensitive landscapes. This is highly
dependent on the partitioning of precipitation into plant available water
and water recharging aquifers and sustaining river flows (Orth &
Destouni, 2018). Quantifying this partitioning of water, and projecting
how it is likely to change, and assessing the resilience of different vege-
tation and soil systems are during extreme events are all urgent scien-
tific needs. At the grassland and forest plot sites in northeast Germany
examined in this study, green water fluxes of evaporation and transpira-
tion were dominant in the summer drought of 2018, with only limited
blue water fluxes to groundwater recharge following rainfall events.
The loamier soils in the grassland aided in maintaining higher soil mois-
ture and slower response to drought than the sandier soils in the forest.
Despite the recovery of soil moisture in the grassland following the
drought, fractional water ages in the deeper soil layers suggest that the
grassland had not fully recovered from the drought more than half a
year after the end of the drought. The sandier forested site had more
variable soil moisture, high plant water usage, and stronger young water
influence. In the sandier soils, vegetation had a much larger influence
on the water age in storage during the drought. Similar to the grassland,
fractional water ages indicate a longer recovery period than the soil
moisture, though recovery of water ages is less than the grassland (less
than half a year). Recharge to the groundwater system under the forest
only occurred during the wetter winter period when soil moisture
was replenished which coincided with the period of smallest young
water fractions and highlights the potential vulnerability of long-term
recharge in the forest under future climate scenarios. Utilizing sophisti-
cated tracer-aided ecohydrological models and consideration of water
ages can contribute to the evidence base on the hydrologic recovery of
“blue” and “green” water fluxes and storage which can inform sustain-
able land and water management strategies in the future. In this regard,
quantifying water use and age dynamics under drought conditions is
particularly insightful. Moreover, the research approach adopted in this
study provides the potential for further exploration and upscaling of
ecohydrological partitioning and resilience to larger catchment scales.
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