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A B S T R A C T

Remote sensing optical sensors onboard operational satellites cannot have high spectral, spatial and temporal
resolutions simultaneously. In addition, clouds and aerosols can adversely affect the signal contaminating the
land surface observations. We present a HIghly Scalable Temporal Adaptive Reflectance Fusion Model (HIST-
ARFM) algorithm to combine multispectral images of different sensors to reduce noise and produce monthly gap
free high resolution (30 m) observations over land. Our approach uses images from the Landsat (30 m spatial
resolution and 16 day revisit cycle) and the MODIS missions, both from Terra and Aqua platforms (500 m spatial
resolution and daily revisit cycle). We implement a bias-aware Kalman filter method in the Google Earth Engine
(GEE) platform to obtain fused images at the Landsat spatial-resolution. The added bias correction in the Kalman
filter estimates accounts for the fact that both model and observation errors are temporally auto-correlated and
may have a non-zero mean. This approach also enables reliable estimation of the uncertainty associated with the
final reflectance estimates, allowing for error propagation analyses in higher level remote sensing products.
Quantitative and qualitative evaluations of the generated products through comparison with other state-of-the-
art methods confirm the validity of the approach, and open the door to operational applications at enhanced
spatio-temporal resolutions at broad continental scales.

1. Introduction

Monitoring of the Earth system with remote sensors has enabled, for
the first time in human history, critical information to better study and
understand the atmosphere, oceans, land, biosphere, cryosphere as a
whole revealing the importance of this information for monitoring
patterns and processes which define the Earth's land areas (Goward
et al., 2001). Consequently, the broad spectrum of applications of land
observation with remote sensing data is continuously growing and
spans many fields from disaster management, flood mapping, vegeta-
tion monitoring, land surface classification, and the estimation of mass
and energy fluxes. Because of the variety of applications, satellite sen-
sors are designed to provide optimal data for their intended

applications. Unfortunately, this specificity hampers the development
of general applications and pushes us to integrate the information from
different sensors (Thenkabail et al., 2018).

Depending on the application and the spectral region that a remote
sensor measures, the availability of spatially and temporally continuous
data could be challenging to obtain. Optical remote sensing data, from
sensors measuring reflectances in the visible, near-infrared (NIR), and
sort wave infrared (SWIR) wavelengths, are the most extensively used
by the scientific community due to a wide range of applications (Malyy
et al., 2019). Although there is an extensive array of optical remote
sensing data, from a variety of satellites representing a substantial time
series, these data are incapable of retrieving reliable land surface in-
formation when clouds, aerosols, shadows, and strong angular effects
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are present in the scenes. To alleviate some of these problems, different
atmospheric and directions effects correction methods have been pro-
posed and developed in the last decade (Schaaf et al., 2002; Vermote
et al., 2002; Lyapustin et al., 2008; Schmidt et al., 2013).

The mitigation of noise and gap filling of satellite data are pre-
liminary tasks for any remote sensing application aimed at effectively
analyzing the earth's surface through time. The scientific literature is
rich in methods tackling these issues, and solutions vary significantly in
terms of complexity and sophistication (Kandasamy et al., 2013; Shen
et al., 2015). These solutions are usually classified in different groups:
temporal, spatial, spatio-temporal, and spatio-temporal fusion ap-
proaches. Temporal methods include thresholding, rank-based (e.g.,
mean, median, extreme filters), and polynomial (e.g., moving average,
Savitzky-Golay, locally weighted scatterplot smoothing) approaches
(Jonsson and Eklundh, 2002; Chen et al., 2004; Moreno et al., 2014;
Robinson et al., 2017). Most often, local temporal methods do not ac-
count for specific processes causing undesired variability in the data in
order to reconstruct the time series. They infer the correct or missing
information from close observations in the time domain. On the other
hand, global temporal approaches fit predefined functions (polynomial,
Double Logistic, asymmetric Gaussian) or decomposition techniques
based on Fourier analysis (Jonsson and Eklundh, 2002; Bradley et al.,
2007) to the data. Because global temporal methods assume a pre-
defined phenological shape, they generally lead to a lack of flexibility,
especially when fitted to an irregular or asymmetric time series (Chen
et al., 2004).

Spatial gap filling approaches, such as kriging, generally utilize in-
formation from non-gap neighboring pixels to infer the missing data.
Their main assumption is that the missing information could be re-
trieved from the spatial autocorrelation structure in the variogram
(Matheron, 1963). Improved versions of these spatial methods include a
second source of ancillary gap-free observations for the same sensor in a
different date as a covariate (Zhang et al., 2007).

Spatio-temporal gap-filling algorithms are generally implemented as
multi-step approaches whereby gaps are filled through a series of al-
ternating spatial and temporal steps (Kang et al., 2005). Other more
recent approaches utilize Generalized Additive Models (GAM) or ex-
tended Singular Spectrum Analysis (SSM) to perform spatio-temporal
gap-filling to a higher degree of sophistication (Poggio et al., 2012;
Zscheischler et al., 2014).

The increasing number of Earth Observation Satellites (EOS) pro-
vides a unique opportunity to merge the information from different
sensors. Thus, exploiting synergistically their different angular, spec-
tral, spatial, and temporal sensing characteristics is proving to be an
efficient way to overcome individual limitations of each sensor through
providing harmonized multi-sensor observations. As an example, the
Landsat platforms with their Thematic Mappers (Landsat 4–5), the
Enhanced Thematic Mapper plus (Landsat 7), and the Operational Land
Imager (Landsat 8) sensors have been widely used in many Earth ob-
servation and monitoring applications over the last few decades.
Although they have a high spatial resolution (15 to 60 m spatial re-
solution depending on the sensor), they have a low temporal resolution
(16 to 18 days revisit cycle depending on the platform). Consequently,
on average 35% of the images contain missing data due to cloud con-
tamination (Roy et al., 2008). Moreover, in many parts of the world
cloud contamination is much higher and temporally uneven. Under
these circumstances a single cloud free image cannot be obtained for
weeks or even months limiting the use of Landsat data (or any other
optical low temporal resolution sensor) in many land surface parameter
retrieval applications. To overcome this, methods for the multi-tem-
poral fusion, or spatial downscaling, rely on fusing images of different
sensors to overcome individual limitations by combining their proper-
ties (Roy et al., 2008; Gao et al., 2006; Gevaert and Garca-Haro, 2015;
Inglada et al., 2016; Amorós-López et al., 2013; Liu et al., 2019; Shen
et al., 2019). The Moderate Resolution Imaging Spectroradiometer
(MODIS) instrument aboard the NASA EOS Terra and Aqua platforms

provides a daily revisit cycle at a coarse spatial resolution (500 m).
These data are extensively used along with the Landsat missions due to
their consistency (Masek et al., 2006) and their complementary speci-
fications (Gao et al., 2006; Hilker et al., 2009a; Zhu et al., 2010;
Gevaert and García-Haro, 2015; He et al., 2018), providing fine-scale
spatial resolution products with better temporal sampling spanning a
time series of almost twenty years.

While most of the fusion algorithms available in the literature blend
vegetation indices or biophysical parameters from different sources
(Hilker et al., 2009b), few methods provide the full set of calibrated
radiance or reflectance estimates as outcomes. Among these, the spatial
and temporal adaptive reflectance fusion model (STARFM) proposed by
Gao et al. (2006) is probably the most widely used fusion algorithm.
STARFM combines MODIS and Landsat images to generate daily syn-
thetic Landsat reflectance estimates at 30 m spatial resolution, it utilizes
information from neighboring pixels, which are spectrally similar to
predict the missing data. Finding pixel candidates which are spectrally
similar greatly increases computational costs, specially for moderate to
large geographic distances (750 m) (Gevaert and García-Haro, 2015).
Following a similar methodological scheme, different models that im-
prove some aspects of STARFM have been developed. The spatial and
temporal adaptive algorithm for mapping reflectance change
(STAARCH) aims to better identify highly detailed spatio-temporal
patterns related to land cover changes and disturbances (Hilker et al.,
2009a). Zhu et al. (2010) developed an enhanced spatial and temporal
adaptive reflectance fusion model to take into account differences be-
tween homogeneous and heterogeneous pixels in the prediction.
However, these approaches are limited in that they rely on the avail-
ability of simultaneous cloud free Landsat and MODIS observations. As
this is often unlikely, the closest gap free MODIS and Landsat images
are often many days apart in the time domain (Luo et al., 2018). An-
other type of approach for data fusion relies on unmixing methods to
infer end members and group abundances within pixels (Zurita-Milla
et al., 2011; Amorós-López et al., 2013; Gevaert and García-Haro,
2015). The main advantage of this, is they do not require high and
medium resolution data simultaneously for similar spectral bands. Re-
laxing this constraint allows for improving the spectral resolution of
high spatial resolution sensors and enables the inclusion of other an-
cillary data sources, such as land cover data, to complement or replace
high-resolution imagery in the preliminary grouping step (Zurita-Milla
et al., 2011). Based on sparse representation theory, Huang and Song
(2012); Song and Huang (2012) proposed a new spatio-temporal data
fusion method using dictionary-pair learning based approach. The al-
gorithms require building a correspondence between Landsat and
MODIS images through learning a dictionary pair resulting in enhan-
cing the spatial resolution of MODIS images to the Landsat spatial re-
solution. Other approaches for data fusion rely on sophisticated ma-
chine learning methods such as convolutional neural networks (CNN),
Hopfield neural networks (HNN) and random forests (RF) (Song et al.,
2018; Fung et al., 2019; Ke et al., 2016) to find the relationship between
fine and coarse satellite images.

STARFM-like learning and unmixing methods for data fusion pro-
vide good accuracy, but require computationally costly spatial opera-
tions, training complex models, or unsupervised classifications as pre-
liminary steps in their predictions. This imposes an substantial
constraint, especially when applied at broad regional or global scales or
over long temporal periods. As a consequence, the application of these
methods is usually restricted to a reduced number of scenes covering
small study areas and short periods of time (Chen et al., 2015). Alter-
natively, simpler and faster methods have been introduced to enable
data fusion to higher spatial scales at the cost of a lower accuracy. A
rule-based piece-wise regression model was proposed by Gu and Wylie
(2015) to fuse MODIS and Landsat data to derive NDVI (Normalized
Difference Vegetation Index) images. Simple linear models between
NDVI and FAPAR (fraction of absorbed photosynthetically active ra-
diation) were also implemented to downscale MODIS FAPAR data to
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the native Landsat TM 30-m resolution using NDVI data. More recently,
Sedano et al. (2014) proposed a pixel-based data assimilation method
with a Kalman filter (KF) algorithm to fuse NDVI time series of Landsat
and MODIS images. The method provided good results and accounted
for the uncertainties in its calculations. Because the KF method does not
require explicit parameter tuning, it is well-suited to larger scale ap-
plications. Moreover, similar KF schemes have been successfully ap-
plied to other sensors at regional scales (Kempeneers et al., 2016), as
well as for the retrieval of different information such as the surface
bidirectional reflectance distribution function (BRDF) and albedo
(Samain et al., 2008).

Recently a variety of tools have been developed to enable large-
scale processing abundant archives of publically available geospatial
data. These tools enable global-scale analysis applications, such as the
identification of global-scale forest cover change between 2000 and
2012 using more than 600,000 Landsat scenes (Hansen et al., 2013).
Among them, the Google Earth Engine (GEE) has experienced the most
rapid growth in terms of number of users and published literature
(Kumar and Mutanga, 2018). GEE is in use across a wide variety of
disciplines and provides user-friendly access to global time-series of
satellite and vector data, cloud computing, and algorithms for proces-
sing EO data in an efficient and transparent way (Gorelick et al., 2017).
Here we use the GEE cloud computing platform to implement and va-
lidate a multi-sensor data fusion approach to generate reduced noise
and gap-free estimates of Landsat reflectance values. We capitalize on
both the capacity of GEE to efficiently processes massive amounts of
data from different remote sensing data sources (MODIS and Landsat),
and on an optimized bias-aware KF method in which information from
observing systems and models is combined optimally to minimize re-
siduals. The proposed HIghly Scalable Temporal Adaptive Reflectance
Fusion Model (HISTARFM) is optimized for land vegetation monitoring
and works on a per-pixel basis. In addition, as other KF implementa-
tions, HISTARFM has the benefit of not requiring any specific para-
meter tuning to achieve optimal results.

In this paper, we describe the HISTARFM algorithm and we de-
monstrate its applicability for gap-filling and fusing the surface re-
flectance data from MODIS and Landsat sensors at a continental scale
(contiguous United States, CONUS). More precisely, we generate gap-
free monthly reflectance products at 30 m spatial resolution for six
Landsat spectral bands. Finally, we perform a validation of the method
for the study area and compare the results with other methods available
in the literature.

2. Data

2.1. Landsat data

The Landsat missions have uninterruptedly monitored the global
land surface since the launch of the first Landsat platform in 1972,
constituting the longest available high spatial resolution global land
surface dataset registered from space satellites (Loveland and Irons,
2016). In this work, we selected data from Landsat satellites which were
concurrent with the NASA's MODIS mission to combine their informa-
tion. The main characteristics of the optical bands of these Landsat
sensors are shown in Table 1.

The set of Landsat surface reflectance (SR) data products are rou-
tinely generated using the Landsat Ecosystem Disturbance Adaptive
Processing System (LEDAPS) algorithm and provided by the U.S.
Geological Survey (USGS). This method was originally developed by
National Aeronautics and Space Administration (NASA) and the
University of Maryland (Masek et al., 2006) to generate automatically
SR products. SRs are estimated for the Landsat Thematic Mapper (TM),
Enhanced Thematic Mapper Plus (ETM+) and Operational Land Imager
(OLI) sensors using a MODIS/6S like methodology (Vermote et al.,
1997). The 6S atmospheric correction algorithm corrects for water
vapor, aerosol optical thickness, ozone, geopotential height, and digital

elevation, and provides masks for clouds, cloud shadows, adjacent
clouds, land, and water. In this work, we have used the LEDAPS cor-
rected Landsat SRs ingested in GEE, they are the highest level of image
processing available for these sensors up to date, and provide ancillary
data quality information and masks which help to prevent and identify
data artifacts.

While Landsat 5 (ETM) and 7 (ETM+) consistency checks of their
SRs have revealed, in general, a good match among them (Claverie
et al., 2015), the OLI (Lansat 8) sensor shows significant differences
because of adoption of more modern technology in its development.
Thus, the combined use of Landsat 5, 7, and 8 data requires further
adjustments to be used synergistically. We accounted for sensor dif-
ferences by adjusting ETM (Landsat 5) and ETM+ (Landsat 7) bands to
match OLI (Landsat 8) bands using a linear transformation as proposed
by Roy et al. (2016a). Since the Landsat sensors always acquire their
images close to nadir (±7.5°), the small variations in the bidirectional
reflectance distribution function (BRDF) from changing view angles are
usually not corrected (Masek et al., 2006). Following this criteria, no
additional angular correction method has been applied to the Landsat
data in this work. Landsat data were aggregated (mean value) to a
monthly temporal resolution when multiple images were available for a
given month.

2.2. MODIS data

The MODIS (Moderate Resolution Imaging Spectroradiometer) in-
strument is on board of the Terra and Aqua platforms. The Terra sa-
tellite was launched in 1999 and provides daily passes in the morning,
while the satellite Aqua passes in the afternoon. In Table 2, we show the
main specifications of the used MODIS data.

As with the Landsat data, we have also used SR information. The
MOD09A1 and MYD09A1 collection 6 products refers to 8-day SR
composites calculated with data from the Terra and Aqua platforms
respectively. Both have been corrected for atmospheric conditions using
the Multi-Angle Implementation of Atmospheric Correction (MAIAC)
algorithm (Lyapustin et al., 2018). The algorithm simultaneously re-
trieves the atmospheric variables and bidirectional reflectance para-
meters directly from MODIS data. Ancillary masks and quality in-
formation are provided along with the land SR bands. This information
were used to discard low quality data, cloud contaminated pixels, and

Table 1
General description of the Landsat sensors and platforms considered in this
work. Only the optical bands are shown. The bands that MODIS and Landsat
sensors have in common are in bold letters.

Mission Instrument Time span Bands WL(μm) Res(m)

Landsat 5 Thematic Mapper (TM) 1984–2013 1 0.45–0.52 30
2 0.52–0.60 30
3 0.63–0.69 30
4 0.76–0.90 30
5 1.55–1.75 30
7 2.08–2.35 30

Landsat 7 Enhanced Thematic
Mapper Plus (ETM+)

1999-present 1 0.45–0.52 30
2 0.52–0.60 30
3 0.63–0.69 30
4 0.77–0.90 30
5 1.55–1.75 30
7 2.09–2.35 30
8 0.52–0.90 15

Landsat 8 Operational Land
Imager (OLI)

2013-present 1 0.44–0.45 30
2 0.45–0.51 30
3 0.53–0.59 30
4 0.64–0.67 30
5 0.85–0.88 30
6 1.56–1.65 30
7 2.10–2.30 30
8 0.50–0.68 15
9 1.36–1.38 30
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shadows in our blending algorithm. The MAIAC algorithm combined
with the high temporal resolution of the Terra and Aqua satellites
maximizes the amount of available cloud free data. MODIS data were
also aggregated (mean value) to a monthly temporal resolution when
multiple images were available for a given month.

2.3. Climatology and MODIS/Landsat blending

In addition to the MODIS and Landsat SR datasets, a median cli-
matology of Landsat data and simple linear blending between Landsat
and MODIS were created. These datasets were created to provide esti-
mates when missing data is present in the scenes.

• A median monthly climatology for each considered Landsat bands
were computed using the previous 10 years of data. This means, for
example, that in order to produce gap filled data with HISTARFM for
2000 we will use Landsat data spanning from 1990 to 1999 to
compute the climatology. The median monthly spectra were calcu-
lated by taking the median value for each month and using only gap-
free high quality data according to the quality assessment (QA) in-
formation available for each Landsat scene and provided by the
USGS along with the surface reflectance. Computing the median
values helps to compensate extreme events within the climatology
record. When no climatology could be calculated over the con-
sidered time span (i.e., permanent ice/snow or heavily clouded
areas), the pixel composite value for the climatology is flagged as
missing. The monthly standard deviation for each date was also
computed as a first insight to the reliability of the climatology as a
gap-filling approach.

• Using monthly Landsat and MODIS Terra and Aqua platforms si-
multaneous reflectances, a simple linear model for each band was
built to relate the SRs from both sensors for the selected year of
computation. The parameters of the linear model are computed in a
yearly basis to assure their sensitivity to inter annual variability. The
variance of the yearly linear model is used as an indicator of the
quality of their estimates to predict the missing data. Further details
about this simple disaggregation approach are provided in Section
3.2.1.

The LEDAPS cloud masking algorithm has been largely validated
and presents good overall performance, but users have also acknowl-
edged several weaknesses that affect any further uses of the data (Foga
et al., 2017). In order to reduce the negative impacts of masking errors
in HISTARFM specially over bare land and vegetated pixels, we pre-
scribed a set of simple thresholds. Thus, pixels with negative values of
Normalized Difference Vegetation Index (NDVI) (lower than −0.1),

surface reflectance values higher than 0.4 in the visible bands, and
values higher than 0.7 for NIR and IR bands were masked. These
thresholds were empirically introduced to discard misidentified snow/
ice and clouds by the LEDAPS algorithm but, in some cases, they could
erroneously mask very bright soils and artificial areas.

3. Highly scalable temporal adaptive reflectance fusion model
(HISTARFM)

The HISTARFM algorithm relies on a bias-aware Bayesian data as-
similation scheme implemented in GEE. The proposed approach uses
two linked estimators operating synergistically to filter out random
noise and reduce the bias of Landsat spectral reflectances (see Fig. 1).
The first estimator is an optimal interpolator (shown in blue color in the
flowchart and explained in detail in Section 3.2) that produces esti-
mates of Landsat reflectance values for a given time by combining
Landsat climatology, pre-computed from the available Landsat record,
and fused MODIS and Landsat reflectances obtained from overpasses
closest to the time of interest. The fusion of reflectances is achieved
using an efficient pixe-lwise linear regression model. The second linked
estimator is a Kalman filter (shown in green color in the flowchart and
explained in detail in Section 3.3) that corrects the bias of the re-
flectance produced by the first estimator.

3.1. Kalman filter and Bayesian estimation

Errors in a time series of remotely sensed reflectances can be de-
composed into the sum of a random component with zero mean and no
temporal correlation (zero-mean i.i.d. process), and a systematic com-
ponent (bias) that may vary in time and offsets the error mean away
from zero. Existence of random and systematic errors is often the case in
optical remote sensing data due to unfavorable atmospheric conditions
that generally decrease near-infrared reflectance and increase re-
flectance in visible spectral bands (Goward et al., 1991; Kobayashi and

Table 2
General description of the MODIS sensors and platforms considered in this
work. Only the optical bands are shown. The bands that MODIS and Landsat
sensors have in common are in bold letters.

Platform Instrument Time span Bands WL(μm) Res(m)

Terra MODIS 2000-present 1 0.46–0.48 500
2 0.55–0.57 500
3 0.62–0.67 500
4 0.84–0.88 500
5 1.23–1.25 500
6 1.63–1.65 500
7 2.11–2.16 500

Aqua MODIS 2002-pressent 1 0.46–0.48 500
2 0.55–0.57 500
3 0.62–0.67 500
4 0.84–0.88 500
5 1.23–1.25 500
6 1.63–1.65 500
7 2.11–2.16 500

Fig. 1. Flowchart illustrating the data assimilation approach presented in this
work (HISTARFM).
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Dye, 2005). This undesired noise propagates to higher level products
based on these spectral bands. For instance, it can lead to spurious and
unrealistic fluctuations in commonly used indices that use ratio of op-
tical bands, such as the NDVI.

An effective way to ameliorate this problem is to reduce the re-
flectance noise using a KF or other standard statistical estimators (Chen
et al., 2004; Julien and Sobrino, 2010; Moreno et al., 2014). However,
Kalman filters and standard Bayesian estimators assume that observa-
tion and process errors are Gaussian and unbiased (i.e. zero mean er-
rors). If the process forecasts or the observations are biased, the cor-
rection process will not be optimal, the posterior estimate of the mean
may not be accurate, and the posterior variance may be incorrectly
estimated because the posterior mean and covariance are conditioned
on process forecasts and on observations. Specifically, the presence of
forecast and observation biases violate the assumptions that guarantee
the optimality of the filter and can degrade its performance and even
cause filter divergence in the case of large bias-to-variance ratios. For
this, our data assimilation methodology increases filter accuracy by
linking two estimators that recursively reduce the errors and bias of
reflectance estimates, as it will be further explained in Section 3.3. To
facilitate the reading of the methods section a table of symbols can be
found in Appendix A.

3.2. Step one: Optimal interpolation

We use a standard Bayesian estimator to blend an a priori estimate
of reflectance with Landsat observations of a given month k:

= +K P H HP H R( )k k
T

k
T 1 (1)

= +x x K z Hx( )k k k k k (2)

=P I K H P( ) ,k k k (3)

where the subscript k denotes dynamic variables at the k time step
(monthly), x− is the a priori estimate of reflectance, z is the Landsat
observation of reflectance, K is the Kalman gain which represents the
relative weight given to the observations (z) and the a priori estimate
(x−), P− is the error covariance of the prior estimate, H is the ob-
servation operator or measuring matrix that describes how model
outputs relate to observations, R is the Landsat error covariance, x is
the corrected reflectance (posterior estimate), and P is the error cov-
ariance of the posterior estimate. Since we assume that all variables are
normally distributed, Eqs. (1)–(3) form a static Bayesian estimator that
differs from a standard Kalman filter in that there is no dynamic model
that produces a priori estimates of reflectance. A dynamic model is not
needed because the priors are given at time k by an external source, as
we describe below. Without the dynamic model, these equations are
simply the update equations of the standard KF.

3.2.1. Production of the a priori estimate xk
−

Before Landsat observations are available at month k for assimila-
tion, the best estimate of reflectance at that month is given by our prior
xk

−. The prior, therefore, must be available even when Landsat ob-
servations at month k do not exist. We generate this a priori estimate of
reflectance by combining the climatology of Landsat reflectances (mean
and variance of the 10 years preceding month k) with reflectances from
the MODIS sensor using a Bayesian Model Averaging (BMA) approach.

Before MODIS reflectances can be combined with the Landsat cli-
matology, they need to be downscaled to the spatial resolution of
Landsat. The spatial disaggregation of MODIS reflectance is achieved
using a linear mapping model with coefficients βi determined using the
ordinary least squares solution of a pixel-wise MODIS-to-Landsat linear
regression model between all available MODIS and Landsat images for
the selected year of computation:

= U U U z( ) ,
i i MOD

T
i MOD i MOD

T
i, ,

1
, (4)

where Ui, mod is the augmented input matrix [1,uk, mod], 1 is an all-ones
vector, ui, mod is a vector of the gap free MODIS reflectances for the
12 months in the selected year of computation and the 30 m Landsat
pixel i, zi is a vector of the corresponding Landsat reflectances for the
same 12 months, and vector βi contains the pair of regression coeffi-
cients (intercept and slope) specific for each pixel i and year of com-
putation. MODIS reflectances are resampled at 30 m using a nearest
neighbor algorithm to obtain one-to-one pixel i between MODIS and
Landsat images. This blending algorithm has been successfully used in
previous work to spatially disaggregate MODIS NDVI (He et al., 2018,
2019).

Once the βi coefficients are determined, the spatial disaggregation
of MODIS at any month k is obtained applying the linear model:

=u U ,i k MOD i k MOD i, ,
30

, , (5)

where ui, k, MOD
30 is the MODIS reflectance at pixel i and month k

spatially disaggregated to 30 m and Ui, k, MOD= [1,ui, k, MOD], with ui, k,
MOD being the reflectance at pixel i and month k of the MODIS image
resampled at 30 m using the nearest-neighbor method.

We assume that the linear model is unbiased (i.e. the mean of the
disaggregated MODIS reflectances equal the mean of the Landsat re-
flectances), therefore the error covariance of the disaggregated MODIS
reflectance is:

=P z U z U[( ) ( )].k MOD i i k MOD i
T

i i k MOD i, , , , , (6)

The downscaled MODIS reflectance is subsequently blended with
the long-term expectation of reflectances (Landsat climatology) using
BMA. BMA accounts for model uncertainties to provide better gap-
filling and predictions than an individual model (Hoeting et al., 1999).
BMA uses the outputs and variances of the two sources of information
to reduce the uncertainties, and provides more robust estimates of the
mean and variance of surface reflectances. The prior estimates of re-
flectance mean and covariance used in (2,3) are finally given by:

=

+

+

+

x z
P

P P
u

P

P P
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where zk is the Landsat climatological mean of the 10 years prior to
month k, Pk LS, is the Landsat climatological variance of the 10 years
prior to month k, γ is a fraction of the error covariance of the estimate
that is attributed to bias (see next section), and Pk, MOD is the variance of
the downscaled MODIS reflectance, Eq. (6).

3.3. Step two: Bias correction

The second linked estimator corrects the estimation biases using a
separate bias Kalman filter without feedback (Friedland, 1969; Dee and
Da Silva, 1998; Drìourt et al., 2006). In our implementation, the bias
correction (SepKF) uses as observations the difference between ob-
served reflectance and their estimated counterparts from the previous
step. It also links the error covariance of the posterior estimate P ob-
tained in the previous step (Eq. (3)) assuming unbiasedness, the actual
error covariance of the estimate, Wk, and the bias error covariance
matrix, T:

=P W T ,k k k (9)

where the state and bias estimates (steps one and two) are assumed to
be uncorrelated.

Note now that the mean bias and error covariance estimates are
propagated in time with a persistence model, which implies that the
bias forecast at time k is the corrected (posterior) bias from time step
k− 1. The bias forecast error covariance, Tk, is considered a fraction γ
of the prior reflectance estimation error as in Eq. (8):
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where γ controls the amount of information from observations used in
the bias filter. Setting γ= 0 makes SepKF equivalent to the classical KF
(white Gaussian noise), while γ= 1 implies that all the error is attrib-
uted to the bias (deterministic error). Please, note that γ controls the
sensitivity of the bias filter and the speed at which the filter converges
to the actual bias, but does not determine the final estimate. This
parameter is usually determined empirically but satisfactory results
have been reported for any γ value lower than 1 (Drécourt et al., 2006).
In this paper we set γ= 0.6. Our experience is that this value captures
the trade-off between land cover pixels that change rapidly and tend to
have highly biased reflectances, such as croplands, and pixels that have
smooth and slow-varying transitions, such as the case of unmanaged
forests. The bias correction equations can thus be written as:

= + +L T H HT H HP H R( )k k
T

k
T

k
T 1 (12)

=b b L z H x b( ( ))k k k k k k (13)

=T I L H T( ) ,k k k (14)

and the final unbiased estimate of the mean reflectance, which com-
bines the results of both filters is:

=x x I K H b( )k k k k (15)

where, as per Eq. (9), the covariance error of the unbiased mean esti-
mate becomes:

= +W P T ,k k k (16)

4. Results

In this section we show continental scale images processed with
HISTARFM at full spatial resolution to demonstrate that the algorithm
runs operationally in GEE. In addition, a continental scale validation of
the results has been also carried out to assess the limitations of the
method. Finally, we compare results of the algorithm with one of most
widely used data fusion algorithms available in the literature (STARFM)
and analyze the possible sources of the observed discrepancies.

4.1. Example of application over the contiguous United States

To illustrate and validate the proposed KF method for smoothing
and gap filling Landsat data, we processed a full year (2010) covering
the full CONUS and exported the outcomes as a monthly images as
assets in GEE. The dataset was processed at Landsat native spatial re-
solution (30 m) and provides the estimated reflectances along with their
associated predicted uncertainties. The monthly temporal resolution
was chosen to reduce data storage needs, this point is especially critical
when working at continental scales as we do in the present work. In
Fig. 2, we illustrate an example of the differences between the original
Landsat reflectance bands (RGB) and the results of the proposed method
for April 2010. It is noteworthy to mention that in general terms while
the original Landsat data contain numerous gaps due to cloud con-
tamination and sensor malfunctioning (Landsat 7), the proposed
method seems to be satisfactory recovering the missing information and
preserves most spatial patterns. In addition, the gap filled bands also
exhibit slightly smoother spatial patterns than the original Landsat
data. This is a desirable result of combining information from different
sources (Landsat climatology and actual Landsat data) and sensors
(MODIS), and it is generally more accurate than using a single sensor
reflectance measurements themselves (Kalman, 1960). In spite of the
mentioned improvements, some undesired variability is still noticeable
in the processed data. This variability could be related with Landsat

view zenith BRDF effects which were not corrected and are reported to
be potentially not insignificant (Ju et al., 2012), but also related with
bad cloud/shadow or snow masking in any of the considered remote
sensing data products included.

As mentioned above, the proposed method also provides un-
certainty estimates along with the predicted reflectance as ancillary
data for error propagation purposes. Error propagation methods allow
to quantify the effect of variables' uncertainties on the total uncertainty
of any function of the input variables. As an example of application, we
computed the Normalized Vegetation Index (NDVI) and calculated its
propagated uncertainty σ[NDVI] function of the uncertainties of the red
σ[B3] and near infrared σ[B4] bands, assuming that both bands are
independent variables:
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In Fig. 3, we show the computed NDVI using the gap filled and
smoothed reflectances. As shown in Fig. 2, the monthly composite
presented significant gaps and noise in the considered area. Despite
applying HISTARFM to remove noise from the signal and obtaining
improved gap free results, there is still some noticeable striping in
certain parts of the processed images. These artifacts are mostly related
with faulty thin cloud identification in the original LEDAPS algorithm.
This misidentification does negatively affect HISTARFM performance,
because the algorithm considers as good data information which is not
so reliable. In any case, the NDVI presents a smoother spatial variability
than the RGB reflectances and also no presence of cloud related gaps. A
smoother spatial variability is obtained by the NDVI as a result of its
normalization effect, which helped to mitigate some of the undesired
and non corrected illumination effects and bad masking. The NDVI
error shows clear spatial patterns. In most cases, the highest errors are
located over the highly elevated terrains and high latitudes. These areas
are characterized by having high snow occurrence during the winter
and early spring months, which cause a lot of undesired variability and
gaps still present in the figure shown (April) due to full or partial snow
contamination. Visually inspecting the predicted NDVI uncertainties
with the original non gap filled data shown Fig. 2, it is observed that
predicted uncertainties are higher when Landsat information is not
available. This is a consequence of HISTARFM using only the estimated
reflectances (MODIS and the Landsat climatology) to compute its pre-
dicted values instead of using also concurrent Landsat measurements. In
particular, the latter are prioritized by the model when available, be-
cause the Kalman filter encourages the use of data which present higher
accuracies to decrease the posterior variance in the final estimates (see
Eqs. (1), (2), (3).

4.2. Validation over a selection of sites

To evaluate the quality of the proposed approach at a continental
scale, 1050 locations were randomly selected over the continental US.
These sites were chosen to represent the most common vegetation types
present in the area according to the US NLCD (National Land Cover
Database) for the year 2011 (Homer et al., 2015). This land cover is
provided at 30 m spatial resolution, has been optimized to be nationally
consistent for the US, and was produced in 5 epochs (1992, 2001, 2006,
2011, and 2016). The sites were selected to be homogeneous in a 3 by 3
pixel grid and consist on 150 locations of each of the following land
covers: deciduous forest (DF), evergreen forest (EF), mixed forest (MF),
Shrub/scrub (SH), grassland/herbaceous (GR), pasture/hay (PA), and
cultivated crops (CR). The artificial gaps were then generated in the
1050 Landsat time series removing 15% of the available data. On top of
these artificially created gaps, we have the gaps that were originally
present in the data due to natural factors such as clouds or snow,
yielding a mean percentage of missing data of 23%. After creating the
artificial gaps, the method was run over these time series and its esti-
mations and predicted uncertainties were compared with the
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deliberately removed data for validation purposes.
Table 3 summarizes the calculated errors over the validation da-

taset. The relative mean errors (rME) remain below 1.5% for all the
bands, indicating that our estimates are unbiased when compared with
actual Landsat reflectance values. Moreover, correlations are sig-
nificantly high between observed and predicted values for all con-
sidered Landsat bands, while the relative mean absolute errors (rMAE)
and relative root mean squared errors (rRMSE) are low to moderate and
vary significantly between bands. These findings are also consistent
with previously shown results, being the magnitude and variability of
rMAEs for the different bands similar to those reported in the literature
for Landsat LEDAPS algorithm (Claverie et al., 2015). We therefore
speculate that these uncertainties might be partly attributed to the
original Landsat surface reflectance data we want to predict and not
only to the proposed method. B4 (NIR) and B5 (IR) bands yielded to the
lowest relative errors, while the visible bands obtained the highest er-
rors in relative terms. This difference in performance for the visible
bands is even more noticeable in the blue band (B1), and it is related
with more pronounced atmospheric impacts in this part of the spectrum
(Vermote and Kotchenova, 2008). Fig. 4 shows the predicted versus
observed Landsat data scatter plots for each band separately. As above
mentioned, our results show good correlations and virtually no bias for
all the bands. The scatter plot figures illustrate that most of the values
are spread around the one-to-one line (black dotted line). This corro-
borates visually the absence of bias in our estimates and low dispersion
over the range of variability of all considered spectral bands.

The consistency between the errors over the validation data set and
the predicted uncertainties have been also compared. Fig. 5 summarizes
the results of the errors and the predicted uncertainties by spectral band
and vegetation type. Although there is a slight underestimation of the
predicted RMSE for the highest values, it is important to note that the
degree of consistency between the actual RMSE (left) and the predicted
RMSE (right figure) is high either for both the different bands and plant
functional types. This provides the foundation for using the predicted
uncertainties for error propagation purposes (see Section 4.1) in future
applications of the provided gap filled reflectances. B4, B5, and B6
bands present the highest RMSE values between the predicted and re-
ference data, while the visible bands (B1, B2, and B3) have the lowest
estimated error. This difference is also accurately captured by the
predicted uncertainties of the proposed approach. It is important to
note that, in general, the mean reflectances for the visible bands are
significantly lower (50%) than the mean reflectance values for the near
and medium infrared, so, in relative terms, visible bands tend to be the
most uncertain as also shown before in Table 3. Forests vegetation types
present the lowest errors while grasslands, pastures and croplands have
the highest RMSE values. We speculate that these differences could be
attributed to two main factors. First, as previously mentioned, one of
the sources we are using for predicting the missing information is a
climatology of Landsat reflectances. Forests vegetation types are less
prone to be affected by human type disturbances in comparison with
crops which are totally man managed. This yields forest types to present
less inter annual variability than cropland areas, explaining why the

Fig. 2. RGB composites with original Landsat LEDAPS reflectance (top) and the smoothed and gap filled reflectance estimates by HISTARFM (bottom) in April 2010.
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computed climatology could be a more suited predictor for forests than
for crops. Second, grasslands, pastures, and crops have a significantly
faster growth than forest types, yielding to higher variance at the
considered temporal resolution (monthly time steps). This increase in
variance is, in fact, not attributed to noise exclusively and it could be
actually related with fast changes in vegetation canopy which occur
within a monthly time step.

Even though we have used the ancillary Landsat quality band to
mask and discard cloud or snow pixels over land to create the validation
dataset and to run HISTARFM. Snow, cloud, and cloud shadow detec-
tion in satellite imagery is a complicated task and, very often, sig-
nificant cloud and snow contamination is still present in data after
carrying out a masking processing step. The Landsat atmospheric cor-
rection algorithm (LEDAPS) is not an exception to these problems, and
usually faulty cloud and snow screening are spectrally characterized by
having high visible (B1, B2, and B3) and NIR bands (B4) reflectance

values compared to soil and vegetation canopy spectral response for
which shortwave bands (B5 and B7) present more similar values.
Moreover, if very dense aerosols and haze/thin clouds are present the
scattering effects may also contaminate significantly B4, B5, and B7
bands (Liang, 2005). The analysis of the temporal distribution of the
errors for all considered bands is shown in Fig. 6. These results in
concordance with the above mentioned masking problems, and thus,
for example, the visible bands have the highest relative errors and, as
expected, these errors increase during winter and spring months when
generally there is more snow and cloud occurrence in the study area
(Roy et al., 2016a). Furthermore, as also reported in the literature, the
blue band (B1) has the highest errors as result of its extra sensitivity to
this specific kind of contamination.

As mentioned in Section 3, the implemented Kalman filter approach
assumes that observation and process errors are Gaussian and unbiased.
We examined our residuals to assess if these assumptions were fulfilled
to guarantee that the choice of model was appropriate. Fig. 7 shows the
normal probability plots of the residuals over the created validation
dataset. In normal probability plots if the residuals belong to a normal
distribution the data points have to be spread out along the reference
line (red line in our case). On the contrary, any other kind of dis-
tribution other than normal introduces curvature in the data plot
creating a departure from the indicated reference line. In our case, the
residuals of all the bands belong very likely (between the 10th and 90th
percentiles) to a normal distribution, but the normality of the residuals
breaks at the extremes for the least probable cases. Moreover, the re-
siduals of the visible bands tend to be more normal than the NIR and

Fig. 3. Calculated NDVI values with the gap filled data and their associated uncertainties. The ranges of NDVI and the NDVI uncertainties have been constrained for
illustration purposes.

Table 3
Summary of the results over the validation data set. Relative values are in %.

Band ME MAE RMSE rME rMAE rRMSE R

B1 0.0009 0.011 0.017 1.5 17 29 0.85
B2 0.0003 0.011 0.018 0.5 13 22 0.90
B3 0.0002 0.015 0.023 0.16 16 25 0.92
B4 0.0028 0.026 0.039 1.1 10 16 0.87
B5 −0.0004 0.024 0.037 −0.16 10 16 0.91
B7 −0.0006 0.022 0.035 −0.4 15 23 0.91
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MIR bands. So, even though the carried out analysis indicated that
model residuals are not fully Gaussian, their normality is preserved in
most cases indicating that the followed approach is still suitable for the
proposed problem. In addition, because the lack of normality appears at
high absolute values in the residuals and the predicted uncertainties
have been proved to be reliable, the predicted uncertainties could be
also used to discard bad quality data in further applications.

4.3. Comparison with STARFM

With more than 700 cites (https://www.scopus.com/), the

STARFM algorithm is probably the most widely used data fusion
methods available in the literature. The source code, documentation,
and executable files to run STARFM can be downloaded from
https://www.ars.usda.gov/. With the objective of comparing
how our method and STARFM algorithms perform under different cir-
cumstances, we processed the visible (B1, B2, and B3) and near infrared
bands (B4) which are most commonly used in many applications, and
selected five locations with different climatic, vegetation, and topo-
graphical characteristics in the study area (CONUS). The first site (zone
1) corresponds with a cropland area located in Moses Lake city,
Washington (US). The second site (zone 2) corresponds with a high

Fig. 4. Scatter plots of the predicted versus observed Landsat reflectances. The one-to-one line (black) is shown for reference.

Fig. 5. RMSE values over the validation data set (left) and the RMSE estimated by the proposed method (right). The considered vegetation types are: deciduous forest
(DF), evergreen forest (EF), mixed forest (MF), Shrub/scrub (SH), grassland/herbaceous (GR), pasture/hay (PA), and cultivated crops (CR).
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Fig. 6. Box plots showing the temporal evolution of the relative absolute errors for the different Landsat bands.

Fig. 7. Normality tests of the residuals for the considered Landsat bands.
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elevation (1500 m) and complex mountainous area in Selkirk,
Washington state (US), which is mostly dominated by evergreen forest
vegetation. The third site (zone 3) is located in Brush Creek Township,
Ohio state (US), where this area is mainly dominated by deciduous
forest vegetation. The fourth considered site (zone 4) is located in
Washington D. C., District of Columbia (US), the area is a very het-
erogeneous urban area which is mostly dominated by a mixture of
constructed materials and vegetation, in addition, the site includes big
patches of deciduous forest dominated by big trees with a strong sea-
sonal variation. Finally, zone 5 is located close to Tonopah town,
Nevada (US), this area has an arid, cold desert climate with cool winters
and hot summers, it is mostly and equally covered by two vegetation
types: shrubs less than 5 m tall and not densely populated evergreen
forests. For the chosen locations we extracted three monthly composites
of Landsat and MODIS multi-band images corresponding with the
months July, August and September of 2018.

In order to be able to quantitatively compare both algorithms, we
gap filled full images of Landsat data for the selected sites. This way we
had large spatial gaps of ground truth to assess the gap filling done by
the algorithms. STARFM was run in a local computer using the July and
September months to predict the intermediate month (August) with the
standard configuration of the parameters proposed by the authors in the
provided documentation with STARFM code. Additionally, we ran
HISTARFM in GEE. The predictions of our method and STARFM were
then compared against the available cloud and snow free Landsat
monthly data over the five sites to qualitatively and quantitatively
evaluate both data fusion algorithms under the same circumstances.

Fig. 8 shows false color RGB images (Landsat bands B1,B2, and B3)
obtained with the original Landsat data to be gap filled, the estimations
of STARFM, and the estimations of the proposed algorithm. Our method
compares well with STARFM and, most importantly, with the original
Landsat data. Moreover, HISTARFM seems to be more robust to noise
than STARFM and presents, generally, smoother spatial variability. This
effect is even more remarkable in certain areas of the images, such as
the red artifacts in STARFM predictions in the center of cropland site
(zone 1), the dark areas all over the zone 3, or the stripping effect due to
the faulty Landsat 7 sensor also more noticeable in the zone 5. It is also
worth to mention that the original zone 2 Landsat image looks sig-
nificantly less contrasted than the predictions of both methods. We
hypothesize it could be attributed to contaminated Landsat radiances
due to thin clouds which were not correctly identified by the LEDAPS
algorithm. Moreover, a significant discontinuity between acquisitions is
easily noticeable between adjacent Landsat scenes in the lower right
part of the image. This sudden change is not observed in previous or
posterior satellite acquisitions, and therefore can not be attributed with
natural changes of the vegetation within the considered month.

Table 4 shows the results of the comparison of STARFM and HIS-
TARFM estimates for August 2018 in the five considered study areas,
we used the available Landsat data for that date to estimate the accu-
racy of both methods recovering missing data. Generally speaking, our
approach outperforms STARFM in any of the considered zones and
analyzed spectral bands as can be seen just only for the number of
emphasized statistics in the table. As above mentioned, the qualitative
inspection of the results in Fig. 8 indicated that the HISTARFM algo-
rithm was able to capture better the spatial variability in all the loca-
tions. Table 4 numerically corroborates this and, most importantly,
correlations are equal or significantly higher than those obtained by
STARFM in all analyzed bands and zones. In addition, RMSE values are
the lowest for our approach in the majority of cases and close in
magnitude to their MAE values, suggesting that HISTARFM estimations
are less noisy than the STARFM ones. On the contrary, the analysis of
the bias in the residuals doesn't indicate a clear winner, obtaining both
methods low biased results independently of the band or the location
under study. The highest errors and lowest correlations for both gap
filling methods simultaneously are obtained for the zone 3. Finally, the
larger discrepancies between HISTARFM and STARFM are observed in

zone 4 and it could be attributed to the fact that STARFM depends on
temporal information from pure homogeneous patches of land cover at
the MODIS pixel scale. Zone 4 is the most heterogeneous site and, under
these circumstances, it has been documented that STARFM predicted
results can be misleading (Gao et al., 2006; Hilker et al., 2009a)

In addition to the validation statistics computed for each study area,
we also compared how the different methods affected the distribution
of reflectance values. Fig. 9 shows the normalized histograms for the
bands most frequently used in vegetation monitoring (B3 and B4). As
can be seen, the differences among distributions vary significantly de-
pending on the band and the characteristics of the study area. The zone
1, which is a very heterogeneous site, shows bigger differences between
STARFM and HISTARFM in the red band (B3) than in the near infra red
(B4). This could be related with a higher sensitivity to noise of
STARFM, as can be seen in unrealistically reddish artifacts we pointed
out in Fig. 8. Zone 2 and zone 5 distributions present the highest con-
sistency between the two bands in both methods. On the other hand,
zone 3 and zone 4 show significant discrepancies in both considered
bands, being the deviation in the mean values of the distributions in
band B4 more than 20% for the zone 3.

With the aim of visualizing the impact of the discrepancies in the
predicted reflectances (Fig. 9) for land vegetation monitoring, we
computed the NDVI with the available Landsat data in August 2018, the
bands predicted with STARFM, and the bands predicted with HISTA-
RFM. Fig. 10 shows the distributions of the NDVI residuals for both
approaches. As expected from previous analyses, HISTARFM outper-
forms STARFM in all five sites for the bands shown. The distribution of
the residuals resulted in more narrow Gaussian shaped distributions
which are also closer to zero deviation in general. As show in Table 3, in
zones 1 and 5 both approaches obtained the best results and rather low
NDVI differences. The residuals in zone 2 are very similar for both
methods, but high biases in the estimated NDVIs are observed. This
could be attributed to cloud contamination which affects the NDVI
signal creating unrealistic sudden drops in the time series. The com-
parison of the differences between the distributions of the reflectances
(Fig. 9) and the residuals of the NDVI in zone 3 (Fig. 10) suggests a
considerable improvement of our approach when compared with
STARFM, being the mean of the residuals lower and with less varia-
bility. Finally, for the zones 4 and 5, STARFM presents slightly lower
mean NDVI biases than HISTARFM but higher variance in its estimates,
this is also shown for the spectral bands used to compute the NDVI in
Table 3.

Finally, we also analyzed the temporal evolution of the errors for
HISTARFM and STARFM. For two of the selected locations (zones 4 and
5), we extracted 6 monthly composites of Landsat and MODIS multi-
band images corresponding with the months between March and
September of 2018. In order to be able to quantitatively compare both
algorithms, we gap filled full images of Landsat data for the selected
sites and for the months May, June, July and August. We ran both
HISTARFM and STARFM removing these specific dates and compared
them with actual Landsat observations. Fig. 11 shows the RMSE for
each band and four consecutive months when temporal variability due
to phenology changes is high. These results highlight the better per-
formance of HISTARFM against STARFM for all considered dates and
bands in both zones, but also show the high sensitivity of STARFM to
noise in its inputs due to faulty cloud masking or aerosol contamination
and the robustness of HISTARFM to it. For the two considered zones,
STARFM presented massive drops in performance during May but also
in June in zone 4. A closer inspection of the input data used to run
STARFM predictions revealed the presence of thin clouds contamina-
tion and significant cloud gaps. It seems that missing and faulty in-
formation degrades STARFM's performance more drastically than in
HISTARM. This is an expected result, since STARFM heavily relies on
two observations to predict missing data. Moreover, STARFM's high
sensitivity to the quality of its inputs is also an important constraint that
has implications for its practical use, as reliable predictions can only be
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made if at least one completely cloud-free and good quality observation
is available for the period of interest (Hilker et al., 2009b).

Fig. 12 shows the temporal evolution of the mean residuals of the
NDVI over two considered study areas (zones 4 and 5). The magnitude
of the errors are in concordance with the complexity and heterogeneity
of the both landscapes, being for zone 4 (very heterogeneous urban
area) the double than for zone 5. In contrast with the previous analysis,
where HISTARFM outperformed STARFM in all cases for the different
bands, in Fig. 12 both, STARFM and HISTARFM, present low mean
biases in NDVI through time. On the contrary, the standard deviation of
the residuals for STARFM is always the highest, indicating higher ro-
bustness in HISTARFM predictions.

5. Discussion

5.1. Comparison with other methods and initiatives

The Web-enabled Landsat Data (WELD) project was created to
provide consistent continental scale 30 m Landsat long-term data re-
cords (Roy et al., 2010). These data have been reported as urgently
required for a better monitoring of the Earth system functioning and
land-cover change globally and provide a high spatial resolution com-
plementary analogue of very well established coarse spatial resolution
land products from the MODIS and AVHRR sensors data streams. To our
knowledge, the WELD project is the only initiative which provides

Fig. 8. Comparison of the original Landsat RGB composites and the predictions of HISTARFM and STARFM for the five selected study areas (August 2018)
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access to high resolution optical data at a continental scale. In this
work, we pursued an identical objective but we propose a different
approach which heavily relies on modern cloud computing platforms to
process the massive Landsat and MODIS data sets at broad spatial
scales. Moreover, instead of using per-pixel temporal compositing ap-
proach to obtain cloud free mosaics of Landsat as WELD does, we have
developed and implemented in the cloud a data assimilation method
which provides gap free reflectance estimations along with its un-
certainties.

Previous approaches have mostly capitalized on refining and im-
proving their data fusion algorithms to minimize the errors and noise in
their final estimates. One important pitfall of these approaches is that
they were not specifically designed to process efficiently large amounts
of data and, very often, rely on rather complex computations that are
not easily parallelizable to run in modern cloud computing platforms
such as GEE. While these methods produce in general satisfactory re-
sults, they have been mostly validated with synthetic data or over ra-
ther small areas (Gevaert and García-Haro, 2015; Walker et al., 2012;
Chen et al., 2015) because of the above mentioned computational cost
constrain. Taking into account that high spatial resolution sensors on
board of the Landsat and Sentinel platforms produce daily huge
amounts of multi spectral data globally, especially designed and highly
paralellizable cloud computing approaches like the one proposed in this
work could be of great interest to produce continental gap filled sa-
tellite land surface reflectance data sets. To provide an example of the
unprecedented computational power of GEE, the computation of gap
free Landsat reflectances with HISTARFM in 2016 used 19,537 Landsat
scenes (combining Landsat 7 and Landsat 8 platforms) and 92 full
MODIS mosaics (combining Terra and Aqua platforms) for the study
area (CONUS). Moreover, the high efficiency of the proposed method
running in GEE allows to process in 2 days all Landsat optical bands for
a given date covering the full CONUS, which is around processing
1.2 ⋅ 1011 pixels.

The quantitative and qualitative comparison of our approach with
STARFM revealed a great consistence among them (see Section 4.3).
Moreover, HISTARFM outperforms STARFM for the considered bands,
at the considered zones and dates. This seems to imply that most of the
needed spatial operations that impede the implementation of the
STARFM or similar approaches in the cloud could be circumvented
using information from previous years by means of the computed
Landsat climatology included in our approach. The computation of the

climatology is very simple, efficient, and it is carried out on a pixel basis
but, on the other hand, involves processing huge amounts of data at a
time (ten years in our case). This could be a serious limitation in the
application of our method in situations when the data is not ingested in
the system or the satellite data record is too short. Fortunately, the GEE
platform has the whole Landsat 4, 5, 7 and 8 surface reflectance data set
(starting in 1982) ready to use and it is routinely updated. Furthermore,
looking into the future, this limitation will not be as important, since we
will have more medium resolution data available.

Although the validation of most of the state-of-the-art approaches is
very limited in space and time, we have carried out a literature review
to provide some insight about the magnitude of the uncertainties and
discrepancies with them and the proposed approach. This comparison
with the literature has to be interpreted carefully because the accuracy
and precision of the methods reported in the literature could be affected
by many factors, such as the heterogeneity of land surface and the
change magnitude between the target and reference data. As an ex-
ample, Fu et al. (2013) modified the ESTARFM (mESTARFM) algorithm
and tested its performance in three areas located in China and Canada
by comparing with two other similar approaches. Correlations ranged
between 0.41 and 0.89 for the band B2, 0.55–0.93 for the band B3 and,
0.67–0.97 for the band B4, while the RMSE values ranged between
0.005 and 0.02 for the band B2, 0.005–0.16 for the band B3 and,
0.005–0.03 for the band B4. Chen et al. (2015) compared four STARFM
like fusion models (STARFM, SPSTFM, ISTAFM, and ESTARFM) over a
wetland area in the Poyang Lake (China) and an irrigation cropland
area in Coleambally (Autralia). They ran the models in two different
configurations. Firstly, using single MODIS/Landsat single pairs and,
secondly, using two MODIS/Landsat pairs for their predictions. Their
coefficients of correlation between the predicted and actual reflectance
ranged from 0.30–0.95 for the band B3, 0.40–0.90 for B4, and 0.6–0.95
for B5 depending on the area and the dates analyzed. Gevaert and
García-Haro (2015) proposed a new unmixing-based method which
incorporated prior spectral information, the validation was carried out
with both, simulated high-resolution imagery and some base images to
predict in Spain. The results were also compared with the STARFM
algorithm and the authors reported RMSE values of 0.012 (B1), 0.019
(B2), 0.029 (B3), 0.043 (B4), 0.057 (B5), 0.052 (B7), and correlations of
0.93 (B1), 0.92(B2), 0.94(B3), 0.82(B4), 0.87(B5), 0.91(B7). Other re-
cent approaches proposed by Song et al. (2018) rely on a novel spatio-
temporal fusion method based on deep convolutional neural networks

Table 4
Validation of the results for the bands B1, B2, B3, and B4 (August 2018). HI and ST refers to HISTARFM and STARFM respectively. The whole scenes have been
removed and gap filled to estimate algorithms' performance with available Landsat data.The best results are highlighted in boldface.

Band B1 Band B2 Band B3 Band B4

HI ST HI ST HI ST HI ST

Zone 1 MBE −0.014 −0.008 −0.012 −0.008 −0.011 −0.011 −0.03 −0.03
MAE 0.02 0.02 0.016 0.016 0.013 0.014 0.04 0.04
RSME 0.03 0.03 0.02 0.02 0.017 0.017 0.05 0.06
R 0.92 0.91 0.90 0.90 0.87 0.87 0.88 0.82

Zone 2 MBE −0.011 −0.012 −0.03 −0.03 −0.016 −0.016 −0.004 −0.008
MAE 0.011 0.013 0.03 0.03 0.016 0.015 0.011 0.015
RSME 0.012 0.014 0.03 0.03 0.016 0.017 0.014 0.019
R 0.93 0.89 0.83 0.77 0.81 0.71 0.97 0.92

Zone 3 MBE −0.004 −0.009 −0.007 −0.011 −0.010 −0.014 −0.018 −0.04
MAE 0.005 0.009 0.007 0.012 0.010 0.014 0.02 0.05
RSME 0.007 0.011 0.02 0.008 0.013 0.015 0.03 0.06
R 0.76 0.65 0.87 0.73 0.62 0.45 0.80 0.57

Zone 4 MBE −0.001 −0.007 −0.001 −0.007 −0.002 −0.006 −0.003 −0.02
MAE 0.005 0.008 −0.005 0.009 0.007 0.010 0.012 0.03
RSME 0.008 0.03 0.009 0.03 0.013 0.03 0.019 0.05
R 0.96 0.65 0.96 0.69 0.96 0.77 0.94 0.70

Zone 5 MBE 0.000 −0.004 −0.002 −0.004 −0.004 −0.003 −0.001 −0.001
MAE 0.005 0.009 0.005 0.010 0.007 0.011 0.008 0.015
RSME 0.006 0.012 0.007 0.010 0.008 0.016 0.010 0.021
R 0.98 0.92 0.98 0.94 0.98 0.96 0.96 0.85
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Fig. 9. Distribution of the estimated surface reflectance values over the selected sites for the red (B3) and infrared (B4) spectral bands. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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(CNNs). The evaluation of their approach in two different study areas
(Coleambally and the lower Gwydir catchment in Australia) over a set
of prediction dates obtained RMSE values ranging between 0.007 and
0.015 for band B1, 0.011–0.020 for band B2, 0.015–0.025 for band B3,
0.022–0.032 for band B4, 0.023–0.051 for band B5, and 0.021–0.039
for band B7. The comparison of the above mentioned statistics provided
by other authors with those shown in our results section (Table 3),

suggests that the presented method compares well with state of the art
gap filling and data fusion approaches despite the lack of a continental
scale validation of them. This result provides a framework for a feasible
operational method to provide gap free observations of high resolution
multi-spectral sensors such as the Landsats or the Sentinels.

Fig. 10. Analysis of the NDVI residuals over the selected study areas by comparing the NDVI computed with actual Landsat reflectance data and gap filled bands with
the STARFM and HISTARFM algorithms.
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5.2. Further improvements

The method presented here heavily relies on the quality of the
masking and uncertainties in the measured data, in our case, the
Landsat reflectance. Different authors have documented that despite
the LEADPS corrections, some seasonal solar zenith variations remain
in the spectral data even though the Landsat sensor has a narrow field
of view (Roy et al., 2016b). For this reason, further improvements of the
proposed method should include normalization methods to correct the
effects of non negligible bidirectional reflectance distribution function
(BRDF) undesired effects. These corrections could be implemented as a
preliminary step before running the algorithm, although a more
straightforward way to do it could be replacing the LEDAPS data for
harmonized datasets when they will be available. The Harmonized
Landsat/Sentinel-2 (HLS) aims to generate a surface reflectance product
by combining data from Landsat-8 and Sentinel-2 platforms while also
implement a model to derive the BRDF normalization and apply it at
30 m spatial resolution (Franch et al., 2019). The FORCE (Framework

for Operational Radiometric Correction for Environmental monitoring)
initiative could be also a good candidate to be used in place of the
LEDAPS Landsat reflectance products (Frantz, 2019). According to their
authors, the FORCE is capable of generating multi-sensor analysis ready
data (ARD) and is comprised of operational cloud masking and radio-
metric correction methods (including topographic or BRDF correction).
So replacing the present Landsat data by any improved harmonized or
ARD data set would be an easy and efficient way to generate better
results with minimal changes in the proposed method. In the current
version of HISTARFM, the algorithm has been developed and con-
strained to be applied band-by-band assuming the bands are in-
dependent. Further improvements of HISTARFM will take advantage of
exploiting inter-band correlations for the predictions. The practical
implementation of it should be further investigated, but it surely re-
quires moving away from the actual scalar implementation. This will
need more computational resources to be allocated at once but, in any
case, exploiting inter-band correlations and estimating the whole
spectra jointly could potentially improve the accuracy of HISTARFM

Fig. 11. Temporal analysis of the RMSE predicting Landsat reflectances with HISTARFM and STARFM algorithms over two selected study areas. Zone 4 corresponds
with very heterogenous urban area close to Washington D.C. (US), and zone 5 corresponds with a dry ecosystem area mixture of evergreen forest and shrub lands
located in Nevada, (US).
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final estimates and the calculated predicted variances.

5.3. Future applications

The Landsat program running continuously and consistently for
more than forty years provides a unique opportunity to provide key
higher-level products valuable for many climate studies at an un-
precedented spatial resolution (Wulder et al., 2019). The provided gap
filled spectral products relying on MODIS and Landsat data go a step
further, and allow to create continuous time series of Essential Climate
Variables (ECVs) such as the fraction of absorbed photosynthetically
active radiation (FAPAR) and leaf area index (LAI), along with realistic
uncertainty estimates of them. It is important to note that, because the
proposed method provides reconstructed spectral reflectances, there is
no need of using empirical parameterizations of vegetation indices to
estimate biophysical parameters. Instead, more robust approaches
which rely on the inversion of radiative transfer models could be used
to retrieve the variables of interest. Additionally, because no gaps are
present in the predicted time series, there is no need of compositing
different years to provide annual land phenology information. This
would potentially enable the creation of yearly information associated
with above-ground forest biomass, burned area, crop yield prediction,
and land cover change for example (He et al., 2018; Huang et al., 2019;
He et al., 2019).

6. Conclusions

We have presented a new data fusion method, HISTARFM, for the
smoothing and gap filling of Landsat reflectance time series at an un-
precedented broad spatial scale. We implemented a bias-aware Kalman
filter method in the Google Earth Engine (GEE) platform to obtain the
monthly fused images at Landsat spatial-resolution. The method has
been designed to take full advantage of modern cloud computing
platforms, and allows to process large amounts of data by using simple
and scalable operations that run optimally in the cloud. The direct
validation of the proposed approach at a continental scale over 1050
sites representing common vegetation types over the study indicated
the feasibility of the method. The relative mean errors (rME) remained
below 1.5% for all the bands, indicating that our estimates are

unbiased. The relative mean absolute errors (rMAE) and relative root
mean squared errors (rRMSE) were low to moderate, and varied sig-
nificantly between bands in concordance with the LEDAPS algorithm
uncertainties reported in the literature. The high degree of agreement
between the validation errors and the predicted uncertainties by HIS-
TARFM provides the foundation for using them for error propagation in
future applications.

The proposed methodology is general enough to incorporate other,
more advanced, nonlinear approaches beyond Kalman filtering ap-
proaches, such as particle filtering and recursive Gaussian processes.
Exploitation of the generated products may have an impact in many
applications for land monitoring, from phenological studies to change
detection and crop yield estimation. Also, the provided gap filled re-
flectances go a step further and have the potential to provide con-
tinuous time series of Essential Climate Variables (ECVs) and many
other key terrestrial vegetation variables at broad scales.
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Appendix A: Table of Symbols

Table A.5
Table with definition of symbols used in this paper in order of appearance in the text.

Symbol Description

Kk
− Kalman gain at timestep k

Xk
− prior estimate of reflectance at time k

xk Posterior (corrected) estimate of reflectance at time step k
zk Landsat reflectance observation at time k
Pk

− Error covariance of the prior estimate of reflectance at time k
Pk Error covariance of the posterior estimate at time k
H Observation operator relating modeled reflectances and observed reflectances
R Landsat error covariance
β_i Linear regression coefficients relating MODIS and Landsat reflectances for pixel i
zi Vector of monthly Landsat reflectances for pixel i with one element per month of selected year
ui, mod Vector of monthly MODIS reflectances of pixel i with one element per month of selected year.

Reflectances are resampled at 30 m resolution using a nearest neighbor algorithm.
Ui, MOD Augmented input matrix [1ui, mod] with 1 being a column vector with all elements set to 1
ui, k, mod

30 Vector of MODIS reflectances at pixel i for month k spatially dissagregated at 30 m
from regression operation

Ui, k, mod
30 Augmented input matrix [1ui, k, mod

nr30]
Pk, MOD Error covariance of the spatially dissagregated MODIS reflectance
zk Landsat mean reflectance of month k calculated using 10 years prior to selected year

Pk LS, Landsat climatological variance of month k calculated using 10 years prior to selected year

γ Fraction of error covariance of the estimate attributable to observation bias
Wk Error covariance of the posterior corrected unbiased reflectance estimate at time step k
Tk Error covariance of the posterior estimate of the reflectance bias at month k
bk

− Prior estimate of the reflectance bias at month k
bk Posterior (corrected) estimate of reflectance bias at time step k
Tk

− Error covariance of the prior estimate of the reflectance bias at month k
xk Corrected and unbiased estimate of 30 m resolution reflectance of month k
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