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Abstract
Disease transmission and behaviour change are both fundamentally social phenomena. Behaviour change
can have profound consequences for disease transmission, and epidemic conditions can favour the more
rapid adoption of behavioural innovations. We analyse a simple model of coupled behaviour change and
infection in a structured population characterised by homophily and outgroup aversion. Outgroup aver-
sion slows the rate of adoption and can lead to lower rates of adoption in the later-adopting group or even
behavioural divergence between groups when outgroup aversion exceeds positive ingroup influence. When
disease dynamics are coupled to the behaviour-adoption model, a wide variety of outcomes are possible.
Homophily can either increase or decrease the final size of the epidemic depending on its relative strength
in the two groups and on R0 for the infection. For example, if the first group is homophilous and the
second is not, the second group will have a larger epidemic. Homophily and outgroup aversion can
also produce dynamics suggestive of a ‘second wave’ in the first group that follows the peak of the epi-
demic in the second group. Our simple model reveals dynamics that are suggestive of the processes cur-
rently observed under pandemic conditions in culturally and/or politically polarised populations such as
the USA.
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Social media summary: We modelled the joint spread of disease and preventive behaviour in a
polarised population. Polarisation doesn't help.

1. Introduction

Behaviour can spread through communication and social learning like an infection through a commu-
nity (Bass, 1969; Centola, 2018). Cavalli-Sforza and Feldman, who pioneered treating cultural trans-
mission in an analogous manner to genetic transmission, noted that ‘another biological model may
offer a more satisfactory interpretation of the diffusion of innovations. The model is that of an epi-
demic’ (Cavalli-Sforza & Feldman, 1981: 32–33). The biological success of Homo sapiens has been
attributed to its capacity for cumulative culture, and particularly to the rapid and flexible adaptability
that arises from social learning (Henrich, 2015). Adoption of adaptive behaviours during an epidemic
of an infectious disease could be highly beneficial to both individuals and the population in which they
are embedded (Fenichel et al., 2011). Coupling models of behavioural adoption and the transmission
of infectious disease, what we call coupled contagion models, may thus provide important insights for
understanding the dynamics and control of epidemics. While we might expect strong selection – both
biological and cultural – for adaptive responses to epidemics, complications such as the potentially
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differing time scales of culture and disease transmission and the existence of social structures that
shape adoption may complicate convergence to adaptive behavioural solutions.

In this paper, we explore the joint role of homophily – the tendency to form ties with people similar
to oneself – and outgroup aversion – the tendency to avoid behaviours preferentially associated with an
outgroup. Identity exerts a powerful force on the dynamics of behaviour (Hogg & Abrams, 2007;
Bishop, 2009; Mason, 2018; Smaldino, 2019; Klein, 2020; Moya et al., 2020). This is because identity
at least partly determines who we associate with, communicate with, and strive to either emulate or
avoid. Our analysis is predicated on the idea that this matters for the dynamics of infection. For
example, Salathé and Bonhoeffer (2008) showed that if rates of vaccine adherence cluster on networks,
as when communities collectively adopt identity-based positions on the likely costs and benefits of
vaccination (Bauch & Earn, 2004) or when like-minded individuals tend to assort in social networks
(Bishop, 2009), the overall vaccination rates needed for herd immunity can be substantially higher
than suggested by models that assume random vaccination.

Homophily involves interactions with ingroup members at rates higher than expected by chance.
Homophily is often treated as though it were a global propensity for assortment by type (e.g. Centola,
2011). However, homophily is frequently observed to a greater or lesser degree across subgroups, a phe-
nomenon known as differential homophily (Morris, 1991). Consider a case of two interacting groups,
where one is more homophilous than the other. The less homophilous group may consist of more ‘front-
line’ workers, who are exposed to a broader cross-section of the population by the nature of their work. In
such cases, differential homophily may lead to differential disease dynamics in each group.

Members of opposed identity groups not only engage with the world differently, but they can react
in divergent ways to identical stimuli. Asked to watch political debates or hear political arguments,
partisans often grow more strongly partisan, to the consternation of moderates (Taber et al., 2009).
In the USA, partisan identities have become increasingly defined in terms of their opposition to
the opposing party (Abramowitz and Webster, 2016). When considering the adoption of products,
consumers often become disenchanted with otherwise attractive purchases if the products are asso-
ciated with identity groups viewed as different from their own (Berger & Heath, 2007, 2008).
Smaldino et al. (2017) modelled the spread of a behaviour among members of two groups who
responded positively to the behavioural contagion but tended to reject it if it was overly associated
with the outgroup. They showed that outgroup aversion not only decreased the overall rate of adop-
tion, but could also delay or even entirely suppress adoption in one of the groups. While populations
vary in the extent to which they are polarised or parochial, identity clearly matters to the adoption of
health behaviours in at least communities. For example, in the USA, people who identify with the
right-wing Republican party are much less likely than those identifying with the centre-left
Democratic party to endorse mask-wearing or belief in its efficacy in preventing disease transmission
during the COVID-19 pandemic (van Kessel & Quinn, 2020).

Several previous studies have considered the coupled contagion of behaviour and infection, usually
focused on cases where the behaviour is one that decreases the spread of the disease (such as social
distancing or wearing face masks) and sometimes using the assumption that increased disease preva-
lence promotes the spread of the behaviour (Tanaka et al., 2002; Epstein et al., 2008; Funk et al., 2010;
Verelst et al., 2016; Fast et al., 2015; Fu et al., 2017; Hébert-Dufresne et al., 2020; Mehta & Rosenberg,
2020). These models typically assume that individuals differ only in behaviour and disease status.
Thus, the spread of both disease and behaviour depend primarily on rates of behaviour transmission
and disease recovery. This is true even of models in which the population is structured on networks.
Network structure can change the dynamics of contagion. However, contrary to the assumptions of
most models, behavioural distributions on social networks are anything but random. People assort
in highly non-random ways (McPherson et al., 2001) and these non-random associations both
drive and are driven by social identity. This suggests that the role of social identity is an important,
but under-studied, component of coupled contagion models.

Here, we consider how identity – and particularly homophilous interactions with ingroup members
and aversion to adopt behaviours used by an outgroup – influences the spread of novel behaviours that

2 Paul E. Smaldino and James Holland Jones



consequently affect the transmission of infectious disease. The model we will present is complex, and
hence challenging to analyse. To help us make sense of the dynamics, we will first describe the dynam-
ics of infection and behaviour adoption in isolation, and then explore the full coupled model. We will
first show how homophily can introduce temporal delays in the infection trajectories between groups.
We will then show how outgroup aversion can lead to reduced or even fully inhibited behaviour adop-
tion by the later-adopting group. Finally, we will analyse the fully coupled model and show how the
identity-driven forces we consider can lead differentiated identity groups to experience an epidemic in
very different ways.

2. The SIR model of infection with homophily

Wemodel infection in a population in which individuals can be in one of three states: susceptible, infected
and recovered. When susceptibles interact with infected individuals, they become infected with a rate
equal to the effective transmissibility of the disease, τ. Infected individuals recover with a constant prob-
ability ρ per infection per unit time. This is the well-known SIR model of epidemics (Kermack &
McKendrick, 1927; Tolles & Luong, 2020). The baseline model assumes random interactions governed
by mass action, and the dynamics are described by well-known differential equations. This model yields
the classic dynamics in which the susceptible and recovered populations appear as nearly mirrored sig-
moids, while the rate of infected individuals rises and falls. The threshold for the epidemic is given by the
basic reproduction number, R0, which is a measure of the expected number of secondary cases caused by
a single, typical primary case at the outset of an epidemic in a population entirely composed of uninfected
individuals. An epidemic occurs when R0 > 1. For the basic SIR model in a closed population, R0 = τ/ρ.

Our analysis will focus on scenarios where individuals assort based on identity. In this case, assume that
individuals all belong to one of two identity groups, indicated with the subscript 1 or 2. Let wi be the prob-
ability that interactions are with one’s ingroup, i ϵ {1,2}. It is therefore a measure of homophily; populations
are homophilous when wi > 0.5. It is important to recognise that groups can differ in their homophily
(Morris, 1991). For example, if groups differ in socioeconomic class and group 1 tends to employ members
of a group 2 as service workers, homophily will be higher for group 1; a member of group 2 is more likely
to encounter members of group 1 than the reverse. We can update the equations governing infection
dynamics for members of group 1, with analogous equations governing members of group 2.

dS1
dt

= −tS1(w1I1 + (1− w1)I2)

dI1
dt

= tS1(w1I1 + (1− w1)I2)− rI1

dR1

dt
= rI1

We assume the disease breaks out in one of the two groups, so the initial number infected in group
1 is small but non-zero, while the initial number infected in group 2 is exactly zero. Without loss of
generality, we have assumed that group 1 is always infected first. When homophily is low, the model
exhibits standard SIR dynamics approximating a single unified population. When an infection breaks
out in group 1, homophily can delay the outbreak of the epidemic in group 2. Homophily for each
group works somewhat synergistically, but the effect is dominated by w2. This is because the infection
spreads rapidly in a homophilous group 1, and if group 2 is not homophilous, its members will rapidly
become infected. However, if group 2 is homophilous, its members can avoid the infection for longer,
particularly when group 1 is also homophilous. If only group 2 is homophilous, the initial outbreak
will be delayed, but the peak infection rate in group 2 can actually be higher than in group 1, as the
infection is driven by interactions with both populations (Figure 1).

We also considered the case in which the transmissibility of the infection can be reduced to very
near the recovery rate, so that R0 is very close to 1. In this case, homophily can protect groups where
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infection did not originally break out by keeping members relatively separated from the infection
group (Figure S2).

3. Behavioural contagion with outgroup aversion

We model behaviour adoption as a susceptible–infectious–susceptible (SIS) process, in which indivi-
duals can oscillate between adoption and non-adoption of the behaviour indefinitely. We view this as
more realistic than an SIR process for preventative-but-transient behaviours like social distancing or
wearing face masks. To avoid confusion with infection status, we denote individuals who adopted
the preventative behaviour as careful (C), and those who have not as uncareful (U). Unlike a disease,
which is reasonably modelled as equally transmissible between any susceptible–infected pairing, where
behaviour is concerned, susceptible individuals are more likely to adopt when interacting with ingroup
adopters, but less likely to adopt when interacting with outgroup adopters. We model the behavioural
dynamics for members of group 1 are as follows, with analogous equations governing members of
group 2:

dU1

dt
= −(a1 + bC1)U1 + (gC2 + d)C1

dC1

dt
= (a1 + bC1)U1 − (gC2 + d)C1

Members of group i may spontaneously adopt the behaviour independent of direct social influence,
and do so at rate αi. This adoption may be due to individual assessment of the behaviour’s utility, to
influences separate from peer mixing, such as from media sources, or to socioeconomic factors that

Figure 1. Dynamics of the infected population of each group under low and high homophily (wi = 0.6, 0.99). Other parameters used
were τ = 0.3, ρ = 0.07, I1(0) = 0.01, I2(0) = 0. R0≈ 4.28 in the absence of homophily.
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make behaviour adoption more or less easy for certain groups. For these reasons, we assume that
groups can differ in their rates of spontaneous adoption. In reality, it is possible for groups to differ
on all four model parameters, all of which can influence differences in adoption rates. For simplicity,
we restrict our analysis to differences in spontaneous adoption.

Uncareful individuals are positively influenced to become careful by observing careful individuals
of their own group, with strength β. However, this is countered by the force of outgroup aversion, γ,
whereby individuals may cease being careful when they observe this behaviour among members of the
outgroup. The behaviour is eventually discarded at rate δ, representing the financial and/or psycho-
logical costs of continuing to adopt preventive behaviours like social distancing and wearing face
masks.

This model assumes no explicit homophily in terms of behavioural influence. On the one hand, it
seems obvious that we observe and communicate with those in our own group more than other
groups. On the other hand, opportunities for observing outgroup behaviours are abundant in a digit-
ally connected world, which alter the conditions for cultural evolution (Acerbi, 2019). For simplicity,
we do not add explicit homophily terms to this system. Instead, we simply adjust the relative strengths
of ingroup influence and outgroup aversion, β/γ. When this ratio is higher, it reflects stronger homo-
phily for behavioural influence.

Numerical simulations that illustrate the influence of outgroup aversion are depicted in Figure 2. In
all cases, the careful behaviour is first adopted by group 1. In the absence of outgroup aversion, both
groups adopt the behaviour at saturation levels, with group 2 being slightly delayed. When outgroup
aversion is added, the delay increases, but more importantly, overall adoption declines for both groups.
This decline continues as long as the strength of outgroup aversion is less than the strength of positive
ingroup influence. A phase transition occurs here (Figure 2c, d). Although group 2 may initially adopt
the behaviour, adoption is subsequently suppressed, resulting in a polarising behaviour that is abun-
dant in group 1 but nearly absent in group 2.

We also consider the case in which one group has a higher intrinsic adoption rate, which could be
driven by differences in personality types, norms or media exposure between the two groups. When α1 >

Figure 2. Dynamics of the behavioural adoption. (a–c) Behaviour adoption dynamics in each group for different levels of outgroup
aversion, γ. Parameters used were α1 = α2 = 0.001, β = 0.3, δ = 0, C1(0) = 0.01, C2(0) = 0. (d) Equilibrium adoption rates for each group
as a function of outgroup aversion, γ. A bifurcation occurs when outgroup aversion overpowers the forces of positive influence. (e)
Behaviour adoption dynamics for γ = 0.2 where group 1 has a higher spontaneous adoption rate, α1 = 0.1. Here, the two groups
converge to different equilibrium adoption rates. (f) Equilibrium adoption rates for each group as a function of outgroup aversion,
γ, when α1 = 0.1.
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α2, the equilibrium adoption rate for group 1 could be considerably higher than for group 2, even when
ingroup positive influence was greater than outgroup aversion (Figure 2e, f). Note that these differences
arise entirely because of outgroup aversion. When γ = 0, both groups adopt at maximum levels.

Outgroup aversion has a strong influence on adoption dynamics. It can delay adoption, reduce equi-
librium adoption rates and even suppress adoption entirely in the later-adopting group. As we will see,
when the behaviour being adopted influences disease transmission, quite interesting dynamics can emerge.

4. Coupled contagion with homophily and outgroup aversion

Before we explore the coupled dynamics of this system, we must add one more consideration to the
model. We focus on the adoption of preventative behaviours that decrease the effective transmission
rate of the infection, such as social distancing or wearing face masks. We model this by asserting that
the transmission rate is τC for careful individuals and τU for uncareful individuals, such that τU≥ τC.
When considering the interaction between careful and uncareful individuals, we use the geometric
mean, so the transmissibility between SU and IU (that is, between susceptible and infected individuals
who are both uncareful) is

!!!!!!
tUtC

√
. We use the geometric mean so that if either population reduces its

transmissibility to zero, transmission among its members becomes impossible.
The full model has six compartments, with two-letter abbreviations denoting the disease and

behavioural state (Figure 3). The coupled dynamics for members of group 1 are as follows, with analo-
gous equations governing members of group 2, such that the full system is defined by 12 coupled dif-
ferential equations. A list of all parameters is presented in Table 1.

d(SU1)
dt

= [d+ g(SC2 + IC2 + RC2)](SC1)− [a1 + b(SC1 + IC1 + RC1)](SU1)

− tU(SU1)[w1(IU1)+ (1− w1)IU2]−
!!!!!!
tUtC

√
(SU1)[w1(IC1 + (1− w1)IC2]

d(SC1)
dt

= −[d+ g(SC2 + IC2 + RC2)](SC1)+ [a1 + b(SC1 + IC1 + RC1)](SU1)

− !!!!!!
tUtC

√
(SC1)[w1(IU1)+ (1− w1)IU2]− tC(SC1)[w1(IC1 + (1− w1)IC2]

d(IU1)
dt

= [d+ g(SC2 + IC2 + RC2)](IC1)− [a1 + b(SC1 + IC1 + RC1)](IU1)

+ tU(SU1)[w1(IU1)+ (1− w1)IU2]+
!!!!!!
tUtC

√
(SU1)[w1(IC1 + (1− w1)IC2]− r(IU1)

d(IC1)
dt

= −[d+ g(SC2 + IC2 + RC2)](IC1)+ [a1 + b(SC1 + IC1 + RC1)](IU1)

+ !!!!!!
tUtC

√
(SC1)[w1(IU1)+ (1− w1)IU2]+ tC(SC1)[w1(IC1 + (1− w1)IC2]− r(IC1)

d(RU1)
dt

= [d+ g(SC2 + IC2 + RC2)](RC1)− [a1 + b(SC1 + IC1 + RC1)](RU1)+ r(IU1)

d(RC1)
dt

= −[d+ g(SC2 + IC2 + RC2)](RC1)+ [a1 + b(SC1 + IC1 + RC1)](RU1)+ r(IC1)

Behavioural adoption is independent of infection status in this model. This may not be a realistic
assumption for some systems, such as Ebola, where the both the infection status of the adopter and
the perceived incidence in the population are likely to influence behaviour. The assumption seems
more realistic for infections like influenza and COVID-19, where infection status is not always trans-
parent and decisions are likely to be made on the basis of more abstract socially-transmitted informa-
tion. There are intermediate cases, however, such as where media reports of disease prevalence or the
perceived availability may influence the adoption of preventative behaviours (Lau et al., 2010; Zhang
et al., 2015; Seale et al., 2020). We do not consider such cases here.
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To make the behavioural adoption most meaningful, we focus on the case where instantaneous and
universal adoption of the careful behaviour would decrease the disease transmissibility so that R0 < 1.
That is, if everyone immediately adopted the behaviour, the epidemic would fizzle out. However,
behaviour adoption doesn't typically work this way. We have already noted that under assumptions
of between-group variation and outgroup aversion, a behaviour is likely to be adopted neither instant-
aneously nor universally. The question we tackle now is how those socially driven facets of behavioural
adoption influence disease dynamics.

Figure 4 illustrates the wide range of possible disease dynamics under varying assumptions of
homophily and outgroup aversion. A wider range of homophily values are explored in the
Supplemental Materials (Figures S4 and S5). In the absence of either homophily or outgroup aversion,
our results mirror previous work on coupled contagion in which the adoption of inhibitory behaviours

Figure 3. Illustration of the dynamics for the coupled contagion model. (a) Transition probabilities between compartments for
members of group 1. For simplicity these probabilities do not include the influence of homophily. (b) Homophilous interactions.
Members of group i have physical contact with members of their own group with probability wi and members of the outgroup with
probability 1−wi.

Table 1. Model parameters

Parameter Definition

τC Disease transmissibility for careful individuals

τU Disease transmissibility for uncareful individuals

ρ Disease recovery rate

wi Homophily for group i

αi Spontaneous behaviour adoption rate for group i

β Ingroup positive influence on behaviour

γ Outgroup negative influence on behaviour

δ Behaviour discard rate
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reduces peak infection rates, flattening the curve of infection. Owing to differences in spontaneous
adoption rates, however, group 2 may see a higher peak infection rate even when the infection breaks
out in group 1, because the inhibitory behaviour spreads more slowly in that group (Figure 4a).

Figure 4. Coupled contagion dynamics when the behaviour leads to highly effective reduction in transmissibility, under varying
conditions of homophily and outgroup aversion. Notice difference in y-axis scale for infection rate between top and bottom
sets of graphs. Parameters used: τU = 0.3, τC = 0.069, ρ = 0.07, α2 = 0.1, α2 = 0.001, β = 0.3, δ = 0, SU1(0) = 0.98, SC1(0) = 0.01, IU1(0) =
0.01, IC1(0) = RU1(0) = RC1(0) = 0, SU2(0) = 1.0, SC2(0) = IU2(0) = IC2(0) = RU2(0) = RC2(0) = 0.
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Homophilous interactions further lower infection rates. If group 1 alone is homophilous, the infec-
tion rate declines in that group, while peak infections actually increase in group 2 (Figure 4c). This is
because group 1 adopts the careful behaviour early, decreasing their transmission rate and simultan-
eously avoiding contact with the less careful members of group 2, who become infected through their
frequent contact with group 1. If group 2 alone is homophilous, on the other hand, the infection is
staved off even more so than if both groups are homophilous (Figure 4b, d). This is because members
of group 2 avoid contact with group 1 until the careful behaviour has been widely adopted, while
members of group 1 diffuse their interactions with some members of group 2, and these are less likely
to lead to new infections.

Outgroup aversion considerably changes these dynamics. First and foremost, outgroup aversion
leads to less widespread adoption of careful behaviours, dramatically increasing the size of the epi-
demic. Moreover, because under many circumstances there will be between-group differences in equi-
librium behaviour-adoption rates, this can lead to dramatic group differences in infection dynamics. In
the absence of outgroup aversion, we saw that homophily in group 2 could lead to an almost total
suppression of the epidemic. Not so with outgroup aversion, in which the peak infection rates increase
relative to the low-homophily case (Figure 4e, f). This occurs because homophily causes a delay in the
infection onset in group 2. Behavioural adoption slows the epidemic initially in both groups. However,
when the infection finally reaches group 1, behavioural adoption has decreased past its maximum
owing to the outgroup aversion, causing peak infections in both groups to soar.

The dynamics are particularly interesting for the case where the group in which the epidemic first
breaks out (group 1 in our analyses) is also strongly homophilous. Owing to homophily along with
rapid behaviour adoption, the epidemic is initially suppressed in this group. However, owing to slower
and incomplete behaviour adoption, the infection spreads rapidly in group 2. As the infection peaks in
group 2 while group 1 decreases its behaviour adoption rate, we observe a delayed ‘second wave’ of
infection in group 1, well after the infection has peaked in group 2 (Figure 4g). This effect is exacer-
bated when both groups are homophilous, as the epidemic runs rampant in the less careful group 2
(Figure 4h). As shown in the Supplementary Material, the timing of the second wave is also delayed to
a greater extent when the adopted behaviour is more efficacious at reducing transmission (Figure S6).

We explored the differences in the timing of the infection peaks between the two groups, as illu-
strated in Figure 5. As noted, homophily in group 1 has a larger effect than homophily in group 2
because the infection first breaks out in group 1. Without outgroup aversion, the infection peak in
group 1 is usually closely timed to the infection peak in group 2, usually coming slightly later owingto
group 2’s lagged adoption of the preventative behaviour (Figure 5a). If group 1 has very strong homo-
phily, however, the infection can peak earlier there, as its spread to group 2 is impeded. When

Figure 5. Difference in the timing of the peak infection rates between groups. These plots show the extend to which the peak in
group 1 lags behind the peak in group 2. The first two plots show the peak delay for group 1 as a function of group 1 homophily,
(a) with and (b) without outgroup aversion, γ. The third plot (c) more systematically varies outgroup aversion, for several values
of group 1 homophily and moderate group 2 homophily, w2 = 0.7. Other parameters used: τU = 0.3, τC = 0.069, ρ = 0.07, α2 = 0.1,
α2 = 0.001, β = 0.3, δ = 0.
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outgroup aversion is strong, however, group 2’s adoption of the preventative behaviour is severely
impeded, which causes its infection rate to peak much earlier than in group 1, and this effect is
only bolstered by strong homophily in group 1 (Figure 5b). The effect of outgroup aversion on the
differential timing between groups of infection rate peaks is non-monotonic (Figure 5c), peaking at
intermediate values of γ.

5. Discussion

It is well known that disease transmission is influenced by behaviour. What is often overlooked is how
behaviour itself changes within heterogeneous cultural populations. Both population structure and
social identity influence who interacts with whom, affecting disease transmission, and who learns
from whom, affecting behaviour change. We have highlighted two of these forces – homophily and
outgroup aversion – and shown their dramatic influence on disease dynamics in a simple model.

In terms of social interaction and behaviour adoption dynamics, group identity exerts its influence
by way of homophily, a powerful social force. Aral et al. (2009), for example, showed that homophily
accounted for more than 50% of contagion in a natural experiment on behavioural adoption. The
effect of homophily on diffusion dynamics can be variable. For example, homophily can slow down
convergence towards best responses in strategic networks (Golub & Jackson, 2012). This can be critical
when the time scales of learning and infection are different. Homophily can also lower the threshold
for desirability (or the selective advantage) required for adoption of a behaviour. Creanza and Feldman
(2014) showed that homophily and selection can have balancing effects – the selective advantage of a
trait doesn't need to be as high to spread when it is transmitted assortatively by its bearers. In the case
of our coupled-contagion model, strong homophily interferes with the adaptive adoption of protective
behaviour. Centola (2011) showed that homophily can increase the rate of adoption of health beha-
viours, but his experimental population could assort only on positive cues, and had no ability to signal
or perceive group identity.

Consider the observed adoption dynamics under differential homophily. When the homophily of
group 1 is less than that of group 2, group 1 can be interpreted as ‘frontline’ workers, who are exposed
to a broader cross-section of the population by nature of their work. Outgroup avoidance of this
group’s adopted protective behaviour can arise if there are status differentials across the groups.
Prestige bias, the tendency to adopt behaviours associated with high-status individuals, is a mechanism
that can drive differential uptake of novel behaviour by different groups (Boyd & Richerson, 1985), for
which there is quite broad support (Jiménez & Mesoudi, 2019). When both groups are highly homo-
philous and outgroup aversion is strong, the resulting dynamics suggest the case of negative partisan-
ship, a type of outgroup aversion in which partisans select actions based not on explicit policy
preferences but in opposition to the outgroup (Abramowitz & Webster, 2016). In this case, differences
in the relative size of the epidemic will be driven purely by differences in the rates of preventative
behaviour adoption by the two groups, including those differences induced by outgroup aversion.

Incorporating adaptive behaviour into epidemic models has been shown to significantly alter
dynamics (Fenichel et al., 2011). Prevalence-elastic behaviours (Funk et al., 2010) are those that
increase with the growth of an epidemic. While these behaviours may be protective, they can also
lead to cycling of incidence, which can prolong epidemics. Similarly, the adoption of some putatively
protective behaviours that are actually ineffective can be driven by the existence of an epidemic when
the cost of adoption is sufficiently low (Tanaka et al., 2009). We have shown in this paper that group-
identity processes can have large effects, leading groups that would otherwise respond adaptively to the
threat of an epidemic to behave in ways that put them, and the broader populations in which they are
embedded, at risk.

The context of the ongoing COVID-19 pandemic provides some interesting and timely perspective
on the relationship between behaviour, adaptive or otherwise, and transmission dynamics. While there
remains much uncertainty about the infection fatality ratio of COVID-19, and how this varies according
to individual, social and environmental context, it is clear that the great majority of infections do not lead
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to death (Russell et al., 2020; Meyerowitz-Katz & Merone, 2020). Furthermore, the extensive presympto-
matic (or even asymptomatic) transmission of the SARS-CoV-2 (He et al., 2020; Li et al., 2020; Arons
et al., 2020) is likely to reduce associations between behaviour and local infection rates. We expect that
such a situation will not induce strong prevalence-elastic behavioural responses, and that the sorts of
identity-based responses we describe here will dominate the behavioural effects on transmission.

How do we intervene in a way to offset the pernicious effects of negative partisanship on the adop-
tion of adaptive behaviour? While it may seem obvious, strategies for spreading efficacious protective
behaviours in a highly structured population with strong outgroup aversion will require weakening of
the association between protective behaviours and particular subgroups of the population. Given that
we are writing this during a global pandemic in which perceptions and behaviours are highly polarised
along partisan lines, attempts to mitigate partisanship in adaptive behavioural responses seem para-
mount to support.

The models we have analysed in this paper are broad simplifications of the coupled dynamics of
behaviour-change and infection. It would therefore be imprudent to use them to make specific pre-
dictions. The goal of this approach is to develop strategic models in the sense of Holling (1966), sac-
rificing precision and some realism for general understanding of the potential interactions between
social structure, outgroup aversion and coupled contagion (Levins, 1966; Smaldino, 2017). Such mod-
els provide a scaffold for the development of richer theories concerning coupled disease and behav-
ioural contagions.

Supplementary material. To view supplementary material for this article, please visit https://doi.org/10.1017/ehs.2021.22
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