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Formulation and Validation of an Intuitive Quality

Measure for Antipodal Grasp Pose Evaluation
Tian Tan, Redwan Alqasemi, Rajiv Dubey, and Sudeep Sarkar

Abstract—This paper describes a novel grasp quality measure
that we developed for evaluating antipodal grasp poses in real-
time. To quantify the grasp quality, we compute a set of object
movement features from analyzing the interaction between the
gripper and the object’s projections in the image space. The
normalization and weights of the features are tuned to make
practical and intuitive grasp quality predictions. To evaluate
our grasp quality measure, we conducted a real robot grasping
experiment with 1000 robot grasp trials on 10 household objects
to examine the relationship between our grasp scores and
the actual robot grasping results. The results show that the
average grasp success rate increases, and the average amount
of undesired object movement decreases as the calculated grasp
score increases. We achieved a 100% grasp success rate from 100
grasps of the 10 objects when using our grasp quality measure
in planning top quality grasps. In addition, we compared our
quality measure with the Q measure and deep learning-based
quality measures.

Index Terms—Computer vision for automation, Contact Mod-
eling, grasping.

I. INTRODUCTION

G
ENERATING grasp pose candidates and evaluating their

qualities are core problems in grasp planning. In this

work, we focus on addressing the antipodal grasp pose eval-

uation problem. Existing approaches to this problem can be

divided into two categories, analytical [1]–[3] and data-driven

[4], [5]. The analytical approaches extract various hand-crafted

features from analyzing the input sensory data and calculating

an overall quality score. On the other hand, data-driven ap-

proaches use auto-generated features. The grasp quality can

be found by either mapping features to a quality score or

comparing against known-quality grasps in the feature space.

Our grasp quality measure was developed using the analyt-

ical approach. We designed two low-level visual features that

capture the grasp region’s geometric properties, two high-level

features that indicate target missing and collision, and four

high-level quality features that measure the object movement

during gripper closing. The overall quality score is calculated

as the weighted sum of the normalized feature values. Fig.
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Fig. 1. Grasp quality evaluation flowchart.

1 shows the flowchart of the evaluation process. Throughout

this paper, the ”object movement” we mention is the object

movement caused by gripper closing.

Most researchers evaluate grasp planning systems only

based on the success rate in picking up objects and overlook

how much the gripper has moved the objects before they

are grasped. In this work, we would like to emphasize the

importance of considering object movement in grasp planning

because it affects the interaction between the grasped object

and its surroundings, the contents inside the grasped object,

and the object’s pose feasibility in the post-grasp task. As

our grasp quality features are designed based on the object

movement predictions, the grasp planning system using our

quality measure yields more reliable grasp poses than other

existing grasp planning systems. Please note that, even though

we compute our quality measure in the image space, we can

use it to evaluate antipodal grasp poses in the 3D space.

We can take advantage of the parallel-jaw gripper’s grasping

mechanism to simplify the grasp evaluation problem from 6D

(x, y, z, yaw, pitch, roll) to 3D (x, y, roll). We perform the

simplification by projecting both the gripper and the object

orthogonally to an image plane in the direction of the gripper’s

z-axis (which is defined by the gripper’s yaw and pitch). When

projecting the 3D object to a 2D silhouette, the change of the

object’s cross-sections, in the projection direction, should be

considered as in [ [6], Fig.6]. The projected silhouette should

be able to represent the object’s surface area of contact. The

main contribution of our work is presenting a quality measure

that provides a more accurate evaluation of antipodal grasp

poses than other existing methods.

II. RELATED WORK AND BACKGROUND

The existing approaches for grasp evaluation include data-

driven and analytical approaches. The most successful data-
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driven approaches are deep learning approaches. The most

popular deep learning approaches [7]–[10] can achieve an

80-100% grasp success rate in grasping everyday household

items. However, the grasp success rate alone is insufficient to

validate the grasp network’s auto-generated grasp quality mea-

sure since there can be significant quality differences between

successful grasps. Grasp detection networks are suitable for

such tasks as bin picking and storing/retrieving non-fragile

goods but not reliable enough to be used alone on assistive

robots.

There are two sub-categories of analytical approaches, the

contact geometry-based and the contact wrench-based. The

contact geometry-based approaches typically evaluate grasp

quality by examining if the contact region’s geometric proper-

ties/features are consistent with the designed criteria. Davidson

[11] and Vahedi [12] presented geometric caging methods for

finding immobilizing grasps. Calli [13] used the object contour

curvature derived from its contour function to help determine

graspable regions on the object contour. Blake [14] exploited

the properties of object contour local reflectional and rotational

symmetry. These contact geometry-based approaches often

have many limitations due to the lack of a complete design of

grasp quality features.

The contact wrench-based approaches judge the grasp qual-

ity by analyzing the contact wrenches (forces and torques)

acting on the object [2]. Most of the contact wrench-based

methods are built upon the grasp force closure property [15].

Nguyen [16] presented a method to construct force closure

grasps, which is one of the representative works in the field.

Ferrari and Canny [17] developed the most popular grasp

quality measure(often referred to as Q measure) for force

closure grasps. The Q measure is a measure of how well

a grasp can resist external disturbances. It is currently the

most versatile and reliable analytical grasp evaluation method.

Many variants of the Q measure have been developed [18]–

[21] to improve different aspects of the method. Besides

the Q measure, other contact wrench-based approaches [22]

often have many restrictions similar to the geometry-based

approaches. In the method comparison section, we provide

more details in comparing our grasp quality measure, Q

measure, and the embedded quality measure in grasp detection

networks.

III. GRASP QUALITY EVALUATION

A. Grasp Representation

We established mathematical models for both the gripper

and the object projections in the image to evaluate the gripper-

object interaction. An object’s projection is a silhouette image

of the object, which is mathematically a binary matrix. Each

entry of this matrix links to a pixel of the object silhouette im-

age, and the entry is 1 or 0 as the corresponding pixel belongs

to the object or background, respectively. As for the gripper

projection, we designed a different grasp representation in the

image space. Instead of describing an antipodal grasp as a

rectangle, we treat it as a set of line segments, {gl1, gl2, . . . ,

gln}, as shown in Fig. 2. Therefore, the gripper projection can

be discretely modeled as a set of line segment functions. Let

Fig. 2. Illustration of grasp lines(gli), grasp points(gpe
i

), grasp distances(de
i

),
contact points and grasp pose parameters(x, y, θ, r, w, n). The thicker lines
labeled as L and R represent the left and right gripper fingers’ contact lines.
The arrow indicates the gripper closing direction.

point Pij be the jth point on grasp line i (gli), then the function

of gli can be expressed as the coordinates of Pij(P
x
ij , P

y
ij) in

the image frame {I}:

P x
ij = x−∆wi sin θ +∆rj cos θ (1)

P
y
ij = y +∆wi cos θ +∆rj sin θ (2)

∆wi =
w(2i− n− 1)

2(n− 1)
(3)

Where i = 1, 2, . . . , n is the index of a grasp line. ∆wi is the

distance from the center of the gripper projection to the ith

grasp line. ∆rj is the distance from a grasp line’s center to

its point j. Also, (∆rj , ∆wi) is the coordinate of Pij in the

gripper projection frame {G}. ∆rj is positive if Pij is on the

right side of the grasp line center, and negative if otherwise

(∆rj ∈ [− r
2
, r
2
]). The parameters of this grasp representation,

(x, y, θ, w, r, n), are composed of the planar center location

(x, y), planar orientation (θ), gripper finger width(w), gripper

open width(r), and the number of grasp lines (n ∈ [1, w]) of

the gripper projection in the image coordinates.

B. Terminology

Here we introduce some terminologies and annotations to

help describe the gripper-object interaction and better explain

our algorithm. We use superscripts L and R to differentiate

the gripper’s left and right sides in our equations. We use

superscript e to indicate that the term is side specific, and

it should be replaced by either L or R. The intersections of

the grasp lines and the object outline are referred to as grasp

points of the object, such as gpei (i = 1, 2, ..., n) in Fig. 2. The

distances between grasp points and the center points of the

corresponding grasp line segments are referred to as the grasp

distances (dei ) of those grasp points. When the gripper closes

along the grasp line, some of the grasp points will contact the

gripper, and these grasp points become contact points. The

green square shape grasp points in Fig. 2 are the contact

points corresponding to that grasp pose. The collection of

grasp points is the grasp region, and the collection of contact

points is the contact region.
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C. Low-level Visual Features

The visual features are the grasp region profile vector

(GRPV) and the contact region feature vector (CRFV), both

of which carry information about the geometry and the contact

properties of the object contour inside the grasp region. The

GRPV is a vector of grasp distances of all grasp lines.

GRPV =

[

GRPV L

GRPV R

]

=

[

dL
1

dL
2

. . . dLn
dR
1

dR
2

. . . dRn

]

(4)

We find the grasp distances from searching the left and

right outermost intersections of the object outline and the

grasp lines. With the parameters of the input grasp pose

(x, y, θ, w, r, n), we calculate the searching points using (1)

and (2) with ∆rj as the only variable. When we find the left

and right outermost intersections, their corresponding search-

ing variables are the grasp distances of the grasp line. We

check the searching points’ pixel values to find intersections.

An intersection point must satisfy two conditions: (a) its pixel

value is 1, (b) at least one of its two neighboring points on the

same grasp line has a pixel value of 0. I.e., the pixel values

of an intersection (underlined) and its two neighboring points

must be [0, 1, 1] (left contact), [1, 1, 0] (right contact), or [0, 1,

0] (left and right contacts). To ensure the intersections found

are the outermost intersections, we start searching from the

outermost point of each side. For each grasp line, if any one

of the endpoints has a pixel value of 1, then the gripper will

collide with the object, the collision indicator (Ic) will be set

to 1, and we can skip extracting other features. After collision

checking, we first perform a coarse searching that uses dstep
as step size to find a point of pixel value 1 on each side of the

grasp line. Then we switch to a fine backward searching with

step size 1 to find the contact point. The maximum number of

searches in the coarse and fine searching processes are r
dstep

and dstep−1, respectively. To minimize the maximum number

of searches, we use dstep =
√
r. If no grasp point found after

searching all grasp lines, the GRPV will be an empty vector,

and we set the missing indicator (Im) to 1. Ic and Im are 0s

by default, and this is the only case that we need to calculate

the high-level movement features.

After calculating the GRPV, we can define the left and right

primary contact points as the grasp points with maximum

absolute grasp distances in the left and right grasp regions,

respectively. If the grasp distances’ difference between a grasp

point and the primary contact point of the same side is below

a threshold, this grasp point is a secondary contact point on

that side. Adding secondary contact points into consideration

decreases the effect of false contact prediction caused by

imperfect object silhouette detection. Once the contact points

are found, we can calculate their normals and center offsets

and organize them in the CRFV:

CRFV =

[

CRFV L

CRFV R

]

=









CPNL

CPDL

CPNR

CPDR









(5)

CPNe and CPDe are the vectors of contact point normals

and contact point center offsets, respectively. The contact point

center offset equals to the distance from the gripper center to

Fig. 3. The visualization of object silhouette boundary pixel normal approx-
imation, N is the pixel normal, Vni’s are the neighboring vectors.

the grasp line that the contact point is on, which is the ∆wi

in (3).

To extract the normals of contact points, we developed a

surface normal approximation method for binarized objects.

As shown in Fig. 3, the normal of an object boundary pixel

can be approximated by inverting the sum of its non-vacant

neighboring vectors. Here, a neighboring vector (Vni) is a

vector from the pixel of interest to one of its neighboring

pixels, and a neighboring pixel is non-vacant if its pixel

value equals 1. Moreover, the shape of the neighborhood is

an essential factor affecting the approximation result, and it

should be a circle since the neighbors in a circle are evenly

distributed in all directions. Therefore, we assign weights to

the square window for the neighborhood to form a circular

shape. In mathematical terms, this method can be expressed

as:

N = normalize(−(

m
∑

i

m
∑

j

Mxij ,

m
∑

i

m
∑

j

Myij)) (6)

Mx = Mx0 ◦Mp ◦Mw (7)

My = My0 ◦Mp ◦Mw (8)

Where Mx0 and My0 are, respectively, the matrices of the

original x and y coordinates of the corresponding pixels in a

window of size m×m and centered at the point of interest. Mp

is the matrix of pixel values of the pixels inside the window,

which is a binary masking matrix. Mw is the weight matrix

of the window. Mx and My are the matrices of the weighted

x and y coordinates of the non-zero pixels inside the window.

The sum of all entries in Mx and My , respectively, are the x

and y coordinates of the sum of all non-vacant neighboring

vectors, and the normal N is in the opposite direction of

this vector. These calculations are performed in the window

coordinate system, which has the point of interest as the origin

and the same orientation as the image coordinate system. Good

normal approximation results are obtained using m = 7. This

method can also be used to estimate the surface normal of 3D

objects represented by voxels.
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Fig. 4. The object translation and rotation features that measure the amount
of object translation in the gripper closing direction and its planar rotation,
respectively.

Fig. 5. The type 1 slippage predictor that estimates the likelihood of slippage
caused by angled contact.

D. High-level Quality Features

Based on the two low-level features, we derived a set

of more in-depth features that can be used to quantify the

quality of the grasp. These high-level features are the object

translation predictor, the object rotation predictor, the type 1

and type 2 object slippage predictors.

The object translation predictor (Dt) estimates the ratio of

the object travel distance during gripper closing to half of

the gripper open width ( r
2

). As shown in Fig. 4, Td is the

object translation distance in the gripper closing direction. It

is measured from the center of the two primary contact points

to the grasp rectangle’s center. Using GRPV, the ratio of the

object translation distance to the gripper half gripper open

width is calculated as:

Dt =

∣

∣

∣

∣

min(GRPV L) +max(GRPV R)

r

∣

∣

∣

∣

(9)

We use the distance ratio instead of the distance as the grasp

quality measure because using the ratio allows this feature to

adapt to objects and grippers of different sizes.

The object rotation predictor (Rr) predicts the angle of

object rotation during grasping. The object rotates when there

is torque, and the torque occurs when the two primary contact

points are not on the same grasp line. With the two primary

contact points, the rotation center and the rotation direction

can be determined. The potential after-rotation contact region

(PARCR) is defined using the center of rotation and the rotation

direction.

As shown in Fig. 4, the PARCR on each side is the object

outline segment between the two grasp points highlighted

Fig. 6. The type 2 slippage predictor that estimates the likelihood of slippage
caused by the offset of overall contact force to the center of gripper finger.
The shaded areas are the force zones.

in blue. One grasp point is on the same grasp line as the

rotation center, and the other is the last grasp point of the

region approaching the gripper in the rotation process. Once

the PARCRs are determined, we find the angle of rotation

by selecting the minimum required rotation angle for a grasp

point in the PARCR to be the new contact point after rota-

tion. Geometrically, the rotation angle (ai) is defined as the

angle between the gripper plate and the line that connects

the primary contact point (approximate pivot point) and the

new after-rotation contact point. This can mathematically be

expressed as:

Rr = min(aL
1
, aL

2
, . . . , aLnL , a

R
1
, aR

2
, . . . , aRnR) (10)

Where aei ’s are the rotation angles. Each rotation angle is

calculated as the angle between the gripper plate vector
−−→
GP

and
−−−→
CpG

e
i the vector from the primary contact point to the ith

grasp point in the PARCR.

The type 1 slippage predictor (Sa) is a feature that measures

how likely the object will slip during grasping due to the slope

of the contact surfaces. This feature is defined as the average

contact angle of the most slippery contact region. As shown

in Fig. 5, the contact angle (β ∈ [−90, 90]) is defined as the

angle between the contact force (F) and the contact point’s

inward normal (−Ni). If the contact point normal (Ni) points

towards the 1st and 2nd quadrant of the gripper frame {G},

then the contact angle is positive; and it is negative otherwise.

If one contact region’s contact angles have the same polarity,

then the contact region is slippery, and the slipperiness is

indicated by the average of all the contact angles. The larger

the average contact angle, the more likely the object will slip.

The following equations describe this slippage prediction:

βe
i =

{

6 (Fe,−Ne
i ) Ne

iy > 0

− 6 (Fe,−Ne
i ) Ne

iy < 0
(11)

SIe =

ne

∑

i=1

∣

∣βe
i

∣

∣−
∣

∣

ne

∑

i=1

βe
i

∣

∣ (12)

Sa =

{

1

2
(
∣

∣

∑
nL

i=1
βL
i

nL

∣

∣+
∣

∣

∑
nR

i=1
βR
i

nR

∣

∣) SIe = 0

0 SIe 6= 0
(13)

Where Ne
iy is the y coordinate of the normal Ne

i in {G},

and ne is the number of contact points of the e side of the

gripper. SIe is the slippage indicator. When SIe is 0, slippage
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is likely to happen because all contact angles of the same side

have the same polarity.

The type 2 slippage predictor (Sf ) is a feature that predicts

slippage through the grasp force placement. This feature favors

grasp forces that are balanced and centered on the gripper

contact surface. It is calculated as the average of the left and

right force zone center offsets.

As shown in Fig. 6, the force zone of one side of the gripper

is the continuous region that contains all contact points of that

side. The center offset is the distance from the center of the

force zone to the gripper’s center. Using CPDe, this feature

can be calculated as:

Se
f =

min(CPDe) +max(CPDe)

2
(14)

Sf =
SL
f + SR

f

2
(15)

Where min(CPDe) and max(CPDe) are the ∆we
min and

∆we
max respectively. Note that we do not directly consider

friction force in predicting slippage. However, our slippage

predictors are related to how the gripper forces are applied

to the object. Minimizing the slippage predictors’ values

maximizes the friction forces applied to the object.

E. Grasp Quality Scoring

The quality features are in different units and scales. Before

combining them, we first normalize them with linear functions

defined by two endpoints (0, 1) and (τi, 0), where the x-

coordinate is the feature value and the y-coordinate is the

normalized feature score. τi is the threshold feature value for

the 0 feature score. Since Dt is a ratio, its threshold value

is 1. Rr and Sa are measures of angles, and their thresholds

are set to 60 degrees based on our experiments. Sf is the

force placement feature, its value range from 0 to the gripper

projection’s half-width (w
2

). We used two feature thresholds w
4

and w
2

for feature scores 0.7 and 0, respectively, which makes

the function has two different slopes when normalizing low

and high feature values. We found this yields more practical

quality scores than a single slope function. After feature

normalization, we calculate the grasp quality measure S as

the weighted sum of the feature scores:

S = ksmin + (1− k)so− (16)

Where smin is the minimum feature score, and so− is the

average of other feature scores. Since the grasp pose’s quality

mainly depends on its worst quality feature, the weight k

should be assigned in a minimum-dominant fashion (k >>

0.5). It can be empirically determined by specifying the grasp

quality to the desired value when smin = 0 and so− = 1 (in

this paper, we used k = 0.9).

IV. REAL ROBOT GRASPING EXPERIMENT

A. Experiment Setup

We used the Baxter robot [23] from Rethink Robotics as our

test platform. The computations were programmed in Python

and performed on a laptop PC running Ubuntu 18.04 with

a 2.2 GHz Intel Core i7-8750H CPU, 8 GB of RAM, and

Fig. 7. The robot gripper and the objects used in the robot grasping experiment
(top). Some of the objects from the Cornell and DexNet grasping dataset used
in the method comparison test (bottom).

an NVIDIA GeForce GTX 1060 graphics card. The graphics

card was only used for computing the objects’ silhouettes, and

other computations are all performed on the CPU. We used

a parallel jaw gripper with a pair of narrow fingers(1.3 cm

wide). We masked the fingers’ rubber contact surfaces with

scotch tape to reduce friction so that slipping is more likely

to happen when the grasp pose is prone to slippage. Fig. 7

shows the hardware and the 10 objects used in the grasping

experiment.

This experiment examines how our calculated grasp quality

score relates to the actual robot grasping performance. In the

experiment, we used an eye-to-hand camera (Intel Realsense

L515) to locate the object. Because controlling the gripper

pitch and yaw is outside the scope of this work, we set them

as -90 and 0 degrees, respectively, to form top-down grasps.

Then, we used an eye-in-hand camera (Baxter hand camera)

to take a closer shot at the object from the top. Facebook

Detectron2 [24] was used to extract the object’s silhouette

from the close shot object image. Assuming the gripper was at

the object’s location, we calculated the gripper’s projection in

the object silhouette image using calibrated camera intrinsics

and the object’s distance to the camera. With the object and

gripper projections, we randomly generated grasp candidates

within the object’s bounding box. Then we evaluated them

with our quality measure to select the one with the desired

quality score for robot execution. Randomly generated grasp

poses help prove our quality measure’s robustness since to get

the desired pose, we need to evaluate hundreds and thousands

of candidates.

To test the whole grasp score value domain, we categorized

the grasp scores into ten score levels, 0-0.1, 0.1-0.2, . . . , 0.9-1.

We performed ten grasp trials within each score level for each

object, which is 1000 total grasps. The number of evaluated

grasp candidates, the time used in grasp evaluation, and the

robot grasp outcome were recorded for each grasp trial. The

robot grasp outcome includes: (1) a binary term that indicates

if the grasp is successful, and (2) two hand camera images
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Fig. 8. The success rate and the object movement score of the robot grasping experiment vs. the grasp score.

(BA images) taken right before and after the gripper closes,

which capture the object’s movement during gripper closing.

If the robot can lift the object for 2 seconds and put it back

without visible slippage, the grasp is recorded as successful.

The object’s rotation and its translation in the gripper closing

direction were measured as the key lines’ orientation change

and the key points’ position change, respectively, in the BA

images. We drew the key lines using the object’s appearance

features that are visible in both BA images. We drew the

position key point as the object’s center on the gripper’s center

grasp line in each of the BA images.

B. Results

In terms of the computational cost, the recorded average

grasp generation time for the 1000 grasps is 0.534 s. 261868

grasp candidates were evaluated to generate those grasps; the

average grasp evaluation time is 2.04 ms, with a standard

deviation of 0.264 ms.

We analyzed the accuracy of our quality measure through

the results of our robot grasping experiment, as shown in

Fig. 8. The left y-axis is the success rate; the right y-axis is

the normalized object movement score. Because the objects’

movements in failed grasp trials are unpredictable and not

helpful in evaluating our method, we ONLY measured the

objects’ movements in succeeded grasp trials to reveal the

quality difference among those successful grasp poses. The

object movement score is calculated as the average of the

normalized object rotation and translation (in the gripper

closing direction). The thresholds used for normalizing the

object translation and rotation are 100 pixels and 60 degrees,

respectively.

The x-axis is the average grasp score. The thin non-solid

lines show each object’s average success rate at each score

level. The thick solid line shows the average success rate, and

the bars show the average object movement of all objects at

each score level. To help interpret the results, we classified

our test objects into four categories based on their geometrical

properties. As shown in Fig. 7, objects in categories 1 and 2

both have flat contact surfaces. However, the graspable parts of

category-1 objects are much thinner than category-2 objects.

Category-4 objects have curved contact surfaces, and category-

3 objects have flat and curved contact surfaces.

From the object-wise success rate, we can see that objects

in the same category tend to have similar success rates under

the same score level. Also, category-1 objects and category-4

objects have the highest and lowest overall grasp success rate,

respectively. The category-1 objects are long and thin and have

flat contact surfaces in the projection, making them the easiest

for parallel-jaw grippers to grasp, while category-4 objects are

the hardest to grasp because they are round and our gripper

fingers are narrow. The category-1 objects and the banana have

relatively high success rates even when the grasp qualities are

low. This result does not disprove our quality measure because

the object movements in those grasps are very high. Therefore,

even though the grasps were successful, they were evaluated

as low quality because they were expected to move the objects

a lot.

Despite the differences between different objects’ success

rates in the medium quality score levels, all objects’ success

rates merge to the same points at the highest and lowest score

levels. This observation indicates that our quality measure can

distinguish good and bad grasps regardless of the object type.

We achieved a 100% success rate from grasping the ten objects

100 times with grasps of an average score of 0.93 and an

average movement score of 0.1 with a standard deviation of

0.0618. Overall, the average grasp success rate increases, and

the average object movement score decreases as the quality

score increases.

V. METHOD COMPARISON

Now that the real robot experiment has shown that our

quality measure is effective, in this section, we compare the

effectiveness of our quality measure with other grasp quality

measures through grasp planning results comparison.

A. Implementation of the Grasp Planning Systems

We have implemented 4 grasp planning systems for this

comparison, which includes 2 analytical systems based on our

quality measure and the Q measure [17], and 2 deep learning-

based systems, the FC-GQCNN [25] and the GGCNN [10].
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For the grasp planning system using our quality measure,

we used a normally distributed random search around the

object’s geometric center to find a high-quality grasp pose

(quality score > 0.95). If no such high-quality pose is found,

then we perform a uniformly distributed small region random

search around the grasp pose with the maximum score to

find a pseudo local optimum. We used the same searching

method for the Q measure-based grasp planning system, except

that we did not stop searching at a quality score threshold.

Instead, we keep searching until we find the pseudo global

optimum. We used 0.8 and 1 as the friction coefficient and the

torque scaling factor, respectively, in evaluating grasp poses’

Q measure scores.

The deep learning-based grasp planning systems are end-

to-end networks, which do not require a separate grasp pose

candidates sampling system. This makes them more efficient

than the analytical systems. However, they are often much

harder to implement than the analytical ones in real-world

applications since they usually need to be re-trained to adapt

to different working environment setups. For this comparison,

we used the pre-trained models named FC-GQCNN-4.0-PJ

and GGCNN for the FC-GQCNN and the GGCNN methods,

respectively, and we used their training datasets as test inputs.

B. Grasp Planning Dataset and Comparison Procedure

The dataset we used for this grasp planning comparison

is comprised of 100 single-object images that we extracted

from the DexNet 2.0 grasping dataset (synthetic) [7] and the

Cornell grasping dataset (real-world) [26]. From the DexNet

dataset, we randomly selected 50 images; from the Cornell

grasping dataset, we manually selected 50 images with good

object silhouette detection results (this rules out the impact of

flawed inputs on the grasp planning results). We tested the two

analytical grasp planning systems with all of the 100 images,

the FC-GQCNN and the GGCNN methods with the DexNet

subset and the Cornell subset, respectively. Some example

objects are shown in Fig. 7.

After obtaining the grasp planning results, we created an

anonymous online survey (USF IRB# Pro00040871) of 100

questions (one for each input image). For each question, the

participants see 3 copies of the input image, and each image

shows one grasp planning result (drawn on the image as a

rectangle) from the three grasp planning methods tested on that

image. Then the participants are asked to compare and evaluate

the quality of each grasp pose (without knowing which pose

is from which planning method) based on a 5-point Likert

scale. We explicitly instructed the participants to score the

grasp poses using the following criteria:

1 - The worst case as the robot gripper fingers will collide

with the object, or the gripper will miss the object.

2 - Better than 1 as the grasp does not miss and there is no

collision, but the robot still has a very low chance of picking

up the object.

3 - Better than 2 as the robot has a very high chance of

picking up the object. However, there will be a large amount

of object movement.

4 - Better than 3 as the robot can pick up the object, and

there is only a small amount of object movement.

Fig. 9. The results of grasp planning on the Cornell sub-dataset using
GGCNN, our method, and the Q measure. 1 and 5 indicate the worst and
best quality grasp poses, respectively.

Fig. 10. The results of grasp planning on the DexNet sub-dataset using FC-
GQCNN, our method, and the Q measure. 1 and 5 indicate the worst and best
quality grasp poses, respectively.

5 - The best grasp pose as the robot can pick up the object,

and there is almost no object movement.

This survey aims to use the human evaluation as a baseline

to compare the results of different grasp planning methods,

which can indicate the effectiveness of the corresponding grasp

quality measures.

C. Survey Results and Discussions

Ten subjects participated in our anonymous survey. Fig.

9 and 10 show the percentage of the planned grasp poses

based on their human-evaluated Likert score. For each dataset,

the resulting grasp poses percentages are calculated based on

500 human evaluations (50 instances x 10 participants). These

results show that the grasp planning system using our quality

measure generates significantly more top-quality grasp poses

(scored as 5) and less poor-quality grasp poses (scored as 1 or

2). In addition, we can see that both analytical grasp planning

systems work almost consistently across datasets. There is a

non-negligible percentage reduction of the top-quality grasp

poses in the DexNet dataset results, which is as expected

since the objects in this dataset are significantly more complex

than those in the Cornell dataset. Despite the performance

difference between the two grasp planning networks, both

generated the largest number of poor quality poses, and the

smallest number of top quality poses.
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Fig. 11. Comparison of our quality measure and the Q measure in evaluating
grasp poses.

As the Q measure grasp planning system has similar perfor-

mance to our method, we present a more detailed individual

case comparison to highlight the difference between the two

quality measures. As shown in Fig. 11, there are 4 grasp poses

evaluated by both quality measures. Firstly, the Q measure

cannot identify the quality difference between grasps 1 and 2

because it evaluates grasp quality by grasp contact wrenches,

and grasp 1 and 2 have nearly identical contact wrenches.

Secondly, comparing the two same-quality grasps 1 and 3,

we can see that the Q measure is more sensitive to flawed

input. Because of the imperfect object silhouette, our quality

evaluation has a score change of 10.4%, while the Q measure

has a score change of 79.8%. Lastly, the score of grasp 4 shows

that the Q measure cannot evaluate grasp poses that have

contact forces outside of the predetermined contact friction

cone.

VI. CONCLUSIONS

This paper presents the detailed design and experimental

results of our novel grasp evaluation method, which calculates

grasp poses’ quality by analyzing the interactions between the

gripper and the object through their projections in the image

space. The real robot grasping results show that our grasp

quality measure is practical and intuitive. And through method

comparison, we show that the grasp planning system using our

quality measure outperforms the other three grasp planning

systems in generating grasp poses that cause minimum object

movements in the gripper closing phase. Although the pre-

sented quality measure addressed only parallel-jaw grippers,

future work will include expansion to multi-fingered grippers.
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