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Formulation and Validation of an Intuitive Quality
Measure for Antipodal Grasp Pose Evaluation

Tian Tan, Redwan Alqasemi, Rajiv Dubey, and Sudeep Sarkar

Abstract—This paper describes a novel grasp quality measure
that we developed for evaluating antipodal grasp poses in real-
time. To quantify the grasp quality, we compute a set of object
movement features from analyzing the interaction between the
gripper and the object’s projections in the image space. The
normalization and weights of the features are tuned to make
practical and intuitive grasp quality predictions. To evaluate
our grasp quality measure, we conducted a real robot grasping
experiment with 1000 robot grasp trials on 10 household objects
to examine the relationship between our grasp scores and
the actual robot grasping results. The results show that the
average grasp success rate increases, and the average amount
of undesired object movement decreases as the calculated grasp
score increases. We achieved a 100% grasp success rate from 100
grasps of the 10 objects when using our grasp quality measure
in planning top quality grasps. In addition, we compared our
quality measure with the Q measure and deep learning-based
quality measures.

Index Terms—Computer vision for automation, Contact Mod-
eling, grasping.

I. INTRODUCTION

ENERATING grasp pose candidates and evaluating their
qualities are core problems in grasp planning. In this
work, we focus on addressing the antipodal grasp pose eval-
uation problem. EXxisting approaches to this problem can be
divided into two categories, analytical [1]-[3] and data-driven
[4], [5]. The analytical approaches extract various hand-crafted
features from analyzing the input sensory data and calculating
an overall quality score. On the other hand, data-driven ap-
proaches use auto-generated features. The grasp quality can
be found by either mapping features to a quality score or
comparing against known-quality grasps in the feature space.
Our grasp quality measure was developed using the analyt-
ical approach. We designed two low-level visual features that
capture the grasp region’s geometric properties, two high-level
features that indicate target missing and collision, and four
high-level quality features that measure the object movement
during gripper closing. The overall quality score is calculated
as the weighted sum of the normalized feature values. Fig.
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Fig. 1. Grasp quality evaluation flowchart.

1 shows the flowchart of the evaluation process. Throughout
this paper, the “object movement” we mention is the object
movement caused by gripper closing.

Most researchers evaluate grasp planning systems only
based on the success rate in picking up objects and overlook
how much the gripper has moved the objects before they
are grasped. In this work, we would like to emphasize the
importance of considering object movement in grasp planning
because it affects the interaction between the grasped object
and its surroundings, the contents inside the grasped object,
and the object’s pose feasibility in the post-grasp task. As
our grasp quality features are designed based on the object
movement predictions, the grasp planning system using our
quality measure yields more reliable grasp poses than other
existing grasp planning systems. Please note that, even though
we compute our quality measure in the image space, we can
use it to evaluate antipodal grasp poses in the 3D space.
We can take advantage of the parallel-jaw gripper’s grasping
mechanism to simplify the grasp evaluation problem from 6D
(x, y, z, yaw, pitch, roll) to 3D (x, y, roll). We perform the
simplification by projecting both the gripper and the object
orthogonally to an image plane in the direction of the gripper’s
z-axis (which is defined by the gripper’s yaw and pitch). When
projecting the 3D object to a 2D silhouette, the change of the
object’s cross-sections, in the projection direction, should be
considered as in [ [6], Fig.6]. The projected silhouette should
be able to represent the object’s surface area of contact. The
main contribution of our work is presenting a quality measure
that provides a more accurate evaluation of antipodal grasp
poses than other existing methods.

II. RELATED WORK AND BACKGROUND

The existing approaches for grasp evaluation include data-
driven and analytical approaches. The most successful data-
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driven approaches are deep learning approaches. The most
popular deep learning approaches [7]-[10] can achieve an
80-100% grasp success rate in grasping everyday household
items. However, the grasp success rate alone is insufficient to
validate the grasp network’s auto-generated grasp quality mea-
sure since there can be significant quality differences between
successful grasps. Grasp detection networks are suitable for
such tasks as bin picking and storing/retrieving non-fragile
goods but not reliable enough to be used alone on assistive
robots.

There are two sub-categories of analytical approaches, the
contact geometry-based and the contact wrench-based. The
contact geometry-based approaches typically evaluate grasp
quality by examining if the contact region’s geometric proper-
ties/features are consistent with the designed criteria. Davidson
[11] and Vahedi [12] presented geometric caging methods for
finding immobilizing grasps. Calli [13] used the object contour
curvature derived from its contour function to help determine
graspable regions on the object contour. Blake [14] exploited
the properties of object contour local reflectional and rotational
symmetry. These contact geometry-based approaches often
have many limitations due to the lack of a complete design of
grasp quality features.

The contact wrench-based approaches judge the grasp qual-
ity by analyzing the contact wrenches (forces and torques)
acting on the object [2]. Most of the contact wrench-based
methods are built upon the grasp force closure property [15].
Nguyen [16] presented a method to construct force closure
grasps, which is one of the representative works in the field.
Ferrari and Canny [17] developed the most popular grasp
quality measure(often referred to as Q measure) for force
closure grasps. The Q measure is a measure of how well
a grasp can resist external disturbances. It is currently the
most versatile and reliable analytical grasp evaluation method.
Many variants of the Q measure have been developed [18]-
[21] to improve different aspects of the method. Besides
the Q measure, other contact wrench-based approaches [22]
often have many restrictions similar to the geometry-based
approaches. In the method comparison section, we provide
more details in comparing our grasp quality measure, Q
measure, and the embedded quality measure in grasp detection
networks.

III. GRASP QUALITY EVALUATION
A. Grasp Representation

We established mathematical models for both the gripper
and the object projections in the image to evaluate the gripper-
object interaction. An object’s projection is a silhouette image
of the object, which is mathematically a binary matrix. Each
entry of this matrix links to a pixel of the object silhouette im-
age, and the entry is 1 or O as the corresponding pixel belongs
to the object or background, respectively. As for the gripper
projection, we designed a different grasp representation in the
image space. Instead of describing an antipodal grasp as a
rectangle, we treat it as a set of line segments, {gl1, glo, ...,
gln}, as shown in Fig. 2. Therefore, the gripper projection can
be discretely modeled as a set of line segment functions. Let
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Object silhouette

Fig. 2. Tllustration of grasp lines(gl;), grasp points(gpy), grasp distances(dy),
contact points and grasp pose parameters(z,y, 0, r,w,n). The thicker lines
labeled as L and R represent the left and right gripper fingers’ contact lines.
The arrow indicates the gripper closing direction.

point F;; be the j th point on grasp line i (gl;), then the function

of gl; can be expressed as the coordinates of P;; (P}, Pfé) in
the image frame {I}:

P =2 — Aw;sin + Ar; cos 0 (D

P} =y + Aw; cos§ + Ar;sin 6 (2

w(2i —n —1)

Aw; = —— 2 3

w = 1) 3)

Where i = 1,2,...,n is the index of a grasp line. Aw; is the

distance from the center of the gripper projection to the i'"
grasp line. Ar; is the distance from a grasp line’s center to
its point j. Also, (Ar;, Aw;) is the coordinate of P;; in the
gripper projection frame {G}. Ar; is positive if P;; is on the
right side of the grasp line center, and negative if otherwise
(Arj € [=5, 5]). The parameters of this grasp representation,
(z,y,0,w,r,n), are composed of the planar center location
(z,y), planar orientation (), gripper finger width(w), gripper
open width(r), and the number of grasp lines (n € [1,w]) of
the gripper projection in the image coordinates.

B. Terminology

Here we introduce some terminologies and annotations to
help describe the gripper-object interaction and better explain
our algorithm. We use superscripts L and R to differentiate
the gripper’s left and right sides in our equations. We use
superscript e to indicate that the term is side specific, and
it should be replaced by either L or R. The intersections of
the grasp lines and the object outline are referred to as grasp
points of the object, such as gp§ (i = 1,2, ...,n) in Fig. 2. The
distances between grasp points and the center points of the
corresponding grasp line segments are referred to as the grasp
distances (d) of those grasp points. When the gripper closes
along the grasp line, some of the grasp points will contact the
gripper, and these grasp points become contact points. The
green square shape grasp points in Fig. 2 are the contact
points corresponding to that grasp pose. The collection of
grasp points is the grasp region, and the collection of contact
points is the contact region.
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C. Low-level Visual Features

The visual features are the grasp region profile vector
(GRPV) and the contact region feature vector (CRFV), both
of which carry information about the geometry and the contact
properties of the object contour inside the grasp region. The
GRPYV is a vector of grasp distances of all grasp lines.

GRPVM| _[df dy ... dy]
GRPVE| = |ak gk dk

We find the grasp distances from searching the left and
right outermost intersections of the object outline and the
grasp lines. With the parameters of the input grasp pose
(z,y,0,w,r,n), we calculate the searching points using (1)
and (2) with Ar; as the only variable. When we find the left
and right outermost intersections, their corresponding search-
ing variables are the grasp distances of the grasp line. We
check the searching points’ pixel values to find intersections.
An intersection point must satisfy two conditions: (a) its pixel
value is 1, (b) at least one of its two neighboring points on the
same grasp line has a pixel value of 0. Le., the pixel values
of an intersection (underlined) and its two neighboring points
must be [0, 1, 1] (left contact), [1, 1, 0] (right contact), or [0, 1,
0] (left and right contacts). To ensure the intersections found
are the outermost intersections, we start searching from the
outermost point of each side. For each grasp line, if any one
of the endpoints has a pixel value of 1, then the gripper will
collide with the object, the collision indicator (1.) will be set
to 1, and we can skip extracting other features. After collision
checking, we first perform a coarse searching that uses dscp
as step size to find a point of pixel value 1 on each side of the
grasp line. Then we switch to a fine backward searching with
step size 1 to find the contact point. The maximum number of
searches in the coarse and fine searching processes are d;p
and dgep — 1, respectively. To minimize the maximum number
of searches, we use dsep, = /7. If no grasp point found after
searching all grasp lines, the GRPV will be an empty vector,
and we set the missing indicator (I,,) to 1. I. and I, are Os
by default, and this is the only case that we need to calculate
the high-level movement features.

After calculating the GRPV, we can define the left and right
primary contact points as the grasp points with maximum
absolute grasp distances in the left and right grasp regions,
respectively. If the grasp distances’ difference between a grasp
point and the primary contact point of the same side is below
a threshold, this grasp point is a secondary contact point on
that side. Adding secondary contact points into consideration
decreases the effect of false contact prediction caused by
imperfect object silhouette detection. Once the contact points
are found, we can calculate their normals and center offsets
and organize them in the CRFV:

GRPV = {

CPN*®

CRFVY] _ |CPD*
CRFV_{CRFVR]_ CPNE )

CPDE

CPN°€ and CPD°¢ are the vectors of contact point normals
and contact point center offsets, respectively. The contact point
center offset equals to the distance from the gripper center to
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Fig. 3. The visualization of object silhouette boundary pixel normal approx-
imation, N is the pixel normal, V,,;’s are the neighboring vectors.

the grasp line that the contact point is on, which is the Aw;
in (3).

To extract the normals of contact points, we developed a
surface normal approximation method for binarized objects.
As shown in Fig. 3, the normal of an object boundary pixel
can be approximated by inverting the sum of its non-vacant
neighboring vectors. Here, a neighboring vector (V,,;) is a
vector from the pixel of interest to one of its neighboring
pixels, and a neighboring pixel is non-vacant if its pixel
value equals 1. Moreover, the shape of the neighborhood is
an essential factor affecting the approximation result, and it
should be a circle since the neighbors in a circle are evenly
distributed in all directions. Therefore, we assign weights to
the square window for the neighborhood to form a circular
shape. In mathematical terms, this method can be expressed
as:

N = normalize(f(ZZMﬂj,zZMyij)) (6)
i i

My = Mzo o My o M, (7)

My = Myo o M, o M, (8)

Where M,y and M, are, respectively, the matrices of the
original x and y coordinates of the corresponding pixels in a
window of size m xm and centered at the point of interest. M,
is the matrix of pixel values of the pixels inside the window,
which is a binary masking matrix. M,, is the weight matrix
of the window. M, and M, are the matrices of the weighted
x and y coordinates of the non-zero pixels inside the window.
The sum of all entries in M, and M,, respectively, are the x
and y coordinates of the sum of all non-vacant neighboring
vectors, and the normal N is in the opposite direction of
this vector. These calculations are performed in the window
coordinate system, which has the point of interest as the origin
and the same orientation as the image coordinate system. Good
normal approximation results are obtained using m = 7. This
method can also be used to estimate the surface normal of 3D
objects represented by voxels.
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Fig. 4. The object translation and rotation features that measure the amount
of object translation in the gripper closing direction and its planar rotation,
respectively.

Fig. 5. The type 1 slippage predictor that estimates the likelihood of slippage
caused by angled contact.

D. High-level Quality Features

Based on the two low-level features, we derived a set
of more in-depth features that can be used to quantify the
quality of the grasp. These high-level features are the object
translation predictor, the object rotation predictor, the type 1
and type 2 object slippage predictors.

The object translation predictor (D;) estimates the ratio of
the object travel distance during gripper closing to half of
the gripper open width (5). As shown in Fig. 4, Ty is the
object translation distance in the gripper closing direction. It
is measured from the center of the two primary contact points
to the grasp rectangle’s center. Using GRPYV, the ratio of the
object translation distance to the gripper half gripper open
width is calculated as:

_ |min(GRPV*) + max(GRPV )
r

Dy

€))

We use the distance ratio instead of the distance as the grasp
quality measure because using the ratio allows this feature to
adapt to objects and grippers of different sizes.

The object rotation predictor (R,) predicts the angle of
object rotation during grasping. The object rotates when there
is torque, and the torque occurs when the two primary contact
points are not on the same grasp line. With the two primary
contact points, the rotation center and the rotation direction
can be determined. The potential after-rotation contact region
(PARCR) is defined using the center of rotation and the rotation
direction.

As shown in Fig. 4, the PARCR on each side is the object
outline segment between the two grasp points highlighted
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Fig. 6. The type 2 slippage predictor that estimates the likelihood of slippage
caused by the offset of overall contact force to the center of gripper finger.
The shaded areas are the force zones.

in blue. One grasp point is on the same grasp line as the
rotation center, and the other is the last grasp point of the
region approaching the gripper in the rotation process. Once
the PARCRs are determined, we find the angle of rotation
by selecting the minimum required rotation angle for a grasp
point in the PARCR to be the new contact point after rota-
tion. Geometrically, the rotation angle (a;) is defined as the
angle between the gripper plate and the line that connects
the primary contact point (approximate pivot point) and the
new after-rotation contact point. This can mathematically be
expressed as:

L L L _R R R
R, =min(ay,ay,...,a,c,07,05,...,0,%) (10)

Where af’s are the rotation angles. Each rotation angle is
calculated as the angle between the gripper plate vector G
and C,G¢ the vector from the primary contact point to the i*"
grasp point in the PARCR.

The type 1 slippage predictor (S,) is a feature that measures
how likely the object will slip during grasping due to the slope
of the contact surfaces. This feature is defined as the average
contact angle of the most slippery contact region. As shown
in Fig. 5, the contact angle (5 € [—90,90]) is defined as the
angle between the contact force (F) and the contact point’s
inward normal (—N;). If the contact point normal (N;) points
towards the 1! and 2"¢ quadrant of the gripper frame {G},
then the contact angle is positive; and it is negative otherwise.
If one contact region’s contact angles have the same polarity,
then the contact region is slippery, and the slipperiness is
indicated by the average of all the contact angles. The larger
the average contact angle, the more likely the object will slip.
The following equations describe this slippage prediction:

. L(F°,—-Nf) N§, >0
e 11
b —/(F°,-N§) N, <0 (b
S1e =[5 - |3 6l (12)
=1 1=1
nl L nfl SR

5, = L=+ =0 sre=0 gy

0 SI¢ 40

Where N is the y coordinate of the normal Nf in {G},
and n°® is the number of contact points of the e side of the
gripper. S1¢ is the slippage indicator. When S1°¢ is 0, slippage

WWW.
2021 a 3:40 UTC from IEEE Xplore. Restrictions apply.

.iee?gﬁg/‘fublicationsﬁstandards/gublications/rights/indexhtml for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2021.3096192, IEEE Robotics

and Automation Letters

TAN et al.: FORMULATION AND VALIDATION OF AN INTUITIVE QUALITY MEASURE FOR ANTIPODAL GRASP POSE EVALUATION 5

is likely to happen because all contact angles of the same side
have the same polarity.

The type 2 slippage predictor (Sy) is a feature that predicts
slippage through the grasp force placement. This feature favors
grasp forces that are balanced and centered on the gripper
contact surface. It is calculated as the average of the left and
right force zone center offsets.

As shown in Fig. 6, the force zone of one side of the gripper
is the continuous region that contains all contact points of that
side. The center offset is the distance from the center of the
force zone to the gripper’s center. Using C P D¢, this feature
can be calculated as:

min(CPD®) + max(CPD®)

= 14

¢ . (14)
St +Sf

=Lt (15)

Where min(CPD¢) and max(CPD®) are the Aw¢,,,, and
Awg, ... respectively. Note that we do not directly consider
friction force in predicting slippage. However, our slippage
predictors are related to how the gripper forces are applied
to the object. Minimizing the slippage predictors’ values

maximizes the friction forces applied to the object.

E. Grasp Quality Scoring

The quality features are in different units and scales. Before
combining them, we first normalize them with linear functions
defined by two endpoints (0, 1) and (7;, 0), where the x-
coordinate is the feature value and the y-coordinate is the
normalized feature score. 7; is the threshold feature value for
the O feature score. Since D; is a ratio, its threshold value
is 1. R, and S, are measures of angles, and their thresholds
are set to 60 degrees based on our experiments. Sy is the
force placement feature, its value range from O to the gripper
projection’s half-width (5). We used two feature thresholds
and % for feature scores 0.7 and 0, respectively, which makes
the function has two different slopes when normalizing low
and high feature values. We found this yields more practical
quality scores than a single slope function. After feature
normalization, we calculate the grasp quality measure S as
the weighted sum of the feature scores:

S = kSmin + (1 — k)s,- (16)

Where $,,;, is the minimum feature score, and s,- is the
average of other feature scores. Since the grasp pose’s quality
mainly depends on its worst quality feature, the weight &
should be assigned in a minimum-dominant fashion (£ >>
0.5). It can be empirically determined by specifying the grasp
quality to the desired value when s,,;, = 0 and s,- = 1 (in
this paper, we used & = 0.9).

IV. REAL ROBOT GRASPING EXPERIMENT
A. Experiment Setup

We used the Baxter robot [23] from Rethink Robotics as our
test platform. The computations were programmed in Python
and performed on a laptop PC running Ubuntu 18.04 with
a 2.2 GHz Intel Core i7-8750H CPU, 8 GB of RAM, and

scotch tape

2
4

e

RGB camera

Fig. 7. The robot gripper and the objects used in the robot grasping experiment
(top). Some of the objects from the Cornell and DexNet grasping dataset used
in the method comparison test (bottom).

an NVIDIA GeForce GTX 1060 graphics card. The graphics
card was only used for computing the objects’ silhouettes, and
other computations are all performed on the CPU. We used
a parallel jaw gripper with a pair of narrow fingers(1.3 cm
wide). We masked the fingers’ rubber contact surfaces with
scotch tape to reduce friction so that slipping is more likely
to happen when the grasp pose is prone to slippage. Fig. 7
shows the hardware and the 10 objects used in the grasping
experiment.

This experiment examines how our calculated grasp quality
score relates to the actual robot grasping performance. In the
experiment, we used an eye-to-hand camera (Intel Realsense
L515) to locate the object. Because controlling the gripper
pitch and yaw is outside the scope of this work, we set them
as -90 and O degrees, respectively, to form top-down grasps.
Then, we used an eye-in-hand camera (Baxter hand camera)
to take a closer shot at the object from the top. Facebook
Detectron2 [24] was used to extract the object’s silhouette
from the close shot object image. Assuming the gripper was at
the object’s location, we calculated the gripper’s projection in
the object silhouette image using calibrated camera intrinsics
and the object’s distance to the camera. With the object and
gripper projections, we randomly generated grasp candidates
within the object’s bounding box. Then we evaluated them
with our quality measure to select the one with the desired
quality score for robot execution. Randomly generated grasp
poses help prove our quality measure’s robustness since to get
the desired pose, we need to evaluate hundreds and thousands
of candidates.

To test the whole grasp score value domain, we categorized
the grasp scores into ten score levels, 0-0.1, 0.1-0.2, ..., 0.9-1.
We performed ten grasp trials within each score level for each
object, which is 1000 total grasps. The number of evaluated
grasp candidates, the time used in grasp evaluation, and the
robot grasp outcome were recorded for each grasp trial. The
robot grasp outcome includes: (1) a binary term that indicates
if the grasp is successful, and (2) two hand camera images
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Fig. 8. The success rate and the object movement score of the robot grasping experiment vs. the grasp score.

(BA images) taken right before and after the gripper closes,
which capture the object’s movement during gripper closing.
If the robot can lift the object for 2 seconds and put it back
without visible slippage, the grasp is recorded as successful.
The object’s rotation and its translation in the gripper closing
direction were measured as the key lines’ orientation change
and the key points’ position change, respectively, in the BA
images. We drew the key lines using the object’s appearance
features that are visible in both BA images. We drew the
position key point as the object’s center on the gripper’s center
grasp line in each of the BA images.

B. Results

In terms of the computational cost, the recorded average
grasp generation time for the 1000 grasps is 0.534 s. 261868
grasp candidates were evaluated to generate those grasps; the
average grasp evaluation time is 2.04 ms, with a standard
deviation of 0.264 m:s.

We analyzed the accuracy of our quality measure through
the results of our robot grasping experiment, as shown in
Fig. 8. The left y-axis is the success rate; the right y-axis is
the normalized object movement score. Because the objects’
movements in failed grasp trials are unpredictable and not
helpful in evaluating our method, we ONLY measured the
objects’ movements in succeeded grasp trials to reveal the
quality difference among those successful grasp poses. The
object movement score is calculated as the average of the
normalized object rotation and translation (in the gripper
closing direction). The thresholds used for normalizing the
object translation and rotation are 100 pixels and 60 degrees,
respectively.

The x-axis is the average grasp score. The thin non-solid
lines show each object’s average success rate at each score
level. The thick solid line shows the average success rate, and
the bars show the average object movement of all objects at
each score level. To help interpret the results, we classified
our test objects into four categories based on their geometrical
properties. As shown in Fig. 7, objects in categories 1 and 2
both have flat contact surfaces. However, the graspable parts of
category-1 objects are much thinner than category-2 objects.
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Category-4 objects have curved contact surfaces, and category-
3 objects have flat and curved contact surfaces.

From the object-wise success rate, we can see that objects
in the same category tend to have similar success rates under
the same score level. Also, category-1 objects and category-4
objects have the highest and lowest overall grasp success rate,
respectively. The category-1 objects are long and thin and have
flat contact surfaces in the projection, making them the easiest
for parallel-jaw grippers to grasp, while category-4 objects are
the hardest to grasp because they are round and our gripper
fingers are narrow. The category-1 objects and the banana have
relatively high success rates even when the grasp qualities are
low. This result does not disprove our quality measure because
the object movements in those grasps are very high. Therefore,
even though the grasps were successful, they were evaluated
as low quality because they were expected to move the objects
a lot.

Despite the differences between different objects’ success
rates in the medium quality score levels, all objects’ success
rates merge to the same points at the highest and lowest score
levels. This observation indicates that our quality measure can
distinguish good and bad grasps regardless of the object type.
We achieved a 100% success rate from grasping the ten objects
100 times with grasps of an average score of 0.93 and an
average movement score of 0.1 with a standard deviation of
0.0618. Overall, the average grasp success rate increases, and
the average object movement score decreases as the quality
score increases.

V. METHOD COMPARISON

Now that the real robot experiment has shown that our
quality measure is effective, in this section, we compare the
effectiveness of our quality measure with other grasp quality
measures through grasp planning results comparison.

A. Implementation of the Grasp Planning Systems

We have implemented 4 grasp planning systems for this
comparison, which includes 2 analytical systems based on our
quality measure and the Q measure [17], and 2 deep learning-
based systems, the FC-GQCNN [25] and the GGCNN [10].
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For the grasp planning system using our quality measure,
we used a normally distributed random search around the
object’s geometric center to find a high-quality grasp pose
(quality score > 0.95). If no such high-quality pose is found,
then we perform a uniformly distributed small region random
search around the grasp pose with the maximum score to
find a pseudo local optimum. We used the same searching
method for the Q measure-based grasp planning system, except
that we did not stop searching at a quality score threshold.
Instead, we keep searching until we find the pseudo global
optimum. We used 0.8 and 1 as the friction coefficient and the
torque scaling factor, respectively, in evaluating grasp poses’
Q measure scores.

The deep learning-based grasp planning systems are end-
to-end networks, which do not require a separate grasp pose
candidates sampling system. This makes them more efficient
than the analytical systems. However, they are often much
harder to implement than the analytical ones in real-world
applications since they usually need to be re-trained to adapt
to different working environment setups. For this comparison,
we used the pre-trained models named FC-GQCNN-4.0-PJ
and GGCNN for the FC-GQCNN and the GGCNN methods,
respectively, and we used their training datasets as test inputs.

B. Grasp Planning Dataset and Comparison Procedure

The dataset we used for this grasp planning comparison
is comprised of 100 single-object images that we extracted
from the DexNet 2.0 grasping dataset (synthetic) [7] and the
Cornell grasping dataset (real-world) [26]. From the DexNet
dataset, we randomly selected 50 images; from the Cornell
grasping dataset, we manually selected 50 images with good
object silhouette detection results (this rules out the impact of
flawed inputs on the grasp planning results). We tested the two
analytical grasp planning systems with all of the 100 images,
the FC-GQCNN and the GGCNN methods with the DexNet
subset and the Cornell subset, respectively. Some example
objects are shown in Fig. 7.

After obtaining the grasp planning results, we created an
anonymous online survey (USF IRB# Pro00040871) of 100
questions (one for each input image). For each question, the
participants see 3 copies of the input image, and each image
shows one grasp planning result (drawn on the image as a
rectangle) from the three grasp planning methods tested on that
image. Then the participants are asked to compare and evaluate
the quality of each grasp pose (without knowing which pose
is from which planning method) based on a 5-point Likert
scale. We explicitly instructed the participants to score the
grasp poses using the following criteria:

1 - The worst case as the robot gripper fingers will collide
with the object, or the gripper will miss the object.

2 - Better than 1 as the grasp does not miss and there is no
collision, but the robot still has a very low chance of picking
up the object.

3 - Better than 2 as the robot has a very high chance of
picking up the object. However, there will be a large amount
of object movement.

4 - Better than 3 as the robot can pick up the object, and
there is only a small amount of object movement.
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Fig. 9. The results of grasp planning on the Cornell sub-dataset using
GGCNN, our method, and the Q measure. 1 and 5 indicate the worst and
best quality grasp poses, respectively.
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Fig. 10. The results of grasp planning on the DexNet sub-dataset using FC-
GQCNN, our method, and the Q measure. 1 and 5 indicate the worst and best
quality grasp poses, respectively.

5 - The best grasp pose as the robot can pick up the object,
and there is almost no object movement.

This survey aims to use the human evaluation as a baseline
to compare the results of different grasp planning methods,
which can indicate the effectiveness of the corresponding grasp
quality measures.

C. Survey Results and Discussions

Ten subjects participated in our anonymous survey. Fig.
9 and 10 show the percentage of the planned grasp poses
based on their human-evaluated Likert score. For each dataset,
the resulting grasp poses percentages are calculated based on
500 human evaluations (50 instances x 10 participants). These
results show that the grasp planning system using our quality
measure generates significantly more top-quality grasp poses
(scored as 5) and less poor-quality grasp poses (scored as 1 or
2). In addition, we can see that both analytical grasp planning
systems work almost consistently across datasets. There is a
non-negligible percentage reduction of the top-quality grasp
poses in the DexNet dataset results, which is as expected
since the objects in this dataset are significantly more complex
than those in the Cornell dataset. Despite the performance
difference between the two grasp planning networks, both
generated the largest number of poor quality poses, and the
smallest number of top quality poses.
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Fig. 11. Comparison of our quality measure and the Q measure in evaluating
grasp poses.

As the Q measure grasp planning system has similar perfor-
mance to our method, we present a more detailed individual
case comparison to highlight the difference between the two
quality measures. As shown in Fig. 11, there are 4 grasp poses
evaluated by both quality measures. Firstly, the Q measure
cannot identify the quality difference between grasps 1 and 2
because it evaluates grasp quality by grasp contact wrenches,
and grasp 1 and 2 have nearly identical contact wrenches.
Secondly, comparing the two same-quality grasps 1 and 3,
we can see that the Q measure is more sensitive to flawed
input. Because of the imperfect object silhouette, our quality
evaluation has a score change of 10.4%, while the Q measure
has a score change of 79.8%. Lastly, the score of grasp 4 shows
that the Q measure cannot evaluate grasp poses that have
contact forces outside of the predetermined contact friction
cone.

VI. CONCLUSIONS

This paper presents the detailed design and experimental
results of our novel grasp evaluation method, which calculates
grasp poses’ quality by analyzing the interactions between the
gripper and the object through their projections in the image
space. The real robot grasping results show that our grasp
quality measure is practical and intuitive. And through method
comparison, we show that the grasp planning system using our
quality measure outperforms the other three grasp planning
systems in generating grasp poses that cause minimum object
movements in the gripper closing phase. Although the pre-
sented quality measure addressed only parallel-jaw grippers,
future work will include expansion to multi-fingered grippers.
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