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With the goal of observing a stochastic gravitational-wave background (SGWB) with LISA, the spectral

separability of the cosmological and astrophysical backgrounds is important to estimate. We attempt to

determine the level with which a cosmological background can be observed given the predicted

astrophysical background level. We predict detectable limits for the future LISA measurement of the

SGWB. Adaptive Markov chain Monte Carlo methods are used to produce estimates with the simulated

data from the LISA Data Challenge. We also calculate the Cramer-Rao lower bound on the variance of the

SGWB parameter estimates based on the inverse Fisher information using the Whittle likelihood.

The estimation of the parameters is done with the three LISA channels A, E, and T. We simultaneously

estimate the noise using a LISA noise model. Assuming the expected astrophysical background around

ΩGW;astroð25 HzÞ ¼ 0.355 → 35.5 × 10−9, a cosmological SGWB normalized energy density of around

ΩGW;Cosmo ≈ 1 × 10−12 to 1 × 10−13 can be detected by LISA after 4 years of observation.

DOI: 10.1103/PhysRevD.103.103529

I. INTRODUCTION

Since the accomplishment of the first detection of

gravitational waves from the merger of two stellar mass

black holes [1] by Advanced LIGO [2,3] and thereafter

with Advanced Virgo [4,5], gravitational-wave observato-

ries have become a new means to observe astronomical

phenomena. So far LIGO and Virgo have announced the

observation of 50 signals produced from compact binary

coalescence [6,7], including two from binary neutron star

mergers [8,9]. Gravitational wave detections are expanding

our understanding of astrophysics and of the Universe.

The Laser Interferometer Space Antenna (LISA) [10] is a

future ESA mission, also supported by NASA, with the

aim to observe gravitational waves in the low frequency

band ½10−5; 1� Hz. The mission lifetime will nominally

be 4 years, but could be extendable to 6 or 10 years of

scientific observations. LISA is a triangular constellation of

three spacecraft, separated from one another at a distance of

L ¼ 2.5 × 109 m. The low-frequency band is rich with

gravitational-wave signals. The foreground of LISAwill be

dominated by sources from our galaxy, the Milky Way.

White dwarf binaries [11–13] are numerous (∼35 million

binaries), and relatively near the LISA constellation. For

example, recently the Zwicky Transient Facility measured a

double white dwarf with an orbital period estimated at

7 minutes [14], which corresponds to a gravitational-wave

emission of ≃30 mHz. LISA can be expected to observe

many resolved binaries, many of which are already known

from photometry studies and constitute the so-called

verification binaries [15,16]. Well-studied systems like this

can be used to verify the LISA performance, acting as a

way to confirm the sensitivity of LISA. We can expect to

have one in a thousand binaries which are resolvable. The

large majority of the galactic binaries are unresolved and

form a stochastic signal. The stochastic gravitational-wave

background from white dwarf binaries or galactic fore-

ground will be anisotropic and the signal will not be a pure

power law. A stochastic gravitational-wave background

(SGWB) [17,18] will have a significant contribution from

unresolved binaries, such as binary black holes and binary

neutron stars. This background is essentially isotropic, and
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its level can be predicted from the signals observed by

LIGO and Virgo [19,20]. Another important SGWB would

be from cosmological sources [17]. The origin of this

background comes from the early Universe [21,22], with

the possibility to measure the inflation scenario parameters

[23]. Cosmic strings could be another observable source

[24]. A cosmologically produced background can be

modeled as a flat spectral energy density ∝ f0 [25].

In this paper, we present a strategy to separate the two

SGWBs (astrophysical and cosmological), as well as the

LISA noise, using a Bayesian strategy [12,26] based on an

adaptiveMarkov chainMonte Carlo (A-MCMC) algorithm.

We then show LISA’s ability to measure a cosmological

SGWB for different magnitudes for the astrophysical back-

ground. The SGWB from astrophysical sources today

represents an important goal, especially considering the

current observations by LIGO and Virgo [27,28].

Numerous studies have recently been presented which

address how to possibly detect a cosmologically produced

SGWB in the presence of an astrophysically produced

SGWB. For example a recent study displayed the use of

principal component analysis to model and observe a

SGWB in the presence of a foreground from binary black

holes and binary neutron stars in the LISA observation

band [29]. A component separation method was proposed

in Ref. [30], where they showed that it is possible to detect

an isotropic SGWB. The method uses maximum likelihood

parameter estimation with Fisher information matrices.

This is proposed to replace an MCMC approach, and

applied to the LIGO-Virgo observational band.

The proposal in Ref. [31] is to use a number of broken

power-law filters to separate different backgrounds with

gravitational-wave detectors on the Earth. In the study of

Ref. [32] the proposal is to divide the data into individual

short time segments. The method used the procedures

described in Ref. [33] to search the segments for the

presence of a binary black hole signal, either through

direct detection or subthreshold by generating a Bayesian

evidence. A cosmological SGWB would be present in all

segments, whereas a probability would exist for the

presence of a binary black hole merger for the segments.

The method is general, and could be applied to LIGO-Virgo

or LISA. The study presented in Ref. [34] noted that the

sensitivity of third-generation gravitational-wave detectors,

such as Einstein Telescope [35] or Cosmic Explorer [36],

will be so good that almost every binary black hole merger

in the observable Universe can be directly detected, and

then removed from the search for a cosmological SGWB.

The study of Ref. [37] then explored how to do such a

subtraction of binary black hole merger signals, and the

consequences of the effect of residuals from such sub-

tractions. Another study used Bayesian methods to address

spectral separation for LIGO-Virgo observations, but tried

to address how to separate a SGWB from a correlated

magnetic noise background produced by the Schumann

resonances [38–40]; the study is, however, general and can

be applied to spectral separation for different types of

backgrounds [41]. This study was then expanded to address

the simultaneous estimation of astrophysical and cosmo-

logical SGWBs, and displayed that this will be especially

important for third-generation ground-based detectors [42].

Another study, specifically dedicated to LISA observations

[43] proposed to divide the data into bins, and then within

in each bin, a fit is made to a power law or a constant

amplitude; a variation on this approach is presented here

[44]. The claim is that this method is more dynamic and

able to fit arbitrarily shaped SGWBs. The study of Ref. [45]

showed how to assign Bayes factors and probabilities to

differentiate a SGWB signal from instrumental noise.

All the SGWB studies referenced above are summarized

in Tables II, III, IV, respectively for LIGO/Virgo, LISA, and

third-generation detectors. We compare the goals, methods,

the performance, the limitations and the application; see

the Appendix. The study we present in this paper, using

Bayesian parameter estimation methods, has the advantage

of fitting two backgrounds and the LISA noise simulta-

neously. We note the possibility to expand the work

presented here to estimate more complex LISA noise,

and adding new models for the SGWB; for example, more

complex SGWBs could include broken power laws, peaks

in the frequency domain, or an anisotropic SGWB from our

galaxy.

The organization of the paper is as follows. In Sec. II we

introduce the SGWB spectral separation problem for LISA,

and then describe the inverse of the Fisher information

matrix of the SGWB parameters, and how this provides the

Cramer-Rao lower bound on the variance of the parameter

estimates. In Sec. III we describe the A-MCMC. The

simulated LISA mock data is presented in Sec. IV.

Presented in Sec. Vare the parameter estimation procedures

and results using the LISA A and T channels; Sec. IV

presents similar results using the LISA A, E and T
channels. Conclusions are given in Sec. VI.

II. SPECTRAL SEPARATION

An isotropic SGWB observed today ΩGWðfÞ can be

modeled with the frequency variation of the energy density

of the gravitational waves, ρGW, where dρGW is the gravi-

tational-wave energy density contained in the frequency

band ½f; f þ df�) [46]. The distribution of the energy

density over the frequency domain can be expressed as,

ΩGWðfÞ ¼
f

ρc

dρGW

d lnðfÞ ¼
X

k

Ω
ðkÞ
GWðfÞ ð1Þ

where the critical density of the Universe is ρc ¼
3H2

0
c2

8πG
. In

this paper we approximate the spectral energy density as a

collection of power-law contributions (this is a simplified

model), ΩGWðfÞ ≃
P

k Akð f
fref

Þαk where the energy spectral
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density amplitude of the component k (representing the

different SGWBs) isAk, with the respective slope αk and fref
is some characteristic frequency. The SGWB is predicted to

have a slope component α ≈ 0 for the cosmological back-

ground. This is true for scale-invariant processes, and this is

approximately true for the standard inflation and certainly

false for cosmic strings and turbulence. However for our

study here we will model the cosmologically produced

SGWB with α ¼ 0. In addition, we will use α ¼ 2

3
for a

compact-binary-produced astrophysical background.

According to Farmer and Phinney the slope is α ¼ 2

3
for

quasicircular binaries evolving purely under gravitational-

wave emission [47]. The eccentricity and environmental

effects can modify the slope. We also note the limitations of

our power-law model as phase transitions in the early

Universe can produce two-part power laws, with a traction

between the rising and falling power-lawcomponent at some

peak frequency. But we start in this study with two power-

law backgrounds. As the two backgrounds are superim-

posed, the task is to simultaneously extract both the

astrophysical and cosmological properties, i.e., to simulta-

neously estimate the astrophysical and the cosmological

contributions to the energy spectral density.

To avoid identification issues, we use a Bayesian

approach by putting informative priors on the individual

slope and amplitude parameters. Our work here builds on

that of Adams and Cornish [48] where they demonstrated

that it is possible to separate a SGWB from the instrumental

noise in a Bayesian context. Similarly Adams and Cornish

then showed that one could detect a cosmological SGWB in

the presence of a background produced by white dwarf

binaries in our galaxy [11]. Since the production of those

studies LIGO and Virgo have observed gravitational waves

from binary black hole and binary neutron star coalescence.

We now know that there will definitely be an astrophysi-

cally produced background across the LISA observation

band produced by compact binary coalescences over the

history of the Universe [20], and if LISA is to observe a

cosmologically produced background it will be necessary

to separate the two.

The literature displays large differences in the estimation

of the magnitude of the astrophysically produced SGWB.

A recent simulation of the SGWB from merging compact

binary sources with the StarTrack code [49] predicts an

amplitude around ΩGW ≃ 4.97 × 10−9 to 2.58 × 10−8 at

25 Hz. However another study considered the binary black

hole and binary neutron star observations by LIGO/Virgo,

and produced predictions going from the LISA observa-

tional band to the LIGO/Virgo band. They estimated an

amplitude for the astrophysical SGWB of ΩGW ≃ 1.8 ×

10−9 to 2.5 × 10−9 at 25 Hz [20]. These amplitudes can be

propagated to the LISA band by recalling Eq. (1) and using

fref ¼ 25 Hz and α ¼ 2=3. In the context of an effort to

observe a cosmological SGWB we have large variations

due to the predictions of the astrophysical component.

In our study here we predict the accuracy of a meas-

urement of Ω
ð0Þ
GW with astrophysical inputs of differing

magnitudes using fref ¼ 25 Hz, Ω
ð2
3
Þ

GW ¼ ½3.55 × 10−10;

1.8 × 10−9; 3.55 × 10−9; 3.55 × 10−8� after 4 years of

observation. We use the orthogonal LISA A, E, and T
channels, which are created from the time-delay interfer-

ometry (TDI) variables X, Y, and Z [50]. Our method fits

the parameters of two stochastic backgrounds, and simul-

taneously the LISA noise with the help of the channel T.
We assume uncorrelated noise TDIs between the “science”

channels (A, E) and the noise channel (T). The T channel is

“signal insensitive” for gravitational-wave wavelengths

larger than the arm lengths. The noise channel T is obtained

from a linear combination [50] of the TDIs channel

ðX; Y; ZÞ. We demonstrate a good ability to estimate the

noise present in the two science data channels A and E. We

can then set a limit on the ability to detect the cosmological

SGWB. The predictions from the Bayesian study are

confirmed via a study of the frequentist estimation of

the error. Namely, we use a Fisher information analysis,

performed for the spectral separation independently of the

Bayesian A-MCMC approach. The inverse of the Fisher

information matrix of the SGWB parameters, presented in

Sec. II, provides the Cramer-Rao lower bound on the

variance of the SGWB parameter estimates.

Auseful toymodel to consider is the problemof separating

two independent stationary mean-zero Gaussian noise proc-

esses that have different power spectra Sn1ðfÞ ¼ A1f
α1 and

Sn2ðfÞ ¼ A2f
α2 . Suppose we have data that is formed from

the sum of these two independent noise processes

dðtÞ ¼ n1ðtÞ þ n2ðtÞ; t ¼ 1;…; T: ð2Þ

After a Fourier transform to d̃ðfkÞ ¼ 1
ffiffiffi

T
p

P

T
i¼1

dðtÞe−itfk at
Fourier frequencies fk ¼ 2πk=T, k ¼ 0;…; N ¼ T

2
− 1 (for

T even), we can write

d̃ðfkÞ ¼ ñ1ðfkÞ þ ñ2ðfkÞ; k ¼ 0;…; N: ð3Þ

Then the vector d̃ has an asymptotic complex multivariate

Gaussian distributionwith a diagonal covariancematrix. The

diagonal elements are given by the values of the spectral

density SðfkÞ ¼ A1f
α1
k þ A2f

α2
k . Our assumption of inde-

pendence implies that one can simply sum the individual

spectral densities of the two noise processes.

The Whittle likelihood approximation in the frequency

domain can then be written as

pðdjA1; α1; A2; α2Þ ¼
Y

N

k¼1

1

πSðfkÞ
e
−
d̃ðfkÞ⋆ d̃ðfkÞ

SðfkÞ ð4Þ

where SðfkÞ ¼ A1f
α1
k þ A2f

α2
k . The product InðfkÞ ¼

d̃ðfkÞ⋆d̃ðfkÞ is the periodogram, the squared magnitude
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of the Fourier coefficients at the frequency fk. The log

likelihood (up to an additive constant) is thus

lnpðdjA1; α1; A2; α2Þ ¼ −

X

N

k¼1

�

InðfkÞ
SðfkÞ

þ ln SðfkÞ
�

: ð5Þ

A. The Fisher information

The Fisher information matrix Γ for a parameter vector

θ ¼ ðθ1;…; θpÞ is given by the expected value of the

negative Hessian of the log likelihood. The element in row i
and column j of the Fisher information is given by

Γij ¼ E

�

−
∂2

∂θi∂θj
lnpðdjθÞ

�

: ð6Þ

The Fisher information can be easily obtained for the

parameter vector ðA1; α1; A2; α2Þ by using that (asymptoti-

cally) E½InðfkÞ� ¼ SðfkÞ and Γij ¼ Γji,

Γ11 ¼
X

N

k¼1

f
2α1
k

ðA1f
α1
k þ A2f

α2
k Þ2 ; ð7Þ

Γ22 ¼
X

N

k¼1

ðA1f
α1
k ln fkÞ2

ðA1f
α1
k þ A2f

α2
k Þ2 ; ð8Þ

Γ33 ¼
X

N

k¼1

f
2α2
k

ðA1f
α1
k þ A2f

α2
k Þ2 ; ð9Þ

Γ44 ¼
X

N

k¼1

ðA2f
α2
k ln fkÞ2

ðA1f
α1
k þ A2f

α2
k Þ2 ; ð10Þ

Γ12 ¼ Γ21 ¼
X

N

k¼1

A1f
2α1
k ln fk

ðA1f
α1
k þ A2f

α2
k Þ2 ; ð11Þ

Γ13 ¼ Γ31 ¼
X

N

k¼1

f
α1þα2
k

ðA1f
α1
k þ A2f

α2
k Þ2 ; ð12Þ

Γ14 ¼ Γ41 ¼
X

N

k¼1

A2f
α1þα2
k ln fk

ðA1f
α1
k þ A2f

α2
k Þ2 ; ð13Þ

Γ23 ¼ Γ32 ¼
X

N

k¼1

A1f
α1þα2
k ln fk

ðA1f
α1
k þ A2f

α2
k Þ2 ; ð14Þ

Γ24 ¼ Γ42 ¼
X

N

k¼1

A1A2

A1A2f
α1þα2
k ln2fk

ðA1f
α1
k þ A2f

α2
k Þ2 ; ð15Þ

Γ34 ¼ Γ43 ¼
X

N

k¼1

A2f
2α2
k ln fk

ðA1f
α1
k þ A2f

α2
k Þ2 : ð16Þ

B. The Cramer-Rao bound

The Fisher information can be used to give a lower

bound for the variance of any unbiased estimator, the so-

called Cramer-Rao bound. For any unbiased estimator θ̂i of

the unknown parameter θi, its standard error Δθ̂i satisfies

ðΔθ̂iÞ2 ≥ ΓiiðθÞ−1 ¼
1

E½− ∂

∂θi

∂

∂θi
lnpðdjθÞ�

: ð17Þ

Under certain regularity conditions, the posterior distribu-

tion of a parameter θ is asymptotically Gaussian, centered

at the posterior mode and covariance matrix equal to the

inverse of the negative Hessian of the posterior distribution

evaluated at the posterior mode. For flat priors, the posterior

density is proportional to the likelihood, the posterior mode

is the maximum likelihood estimate and the standard error

Δθ̂i of the Bayesian estimator θ̂i of the parameter θi can be

approximated by evaluating the Fisher information at

θ̂i, i.e.,

Δθ̂i ≈ Γiiðθ̂iÞ−1=2: ð18Þ

Defining the uncertainty of an estimate θ̂i by

Δθ̂i

θ̂i
ð19Þ

we say that we can estimate the parameter θi with on error

of 10% based on the Fisher analysis if the uncertainty of a

parameter estimate is equal to 0.1. The purpose of this

study is to derive a threshold on the separability by an

A-MCMC routine with the likelihood of Eq. (4). In the

following we will thus have a limiting value for the

separability of the cosmological SGWB parameters and

the astrophysical SGWB.

We use a toy problem to display the separability of two

stochastic backgrounds according to their slope difference.

For this we fix one background Ω1ðfÞ ¼ A1ð f
fref

Þα1 ¼
Ω2=3ð f

fref
Þα2=3 ¼ 3.55 × 10−9ð f

25 Hz
Þ2=3, and we leave free

the slope of the second background Ω2ðfÞ ¼ A2ð f
fref

Þα2 ¼
Ω0ð f

fref
Þα0 ¼ 1 × 10−12ð f

25 Hz
Þα0 . We show the uncertainties

(
Δθ̂i
θ̂i

for θi ∈ ½Ω2=3; α2=3;Ω0; α0�, with Δθ̂i being the error

from the Fisher information; see Sec. II B) for the ampli-

tudes and spectral slopes as a function of the difference

between the spectral slopes (δα ¼ α0 − α2=3). This quantity

is also called the coefficient of variation or the relative

standard deviation, and this is the absolute value of the

standard deviation divided by the mean of the parameter.

We use this quantity to appreciate the dispersion of

values around the mean. It is preferable to use this

quantity because it is unitless. Thus it is easier to compare

parameters of different units and ranges of values. Figure 1
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displays the uncertainties (
Δθ̂i
θ̂i
) as a function of δα between

−5 and 5.

The uncertainty of the parameter α0 becomes larger

when the slope difference δα is near zero. Here it is more

difficult to separate the two backgrounds when their slopes

are similar. The uncertainties are also not symmetric about

δα ¼ 0 because when the slope changes the amplitude is

also changing by a factor f−αref . The uncertainty of the

amplitude parameter Ω0 is maximal when the two ampli-

tude parameters are identical. The position of the maximum

changes for different inputs of Ω0; if Ω0 increases the

position of the maximum converges to δα ¼ 0.

III. ADAPTIVE MARKOV CHAIN

MONTE CARLO

A. Markov chain Monte Carlo

Bayesian inference quantifies the estimation and uncer-

tainties of unknown parameters based on the observation of

events that depend on these parameters. The quantification

uses the posterior probability distribution. It is obtained

using Bayes’ theorem [see Eq. (20)] by updating the prior

distribution of the parameters with the likelihood pðdjθÞ,
the conditional distribution of the observations given the

parameters:

pðθjdÞ ¼ pðdjθÞpðθÞ
pðdÞ ð20Þ

where pðθÞ is the prior distribution, pðθjdÞ is the posterior
distribution, and pðdÞ ¼

R

pðdjθÞpðθÞdθ is the evidence.

MCMC methods [51] provide a numerical strategy to

compute the joint posterior distribution and its marginal

distributions. It is a sampling-based approach that simulates

a Markov chain constructed in such a way that its invariant

distribution is the joint posterior.

B. Metropolis-Hasting sampler

As it is generally difficult to sample independently from

a multivariate distribution, MCMC methods draw depen-

dent samples from Markov chains. The predominant

MCMC algorithm is the Metropolis-Hastings (MH) algo-

rithm. It is based on the rejection or acceptance of a

candidate parameter θ0 where the acceptance probability is

given by the likelihood ratio between the candidate and the

previously sampled parameter value. Thus, any move in the

direction of higher likelihood (towards the maximum

likelihood estimation) will always be accepted, but because

downhill moves still have a chance to be accepted, the MH

algorithm avoids getting stuck in local maxima.

Metropolis-Hastings algorithm

(1) Randomly select an initial point θð0Þ

(2) At the nth iteration:

(a) Generation of candidate θ0 with the proposal

distribution gðθ0jθðnÞÞ
(b) Calculation of acceptance probability α ¼

min ½1; pðdjθ0Þ
pðdjθðnÞÞ

pðθðnÞÞ
pðθ0Þ �

(c) Accept/Reject

(i) Generation of a uniform random number u
on [0, 1]

(ii) if u ≤ α, accept the candidate: θðnþ1Þ ¼ θ0

(iii) if u > α, reject the candidate: θðnþ1Þ ¼ θðnÞ

Note that the proposal distribution g is often chosen to be

Gaussian centered around the current parameter value.While

executing the algorithm, we can monitor the acceptance rate,

the proportion of candidates that were accepted. On the one

FIG. 1. Uncertainties (
Δθ̂i
θ̂i
) of the amplitudes and spectral slopes as a function of the difference in the differential spectral slopes

(δα ¼ α0 − α2=3).
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hand, if this number is too close to 0 then the algorithmmakes

large moves into the tails of the posterior distribution which

have low acceptance probability causing the chain to stay at

one value for a long time. On the other hand, a high

acceptance rate indicates that the chain makes only small

moves causing slow mixing. To control the mixing of the

Markov chain we can introduce an adaptive step-size

parameter that controls the size of the moves; this is the

standard deviation in the case of a univariate Gaussian

proposal or the covariance matrix of a multivariate

Gaussian proposal. As the iterations of the algorithm

proceed, it is possible to dynamically modify the step size

to improve the convergence of the chain. Intuitively, an

optimal proposal would be as close to the posterior distri-

bution as possible. Using a Gaussian proposal, its covariance

matrix should thus be as close to the covariancematrix of the

posterior distribution. Since the previous MCMC samples

can be used to provide a consistent estimate of the covariance

matrix, this estimate can be used to adapt the proposal on the

fly, as detailed in Sec. III C.

C. Adaptive Markov chain Monte Carlo

We use the version of the adaptive Metropolis MCMC

from Robert and Rosenthal [52]. For a p-dimensional

MCMC we can perform the Metropolis-Hasting algorithm

with a proposal density gnð:jθðnÞÞ in iteration n defined by a

mixture of Gaussian proposals:

gnð:jθðnÞÞ ¼ ð1 − βÞN
�

θðnÞ;
ð2.28Þ2

p
Σn

�

þ βN

�

θðnÞ;
ð0.1Þ2
p

Ip

�

ð21Þ

where Σn is the current empirical estimate of the covariance

matrix, β ¼ 0.25 is a constant, p is the dimensionality of

the parameter space, N is the multinormal distribution and

Ip is the p × p identity matrix. We compute an estimate Σn

of the covariance matrix using the last hundred samples of

the chain. The chain generated from an adaptive algorithm

is not Markovian but the diminishing adaptation condition

ensures ergodicity and thus the convergence to the sta-

tionary distribution.

IV. DATA FROM THE MOCK

LISA DATA CHALLENGE

A. Noise and SGWB energy spectral density

of the MLDC

The Mock LISA Data Challenge (MLDC) provides

simulations of the signal and noise of LISA in the

approximation of one arm. We use the ðX; Y; ZÞ time

series of the LDC1-6 data set from the MLDC webpage

[53]. These are simulations of a binary-produced SGWB of

the form ΩGWðfÞ¼Ω2=3ð f
fref

Þα for fref¼25Hz with a slope

α¼ 2

3
and an amplitude of Ω2=3¼3.55×10−9ðat25HzÞ.

Figures 2 and 3 display the gravitational-wave periodo-

grams for the ðX; Y; ZÞ and ðA;E; TÞ channels.
We can transform the X, Y, Z time series to the A, E, T

channels according to

8

>

>

<

>

>

:

A ¼ 1
ffiffi

2
p ðZ − XÞ;

E ¼ 1
ffiffi

6
p ðX − 2Y þ ZÞ;

T ¼ 1
ffiffi

3
p ðX þ Y þ ZÞ:

ð22Þ

FIG. 2. Periodogram of the channels ðX; Y; ZÞ of the SGWB from MLDC (LDC1-6 noiseless) with a single background

[ΩGWðfÞ ¼ 3.55 × 10−9ð f
25 Hz

Þ2=3]
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This linear combination of the original channels used to

define T has been shown to be insensitive to the gravita-

tional-wave signal. While this is not exactly true, we will

maintain that assumption for this analysis. As such, T can

be regarded as a null channel which contains mainly only

noise, while channels A and E are the science channels,

containing the gravitational-wave signal in the presence

of noise [18]. In the following we focus on the science

channels, A and E.
In this study we use a simplified model where we assume

equal noise levels on each spacecraft. According to Adams

and Cornish [11] one can use a more complicated model

that allowed for different noise levels. Future work will

address this, plus the situation where the slope parameters

for the noise can also vary. These parameters could then

also be estimated by Bayesian parameter estimation

methods.

For the following studieswe restrict the frequency band to

correspond to the LISA band ½10−5; 1� Hz. The power

spectral density (PSD) of the channelT,ST , can be described
as (according to Ref. [53])

STðxÞ ¼ 16SOpðxÞð1 − cosðxÞÞsin2ðxÞ

þ 128SpmðxÞsin2ðxÞsin4
�

x

2

�

ð23Þ

with x ¼ 2πL
c
f, where SOp is the optical metrology system

noise and Spm is the acceleration and displacement noise.

The LISA noise budget is

8

>

>

<

>

>

:

SOpðfÞ ¼ NOptL
2

�

1þ
�

8 mHz

f

�

4
�

;

SPmðfÞ ¼ NAccL
2SAccðfÞSDisðfÞ

ð24Þ

with

8

>

>

<

>

>

:

SAccðfÞ ¼
�

1þ
�

0.4 mHz

f

�

2
��

1þ f

8 mHz

�

4

;

SDisðfÞ ¼ ð2πfÞ−4
�

2πf

c

�

2

:

ð25Þ

The two free parameters, NOpt and NAcc, are the respective

levels of the two principal sources of noise in the LISA noise

budget. In the LISA Science Requirements Document [54],

the level of the LISA noise acceleration is NAcc ¼ 1.44 ×

10−48 s−4Hz−1 and the upper limit on the level of the optical

metrology system noise is NOpt ¼ 3.6 × 10−47 Hz−1. From

the modeling of the strain requirements of the mission

performance requirements, this is a maximization of the

noise level. The LISA noise budget corresponds to all

sources of contamination that contribute to the power

spectral density of the LISA detection system. The two

noise sources correspond to estimates of different physical

effects. We clearly do not yet have the true values for these

physical effects; we presently only have estimates from

experiments. The LISA requirements fixed the limit

of the two magnitude levels so as to respect LISA’s

detection performance. In Fig. 4, the green curve is

the analytic noise model of the PSD of the channel T with

the parameters from the proposal [54]. The blue curve is the

periodogram for the channel T of the MLDC data (LDC1-6

FIG. 3. Periodogram of the channels ðA; E; TÞ of the SGWB from MLDC (LDC1-6 noiseless) with an single background

(ΩGWðfÞ ¼ 3.55 × 10−9ð f
25 Hz

Þ2=3).
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SGWB signal); this is the magnitude squared of the Fourier

coefficients for the data [see Eq. (22)]. Assuming the

functional form of the noise PSD in channel T is given

by Eq. (23), we can use the A-MCMC (see Sec. III) to fit the

LISAnoise parametersNOpt andNAcc. The priors for the two

components are flat log-uniform distributions and we

specify β ¼ 0.01 and N ¼ 200000 in the A-MCMC algo-

rithm. The orange curve in Fig. 4 is the estimated PSD based

on Eq. (23) with NOpt and NAcc replaced by the posterior

means of samples obtained via the A-MCMC, given in

Eq. (26). The 1σ error bands are overlaid in grey. Figure 5

shows the corner plot for the posterior samples of the two

parameters, and the empirical posterior distributions seem to

be well approximated by Gaussian distributions. It shows

that this model yields a reasonable fit to the simulated

channel T data. We acknowledge that this is a rigid noise

model for the purpose of this study, and future work will

include more realistic scenarios: allowing for different noise

levels on each spacecraft [11], allowing for small modifi-

cations of the transfer functions, and allowing for small

modifications in the spectral slopes of the noise components.

The posterior means of the two noise parameters are

�

N̂acc ¼ 7.08 × 10−51 � 4 × 10−53 s−4 Hz−1;

N̂Opt ¼ 1.91 × 10−47 � 4 × 10−49 Hz−1:
ð26Þ

The gravitational-wave energy spectral densityΩGW can be

defined as

ΩGW;IðfÞ ¼
2π2

3H2

0

f3
PSDIðfÞ
RIðfÞ

ð27Þ

for I ¼ A, E, where H0 is the Hubble-Lemaître constant

(H0 ≃ 2.175 × 10−18 Hz), PSDI is the power spectral

density of the channel I and RI is the response function.

An asymptotically unbiased estimate of PSDI is given by the

periodogram InðfÞ ¼
P

N
k¼1

jd̃ðfkÞj2 ¼ d̃�I ðfkÞd̃IðfkÞ.
We use two different response functions for the MLDC

data: one system of equations for the noiseless data

Eq. (28), and one for the noisy data Eq. (30)

(

RAðfÞ ¼ RAAðfÞ 169 2

π

�

f
f�

	

4

sin−2ðf=f�Þ;

REðfÞ ¼ REEðfÞ 167 2

π

�

f
f�

	

4

sin−2ðf=f�Þ
ð28Þ

with RII given in Ref. [48], f� ¼ c
2πL

, and

RAAðfÞ ¼ REEðfÞ

¼ 4sin2
�

f

f�

��

3

10
þ 169

1680

�

f

f�

�

2

þ 85

6048

�

f

f�

�

4

−
178273

15667200

�

f

f�

�

6

þ 19121

2476656000

�

f

f�

�

8
�

; ð29Þ

RIðfÞ ¼
SIIðfÞL
3cSp

�

36

10

f

f�
sin−2ðf=f�Þ

�

2

ð30Þ

where SIIðfÞ ¼ 8sin2ð f
f�
Þ½4Sað1þ cosð f

f�
Þ þ cos2ð f

f�
ÞÞ þ

Spð2þ cosð f
f�
ÞÞ� was defined in Ref. [18] with Sa ¼

9×10−50

ð2πfÞ4 ð1þ ð10−4
f
Þ2Þ, Sp ¼ 4.10−42 Hz−1 and f� ¼ c

2πL
.

FIG. 4. Power spectral density of the channel T from the

MLDC (in blue) [53]. The green line represents the analytic noise

model of the power spectral density of the channel T with the

parameters from the proposal [54]. The orange line is the model

from Eq. (23) with the values fit with the MCMC. In grey is the

1σ error. This is the uncertainty calculated from Eq. (37), where

we take dPSDT with dNpos ¼ σNpos
and dNacc ¼ σNacc

; σ is the

standard deviation of the posterior estimation. See Fig. 5

and Eq. (26).
FIG. 5. Corner plot for the A-MCMC generated posterior

distributions for the power spectral density of the channel T of

the MLDC data set, estimating the two magnitudes of the LISA

noise model from the proposal [54]. The vertical dashed lines on

the posterior distributions represent, from left to right, the

quantiles [16%, 50%, 84%].
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The energy spectral density of the astrophysical back-

ground from the MLDC is a power law according to the

documentation of the LISA Data Challenge Manual [53]

given by ΩGWðfÞ ¼ 3.55 × 10−9ð f
25 Hz

Þ2=3. Figures 6 and 7

show the energy periodogram Ω̂GW;IðfÞ ¼ 2π2

3H2

0

f3
InðfÞ
RIðfÞ for

channel A in blue and for channel E in orange. The green

curve is the power-law model with the parameters

ðΩα; fref ;αÞ with ΩGW ¼ Ωαð f
fref

Þα from the MLDC docu-

mentation. The data at high frequency cannot be used

because the transformations of Eqs. (28) and (30) are

valid for low frequency. We use the frequency band

½2.15 × 10−5; 9.98 × 10−3� Hz.

B. Uncertainty of the cosmological component Ω0

from the A-MCMC

According to Sec. II B, one can calculate the uncertainty

of the estimation of the parameter Ω0 (the cosmological

amplitude of the spectral energy density), namely
ΔΩ0

Ω0

. To

estimate this quantity from the Fisher information, we use

the formulas given in Sec. II and the inverse matrix of the

Fisher information (blue line in Fig. 11).

Not surprisingly we can predict a better separability

(uncertainty is less) for high values of the cosmological

background. The uncertainty can be calculated independ-

ently with the A-MCMC calculation:

ΔΩ0

Ω0

¼ σΩ0

Ω0

: ð31Þ

This ratio is calculated and represented as the scatter points

in Fig. 11. We can also estimate the error of the uncertainty

estimation [see Eq. (32)] from the estimation of the full

width at half maximum of the posterior distributions. The

uncertainties (from the A-MCMC) are given by

(

Errorþ;I ¼
σΩ0

jΩ0−σΩ0 j
;

Error−;I ¼
σΩ0

jΩ0þσΩ0 j
:

ð32Þ

FIG. 6. Observations in channels [A, E] of the spectral energy density of the SGWB from astrophysical background ΩGWðfÞ of the
MLDC for the noiseless channel, Eq. (28). (a) Total frequency band of Channels A and E. (b) Reduced frequency band 2.15 × 10−5 to

9.98 × 10−3 Hz of Channels A and E.

FIG. 7. Observations in channels [A, E] of the spectral energy density of the SGWB from astrophysical background ΩGWðfÞof the
MLDC for the noisy channel, Eq. (30). (a) Total frequency band of Channels A and E. (b) Reduced frequency band 2.15 × 10−5 to

9.98 × 10−3 Hz of Channels A and E.
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V. STOCHASTIC GRAVITATIONAL-WAVE

BACKGROUND FITTING WITH

ADAPTIVE MARKOV CHAIN

MONTE CARLO USING THE

CHANNEL T AND THE TWO

SCIENCE CHANNELS A AND E

In this section we consider the null channel T and

the science channels A and E. We assume that the

observation of the noise in channel T informs us of the

noise in channels A and E. We follow the formalism of

Smith and Caldwell [55].

We can simulate the noise and SGWB in the frequency

domain:

8

<

:

PSDA ¼ SA þ NA;

PSDE ¼ SE þ NE;

PSDT ¼ NT :

ð33Þ

With SAðfÞ ¼ SEðfÞ ¼
3H2

0

4π2

ΩGW;αð f
fref

Þα

f3
, fref ¼ 25 Hz, the

noise components NAðfÞ ¼ NEðfÞ and NTðfÞ can be

written as

�

NA ¼ N1 − N2;

NT ¼ N1 þ 2N2;
ð34Þ

with

8

<

:

N1ðfÞ ¼ ð4SsðfÞ þ 8

�

1þ cos2
�

f
f�

		

SaðfÞÞjWðfÞj2;

N2ðfÞ ¼ −ð2SsðfÞ þ 8SaðfÞÞ cos
�

f
f�

	

jWðfÞj2;

ð35Þ

where WðfÞ ¼ 1 − e−
2if
f� and

8

<

:

SsðfÞ ¼ NPos;

SaðfÞ ¼ Nacc

ð2πfÞ4
�

1þ
�

0.4 mHz
f

	

2
	

:
ð36Þ

The LISA noise budget is given from the LISA Science

Requirements Document [54]. To create the data for

our example, we use an acceleration noise of Nacc ¼
1.44 × 10−48 s−4Hz−1 and the optical path-length fluc-

tuation NPos ¼ 3.6 × 10−41 Hz−1. We can estimate the

magnitude of the noise from the channel T. One should

note the importance of using the channel T to estimate the

noise in the channels A and E, as it is then possible to

parametrize an A-MCMC of six parameters, θ ¼
ðNacc; NPos;Ω2=3; α2=3;Ω0; α0Þ. We can also calculate the

propagation of uncertainties for the power spectral densities

with the partial derivative method. As such, we can estimate

the error on the measurement realized by a fit of the

parameters θ, dPSDI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

θ ð∂PSDI

∂θ
Þ2dθ2

q

. We then obtain

for two SGWBs ΩastroðfÞ ¼ Ω2=3ð f
fref

Þ2=3, ΩcosmoðfÞ¼
Ω0ð f

fref
Þ0,

8

>

>

<

>

>

:

dPSDI¼
h

NIð0;dNacc;fÞ2þNIðdNpos;0;fÞ2þSIðΩ2=3;α2=3;Ω0;α0;fÞ2ðdΩ2

0
þdΩ2

2=3þln
�

f
fref

	

2ðΩ2

2=3dα
2

2=3þΩ
2

0
dα2

0
ÞÞ
i

1=2
;

dPSDT¼½NTð0;dNacc;fÞ2þNTðdNpos;0;fÞ2�1=2

ð37Þ

with fdNacc; dNpos; dΩastro; dαastro; dΩcosmo; dαcosmog being
the positive error estimations of the parameters; I ¼ A, E.
We take 1σ for the posterior distributions. We can also

estimate the error of the power spectral density fit using the

MCMC chains to produce the error. With the MCMC

chains we can calculate a histogram of PSDIðfÞ at each

frequency. For each histogram we compute the 68%

credible band. This method is similar to that of BayesWave;

see Fig. 7 of Ref. [56]. The two methods produce the same

error bands, but we need to assume that the posterior

distributions are Gaussian. The quadratic sum of the partial

errors calculation yields a good estimation of error from

MCMC chains if the posterior distributions of the chains

are Gaussian.

We can calculate the covariance matrix:

hPSDIðfÞ; PSDJðfÞi ¼ CI;Jðθ; fÞ ð38Þ

with I; J ¼ ½A;E; T�. As such, it is possible to para-

metrize an A-MCMC with six parameters: θ ¼
ðNacc; NPos;ΩGWα; αÞ. We can calculate the covariance

matrix of ðd̃AðfÞ; d̃EðfÞ; d̃TðfÞÞ

Cðθ; fÞ ¼

0

B

@

SA þ NA 0 0

0 SE þ NE 0

0 0 NT

1

C

A
; ð39Þ
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C−1ðθ;fÞ¼K

0

B

@

ðSAþNAÞ−1 0 0

0 ðSEþNEÞ−1 0

0 0 N−1
T

1

C

A
ð40Þ

and KðfkÞ ¼ detðCÞ ¼ 1

ðSAþNAÞðSEþNEÞNT
. We use the defi-

nition of the Whittle likelihood from Ref. [18], and the log

likelihood is

LðdjθÞ ¼ −
1

2

X

N

k¼0

�

X

I;J¼½A;E;T�
ð

ffiffiffiffiffiffiffiffiffiffiffi

dIðfÞ
p

ðC−1ÞIJ
ffiffiffiffiffiffiffiffiffiffiffi

dJðfÞ
p

Þ

þ ln ð2πKðfkÞÞ
�

¼ −
1

2

X

N

k¼0

�

d2A
SA þ NA

þ d2E
SE þ NE

þ d2T
NT

þ ln ð8π3ðSA þ NAÞðSE þ NEÞNTÞ
�

; ð41Þ

Fab ¼
1

2
Tr

�

C−1
∂C

∂θa
C−1

∂C

∂θb

�

¼
X

N

k¼0

�∂ðSAþNAÞ
∂θa

∂ðSAþNAÞ
∂θb

2ðSA þ NAÞ2

þ
∂ðSEþNEÞ

∂θa

∂ðSEþNEÞ
∂θb

2ðSE þ NEÞ2
þ

∂NT

∂θa

∂NT

∂θb

2N2
T

�

: ð42Þ

If we have the channel T as zero and we consider the two

science channels A and E as independent, we obtain

Fab ¼
1

2

X

I¼A;E

X

N

k¼0

∂SIðfÞþNIðfÞ
∂θa

∂SIðfÞþNIðfÞ
∂θb

ðSIðfÞ þ NIðfÞÞ2
: ð43Þ

FIG. 8. Evolution of the relative uncertainties for the estimation

of the parameters ½Ω0; α0;Ω2=3; α2=3� versus the cosmological

background amplitude Ω0. The precision for estimating the

parameters is affected by the value of the cosmological amplitude

Ω0. We use Ω2=3 ¼ 3.55 × 10−9, α2=3 ¼ 2

3
and α0 ¼ 0.

TABLE I. Results of the A-MCMC runs with six parameters (two for the LISA noise, two for the astrophysical background and two

for the cosmological background). We use the data from the A, E and T channels. The four columns of values correspond to the output of

13 A-MCMC runs. The study is conducted using four values for the amplitude of the astrophysical background after 4 years of

observation: 3.55 × 10−8, 3.55 × 10−9, 1.8 × 10−9 and 3.55 × 10−10, and respectively, the same for the error columns. The error

estimations come from the posterior distributions.

Input Values of the A-MCMC Errors (σ)

ΩAstro

Ω0 3.55 × 10−8 3.55 × 10−9 1.8 × 10−9 3.55 × 10−10 3.55 × 10−8 3.55 × 10−9 1.8 × 10−9 3.55 × 10−10

1.×10−8 1.011×10−8 9.982×10−9 9.987×10−9 9.992×10−9 3.395×10−10 3.057×10−10 3.106×10−10 2.588×10−10

5.×10−9 5.014×10−9 4.971×10−9 5.007×10−9 4.960×10−9 1.754×10−10 1.464×10−10 1.506×10−10 1.462×10−10

2.×10−9 2.005×10−9 1.984×10−9 2.007×10−9 2.083×10−9 7.481×10−11 5.600×10−11 6.588×10−11 5.492×10−11

1.×10−9 9.972×10−10 1.008×10−9 1.046×10−9 1.046×10−9 4.480×10−11 2.828×10−11 3.196×10−11 3.196×10−11

5.×10−10 4.965×10−10 4.975×10−10 5.076×10−10 4.956×10−10 2.529×10−11 1.497×10−11 1.703×10−11 1.385×10−11

2.×10−10 2.002×10−10 1.984×10−10 1.976×10−10 1.976×10−10 1.394×10−11 6.647×10−11 8.251×10−12 5.157×10−11

1.×10−10 9.981×10−11 1.065×10−10 9.941×10−11 1.003×10−10 9.228×10−12 5.322×10−12 4.050×10−12 3.048×10−12

5.×10−11 5.013×10−11 5.057×10−11 5.058×10−11 5.163×10−11 7.078×10−11 5.171×10−12 2.879×10−12 1.706×10−12

2.×10−11 2.006×10−11 2.014×10−11 1.989×10−11 2.016×10−11 5.389×10−12 2.558×10−12 1.130×10−12 8.457×10−13

1.×10−11 1.001×10−11 1.008×10−11 1.002×10−11 1.026×10−11 4.269×10−12 1.406×10−12 5.902×10−13 4.472×10−13

5.×10−12 5.011×10−12 4.959×10−12 5.001×10−12 5.024×10−12 3.583×10−12 9.843×10−13 4.526×10−13 2.556×10−13

2.×10−12 2.196×10−12 1.952×10−12 1.948×10−12 1.985×10−12 3.001×10−12 7.460×10−13 3.190×10−13 1.433×10−13

1.×10−12 1.019×10−12 1.064×10−12 9.936×10−13 1.013×10−12 2.155×10−12 5.119×10−13 2.233×10−13 1.040×10−13

1.×10−13 9.891×10−14 1.040×10−13 9.936×10−14 2.002×10−13 1.036×10−13 4.054×10−14
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We have a comparable result to that given in Ref. [55], and

the inverse of the Fisher information matrix on the diagonal

gives the uncertainties of the estimation of the parameters.

We see the importance to estimate the “noise” channel T for

the estimation of the SGWB.

In Fig. 8 we display the influence of the precision

on the fitted parameter versus the value of the cosmological

background Ω0. Obviously, we understand that if the

astrophysical background is large it will be harder

to measure the cosmological background with high

precision.

We have also conducted an A-MCMC study with six

parameters: two for the noise channel T, two for the

astrophysical background, and two for the cosmological

background. We use the data from the two science

channels, A and E, along with channel T. Given the

magnitude level of the LISA noise budget from the

LISA Science Requirements Document [54], we use

the acceleration noise Nacc ¼ 1.44 × 10−48 s−4Hz−1 and

the optical path-length fluctuation NPos¼3.6×10−41Hz−1.

We make the assumption that the data in channels A and T
are independent. The noises in both channels depend on the

two parameters Npos and Nacc. We aim to estimate the

SGWB and noise parameters simultaneously using data

from channels A, E and T via our A-MCMC algorithm.

Using the additional data from channel T will yield a more

efficient estimation procedure and a gain in precision of

parameter estimates than using the data from channels A, E
only. For four different magnitudes of the astrophysical

SGWB, we conduct A-MCMC runs with different values

for the amplitude of the cosmological background; see

Table I. The A-MCMC is characterized by β ¼ 0.01, N ¼
4000000 (see Sec. III C) and we use 2000 samples to

estimate the covariance matrix. We use log-uniform priors

with ten magnitude intervals for the two noise channel

parameters ½NOpt; NAcc� and for the two background ampli-

tudes ½Ωcosmo;Ωastro�, a uniform prior for the slope between

−0.4 and 0.4 for the cosmological slope αcosmo, and a

uniform prior between 0.27 and 1.07 for the astrophysical

slope αastro.

We note for comparison purposes the results given in

Ref. [55] where the diagonal elements of the inverse of the

Fisher information Fab provide the uncertainties of the

respective parameter estimates. The Fisher information

matrix is a block matrix. Indeed, we have a 6 × 6 matrix,

assuming the parameters are independent. We can thus

distinguish two independent types. The first comes from

derivatives related to the noise of LISA which generates a

2 × 2matrix, N2×2. The second type corresponds to a 4 × 4

matrix giving the derivatives linked to the SGWB, S4×4.
This second matrix is the same as the one calculated in

Sec. II A. So we have

Fab ¼
�

N2×2 0

0 S4×4

�

: ð44Þ

In Fig. 9, the blue line is the data for θ ¼
ðNacc; NPos; ΩGWα; αÞ ¼ ð1.44 × 10−48 s−4 Hz−1; 3.6 ×

10−41 Hz−1; 3.55 × 10−9; 2
3
Þ. The data are simulated with

the LISA noise model of Eq. (33) with a SGWB of binary

origin. The green line is the LISA noise model from

Ref. [55]. The A-MCMC is characterized by β ¼ 0.01,N ¼
1000000 (see Sec. III C) and we use 2000 samples to

estimate the covariance matrix. We use log-uniform priors

with ten magnitude intervals for the three first parameters

and a uniform prior for the slope between −
4

3
and 8

3
. The

orange line in Fig. 9 displays the result of the A-MCMC,

FIG. 9. Power spectral density of the channels A, E and T from

the LISA noise model [55] and an astrophysical SGWB

(Ω2=3 ¼ 3.55 × 10−9 at 25 Hz). The figures show the power

spectral densities: channel A (top), E (middle), and T (bottom).

The parameters are from the proposal [54]. The orange line is the

LISA noise model from Ref. [55], the green line is the values

from the A-MCMC, and the 1σ error is in grey.
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and the 1σ error is shown in grey. Figure 10 displays the

corner plot from the A-MCMC; the posterior distributions

are well approximated by Gaussian distributions. We have

evidence of good fits. The estimation of the noise level

magnitudes from the parametric estimation yields a positive

result because we have the possibility to fit the background

with the noise level throughout the frequency domain; it is

also possible to have a very efficient estimation of the

different noise components thanks to the signal T being

devoid of a science signal source.

The advantage of two science channels, A and E, as

opposed to one, A or E, is a factor of
ffiffiffi

2
p

for the error

estimation, and hence the overall sensitivity. Indeed, the

error of the cosmological amplitude is given by the

coefficient ðΩ0;Ω0Þ of the square root of the inverse of

the Fisher information matrix. We have for one channel (A

or E), ΔΩ0ðA orEÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F−1

Ω0;Ω0ðA orEÞ

q

. For a combination of A

and E, we have ΔΩ0ðA andEÞ ¼
ΔΩ0A orEÞ

ffiffi

2
p , because the two

channels respond identically. If the models for the spectrum

of A and E were the same, then Fa;bðA andEÞ ¼ 2Fa;bðA orEÞ .

Note that in the LISA observing band we have a ratio of
Ωastro

ΩCosmo
¼ 5.29 at 1 mHz and 1.15 at 0.1 mHz. The impor-

tance in being able to distinguish between two backgrounds

is not the absolute amplitude of the background, but the

ratio between the two backgrounds’ magnitudes
Ωastro

ΩCosmo
. For

a smaller ratio we can fit the cosmological background with

FIG. 10. Corner plot for the A-MCMC using the channels A, E
and T. The results are for the two magnitudes for the LISA noise

model from the proposal [54], and a single SGWB (amplitude and

spectral slope). The vertical dashed lines on the posterior

distribution represent from left to right the quantiles [16%,

50%, 84%]. The true values for the parameters are θ¼
ðNacc;NPos;ΩGWα;αÞ¼ ð1.44×10−48 s−4Hz−1;3.6×10−41 Hz−1;

3.55×10−9; 2
3
Þ.

FIG. 11. Uncertainty of the estimation of the parameter Ω0 (the spectral energy density of the cosmological SGWB) from

the Fisher information study (displayed as lines), and the parametric estimation from the A-MCMC (displayed as scatter points)

for the channel A and E, with the noise channel T. We conduct the study with different values for the astrophysical magnitude

Ωastro. There are error bars for the four sets of A-MCMC runs; see Eq. (32). The horizontal dashed line represents the error level

of 50%. This is the limit where it is possible to observe the cosmological SGWB. The dot-dashed line represents the

10% error.
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less uncertainty. From Fig. 11, we can separate the

cosmological background from the astrophysical back-

ground with a magnitude ratio of 4610 withΩastro ¼ 3.55 ×

10−9 and a reference frequency of 25 Hz. Here we have a

fitting uncertainty of 50%, which is the limit for making a

measurement. In fact, we can consider making a measure-

ment of the cosmological background if the uncertainty is

less than 50%; note the dashed line in Fig. 11. This example

corresponds to a cosmological background of ΩCosmo ¼
7.7 × 10−13 In Fig. 11 the same study is presented with

four values for the astrophysical background:

Ωastro¼3.55×10−8, 3.55×10−9, 1.8×10−9 and 3.55×

10−10. The same ratio produces similar results for different

inputs of astrophysical amplitude. We obtain respectively

the limits to constrain the cosmological background:

ΩCosmo ¼ 7.8 × 10−12, 7.8 × 10−13, 3.6 × 10−13 and

7.6 × 10−14. The values of these A-MCMC results are

given in the Table I. Figures 12 and 13 present respective

examples of corner plots and posterior distributions for a

run of a six-parameter A-MCMC with ΩGW;Astro ¼ 3.55 ×

10−8 and ΩGW;Cosmo ¼ 1 × 10−10, ΩGW;Astro ¼ 3.55 × 10−9

and ΩGW;Cosmo ¼ 5 × 10−12.

FIG. 12. Corner plot giving the A-MCMC-generated posterior distributions for a run with six parameters with ΩGW;Astro ¼
3.55 × 10−8 and ΩGW;Cosmo ¼ 1 × 10−11. The vertical dashed lines on the posterior distributions represent from left to right the quantiles

[16%, 50%, 84%]. This is from a run of using the data from channels A, E and T. These results are presented in

Table I and also in Fig. 11.
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VI. CONCLUSION

In this paper we presented the potential for separating the

spectral components of the two SGWBs with an adaptive

MCMCmethod. We also implemented a Fisher information

study, predicting the measurement uncertainty from the

A-MCMC analysis. The two independent studies produced

consistent results. We obtained an uncertainty around 1 for

the low level (Ω0 ¼ 1 × 10−12) and around 0.03 for the

high level (Ω0 ¼ 1 × 10−8). For example, with an astro-

physical background of ΩGW;Astro ¼ 3.55 × 10−9ð f
25 Hz

Þ2=3
a cosmological background at ΩGW;Cosmo ¼ 7.6 × 10−13

can be detected. This corresponds to an uncertainty
ΔΩ0

Ω0

of 0.5 (dashed line in Fig. 11). The study presented in

Sec. IV B displays the possibility to fit the parametric

components of the SGWB.

In Sec. V we discussed and demonstrated the possibility

to analyze the “noise” channel (the T channel) to fit the

noise parameters of the LISA noise budget. The advantage

of this method is that it increases the efficiency of the

parameter estimates and utilize the total frequency domain

½1 × 10−5 Hz; 1 Hz�. We also applied a Fisher information

study to the LISA noise. According to Fig. 11 we showed

the possibility to separate the two SGWBs with a spectral

separation with a factor of 4610 (for fref ¼ 25 Hz). Using a

realistic range for the predicted magnitude of the astro-

physically produced SGWB the methods demonstrated

in this paper show that it is possible for LISA to also

observe a cosmologically produced SGWB in the range of

ΩGW;Cosmo ≈ 1 × 10−12 to 1 × 10−13.

We note some limitations in this study and give some

expectations for future work. In this paper we assumed no

FIG. 13. Corner plot giving the A-MCMC-generated posterior distributions for a run of six parameters, with ΩGW;Astro ¼ 3.55 × 10−9

and ΩGW;Cosmo ¼ 5 × 10−12. The vertical dashed lines on the posterior distribution represent from left to right the quantiles [16%, 50%,

84%]. This is from a run using the data from channels A, E and T. These results are presented in Table I, and also in Fig. 11.
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difference in the noise levels on each spacecraft. According

to Ref. [11] it is possible to include such a noise variation

for each spacecraft. We could also include small modifi-

cations of the transfer functions RI, and allow for some

modification of the spectral slopes of the noise compo-

nents. We can have a varying slope but with a narrow

Gaussian prior centered on the theoretical value. It will be

important to address more detailed models of both the

LISA noise and the astrophysical and cosmological con-

tributions to the stochastic background.
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APPENDIX: SIGNAL SEPARATION

LITERATURE SUMMARY

In this Appendix we present in tabular form a list of

various studies that have been conducted in order to

separate different SGWBs and detector noise sources.

Much has been published on this subject.

1. SGWB studies for LIGO/Virgo

Table II presents a summary of the literature addressing

SGWB signal separation for LIGO and Virgo.

TABLE II. Methods to measure and to separate SGWBs for LIGO/Virgo.

Reference Goal Method Performance

Limitations and

applications

Chen et al. [20] Astrophysical SGWB

from binary black

holes and binary

neutrons stars

Estimation of the SGWB

from LIGO/Virgo

observations; local

merger rate R

Ω2=3 ¼ 4.4þ6.3
−3.0 × 10−12,

fref ¼ 3 mHz)

The error on the local

merger rate is

important

Abbott et al. [19] Astrophysical SGWB

from binary black

holes and binary

neutrons stars

Estimation of the SGWB

from LIGO/Virgo

observations with the

local merger rate R

estimation from

GW150914

Ω2=3 ¼ 1.1þ2.7
−0.9 × 10−12 fref ¼

25 Hz

The error on the local

merge rate is important

Abbott et al.

[27,28]

Three backgrounds

considered, power

laws α ¼ 0; 2
3
; 3

Results from cross-

correlation analysis

with Advanced LIGO

O3 combined O1 and

O1 results

Ω0 < 5.8 × 10−9;

Ω2=3 < 3.4 × 10−9,

fref ¼ 25 Hz

No correlated noise due

to the magnetic

Schumann resonances

Parida et al. [30] Separate different

isotropic SGWBs for

LIGO

Component separation of

power laws avoiding

use of MCMC

methods

Simulation demonstration for

Advanced LIGO target

sensitivity:

Ω0 ¼ ð1� 0.676Þ × 10−8;

Ω2=3 ¼ ð1� 1.719Þ × 10−8;

Ω3 ¼ ð1� 3.284Þ × 10−8;

fref ¼ 100 Hz.

Requires a negligible

amount of

computation and

would be simple to

apply to real data

Ungarelli and

Vecchio [31]

Fit broken power-law

SGWB with data from

Earth-based detectors

Filters based on broken

power-law spectra

Achieved fitting factor greater

than 97%

Small number of filters

needed to measure

SGWB in the first-

generation laser

interferometers

Smith and Thrane

[33]

To detect astrophysical

SGWB with LIGO/

Virgo

Bayesian parameter

estimation to detect

unresolved binary

black hole background

Less data needed to observe

background, as opposed to

traditional correlation based

search

Gives a unified method

for a search for

resolvable signals and

a SGWB of

unresolvable signals

(Table continued)
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2. SGWB studies in the LISA band

Table III presents a summary of the literature addressing SGWB signal separation for LISA.

TABLE III. Methods to measure and to separate SGWBs for LISA.

Reference Goal Method Perfomance

Limitations and

applications

Cornish and

Larson [25]

Observe cosmic SGWB

with astrophysical

foregrounds

Strategies for individual,

or two LISA

interferometers using

cross-correlation

LISA could detect a cosmic

SGWB at the level of

ΩGWðfÞh20 > 7 × 10−12

The LISA sensibility is

derived for LISA arm

length of L ¼ 5 × 109

Pieroni and

Barauss [29]

Extraction of the

cosmological SGWB

and astrophysical

foreground with LISA

noise

Principal component

analysis to model and

extract SGWBs

LISA can measure a

cosmological SGWB of

Ω0 ¼ 6 × 10−13 with SNR ¼
31

A robust technique that

can be extended to

different detectors

Caprini et al. [43] Observe SGWBs with

LISA

Reconstruction of

SGWB as a function of

frequency for simple

and broken power-

laws

Detects a power law of

Ω2=3 ¼ 5.4 × 10−12,

fref ¼ 0.001 Hz, with

SNR ¼ 601.

Signal and noise are

assumed to be

stationary for all times.

Flauger et al. [44] Observe SGWBs with

LISA, building on the

work of [43]

Reconstruction of the

spectral shape of a

SGWB with the LISA

A; E; T channels

Improvement of
ffiffiffi

2
p

over the

method of [43]

Will be expanded to

account for unequal

arm lengths for LISA

constellation.

Karnesis et al. [45] Fast methodology to

assess LISA

detectability of a

stationary, Gaussian,

and isotropic SGWB

Testing the Radler

simulated data set from

the LISA Data

Challenge

Successful demonstration for

Ω2=3ðfÞ ¼ 3.6 ×

10−9ð f
25 Hz

Þ2=3

Analysis done with

simple LISA noise

model

TABLE II. (Continued)

Reference Goal Method Performance

Limitations and

applications

S. Biscoveanu

et al. [32]

To detect a primordial

SGWB in the presence

of unresoved binary

black holes in LIGO/

Virgo band

Use method of [33];

individual short time

segments analyzed

Measurement of a simulated

power law:

logΩα ¼ −5.96þ0.08
−0.16 , α ¼

0.49þ1.14
−0.49

Limitations from the

precision of the

compact binary signal

waveforms, and non-

Gaussian noise

E. Thrane et al.

[38]

SGWB measurement in

the context of

correlated magnetic

noise in LIGO/Virgo

band.

Correlated noise between

detectors creates a

systematic error in

cross correlation study

Measurement of the correlated

noise from the Schumann

resonances

Possibility to use Wiener

Filter to subtract the

correlation.

P. M. Meyers et al.

[41]

LIGO/Virgo SGWB

measurement in the

context of correlated

magnetic noise

Parameter estimation of

the correlated

magnetic noise and

SGWB

Demonstration with

Ω2=3 ≃ 3 × 10−9, fref ¼
25 Hz and realistic magnetic

coupling in LIGO/Virgo

An alternative to Wiener

filtering
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3. SGWB studies for the future third-generation detectors

Table IV presents a summary of the literature addressing SGWB signal separation for third-generation gravitational-wave

detectors.

[1] B. Abbott et al., Observation of Gravitational Waves from a

Binary Black Hole Merger, Phys. Rev. Lett. 116, 061102

(2016).

[2] J. Aasi et al., Advanced LIGO, Classical Quantum Gravity

32, 074001 (2015).

[3] G. M. Harry, Advanced LIGO: The next generation of

gravitational wave detectors, Classical Quantum Gravity

27, 084006 (2010).

[4] B. P. Abbott et al., GW170814: A Three-Detector Obser-

vation of Gravitational Waves from a Binary Black Hole

Coalescence, Phys. Rev. Lett. 119, 141101 (2017).

[5] F. Acernese et al., Advanced Virgo: A second-generation

interferometric gravitational wave detector, Classical Quan-

tum Gravity 32, 024001 (2015).

[6] B. P. Abbott et al., GWTC-1: A Gravitational-Wave Tran-

sient Catalog of Compact Binary Mergers Observed by

LIGO and Virgo during the First and Second Observing

Runs, Phys. Rev. X 9, 031040 (2019).

[7] R. Abbott et al., GWTC-2: Compact binary coalescences

observed by LIGO and Virgo during the first half of the third

observing run, arXiv:2010.14527 [Phys. Rev. X (to be

published)].

[8] B. P. Abbott et al., GW170817: Observation of Gravita-

tional Waves from a Binary Neutron Star Inspiral, Phys.

Rev. Lett. 119, 161101 (2017).
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[11] M. R. Adams and N. J. Cornish, Detecting a stochastic

gravitational wave background in the presence of a galactic
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(2014).
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dwarf binary population in theMilkyWaywith cosmological
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R. Buscicchio, D. Gerosa, C. J. Moore, E. Roebber,

TABLE IV. Methods to measure and to separate SGWBs for the third-generation detectors.

Reference Goal Method Perfomance

Limitation and

application

Regimbau et al.

[34]

Observing a primordial

SGWB below the

compact binary

produced background

The data will be cleaned of

the direct observations of

binaries by the third-

generation detectors

Possible limit of ΩGW ≃

10−13 after 5 years of

observation with third-

generation detectors

[35,36]

Potential limitation to

sensitivity comes from

other astrophysical

gravitational-wave
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Sharma and Harms

[37]

Cosmological SGWB

with third-generation

detectors in the

presence of an

astrophysical

foreground
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astrophysical foreground
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Limitation for

cosmological SGWB

is instrumental noise

and unremoved
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Martinovic et al.

[42]

Astrophysical (compact

binary coalescence)

and cosmological

SGWB (cosmic strings

and first order phase

transitions)

Bayesian parameter

estimation for

simultaneous estimation

of astrophysical and

cosmological SGWB with

third-generation detectors

Possible limit at 25 Hz of

ΩGW ¼ 2.2 × 10−13

(broken power-law model

for primordial SGWB)

and ΩGW ¼ 4.5: × 10−13

for cosmic strings

Methods will be

applicable for LISA
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