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The eventual detection of gravitational waves from core-collapse supernovae (CCSNe) will help

improve our current understanding of the explosion mechanism of massive stars. The stochastic nature of

the late postbounce gravitational wave signal due to the nonlinear dynamics of the matter involved and the

large number of degrees of freedom of the phenomenon make the source parameter inference problem very

challenging. In this paper we take a step towards that goal and present a parameter estimation approach

which is based on the gravitational waves associated with oscillations of protoneutron stars (PNS).

Numerical simulations of CCSN have shown that buoyancy-driven g modes are responsible for a

significant fraction of the gravitational wave signal and their time-frequency evolution is linked to the

physical properties of the compact remnant through universal relations. We use a set of 1D CCSN

simulations to build a model that relates the evolution of the PNS properties with the frequency of the

dominant g mode, which is extracted from the gravitational-wave data using a new algorithm we have

developed for our study. The model is used to infer the time evolution of a combination of the mass and the

radius of the PNS. The performance of the method is estimated employing simulations of 2D CCSN

waveforms covering a progenitor mass range between 11 and 40 solar masses and different equations of

state. Considering signals embedded in Gaussian gravitational wave detector noise, we show that it is

possible to infer PNS properties for a galactic source using Advanced LIGO and Advanced Virgo data at

design sensitivities. Third generation detectors such as Einstein Telescope and Cosmic Explorer will allow

us to test distances of Oð100 kpcÞ.

DOI: 10.1103/PhysRevD.103.063006

I. INTRODUCTION

The life of sufficiently massive stars, i.e., those born with

masses between ∼8 and ∼120 M⊙, ends with the collapse

of the iron core under its own gravity, leading to the for-

mation of a neutron star (NS) or a black hole (BH), and

followed (typically but not necessarily in the BH case) by

a supernova explosion. Nearby core-collapse supernova

(CCSN) explosions are expected to be sources of gravita-

tional waves (GWs) and they could be the next great

discovery of current ground-based observatories. However,

these are relative rare events. A neutrino-driven explosion

[1] is the most likely outcome in the case of slowly rotating

cores, which are present in the bulk of CCSN progenitors.

The emitted GWs could be detected with the advanced

ground-based GW detector network, Advanced LIGO

(aLIGO) [2], Advanced Virgo (AdV) [3] and KAGRA
[4], within ∼5 kpc [5,6]. Such a galactic event has a rate of
about 2–3 per century [7,8]. For the case of rapidly rotating
progenitor cores the result is likely a magnetorotational
explosion, yielding a more powerful GW signal that could
be detected within 50 kpc and, for some extreme models,
up to 5–30 Mpc [5,6]. However, only about 1% of the
electromagnetically observed events show signatures
of fast rotation (broad-lined type Ic SNe [9] or events
associated with long gamma ray bursts [10]) making this
possibility a subdominant channel of detection with a

galactic event rate of ∼10−4 yr−1. Despite the low rates,
CCSN are of great scientific interest because they produce
complex GW signals which could provide significant clues
about the physical processes at work after the gravitational
collapse of stellar cores.
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In the last decade significant progress has been made in

the development of numerical codes, in particular in the

treatment of multidimensional effects [11]. In the case of

neutrino-driven explosions, the GW emission is primarily

induced by instabilities developed at the newly formed

protoneutron star (PNS) and by the nonspherical accreting

flow of hot matter over its surface [12]. These dynamics

excite the different modes of oscillation of the PNS which

ultimately leads to the emission of GWs. The frequency and

time evolution of these modes carry information about the

properties of the GW emitter and could allow to perform

PNS asteroseismology.

All multidimensional numerical simulations show the

systematic appearance in time-frequency diagrams (or

spectrograms) of a distinct and relatively narrow feature

during the postbounce evolution of the system, with

frequency rising from about 100 Hz up to a few kHz (at

most) and a typical duration of 0.5–1 s. This feature has

been interpreted as a continuously excited gravity mode

(g mode, see [13,14] for a definition in this context) of the

PNS [15–20]. In these models the monotonic raise of

the frequency of the mode is related to the contraction of the

PNS. The typical frequencies of these modes make them

interesting targets for ground-based GW interferometers.

The properties of gmodes in hot PNSs have been studied

since the 1990s by means of linear perturbation analysis

of background PNS models. The oscillation modes con-

nected with the surface of hot PNSs were first considered

by McDermott et al. [21]. Additionally, the stratified

structure of the PNS allows for the presence of different

types of g modes related to the fluid core [22]. Many

subsequent works used simplified neutron star models

assuming an equilibrium configuration as a background

to study the effect of rotation [23], general relativity [24],

nonlinearities [25], phase transitions [26] and realistic

equation of state [27]. Only recently, there have been

efforts to incorporate more suitable backgrounds based on

numerical simulations in the computation of the mode

structure and evolution [28–36].

Using results from 2D CCSN numerical simulations as

a background [30,32], we found that the eigenmode

spectrum of the region within the shock (including the

PNS and the postshock region) shows a good match to the

mode frequencies and to the features observed in the GW

spectrum of the same simulations (specially when space-

time perturbations are included [32]).

This reveals that it is posible to perform CCSN aster-

oseismology under realistic conditions and serves as a

starting point to carry out inference of astrophysical

parameters of PNSs. Further work was presented in [28]

who found that it is possible to derive simple relations

between the instantaneous frequency of the g mode and the

mass and radius of the PNS at each time of the numerical

evolutions. These relations are universal as they do not

depend on the equation of state (EOS) or on the mass of the

progenitor and they only depend weakly on the numerical

code used (see discussion in Sec. II). Similar universal

relations have been discussed by [35,36] who also found

that they do not depend on the dimensionality (1D, 2D or

3D) of the numerical simulation used as a background.

Previous data analysis efforts have focused on the

reconstruction of the GW strain amplitude without assum-

ing a particular signal model [37–39]. As the amount of

numerical simulations increased other methods using

waveform catalogs have been proposed to identify the

supernova explosion mechanism. Among them, principal

component analysis helps at reducing the complexity of

CCSN waveforms to fewer parameters [40–45]. The classi-

fication challenge is also well addressed with deep learning

methods [46,47].

In this work we introduce a method to infer PNS

properties, namely a combination of the mass and radius,

using GW information. For this purpose we have developed

an algorithm to extract the time-frequency evolution of the

main feature in the spectrograms of the GWemission of 2D

simulations of CCSN. This feature corresponds to the 2g2
mode, according to the nomenclature used in [28]. Next, we

use the universal relations obtained by [28], based on a set

of 1D simulations, to infer the time evolution of the ratio

MPNS=R
2

PNS (the PNS surface gravity), where MPNS is the

mass of the PNS and RPNS is the radius where the density is

lower than 1011 g=cm3. This same mode has been inter-

preted in some works as a f or a p mode (e.g., [29,48,49]).

However, this does not affects our analysis, which only

uses the relation between the frequency of the main mode

emitting in GWs (regardless of its nature) and the properties

of the PNS. Finally, using 2D CCSN waveform corre-

sponding to different progenitor masses we estimate the

performance of the algorithm for current and future gen-

eration of ground-based GW detectors.

This paper is organized as follows. Section II provides

details of the CCSN simulations used in our work. The

algorithm that we employ to extract the time evolution of

the PNS surface gravity is discussed in Sec. III. Section IV

shows the performance of our inference method and

presents our main results. Finally, our findings are sum-

marized in Sec. V. The Appendix discusses specific details

related to the reconstruction of the g mode.

II. CORE COLLAPSE SUPERNOVA SIMULATIONS

Unlike other methods used in GW astronomy the

algorithm proposed in this work does not require accurate

waveforms in order to infer the properties of the PNS.

Instead, it relies on the evolution of the oscillation

frequency of some particular modes visible in the GW

spectrum. The frequency of these modes depends in a

universal way on the surface gravity of the PNS, r≡

MPNS=R
2

PNS [28]. Therefore, if at a given time GWemission

is observed at a certain frequency f then the value of the

surface gravity can be determined unequivocally, within a
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certain error, regardless of the details of the numerical

simulation.

In this work we use two sets of simulations: (i) the model

set, composed by 1D simulations, which is used to build the

universal relation (model), rðfÞ, linking the ratio r with the
observed frequency f, and (ii) the test set, composed by 2D

simulations, for which we know both the GW signal and

the evolution of the ratio, rðtÞ, and that is used to test

performance of the algorithm.

Both the model set and test set simulations have been

generated using the AENUS-ALCAR code [50] which

combines special relativistic (magneto)hydrodynamics, a

modified Newtonian gravitational potential approximating

the effects of general relativity [51], and a spectral two-

moment neutrino transport solver [50]. All simulations

include the relevant reactions between matter and neutrinos

of all flavors, i.e., emission and absorption by nucleons and

nuclei, electron-positron pair annihilation, nucleonic brems-

strahlung, and scattering off nucleons, nuclei, and electrons.

For the model set, we use the 18 spherically symmetric

(1D) simulations of [32] including progenitors with

zero-age main sequence (ZAMS) masses in the range

MZAMS ¼ 11.2–75 M⊙. The set contains simulations using

six different EOS. Details can be found in [32]. The reason

to use 1D simulations for the model set is that their

computational cost is significantly smaller than that of

multidimensional simulations which allows us to accumu-

late the statistics necessary to build a good model for rðfÞ.
For each time of each simulation we compute the ratio r

and the frequency of the 2g2 mode by means of the linear

analysis described in [28,30,32].

For the test set, we use eight axisymmetric (2D)

simulations performed with the AENUS-ALCAR code (see

Table I for a list of models). All of these simulations but

model s20S use a selection of progenitors with masses in

the range MZAMS ¼ 11.2–40 M⊙ evolved through the

hydrostatic phases by [52]. We performed one simulation

of each stellar model using the EOS of [53] with an

incompressibility of K ¼ 220 MeV (LS220) and added

comparison simulations with the SFHo EOS [54] and the

GShen EOS [55] for the progenitor withMZAMS ¼ 15 M⊙.

To this set of simulations we add the waveform of a 2D

model used in [32], denoted s20S. It corresponds to a star

with the same initial mass, MZAMS ¼ 20 M⊙, as for one of

the other seven axisymmetric simulations, but it was taken

from a newer set of stellar-evolution models [56]. It was

evolved with the SFHo EOS.

For all the simulations, wemapped the precollapse state of

the stars to a spherical coordinate system with nr ¼ 400

zones in the radial direction distributed logarithmicallywith a

minimumgridwidthof ðΔrÞmin ¼ 400 mand anouter radius

of rmax ¼ 8.3 × 109 cmandnθ ¼ 128 equidistant cells in the

angular (polar) direction. For the neutrino energies,weused a

logarithmic grid with ne ¼ 10 bins up to 240 MeV. Unlike

the model set, the simulations in the test set are not 1D

because we need to extract the GW signal, which is a

multidimensional effect. For each simulation the GW signal,

hþðtÞ, is extracted by means of the quadrupole formula and

we compute the time evolution of the surface gravity, rðtÞ.
All spherical and most axisymmetric models we evolved

fail to achieve shock revival during the time of our simu-

lations. Only the two stars with the highest masses, s25 and

s40, develop relatively late explosions in axisymmetry.

Consequently, mass accretion onto the PNSs proceeds at

high rates for a long time in all cases and causes them

to oscillate with their characteristic frequencies. The final

masses of the PNSs are in the range of MPNS ¼
1.47–2.33 M⊙, i.e., likely insufficient for producing a

black hole.

III. DESCRIPTION OF THE METHOD

We next outline our strategy for estimating the time

evolution of rðtÞ from the observation of the 2g2 oscillation
mode in the GW detector data. To build the model of the

ratio r as a function of the frequency f we use the 1D

simulations of themodel set. Figure 1 shows the data for the

18 numerical simulations. Using these data we parametrize

the discretized ratio ri with a cubic polynomial regression

with heteroscedastic errors

ri ¼ β1fi þ β2f
2
i þ β3f

3
i þ ϵi; ð1Þ

TABLE I. List of axisymmetric simulations used for the test set. The last three columns show, the postbounce time

at the end of the simulation, the one at the onset of the explosion (nonexploding models marked with ×), and the

PNS mass at the end of the simulation.

Model name MZAMS ½M⊙� Progenitor model EOS tf [s] texplosion MPNS;f ½M⊙�

s11 11.2 [52] LS220 1.86 × 1.47

s15 15.0 [52] LS220 1.66 × 2.00

s15S 15.0 [52] SFHo 1.75 × 2.02

s15G 15.0 [52] GShen 0.97 × 1.86

s20 20.0 [52] LS220 1.53 × 1.75

s20S 20.0 [56] SFHo 0.87 × 2.05

s25 25.0 [52] LS220 1.60 0.91 2.33

s40 40.0 [52] LS220 1.70 1.52 2.23
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where ϵi are assumed to be independent zero-meanGaussian

errors with variances σ2i that increase with frequency fi. The

model for frequency-dependent variances is

log σi ¼ α0 þ α1fi þ α2f
2
i þ δi; ð2Þ

with independent and identically zero-mean Gaussian errors

δi. The R-package LMVAR [57] that implements a maximum

likelihood approach was used to fit the model.

For the mean of the ratios ri, the cubic model has the best

fitting amongst polynomials of lower degrees, and for the

mean of the log standard deviation log σi, the quadratic

model has the best fit compared to a polynomial of degree

one. The models were compared according to the Akaike

information criterion. The estimated coefficients are given

in Table II and the data and fit of the final model, including

95% confidence bands, are displayed in Fig. 1.

We use this model to infer the properties of the

simulations in the test set discussed in Sec. II. To describe

the method we focus on the GW signal of model s20S,

originally sampled at 16384 Hz but downsampled at

4096 Hz. A spectrogram of this signal is shown in

Fig. 2 based on autoregressive estimates [58] of the local

spectra for successive time intervals of length 200 with a

90% overlap. The dominant emission mode corresponds

to the PNS oscillation 2g2-mode. We have developed a

time-frequency method to track the ridge mðtÞ in the

spectrogram, taking into account that it is monotonically

increasing with time. This is a property of the 2g2 mode

whose frequency increases as the PNS becomes more

massive and compact. Starting from either the left- or

right-most column of the time-frequency matrix we identify

and trace the sequence of amplitude peaks within a certain

frequency band given the monotonicity constraint. Specific

details about the reconstruction of the 2g2-mode ridge are

provided in the Appendix.

We collect the instantaneous frequency fðtiÞ correspond-
ing to the ridge mðtiÞ for the midpoint ti of each local time

interval of the spectrogram and interpolate fðtÞ for values
in between ti. We then use our model given by Eq. (1) to

obtain estimates of the time evolution of the ratio together

with 95% confidence intervals. An example is given in

Fig. 3 where the red triangles are the point estimates and the

grey bands represent 95% confidence bands. The size of

the red triangles is proportional to the magnitude of the
2g2-mode frequency estimates. Note that as the frequency of

the 2g2 mode becomes higher our estimates show more
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FIG. 1. Ratio MPNS=R
2

PNS from our 18 1D simulations of the

model set. The solid line is the maximum likelihood estimate of

heteroscedastic cubic model with 95% confidence bands (dashed

lines) considering the 18 simulation data points. We have not

made the distinction between the different simulations since we

are only interested in the relationship between the variables.

TABLE II. Estimate and standard error of the coefficients of the

best fit model describing the ratio r ¼ MPNS=R
2

PNS as function of

the frequency of the 2g2 mode.

Coefficient Estimate Standard error

β1 1.00 × 10−06 2.12 × 10−08

β2 −8.22 × 10−10 5.00 × 10−11

β3 1.01 × 10−12 2.70 × 10−14

α0 −1.02 × 10þ01 6.80 × 10−02

α1 7.24 × 10−04 1.56 × 10−04

α2 6.23 × 10−07 8.15 × 10−08
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FIG. 2. Spectrogram of the GW signal s20S sampled at

4096 Hz. The spectrogram is obtained using a data stretch of

200 samples overlapping at 90% with each other. The open

circles track the ridge mðtÞ of the 2g2 mode.
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uncertainty (bigger intervals) because our model allows for

heterogeneous variance. Ratio values computed using the

mass and radius values obtained from the simulation code

(i.e., the true values) are shown in black. In this example of

a noise-free GW signal the coverage of our 95% confidence

band is 100% of the true values. In the next section we

investigate the performance of the reconstruction of rðtÞ
when the GW signal is embedded in noise. We also note

that despite we have only explicitly shown results for the

GW signal of the s20S model the same conclusions hold

for any of the other waveforms of our test set.

IV. DETECTABILITY PROSPECTS

To estimate how accurately we can infer the time

evolution of rðtÞ in the GW data of a single detector we

inject the GW signal for model s20S into 100 Gaussian

noise realizations whose power spectral density (PSD)

follows the aLIGO spectrum [59].

We cover a large range of distances for which a CCSN

detection in second-generation GW detectors is feasible.

We assume that the source is optimally oriented with

respect to our single detector. Moreover, we also assume

that a CCSN GW signal has been identified in the data and

that the beginning of the signal is known withinOð10 msÞ.
The data (signal embedded in noise) are whitened using the

function PREWHITEN of the R package TSA. An autore-

gressive model with a maximum of maximal 100 coef-

ficients is used.

For each of the noise realizations we reconstruct the track

ridge mðtiÞ starting from the left side of the spectrogram

and constraining the beginning of the track to be smaller

than 200 Hz. This value is chosen using the information on

the initial mode frequency from the simulations. We derive

the ratio time series ri of length N which is then compared

to the “true” ratio r0i derived from the PNS mass and radius

computed from the s20S simulation. The top panel of

Fig. 4 shows the distribution of the fraction of the ratio

values r0i that fall within the 95% confidence interval of ri
as a function of the distance to the source. This quantity,

hence, gives information about the coverage of the recon-

structed ratio. The coverage takes maximum values when

the source is located within a few kpc and then decreases

with the distance.

To better quantify how well we reconstruct the ratio we

also consider the mean of the relative error of ri along the

track of the spectrogram, Δ,
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FIG. 3. Comparison of the time evolution of the ratio

MPNS=R
2

PNS estimated from the 2g2 mode of the s20S signal

(shown by open triangles and by the 95% confidence belt in grey)

against the value derived from the PNS mass and radius given by

the simulation code (shown by filled black circles). The size of

the triangles are represented proportionally to the magnitude of

the 2g2-mode frequency estimates.

FIG. 4. Box plots of the coverage (upper panel) and Δ (lower

panel) for s20S signal embedded in aLIGO noise at different

distances from the Earth; 100 noise realizations are considered for

each distance. The orange lines indicate the median values while

the empty rectangles indicate the first and third quartiles. The “+”

markers are outliers outside the first and third quartiles.
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Δ ¼
1

N

XN

1

jri − r0i j

r0i
: ð3Þ

The values of Δ for each of the 100 noise realizations are

shown as a function of the distance in the bottom panel of

Fig. 4. For a source located up to ∼9 kpc the relative error

remains smaller than 20%. At closer distances Δ is smaller

but does not vanish. This reflects the approximate nature of

the model used for r. It is nevertheless remarkable that, on

average, one can reconstruct the ratio time series with a

good precision up to distances of ∼9 kpc (for this particular

waveform) with a coverage value larger than 80%. We note

that there are a few noise realizations for distances below

9 kpc for which Δ takes large values, indicating that the

method fails to accurately reconstruct the ratio in those

cases. The main cause of failure is the split of the ridge in

few blobs when the signal becomes weaker and weaker.

We have tested that the method does not depend on the

specific features of the waveform of model s20S by

repeating the procedure for the remaining seven waveforms

of the test set described in Sec. II covering a large range of

progenitor masses. Figure 5 shows that apart from model

s11 and to a lesser extent model s20S, the ratio is well

reconstructed for all waveforms up to a distance of

∼15 kpc. In an effort to better determine the maximal

distance of the source at which we can reconstruct the ratio

we have run 100 simulations without injecting a signal and

have measured the corresponding coverage for the recon-

structed ratios. The median of the coverage as well as the

band defined by the 5th and 95th percentiles are shown in

Fig. 5. The noise only median value is identically zero in

this case. However, note that it could be different from zero

because the g-mode reconstruction algorithm is looking for

a continuously increasing frequency track in the spectro-

gram, starting between 0 and 200 Hz, where we expect the

GW signal to be. This is enhancing the probability of

overlap. This effect explains why certain values of overlap

can reach values as high as 80% even when no signal is

added to the noise.

Figure 6 shows the relative error Δ as a function of the

distance for the signals of the test set as well as the result

when only noise is considered. This quantity follows the

same trend than that followed by the coverage, since all

signals but models s11 and s20S are reconstructed with

relative errors below 20% up to distances of ∼15 kpc.

Correspondingly, the no-signal case yields the largest error,

as expected.

We perform the same analysis using the design sensi-

tivity curve of AdV and expected sensitivity curves for

third-generation GW detectors. The results for the former

are reported in Table III and are discussed below. We focus

now on third-generation detectors, presenting our findings

in Table III and in Fig. 7. In Europe the Einstein Telescope

project proposes to host in a 10-km equilateral triangle

configuration three low-power, low-frequency, cryogenic

interferometers as well as three high-power, high-frequency

interferometers. Three sensitivity curves, ET_B, ET_C and

ET_D corresponding to different options and stages of the

project [60] are considered in our study. The U.S. based

project Cosmic Explorer [61] is expecting to reach its

design sensitivity circa 2040 through two phases labeled

CE1 and CE2.

FIG. 5. Data points (“þ”) show the median of the coverage for

the eight CCSN waveforms of the test set embedded in aLIGO

noise as a function of the distance to the source. The solid lines

are smoothing splines. The “no signal” line shows the median of

coverage in absence of any signal. In this example, the median is

null and overlaps with the horizontal axis. The blue band

boundaries are given by the 5th and 95th percentiles of coverage

in absence of any signal.

FIG. 6. Data points (“þ”) show themedian of the relative errorΔ

for the eight CCSN waveforms of the test set embedded in aLIGO

noise as a function of the distance to the source. The solid lines are

smoothing splines. The “no signal” line shows the median of Δ in

absence of any signal. The blue band boundaries are given by the

5th and 95th percentiles of Δ in absence of any signal.
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Figure 7 displays Δ as a function of the source distance

for the five third-generation detector configurations we

analyze. As before, we use the s20S waveform model as a

reference case. This figure shows that, overall, the ratio is

well reconstructed up to distances in the range 100–200 kpc

which represents an order of magnitude improvement with

respect to aLIGO and AdV. We also note that the results

for the various Einstein Telescope configurations lay in

between those of the two Cosmic Explorer designs.

Moreover, the detectability prospects for the former depend

weakly on the detector configuration while the arrangement

of CE2 yields better results than CE1. These results are

confirmed for all other waveforms of our sample except for

model s25 for which the maximal distance reach in CE2 is

significantly lower than CE1, as shown in Fig. 8. This is

partly due to the small variation of the reconstruction

quality to the distance of the source making the estimation

of dr rather uncertain for this particular waveform.

All results for both second-generation and third-

generation detectors are summarized in Table III and

Fig. 8. Table III reports the source distances dr in kpc at

which the median of the coverage is lower than 95% of the

noise only values for aLIGO, AdV, and different configu-

rations of third-generation detectors. This same information

is displayed in Fig. 8. We have checked that using either the

median of the coverage or the median of Δ yields similar

results for the distance. On the other hand, the quality of

the ratio reconstruction and, thus, of the distance range,

depends on the signal-to-noise ratio, expressed in Table III

by ddet. The numbers reported on the table for dr are an

estimate of the order of magnitude of the maximal distance

of the source at which a reconstruction of the ratio could be

possible with current and planned GW detectors. We also

provide upper limits for ddet by taking into account the

detector antenna response in our simulations and assuming

that the source is optimally oriented with a matched filter

signal-to-noise ratio of 13. Table III shows that the results

for the AdV detector at design sensitivity are very similar to

TABLE III. Maximal distance dr at which the ratio r ¼
MPNS=R

2

PNS is reconstructed with good accuracy for all GW

detectors analyzed in this study, assuming optimal orientation

between the source and the detector. Correspondingly, ddet is the
distance at which different interferometers could detect a source

optimally oriented with a matched filter signal-to-noise ratio of

13. All distances are expressed in kpc.

s11 s15 s15S s15G s20 s20S s25 s40

aLIGO dr 7 28 24 22 16 11 38 46

ddet 11 36 26 27 21 16 74 61

AdV dr 7 26 20 19 15 10 43 42

ddet 10 32 22 23 18 13 64 52

CE1 dr 79 304 258 229 187 115 524 490

ddet 115 377 270 282 217 168 774 633

CE2 dr 135 499 451 405 305 183 391 898

ddet 197 649 468 489 375 294 1347 1100

ET_B dr 71 293 248 245 158 123 113 392

ddet 106 364 274 391 216 200 805 665

ET_C dr 75 302 239 237 172 131 239 446

ddet 97 332 246 260 194 164 727 603

ET_D dr 83 329 257 261 186 139 369 523

ddet 107 368 271 285 213 174 796 661

FIG. 7. Data points (“þ”) show the median of the relative error

Δ as a function of the distance to the source for the CCSN

waveform model s20S embedded in third-generation detector

noise. The solid lines are smoothing splines. The blue band

boundaries are given by the 5th and 95th percentiles of coverage

in absence of any signal for ET_D noise realizations.

FIG. 8. Maximal distance at which the ratio r ¼ MPNS=R
2

PNS is

reconstructed with good accuracy for all GW detectors analyzed

in this study. The values are shown for all eight CCSN waveforms

of our sample assuming that the source is optimally oriented

with respect to the detector. Some waveform maximal distance

markers are not visible because they overlap (for instance s15G

is overlapping with s25 for CE2).
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those of aLIGO, despite the differences in detector

sensitivity. It is remarkable that for third-generation

detectors the PNS surface gravity could be reconstructed

for sources located up to a few hundreds of kpc. It is

nevertheless important to note the rather wide range in

distances we obtain for the different waveforms of our test

set that probe a large range of progenitor masses. We do not

find any correlation between either the mass of the

progenitor nor the EOS with dr.

V. CONCLUSIONS

The detection of GW from CCSN may help improve our

current understanding of the explosion mechanism of mas-

sive stars. In this paper we have proposed an exploratory

method to infer PNS properties using an approach based on

GW associated with convective oscillations of PNS. As

shown by [28] buoyancy-driven g modes are excited in

numerical simulations of CCSN and their time-frequency

evolution is linked to the physical properties of the compact

remnant through universal relations. Suchmodes are respon-

sible for a significant fraction of the highly stochastic GW

emitted after core bounce. The findings reported in this paper

suggest that PNS asteroseismology might be within reach of

current and third-generation GW detectors.

In our study we have used a set of 1D CCSN simulations

to build a model that relates the evolution of PNS properties

with the frequency of the dominant g mode, namely the 2g2
mode. This relationship is extracted from the GW data

using an algorithm developed for this investigation. This

algorithm is a first attempt to infer the time evolution of a

particular combination of the PNS mass and radius based

on the universal relations found in [28]. More precisely, we

have considered the ratio r ¼ MPNS=R
2

PNS (the PNS surface

gravity) derived from the observation of the 2g2 oscillation
mode in the numerically generated GW data. The perfor-

mance of our method has been estimated employing

simulations of 2D CCSN waveforms covering a progenitor

mass range between 11 and 40 solar masses and different

equations of state.

We have investigated the performance of the algorithm in

the case of an optimally oriented source detected by a singe

GW detector. Our numerical signals have been injected into

100 Gaussian noise realizations whose PSD follow the

spectra of the different GW detectors analyzed. We have

found that for Advanced LIGO and Advanced Virgo, the

ratio r can be reconstructed with a good accuracy in the

case of a galactic CCSN [i.e., for distances of Oð10 kpcÞ].
This holds for a wide range of progenitor masses, the

quality of the inference mainly depending on the signal-to-

noise ratio of the event. For third-generation GW detectors

such as the Einstein Telescope and the Cosmic Explorer,

however, we obtain an order of magnitude improvement, as

the 2g2 ratio can be reconstructed for sources at distances of
Oð100 kpcÞ. In particular, Cosmic Explorer in its stage 2

configuration yields the best performance for all waveforms

we have considered thanks to its excellent sensitivity in

the 100–1000 Hz range. Among the three configurations

of the Einstein Telescope, ET-D provides the best perfor-

mance, especially for our set waveforms with the highest

progenitor masses (25 and 40 M⊙). Comparing the esti-

mated distances for ET-B and the other third-generations

detectors, having a good sensitivity below 200 Hz seems

the most important factor to detect high mass progenitor

signals.

In the present study we have assumed that the sources

are optimally oriented. The reported distances at which we

can infer the time evolution of MPNS=R
2

PNS must thus be

regarded as upper limits. Those figures may decrease by a

factor of 2–3 on average for a source located anywhere in

the sky. Moreover, we have used 2D CCSN simulations that

are known to produce higher amplitude GW signals than

3D CCSN simulations [48,49]. This fact and the low

frequency standing accretion shock instability that appears

only in 3D simulations may reduce further the performance

of the method. Furthermore, we have not considered the

detectability prospects of CCSN waveforms in the realistic

case in which the interferometers operated as a detector

network. We defer an improved implementation of our

approach for a forthcoming publication. Finally, we note

that the method discussed in this work can be adapted to

other PNS oscillation modes, by simply changing a few

parameters such as the initial frequency range of the mode

and its monotonic raise or descent. Being able to recon-

struct several modes in the same GW signal would

potentially allow to individually infer the mass and the

radius of the PNS in core-collapse supernova explosions.

ACKNOWLEDGMENTS

Work was supported by the Spanish Agencia Estatal de

Investigación (Grant No. PGC2018-095984-B-I00), by the

Generalitat Valenciana (Grant No. PROMETEO/2019/071)

and by the European Union’s Horizon 2020 research and

innovation (RISE) programme (Grants No. H2020-MSCA-

RISE-2017 and No. FunFiCO-777740). N. C. acknowl-

edges support from National Science Foundation Grant

No. PHY-1806990. R. M. gratefully acknowledges support

by the James Cook Fellowship from Government funding,

administered by the Royal Society Te Apārangi. R. M. and

P. M.-R. also acknowledge funding from DFG Grant KI

1443/3-2 and thank the Centre for eResearch at the

University of Auckland for their technical support.

P. C.-D. acknowledges the support of the Spanish Ramon

y Cajal programme (Grant No. RYC-2015-19074) support-

ing his research.

APPENDIX: g-MODE RECONSTRUCTION

Given the spectrogram and a prescribed time interval for

the 2g2-mode reconstruction, our proposed method works
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as follows. The starting point must be specified. It can be

either at the beginning or at the end of the signal. Then, in

one of these two extremes, the maximum energy value is

identified, registering its frequency. This is done independ-

ently for a number of consecutive time intervals. Then, we

calculate the median of these frequency values, providing a

robust starting value for the 2g2-mode reconstruction.

The starting frequency value is the first 2g2-mode

estimate for the first or the last time interval, depending

on the starting location we choose. If the reconstruction is

set to start at the beginning of the signal, the reconstruction

will be done progressively over the time intervals, where

each maximum frequency value will be calculated within

a frequency range specified by the previous 2g2-mode

estimate. Given the nondecreasing behavior of the true
2g2-mode values, the mode estimates will be forced to be

greater or equal than the one estimated for its previous time

interval, and lower than a specified upper limit. As a result,

the 2g2-mode estimates will be a nondecreasing sequence of

frequency values. Then, the moving average is applied for

smoothing the estimates. If the reconstruction is set to start

at the end of the signal, the 2g2 mode will be estimated

backward in time. Each maximum frequency is calculated

within a range determined by its successor (in time) mode

estimate. These estimates are forced to be lower or

equal than its successor (in time) estimate, but greater than

a specified lower limit. Thus, a nondecreasing sequence

of 2g2-mode estimates is guaranteed. Then, the moving

average is applied for smoothing the estimates. This 2g2-
mode reconstruction method works if and only if the signal

is strong enough to provide information about the mode,

which is reflected in the spectrogram.

Given the sequence of 2g2-mode estimates, the confi-

dence band will be calculated by using the model defined in

Eq. (1). The 2g2-mode estimates are frequency values which

we use as predictors in the model in order to generate

confidence intervals for the ratios. Since the mode esti-

mates are indexed by time, the confidence intervals for the

ratios are too. Thus, we generate the confidence band by

interpolating the lower and upper limits of the collection of

consecutive confidence intervals, which will be valid for

the time range of the 2g2-mode estimates. This confidence

band is used to estimate the coverage probabilities in our

simulation studies presented in the main text.
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