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Diffusion is the underlying mechanism for many complicated materials phenomena, and understanding it is
basic to the discovery of novel materials with desired physical and mechanical properties. Certain groups of solid
phases, such as the bee phase of IT1IB and IVB metals and their alloys, which are only stable when they reach high
enough temperatures and experience anharmonic vibration entropic effects, exhibit “anomalously fast diffusion.”
However, the underlying reason for the observed extraordinary fast diffusion is poorly understood and due to the
existence of harmonic vibration instabilities in these phases the standard models fail to predict their diffusivity.
Here, we indicate that the anharmonic phonon-phonon coupling effects can accurately describe the anomalously
large macroscopic diffusion coefficients in the bcc phase of IVB metals and therefore yield understanding on
the underlying mechanism for diffusion in these phases. We utilize temperature-dependent phonon analysis by
combining ab initio molecular dynamics with lattice dynamics calculations to provide an approach to use the
transition state theory beyond the harmonic approximation. We validate the diffusivity predictions for the bcc
phase of titanium and zirconium with available experimental measurements, while we show that predictions

based on harmonic transition state theory severely underestimate diffusivity in these phases.

DOI: 10.1103/PhysRevMaterials.4.043802

I. INTRODUCTION

Diffusion processes play a key role in the kinetics of
many materials-related phenomena, such as microstructural
evolution during materials processing, and discovery of ma-
terials with specific diffusion characteristics is a major effort
in various research communities. Understanding mechanisms
of diffusion and providing an a priori predictive ability
for diffusivity are essential for discovery of materials with
specific diffusion characteristics and first-principles methods
have become a common approach to predict diffusivity in
various materials [1-15]. Existing computational frameworks
based on the harmonic transition state theory [16,17] rely
on the assumption that the solid phase is metastable and
there exists no mechanical instabilities in the system. This
assumption impedes the use of standard models to predict
diffusivity in many solid-state systems [18-29], including the
B phase of group IIIB and IVB metals and their alloys, where
the system exhibits harmonic phonon instabilities yet is stabi-
lized at high enough temperatures due to strongly anharmonic
lattice vibration entropic effects. Moreover, 8 phase of IIIB
and IVB metals and their alloys exhibit “anomalously fast
diffusion,” several orders of magnitude higher than fcc metals
and other bcc metals, at temperatures far below their melting
point [30-36], yet the underlying reason for this anomaly is
poorly understood.

A number of studies have proposed explanations for
the anomalous fast diffusion in the bcc phase of IIIB and
IVB metals [37-45]. While some earlier studies proposed

mixed vacancy mechanisms similar to the contribution of
divacancies jump or mobile defects in fcc metals as the
basis of anomalous fast diffusion, later experimental evi-
dence based on isotope effect measurements and neutron
scattering in B8 IIIB and IVB metals confirmed that the
monovacancy mechanism is the predominant diffusion mech-
anism [31-33,35,46,47]. Recently, Sangiovanni et al. [44]
proposed a highly concerted stringlike atomic motion as the
mechanism underlying anomalously large self-diffusivities
in bee Ti based on observations in an ab initio molecular
dynamics simulation. Other studies correlated the markedly
fast diffusion to temperature-induced effects. For example,
Sanchez and de Fontaine proposed a model which correlates
diffusivity in B-Zr to the formation of the metastable w phase
(i.e., heterophase fluctuations between bcc and w induced
by anharmonic vibrations), in which the diffusion activation
energy is assumed to be the formation free energy of the
o embryo [38,39]. Herzig and co-workers concluded that
the observed anomalous fast self-diffusion corresponds to the
softening of the LA %(1 11) phonon mode [40—42], supported
by observation of higher diffusivity in phases with stronger
softening effects [40].

The contribution of this report is twofold; First we illustrate
that while the monovacancy jump is the predominant mecha-
nism for diffusion in the bee phase of Ti and Zr, it is promoted
by the anharmonic phonon-phonon coupling effects, which
underlies the observed anomalously fast diffusion. Second,
we provide an approach based on first-principles calculations
that can successfully predict the macroscopic diffusion co-
efficient for the bce phase of titanium and zirconium where
the standard computational frameworks based on harmonic
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FIG. 1. DFT harmonic phonon dispersion and density of states (DOS) for a 6 x 6 x 6 supercell of bce titanium including 215 atoms and
a monovacancy (a) at the bece site and (b) migrated halfway to the nearest neighbor bcce site along the [111] direction. Phonon instabilities are
depicted as negative frequencies in the dispersion curves. The atomic configuration for the initial and intermediate states of vacancy diffusion
are illustrated in (c) and (d), respectively. A conventional supercell is presented for visualization simplicity.

unstable), temperature-induced dynamical stabilization re-
sults in hopping of the system among local distortions of the
lattice (i.e., local minima) in a way that the average atomic
positions stay at bcc [22,28]. These local minima are lo-
cated along the trigonal path associated with the longitudinal
L%(lll) phonon eigenvector [22,28]. Here we show that the
coincidence of this dynamical hopping with the direction of
vacancy jump along %(111) nearest neighbor in bcc met-
als significantly promotes the macroscopic diffusivity. Our
a priori prediction is validated with available experimental
diffusivity measurements. On the other hand, we indicate that
predicting diffusivity based on harmonic lattice vibrations

severely underpredicts this diffusivity. This further illustrates
the significant role of anharmonic lattice vibration interactions
in enhancing the diffusivity. Our findings shed light on under-
standing the fundamental origins of diffusion mechanism in
entropy-stabilized phases.

II. ANHARMONIC LATTICE VIBRATION EFFECTS
WITHIN TRANSITION STATE THEORY

The macroscopic diffusivity D for a vacancy-mediated dif-
fusion can be described in terms of the atomic jump distance
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FIG. 2. Phonon dispersion for a bulk defect-free 6 x 6 x 6 supercell of bcc titanium including 216 atoms at (a) 0 K, (b) 1300 K, and
(c) 1600 K obtained using the SCAILD method. (d) The longitudinal phonon branch along the [££&] reduced wave vector (between H and

P high-symmetry points) from 1300 K to 1600 K. The star marks in

(d) represent the negative dip on the phonon branch. (e) The trigonal

distortion of (111) atomic planes along the [111] direction associates with the eigenvector of §& = % phonon mode along the I'-P-H branch. A
complete collapse of atomic planes 1 and 3 results in the hexagonal w phase.

and jump frequency [48,49] as the following,

D = anaZF, (D

where « is a geometrical factor (@ = 8/6 for bcc), a is the
vacancy jump distance, C, is the equilibrium vacancy concen-
tration, and I is the successful vacancy jump frequency [48].
Within the transition state theory [1,16,17,50], the defect
jump frequency is expressed as I' = v*exp(—AH,, /kgT),
where AH,, is the migration enthalpy. kg is the Boltzmann’s
constant and 7 denotes temperature. v* is the effective
prefactor frequency, which encompasses all vibrational ef-
fects in the diffusion process. Within the harmonic transi-
tion state theory (HTST), v* is expressed as the ratio of
the product of normal vibration frequencies (i.e., harmonic
phonon frequencies) of the initial state to that of the non-
imaginary normal frequencies of the transition state, v* =
still Vi

1—[?21171 v’
and transition configurations, respectively, for a system of
N atoms. The equilibrium monovacancy concentration C,, is
calculated according to C, = exp(—%), where AH,
and AS, are enthalpy and entropy of monovacancy formation,
respectively. The formation enthalpy and entropy are cal-
culated according to AH, = H°'(N — 1) — %H YN) and

AS, = SN — 1) — E=LS©UN), respectively. H''(N — 1)

where v and V' are the frequencies for the initial

and S (N — 1) are the total enthalpy and entropy for a system
with a monovacancy and H''(N) and S'*'(N) are the total
enthalpy and entropy for the bulk phase, respectively. The
vibration entropy for each system is obtained from Sy, =
—kg fooo In[2 sinh(%)]g(w)da), where w is the vibration
frequency and g(w) is phonon density of state (DOS).

For systems that exhibit harmonic phonon instabilities,
such as the bcc phase of IVB metals, calculation of diffusivity
according to harmonic phonon analysis becomes infeasible.
More specifically, the existence of multiple imaginary v and
V' frequencies impedes the use of HTST to obtain v*, and Sy,
cannot be obtained based on imaginary phonon frequencies.
In Fig. 1, the harmonic phonon dispersions for bcec Ti with
a monovacancy at the initial and an intermediate state are
obtained based on the density-functional theory (DFT) finite
displacement approach, where the harmonic phonon disper-
sions exhibit phonon instabilities (a similar plot for bec Zr is
presented in Fig. S5 in Ref. [51]). However, similar to other
bee IIIB and IVB metals, bee Ti is stabilized at high enough
temperature due to the entropic stabilization of the system
arising from large amplitude anharmonic hopping among lo-
cal distortions [18-22,24,26-28,52-59]. We utilize two differ-
ent variations of the self-consistent harmonic approximation
(SCHA) approach, namely the self-consistent ab initio lattice
dynamics (SCAILD) [60-62] and the temperature dependent
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FIG. 3. The anharmonic phonon dispersion and density of states (DOS) for (a) a 6 x 6 x 6 supercell of bcc titanium including 216 atoms
and (b) bee Ti with a monovacancy including 215 atoms at 1600 K. (c) The temperature-dependent DOS for bulk bee Ti and (d) the bee phase

with a monovacancy at different temperatures.

effective potential (TDEP) method [63,64], to obtain the
temperature-dependent phonon dispersion and DOS for well-
defined equilibrium states, namely bulk bcc Ti and the bee
phase with a monovacancy (see Sec. SI in Ref. [51] for more
details). Figure 2 compares the harmonic phonon dispersion
(i.e., the zero-temperature phonon dispersion) of bce Ti in-
cluding phonon instabilities with finite-temperature phonon
dispersions from 1300 K to 1600 K with no imaginary phonon
frequencies, as expected due to dynamical stabilization of the
phase (a similar plot for bcc Zr is presented in Fig. S6 in
Ref. [51]).

As illustrated in Figs. 2(b)-2(d), there is a negative dip at
&= % on the L(££&) phonon branch [depicted as the dashed
line in Fig. 2(d)], which is indicative of the phonon softening
effects. This phonon mode corresponds to the trigonal dis-
tortion in which two neighboring (111) planes move towards
each other and results in the w phase when they collapse [see
Fig 2(e)]. This atomic distortion coincides with the vacancy
jump direction for the bee phase. Accordingly, we assume that
the effective prefactor frequency, v*(T), which is the effective
vibration frequency along the transition path, is equal to
the temperature-dependent frequency of the L% (111) phonon
mode for the bulk bec phase.

The successful jump frequency I' can then be obtained
given the anharmonic effective frequency v* and the activa-
tion free energy. To calculate the activation free energy in
systems with harmonic phonon instabilities, there are some

bottlenecks. Since the structure is mechanically unstable and
only stabilizes at high temperatures, it cannot be relaxed
according to zero-temperature forces to obtain the vacancy
formation enthalpy. Additionally, common schemes such as
the nudged elastic band (NEB) or dimer method [65-67]
cannot be used to locate the transition state as they rely on
the assumption that the final and initial states of diffusion
are metastable. Moreover, existence of imaginary phonon
frequencies inhibits the calculation of vacancy formation en-
tropy, Svip. To overcome these problems, we use the statistical
average energy and pressure from NVT ab initio molecular
dynamics (AIMD) simulations to obtain the enthalpy of the
system at high temperature. In addition, vacancy formation
entropy is obtained by comparing the temperature-dependent
phonon frequencies and DOS for the bulk and defected sys-
tems. For the specific problem of bcc IVB metals, we assume
that an interpolated state between the initial and final states
[see Fig. 1(d)] is a reasonable approximation for the transition
state. Accordingly, all the parameters needed for diffusiv-
ity calculation in Eq. (1) can be obtained as temperature-
dependent parameters that effectively account for phonon-
phonon coupling effects:

D= aa2CU r

= aa®v*(T)exp (_AHm _ AHU(T)) exp (—_ASU(T)>.

kT kg
@
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III. APPLICATION TO THE BCC PHASE OF IVB METALS

We applied the proposed methodology to obtain the macro-
scopic diffusion coefficient for the bcc phase of titanium
and zirconium. We calculate the migration enthalpy, AH,,,
as the DFT energy difference between the intermediate state
and the initial state [represented in Figs. 1(c) and 1(d)].
Note that we neglect the temperature-induced phonon-phonon
coupling effects for the migration enthalpy calculation as
the barrier energy for vacancy migration is calculated more
accurately according to zero-temperature energies compared
to the barrier energy for vacancy formation. This is because
two more similar structures that both contain monovacancies
are compared. Brute-force AIMD simulations cannot be used
to calculate the enthalpy of the intermediate state since the
simulation quickly slips away from this out-of-equilibrium
state. A more sophisticated sampling technique is required
which is the subject of a current development by the authors.
The vacancy formation enthalpy is the difference of enthalpies
for the bulk and defected systems and is obtained from
ab initio molecular dynamics (AIMD) average energy and
pressure (see Sec. SII in Ref. [51] for more details). Due
to underestimation of DFT in obtaining the energy of the
intrinsic surface formed around a vacancy, we add an explicit
correction term to both the migration and vacancy formation
enthalpies according to the electron density of the exchange-
correlation functional [68,69] (see Sec. SIII in Ref. [51] for
more details). Figure 4(a) illustrates the vacancy formation
enthalpy for bce titanium above the allotropic transformation
temperature (a similar plot is presented for bee zirconium in
Fig. S9(d) in Supplemental Material [51]).

Vacancy formation entropy is obtained by comparing the
temperature-dependent phonon frequencies and DOS for the
bulk and defected systems. Figures 3(a) and 3(b) illustrate
the temperature-dependent phonon dispersion and DOS
for both systems at 1600 K obtained using the TDEP
method [63,64] (similar plots for bcc Zr are shown in Fig.
S7 in Supplemental Material [51]). The formation of a va-
cancy results in the appearance of optical phonon branches
by removing the periodicity of the crystal structure, and
it broadens the peak in the DOS due to the existence of
several localized modes at higher frequencies. The vibration
entropy for the bulk and defected systems is obtained based on
T-dependent phonon frequencies, (7T ), and DOS, g(w(T))
(see Sec. SIV in Supplemental Material [51]). Figures 3(c)
and 3(d) show the anharmonic phonon density of states for
both the bulk phase and the bcc phase including a mono-
vacancy obtained by using the TDEP method at different
temperatures (similar plots for bcc Zr are shown in Fig. S10
in Supplemental Material [51]). Creating a vacancy in the
supercell results in a larger number of internal degrees of
freedom, in this case 216 x 3 — 3 = 645, which is the area
under the phonon density of states. The vacancy formation
entropy for each temperature is shown in Fig. 4(b). As illus-
trated in Fig. 4(c), we calculate the equilibrium monovacancy
concentration C,, having the formation entropy AS, and for-
mation enthalpy AH, (see Sec. SIV in Supplemental Material
[SID.

The ab initio predicted diffusivity for bcc titanium and
zirconium alongside the parameters used in Eq. (2) are pre-
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FIG. 4. (a) The vacancy formation enthalpy in bec Ti as a func-
tion of temperature. The circles are the statistical average formation
enthalpy obtained from AIMD simulation using the PBE exchange-
correlation functional. The crosses are the formation enthalpy values
including the explicit intrinsic surface correction term. (b) The
formation entropy and (c¢) equilibrium vacancy concentration versus
temperature for monovacancy in bec Ti. For bulk bec we used a
6 x 6 x 6 supercell of bce titanium including 216 atoms and for the
defected system we used bce Ti with a monovacancy including 215
atoms.

sented in Fig. 5. The circled curves in Fig. 5 are the diffusivity
predictions by including the anharmonic lattice vibration ef-
fects, which agree well with experimental measurements of
Ref. [40]. The diffusivity prediction based on the harmonic
phonon analysis underestimates the diffusion coefficient by
several orders of magnitude as shown by the crossed curves
in Fig. 5. In spite of the fact that we use identical migration
and formation enthalpies in both approaches, namely the
proposed approach based on anharmonic phonon analysis
and the standard harmonic model, the calculated diffusivities
differ dramatically. Moreover, the vacancy formation entropy
and concentration according to the proposed approach and
the harmonic model are very similar for both bcc Ti and
Zr (see Figs. 4(b) and 4(c) and Fig. S11 in Supplemental
Material [51]). This further illustrates the significant role
of anharmonic lattice vibrations in enhancing diffusivity in
the bce phase of Ti and Zr. The harmonic lattice vibration
model underestimates the diffusivity by almost three orders
of magnitude and two orders of magnitude for bce Ti and bee
Zr, respectively (see next section for more details on harmonic
model prediction).
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Fig. S6 for bece Zr.

IV. SIGNIFICANCE OF PHONON-PHONON
COUPLING EFFECTS

To understand the significance of anharmonic vibration ef-
fects, we also calculated the diffusion coefficient according to
a standard harmonic phonon analysis by excluding the imag-
inary harmonic phonon frequencies to calculate the vacancy
formation entropy (see Sec. SIV in Ref. [51]). We also use the

T-independent value v; x H" “ to obtain the v* in Eq. (2) by

i Vi

assuming imaginary v and v’ frequencies have real values. v
is the most unstable phonon frequency (i.e., the square root
of the most negative eigenvalue of the dynamical matrix) for
the transition state. The transition state is assumed to be the
estimated intermediate state presented in Fig. 1(d) for bec Ti
and in Fig. S5(d) for bce Zr. We calculate v; to be 6.64 THz
and 4.63 THz for Ti and Zr, respectively. This value is
comparable to the temperature-dependent v* in our approach,
presented in Fig. 5. However, the effective jump prefactor v*
is severely low in the harmonic approximation. This is due to

the small value for ll:[[—z, which essentially assumes phonon

modes are independeﬁtl (decoupled) oscillators and neglect
phonon-phonon coupling effects. This assumption is severely
underperforming for calculating the diffusion coefficient in
phases with harmonic phonon instabilities, not simply due to
infeasibility of its application but more importantly because
of the dominant effect of anharmonic phonon interactions.
We calculate the ratio of the product of independent harmonic
phonon frequencies in the initial and intermediate states,%,

to be 0.0011 and 0.0073 for bee Ti and Zr, respectively, which
results in v* values of 0.0073 THz and 0.034 THz for bcc
Ti and Zr, respectively. Typical ratio values of ‘—:‘ for solid
phases that are mechanically stable and can be Iaccurately
described by harmonic phonon modes are orders of magnitude
higher. For example, the ratio value for fcc Alis 5.6 and for fcc
Ag is 6.94. We obtained these values by comparing the DFT
harmonic phonon eigenvalues for the initial and saddle point
configuration obtained from the nudged elastic band method
and they are reported in our previous work [50].

V. COMPUTATIONAL DETAILS
A. DFT calculation

Electronic structure calculations are performed using den-
sity functional theory (DFT) as implemented in the Vienna
ab initio simulation package (VASP) [70-73]. We use the
projector augmented wave (PAW) method [73,74] with energy
cutoff of 274.6 eV for Ti and 229.9 eV for Zr and the gen-
eralized gradient approximation (GGA) [72,73,75] with the
PBE [76] exchange correlation (Ti_pv and Zr_sv). All DFT
calculations, including static energy, molecular dynamics,
and SCAILD are performed on a 6 x 6 x 6 supercell of bcc
including 216 atoms and a supercell with a vacancy at the bcc
site. For bee Cr, we use the energy cutoff of 395.5 eV for the
PAW pseudopotential with the PBE [76] exchange-correlation
functional for a supercell of 128 atoms for the bulk phase and
127 atoms for the bee phase with a monovacancy.
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B. Enthalpy calculations

AIMD simulations are performed at constant volume
and temperature (NVT) under the Nose-Hoover thermo-
stat [77-81]. Enthalpy values for the bulk and defected sys-
tems are obtained by averaging AIMD Kkinetic and potential
energies and the pressure-volume term that are captured every
0.1 ps for a 35 ps trajectory after 1 ps thermalization at each
temperature (see Sec. SII in Ref. [51] for more details).

C. Phonon analysis

SCAILD iteratively converges the phonon frequencies
at different temperatures accounting for anharmonic ef-
fects [60-62]. In TDEP, the temperature-dependent force-
constant tensor is obtained by minimizing the difference be-
tween ab initio molecular dynamics (AIMD) forces and forces
described in the harmonic approximation [63,64] (see Sec.
SI in Ref. [51] for details). SCAILD method is performed
using the SCPH code [61] based on DFT calculations until
the free energy difference converges to 107 eV (see Sec.
SI in Ref. [51]). For the DFT calculations the Brillouin zone
integration is performed on a mesh density of 4000 points per
reciprocal angstrom (generated by the EZVASP module [82]).
In TDEP method, phonon dispersions and DOSs are obtained
from temperature-dependent force constant tensors using the
PHONOPY code [83]. The temperature-dependent force con-
stant tensor is obtained by least square fitting of AIMD forces
and displacements to a harmonic model using our in-house
code. For AIMD simulations, the first Brillouin zone integra-
tion is performed on the I" point for a 6 x 6 x 6 supercell of
bee with cell volume of 3799.45 A% and 4988.63 A3 for Ti and
Zr, respectively.

VI. DISCUSSION

The agreement of our first-principles prediction with ex-
perimental diffusion coefficient indicates that monovacancy
jumps are the dominant atomic mechanism responsible for
macroscopic diffusion in the bce phase of IIIB-IVB metals.
The anomalously larger diffusivity in bec IIIB-IVB metals
compared to other bcc and fcc metals can be accurately ac-
counted for by including temperature-dependent anharmonic
lattice vibration effects within the transition state theory to
describe monovacancy jumps. In other words, monovacancy
jumps are significantly promoted due to phonon-phonon cou-
pling effects in these phases. On the other hand, the nature of
free energy surface in bec IIIB-IVB metals, which consists
of multiple local minima around the bcc structure, results
in hopping of the system among local structural distortions
(this has been shown for bcc Ti and B2 NiTi in our pre-
vious studies [22,28]) and increases the likelihood of col-
lective atomic motion. This phenomenon has been observed
as heterophase fluctuations in earlier works [41,84] and as a
concerted stringlike atomic motion in a more recent ab initio
molecular dynamics simulation [44]. However, our calcula-
tions show that these collective motions do not contribute to
the macroscopic diffusivity, in other words they do not result
in a long range mass transport. The contribution of collective
atomic motion to diffusivity can be the subject of a future
investigation which requires long-time molecular dynamics
simulation (which is feasible based on potential models) for a

complete statistical sampling of the diffusion process (similar
to methods used to distinguish cyclic collective motion in
tetragonal Li7La3Zr2012 (LLZO) [85]). One possibility is
that these collective atomic motions are cyclic or have a
random nature with a zero long-range effect. Unfortunately,
the current potential models for bcc Ti (e.g., the MEAM
potential [86]) cannot effectively capture the softening of
the L%(lll) phonon, which plays the major role in soft-
ening of restoring forces and collective atomic distortions.
The phonon-assisted vacancy jump mechanism to be the
predominant one in bcc IVB metals is supported by direct
experimental determination of the mechanism [31-33,35] and
the isotope effect [46,47].

While self-consistent harmonic approximation (SCHA)
approaches (e.g., SCAILD and TDEP) have been exten-
sively used for thermodynamic description of various sys-
tems [61-64,87-90], we utilize self-consistent temperature-
dependent phonon analysis to describe diffusive jump rates
within the framework of the transition state theory. The in-
troduced approach can be used for diffusion description of
other mechanically unstable phases, including the B phase
of IIIB and IVB metals and their alloys. The computation
cost of the introduced methodology is minimal, only requiring
anharmonic phonon analysis of two systems (a bulk phase and
a small supercell including a vacancy) at each temperature,
when compared to diffusion description based on brute-force
molecular dynamic simulation on the order of nanoseconds
(refer to Ref. [85] for details on adequate MD sampling of
diffusive events).

Developing a general framework that effectively accounts
for temperature-induced effects in diffusion description of
mechanically unstable but dynamically stabilized phases is
beyond the scope of this report and is the subject of an
active investigation by the authors. The major assumption in
calculation of diffusivity in this report is the approximation
of migration energy barrier and the effective jump frequency
along the migration path (details are described in Sec. III).
These assumptions are justified for the pure bcc phase due
to the coincidence of diffusive jump direction and a specific
phonon mode with softening effects.

In summary, we predict the diffusivity of the bcc Ti
and Zr by simply including temperature-induced anharmonic
phonon-phonon coupling effects within the monovacancy-
mediated diffusive jump process. Our predictions are in good
agreement with experimental measurements while disregard-
ing the anharmonic vibration effects results in orders of
magnitude underestimation in diffusivity. Our findings shed
light on the underlying mechanism responsible for markedly
larger diffusion coefficient in bec IIIB and IVB metals and
provide a computationally efficient and accurate approach
for macroscopic diffusivity calculations beyond the harmonic
lattice vibration approximation.
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